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Abstract

The susceptibility of modern machine learning classifiers to adversarial examples
has motivated theoretical results suggesting that these might be unavoidable. How-
ever, these results can be too general to be applicable to natural data distributions.
Indeed, humans are quite robust for tasks involving vision. This apparent conflict
motivates a deeper dive into the question: Are adversarial examples truly unavoid-
able? In this work, we theoretically demonstrate that a key property of the data
distribution – concentration on small-volume subsets of the input space – deter-
mines whether a robust classifier exists. We further demonstrate that, for a data
distribution concentrated on a union of low-dimensional linear subspaces, utilizing
structure in data naturally leads to classifiers that enjoy data-dependent polyhedral
robustness guarantees, improving upon methods for provable certification in certain
regimes.

1 Introduction, Motivation and Contributions

Research in adversarial learning has shown that traditional neural network based classification models
are prone to anomalous behaviour when their inputs are modified by tiny, human-imperceptible
perturbations. Such perturbations, called adversarial examples, lead to a large degradation in the
accuracy of classifiers [55]. This behavior is problematic when such classification models are
deployed in security sensitive applications. Accordingly, researchers have and continue to come up
with defenses against such adversarial attacks for neural networks.

Such defenses [49, 60, 42, 22] modify the training algorithm, alter the network weights, or employ
preprocessing to obtain classifiers that have improved empirical performance against adversarially
corrupted inputs. However, many of these defenses have been later broken by new adaptive attacks
[1, 8]. This motivated recent impossibility results for adversarial defenses, which aim to show that all
defenses admit adversarial examples. While initially such results were shown for specially parameter-
ized data distributions [18], they were subsequently expanded to cover general data distributions on
the unit sphere and the unit cube [48], as well as for distributions over more general manifolds [12].

On the other hand, we humans are an example of a classifier capable of very good (albeit imperfect
[17]) robust accuracy against `2-bounded attacks for natural image classification. Even more, a
large body of recent work has constructed certified defenses [11, 63, 10, 29, 19, 54] which obtain
non-trivial performance guarantees under adversarially perturbed inputs for common datasets like
MNIST, CIFAR-10 and ImageNet. This apparent contention between impossibility results and the
existence of robust classifiers for natural datasets indicates that the bigger picture is more nuanced,
and motivates a closer look at the impossibility results for adversarial examples.

Our first contribution is to show that these results can be circumvented by data distributions whose
mass concentrates on small regions of the input space. This naturally leads to the question of whether
such a construction is necessary for adversarial robustness. We answer this question in the affirmative,
formally proving that a successful defense exists only when the data distribution concentrates on an
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exponentially small volume of the input space. At the same time, this suggests that exploiting the
inherent structure in the data is critical for obtaining classifiers with broader robustness guarantees.

Surprisingly, almost1 all certified defenses do not exploit any structural aspects of the data distribution
like concentration or low-dimensionality. Motivated by our theoretical findings, we study the special
case of data distributions concentrated near a union of low-dimensional linear subspaces, to create a
certified defense for perturbations that go beyond traditional `p-norm bounds. We find that simply
exploiting the low-dimensional data structure leads to a natural classification algorithm for which we
can derive norm-independent polyhedral certificates. We show that our method can certify accurate
predictions under adversarial examples with an `p norm larger than what can be certified by applying
existing, off-the-shelf methods like randomized smoothing [11]. Thus, we demonstrate the importance
of structure in data for both the theory and practice of certified adversarial robustness.

More precisely, we make the following main contributions in this work:

1. We formalize a notion of (ε, δ)-concentration of a probability distribution q in Section 2,
which states that q assigns at least 1 − δ mass to a subset of the ambient space having
volume O(exp (−nε)). We show that (ε, δ)-concentration of q is a necessary condition for
the existence of any classifier obtaining at most δ error over q, under perturbations of size ε.

2. We find that (ε, δ)-concentration is too general to be a sufficient condition for the existence
of a robust classifier, and we follow up with a stronger notion of concentration in Section 3
which is sufficient for the existence of robust classifiers. Following this stronger notion, we
construct an example of a strongly-concentrated distribution, which circumvents existing
impossibility results on the existence of robust classifiers.

3. We then consider a data distribution q concentrated on a union of low-dimensional linear
subspaces in Section 4. We construct a classifier for q that is robust to perturbations following
threat models more general than `p. Our analysis results in polyhedral certified regions
whose faces and extreme rays are described by selected points in the training data.

4. We perform empirical evaluations on MNIST in Section 5, demonstrating that our certificates
are complementary to existing off-the-shelf approaches like Randomized Smoothing (RS),
in the sense that both methods have different strengths. In particular, we demonstrate a
region of adversarial perturbations where our method is certifiably robust, but RS is not. We
then combine our method with RS to obtain certificates that enjoy the best of both worlds.

2 Existence of Robust Classifier Implies Concentration

We will consider a classification problem over X × Y defined by the data distribution p such that X
is bounded and Y = {1, 2, . . . ,K}. We let qk denote the conditional distribution pX|Y=k for class

k ∈ Y . We will assume that the data is normalized, i.e., X = B`2(0, 1), and the boundary of the
domain is far from the data, i.e., for any x ∼ qk, an adversarial perturbation of `2 norm at most ε
does not take x outside the domain X .2

We define the robust risk of a classifier f : X → Y against an adversary making perturbations whose
`2 norm is bounded by ε as 3

R(f, ε) = Pr
(x,y)∼p

(∃x̄ ∈ B`2(x, ε) such that f(x̄) 6= y) . (1)

We can now define a robust classifier in our setting.

Definition 2.1 (Robust Classifier). A classifier g is defined to be (ε, δ)-robust if the robust risk against
perturbations with `2 norm bounded by ε is at most δ, i.e., if R(g, ε) ≤ δ.

The goal of this section is to show that if our data distribution p admits an (ε, δ)–robust classifier, then
p has to be concentrated. Intuitively, this means that p assigns a “large” measure to sets of “small”
volume. We define this formally now.

1See Section 6 for more details.
2More details in Appendix A.
3Note that for f(x̄) to be defined, it is implicit that x̄ ∈ X in (1).
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Definition 2.2 (Concentrated Distribution). A probability distribution q over a domain X ⊆ R
n

is said to be (C, ε, δ)-concentrated, if there exists a subset S ⊆ X such that q(S) ≥ 1 − δ but
Vol(S) ≤ C exp(−nε). Here, Vol denotes the standard Lebesgue measure on R

n, and q(S) denotes
the measure of S under q.

With the above definitions in place, we are ready to state our first main result.

Theorem 2.1. If there exists an (ε, δ)-robust classifier f for a data distribution p, then at least
one of the class conditionals q1, q2, . . . , qK , say qk̄, must be (C̄, ε, δ)–concentrated. Further, if
the classes are balanced, then all the class conditionals are (Cmax, ε,Kδ)-concentrated. Here,
C̄ = Vol{x : f(x) = k̄}, and Cmax = maxk Vol{x : f(x) = k} are constants dependent on f .

The proof is a natural application of the Brunn-Minkowski theorem from high-dimensional geometry,
essentially using the fact that an ε-shrinkage of a high-dimensional set has very small volume. We
provide a brief sketch here, deferring the full proof to Appendix A.

Proof Sketch. Due to the existence of a robust classifier f , i.e., R(f, ε) ≤ δ, the first observation
is that there must be at least one class which is classified with robust accuracy at least 1 − δ. Say
this class is k, and the set of all points which do not admit an ε-adversarial example for class k
is S. Now, the second step is to show that S has the same measure (under qk) as the ε-shrinkage
(in the `2 norm) of the set of all points classified as class k. Finally, the third step involves using
the Brunn-Minkowski theorem, to show that this ε-shrinkage has a volume O(exp(−nε)), thus
completing the argument.

Discussion on Theorem 2.1. We pause here to understand some implications of this result.

• Firstly, recall the apparently conflicting conclusions from Section 1 between impossibility results
(suggesting that robust classifiers do not exist) and the existence of robust classifiers in practice
(such as that of human vision for natural data distributions). Theorem 2.1 shows that whenever
a robust classifier exists, the underlying data distribution has to be concentrated. In particular,
this suggests that natural distributions corresponding to MNIST, CIFAR and ImageNet might be
concentrated. This indicates a resolution to the conflict: concentrated distributions must somehow
circumvent existing impossibility results. Indeed, this is precisely what we will show in Section 3.

• Secondly, while our results are derived for the `2 norm, it is not very hard to extend this reasoning
to general `p norms. In other words, whenever a classifier robust to `p-norm perturbations exists,
the underlying data distribution must be concentrated.

• Thirdly, Theorem 2.1 has a direct implication towards classifier design. Since we now know
that natural image distributions are concentrated, one should design classifiers that are tuned for
small-volume regions in the input space. This might be the deeper principle behind the recent
success [66] of robust classifiers adapted to `p-ball like regions in the input space.

• Finally, the extent of concentration implied by Theorem 2.1 depends on the classifier f , via the
parameters ε, δ and C̄. On one hand, we get high concentration when ε is large, δ is small, and
C̄ is small. On the other hand, if the distribution p admits an (ε, δ)-robust classifier such that C̄
is large (e.g., a constant classifier), then we get low concentration via Theorem 2.1. This is not a
limitation of our proof technique, but a consequence of the fact that some simple data distributions
might be very lowly concentrated, but still admit very robust classifiers, e.g., for a distribution
having 95% dogs and 5% cats, the constant classifier which always predicts “dog” is quite robust.

We have thus seen that data concentration is a necessary condition for the existence of a robust
classifier. A natural question is whether it is also sufficient. We address this question now.

3 Strong Concentration Implies Existence of Robust Classifier

Say our distribution p is such that all the class conditionals q1, q2, . . . , qk are (C, ε, δ)-concentrated.
Is this sufficient for the existence of a robust classifier? The answer is negative, as we have not
precluded the case where all of the qk are concentrated over the same subset S of the ambient space.
In other words, it might be possible that there exists a small-volume set S ⊆ X such that qk(S)
is high for all k. This means that whenever a data point lies in S, it would be hard to distinguish
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which class it came from. In this case, even an accurate classifier might not exist, let alone a robust
classifier4. To get around such issues, we define a stronger notion of concentration, as follows.

Definition 3.1 (Strongly Concentrated Distributions). A distribution p is said to be (ε, δ, γ)-strongly-
concentrated if each class conditional distribution qk is concentrated over the set Sk ⊆ X such that

qk(Sk) ≥ 1− δ, and qk

(

⋃

k′ 6=k S
+2ε
k′

)

≤ γ, where S+ε denotes the ε-expansion of the set S in the

`2 norm, i.e., S+ε = {x : ∃x̄ ∈ S such that ‖x− x̄‖2 ≤ ε}.

In essence, Definition 3.1 states that each of the class conditionals are concentrated on subsets of the
ambient space, which do not intersect too much with one another5. Hence, it is natural to expect that
we would be able to construct a robust classifier by exploiting these subsets. Building upon this idea,
we are able to show Theorem 3.1:

Theorem 3.1. If the data distribution p is (ε, δ, γ)-strongly-concentrated, then there exists an (ε, δ +
γ)-robust classifier for p.

The basic observation behind this result is that if the conditional distributions qk had disjoint supports
which were well-separated from each other, then one could obtain a robust classifier by predicting the
class k on the entire ε-expansion of the set Sk where the conditional qk concentrates, for all k. To go
beyond this idealized case, we can exploit the strong concentration condition to carefully remove the
intersections at the cost of at most γ in robust accuracy. We make these arguments more precise in the
full proof, deferred to Appendix B, and we pause here to note some implications for existing results.

Implications for Existing Impossibility Results. To understand how Theorem 3.1 circumvents the
previous impossibility results, consider the setting from [48] where the data domain is the sphere
S
n−1 = {x ∈ R

n : ‖x‖2 = 1}, and we have a binary classification setting with class conditionals q1
and q2. The adversary is allowed to make bounded perturbations w.r.t. the geodesic distance. In this
setting, it can be shown (see [48, Theorem 1]) that any classifier admits ε-adversarial examples for
the minority class (say class 1), with probability at least

1− αq1β exp

(

−
n− 1

2
ε2
)

, (2)

where αq1 = supx∈Sn−1 q1(x) depends on the conditional distribution q1, and β is a normalizing
constant that depends on the dimension n. Note that this result assumes little about the conditional q1.
Now, by constructing a strongly-concentrated data distribution over the domain, we will show that the

Figure 1: A plot of q1. Redder
colors denote a larger density,
and the gray plane denotes the
robust classifier.

lower bound in (2) becomes vacuous.

Example 3.1. The data domain is the unit sphere S
n−1 equipped

with the geodesic distance d. The label domain is {1, 2}. P is an
arbitrary, but fixed, point lying on S

n−1. The conditional density of
class 1, i.e., q1 is now defined as

q1(x) =

{

1
C

1
sinn−2 d(x,P )

, if d(x, P ) ≤ 0.1

0, otherwise
,

where C = 0.1 is a normalizing constant. The conditional density of
class 2 is defined to be uniform over the complement of the support
of q1, i.e. q2 = Unif({x ∈ S

n−1 : d(x, P ) > 0.1}). Finally, the
classes are balanced, i.e., pY (1) = pY (2) = 1/2.

The data distribution constructed in Example 3.1 makes Eq. (2) vacu-
ous, as the supremum over the density q1 is unbounded. Additionally,
the linear classifier defined by the half-space {x : 〈x, P 〉 ≤ cos(0.1)} is robust (Appendix C provides
a derivation of the robust risk, and further comments on generalizing this example). Example 3.1 is
plotted for n = 3 dimensions in Fig. 1.

4Recall that classifier not accurate at a point (x, y), i.e., f(x) 6= y, is by definition not robust at x, as a v = 0
perturbation is already sufficient to ensure f(x+ v) 6= y.

5More detailed discussion in Appendix G.
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Compatibility of Theorem 3.1 with existing Negative Results Thus, we see that strongly con-
centrated distributions are able to circumvent existing impossibility results on the existence of robust
classifiers. However, this does not invalidate any existing results. Firstly, measure-concentration-
based results [48, 18, 12] provide non-vacuous guarantees given a sufficiently flat (not concentrated)
data distribution, and hence do not contradict our results. Secondly, our results are existential and do
not provide, in general, an algorithm to construct a robust classifier given a strongly-concentrated
distribution. Hence, we also do not contradict the existing stream of results on the computational
hardness of finding robust classifiers [6, 56, 47]. Our positive results are complementary to all such
negative results, demonstrating a general class of data distributions where robust classifiers do exist.

For the reminder of this paper, we will look at a specific member of the above class of strongly
concentrated data distributions and show how we can practically construct robust classifiers.

4 Adversarially Robust Classification on Union of Linear Subspaces

The union of subspaces model has been shown to be very useful in classical computer vision for a
wide variety of tasks, which include clustering faces under varying illumination, image segmentation,
and video segmentation [57]. Its concise mathematical description often enables the construction
and theoretical analysis of algorithms that also perform well in practice. In this section, we will
study robust classification on data distributions concentrated on a union of low-dimensional linear
subspaces. This data structure will allow us to obtain a non-trivial, practically relevant case where we
can show a provable improvement over existing methods for constructing robust classifiers in certain
settings. Before delving further, we now provide a simple example (which is illustrated in Fig. 2)
demonstrating how distributions concentrated about linear subspaces are concentrated precisely in
the sense of Definition 3.1, and therefore allow for the existence of adversarially robust classifiers.

f (x) = 1

f (x) = 2

Figure 2: A plot of q1 (or-
ange), q2 (violet) and the deci-
sion boundaries of f (dashed).

Example 4.1. The data domain is the ball B`∞(0, 1) equipped with
the `2 distance. The label domain is {1, 2}. Subspace S1 is given

by S1 = {x : x>e1 = 0}, and S2 is given by S2 = {x : x>e2 = 0},
where e1, e2 are the standard unit vectors. The conditional densities
are defined as

q1 = Unif({x : ‖x‖∞ ≤ 1, |x>e1| ≤ e
−α/2}), and,

q2 = Unif({x : ‖x‖∞ ≤ 1, |x>e2| ≤ e
−α/2}),

where α > 0 is a large constant. Finally, the classes are balanced,
i.e., pY (1) = pY (2) = 1/2. With these parameters, q1, q2 are both
(0.5, α/n − 1, 0)-concentrated over their respective supports. Ad-
ditionally, p is (ε, 0, e−α/2 + 2ε)–strongly-concentrated. A robust
classifier f can be constructed following the proof of Theorem 3.1,
and it obtains a robust accuracy R(f, ε) ≤ e−α/2 + 2ε. See Ap-
pendix D for more details.

We will now study a specific choice of p that generalizes Example 4.1 and will let us move beyond
the above simple binary setting. Recall that we have a classification problem specified by a data
distribution p over the data domain X × Y = B(0, 1) × {1, 2, . . . ,K}. Firstly, the classes are
balanced, i.e., pY (k) = 1/K for all k ∈ Y . Secondly, the conditional density, i.e., qk = pX|Y=k, is

concentrated on the set S+γ
k ∩X , where Sk is a low-dimensional linear subspace, and the superscript

denotes an γ-expansion, for a small γ > 0.

For the purpose of building our robust classifier, we will assume access to a training dataset of M
clean data points (s1, y1), (s2, y2), . . . , (sM , yM ), such that, for all i, the point si lies exactly on one
of the K low-dimensional linear subspaces. We will use the notation S = [s1, s2, . . . , sM ] for the
training data matrix and y = (y1, y2, . . . , yM ) for the training labels. We will assume that M is large
enough that every x ∈ ∪kSk can be represented as a linear combination of the columns of S.

Now, the robust classification problem we aim to tackle is to obtain a predictor g : X → Y which
obtains a low robust risk, with respect to an additive adversary A that we now define. For any
data-point x ∼ p, A will be constrained to make an additive perturbation v such that dist`2(x +
v,∪iSi) ≤ ε. In other words, the attacked point can have `2 distance at most ε from any of the linear
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subspaces S1, . . . , Sk. Note that A is more powerful than an `2-bounded adversary as the norm of
the perturbation ‖v‖2 might be large, as v might be parallel to a subspace.

Under such an adversary A, given a (possibly adversarially perturbed) input x, it makes sense to
try to recover the corresponding point s lying on the union of subspaces, such that x = s+ n, such
that ‖n‖2 ≤ ε. One way to do this is to represent s as a linear combination of a small number of
columns of S, i.e., x = Sc+ n. This can be formulated as an optimization problem that minimizes
the cardinality of c, given by ‖c‖0, subject to an approximation error constraint. Since such a problem
is hard because of the `0 pseudo-norm, we relax this to the problem

min
c
‖c‖1 s.t. ‖x− Sc‖2 ≤ ε. (3)

Under a suitable choice of λ, this problem can be equivalently written as

min
c,e
‖c‖1 +

λ

2
‖e‖22 s.t. x = Sc+ e, (4)

for which we can obtain the dual problem given by

max
d
〈x, d〉 −

1

2λ
‖d‖22 s.t. ‖S>d‖∞ ≤ 1. (5)

Our main observation is to leverage the stability of the set of active constraints of this dual to obtain a
robust classifier. One can note that each constraint of Eq. (5) corresponds to one training data point
si – when the ith constraint is active at optimality, si is being used to reconstruct x. Intuitively, one
should then somehow use the label yi while predicting the label for x. Indeed, we will show that
predicting the majority label among the active yi leads to a robust classifier.

We will firstly obtain a geometric characterization of the problem in Eq. (5) by viewing it as the
evaluation of a projection operator onto a certain convex set, illustrated in Fig. 3. Observe that for
λ > 0, the objective (5) is strongly concave in d and the problem has a unique solution, denoted by
d∗λ(x). It is not hard to show that this solution can be obtained by the projection operator

d∗λ(x) =

(

argmin
d

‖λx− d‖2 s.t. ‖S>d‖∞ ≤ 1

)

= ProjK◦(λx), (6)

where K◦ is the polar of the convex hull of ±S. Denoting T = [S,−S], we can rewrite Problem (6)

as d∗λ(x) =
(

argmind ‖λx− d‖2 sub. to T>d ≤ 1
)

. We now define the set of active constraints as

Aλ(x) = {ti : 〈ti, d
∗
λ(x)〉 = 1}. (7)

s1

x)

K
ç

λ

d
7

λ3
(x

Figure 3: Geometry of the dual problem
(5). See description on the left.

Geometry of the Dual (5). It is illustrated in Fig. 3, where
s1, s2 are two chosen data-points. The blue shaded poly-
tope is K◦. At λ = λ1, the point λ1x lies in the in-
terior of K◦. Hence, Aλ(x) is empty and supp(c∗(x))
is also empty. As λ increases, a non-empty support
is obtained for the first time at λ = 1/γK◦(x). For
all λ2x in the red shaded polyhedron, the projection
d∗λ2

(x) = ProjK◦(λ2x) lies on the face F . As λ increases
further we reach the green polyhedron. Further increases
in λ do not change the dual solution, which will always
remain at the vertex d∗λ3

(x).

Geometrically, Aλ(x) identifies the face of K◦ which con-
tains the projection of λx, if Aλ(x) is non-empty (oth-
erwise, λx lies inside the polyhedron K◦). The sup-
port of the primal solution, c∗(x), is a subset of Aλ,
i.e. supp(c∗(x)) ⊆ Aλ(x). Note that whenever two
points, say x, x′, both lie in the same shaded polyhedron (red or green), their projections would lie on
the same face of K◦. We now show this formally, in the main theorem of this section.

Theorem 4.1. The set of active constraints Aλ defined in (7) is robust, i.e., Aλ(x
′) = Aλ(x) for all

λx′ ∈ C(x), where C(x) is the polyhedron defined as

C(x) = F (x) + V (x), (8)
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with F ⊆ K◦ being a facet of the polyhedron K◦ that x projects to, defined as

F (x) =

{

d

∣

∣

∣

∣

∣

t>i d = 1, ∀ti ∈ Aλ(x)

t>i d < 1, otherwise

}

, (9)

and V being the cone generated by the constraints active at (i.e., normal to) F , defined as

V (x) =







∑

ti∈Aλ(x)

αiti : αi ≥ 0, ∀ti ∈ Aλ(x)







. (10)

The proof of Theorem 4.1 utilizes the geometry of the problem and properties of the projection
operator, and is presented in Appendix E. We can now use this result to construct a robust classifier:

Lemma 4.2. Define the dual classifier as

gλ(x) = AGGREGATE({yi : ti ∈ Aλ(x)}), (11)

where AGGREGATE is any deterministic mapping from a set of labels to Y , e.g., MAJORITY. Then,
for all x′ ∈ C(x) as defined in Theorem 4.1, gλ is certified to be robust, i.e., gλ(x

′) = gλ(x).

Implications. Having obtained a certifiably robust classifier g, we pause to understand some implica-
tions of the theory developed so far. We observe that the certified regions in Theorem 4.1 are not
spherical, i.e., the attacker can make additive perturbations having large `2 norm but still be unable to
change the label predicted by g (see Fig. 4). This is in contrast to the `2 bounded certified regions
that can be obtained by most existing work on certification schemes, and is a result of modelling data
structure while constructing robust classifiers. Importantly, however, note that we do not assume that
the attack is restricted to the subspace.

Connections to Classical Results. For ε = 0, Eq. (3) is known as the primal form of the Basis
Pursuit problem, and has been studied under a variety of conditions on S in the sparse representation
and subspace clustering literature [20, 13, 50, 64, 30, 25]. Given an optimal solution c∗(x) of this
basis pursuit problem, how can we accurately predict the label y? One ideal situation could be that all
columns in the support predict the same label, i.e., yi is identical for all i ∈ supp(c∗(x)). Indeed, this
ideal case is well studied, and is ensured by necessary [25] and sufficient [50, 64, 30] conditions on the
geometry of the subspaces S1, . . . , SK . Another situation could be that the majority of the columns in
the support predict the correct label. In this case, we could predict Majority({yi : i ∈ supp(c∗(x))})
to ensure accurate prediction. Theorem 4.1 allows us to obtain robustness guarantees which work
for any such aggregation function which can determine a single label from the support. Hence, our
results can guarantee robust prediction even when classical conditions are not satisfied. Lastly, note
that our Theorem 4.1 shows that the entire active set remains unperturbed – In light of the recent
results in [54], this could be relaxed for specific choices of maps acting on the estimated support.

5 Experiments

In this section, we will compare our certified defense derived in Section 4 to a popular defense
technique called Randomized Smoothing (RS) [11], which can be used to obtain state-of-the-art
certified robustness against `2 perturbations. RS transforms any given classifier f : X → Y to a
certifiably robust classifier gRS

σ : X → Y by taking a majority vote over inputs perturbed by Gaussian6

noise N (0, σ2I), i.e.,

gRS
σ (x) = Smoothσ(f) = argmax

k∈Y
Pr

v∼N (0,σ2I)
(f(x+ v) = k). (12)

Then, at any point x, gRS
σ can be shown to be certifiably robust to `2 perturbations of size at least

rRS(x) = σΦ−1(p) where p = maxk∈Y Prv∼N (0,σ2I)(f(x + v) = k) denotes the maximum
probability of any class under Gaussian noise.

It is not immediately obvious how to compare the certificates provided by our method described
above and that of RS, since the sets of the space they certify are different. The certified region

6In reality, the choice of the noise distribution is central to determining the type of certificate one can obtain
[41, 63], but Gaussian suffices for our purposes here.

7



x

True 32 Certificate

+
Ours

Randomized
Smoothing

Figure 4: Comparing polyhedral and spherical certificates. Details in text.

obtained by RS, CRS(x) = {x̄ : ‖x− x̄‖2 ≤ r(x)}, is a sphere (orange ball in Fig. 4). In contrast,
our certificate Cλ(x) from Theorem 4.1 is a polyhedron (resp., blue trapezoid), which, in general, is
neither contained in CRS(x), nor a superset of CRS(x). Additionally, our certificate has no standard
notion of size, unlike other work on elliptical certificates [14], making a size comparison non-trivial.
To overcome these difficulties, we will evaluate two notions of attack size: in the first, we will
compare the `2 norms of successful attacks projected onto our polyhedron, and in the second, we will
compare the minimum `2 norm required for a successful attack. We will then combine our method
with RS to get the best of both worlds, i.e., the green shape in Fig. 4. In the following, we present
both these evaluations on the MNIST [28] dataset, with each image normalized to unit `2 norm.

Comparison along Projection on Cλ(x). For the first case, we investigate the question: Are there
perturbations for which our method is certifiably correct, but Randomized Smoothing fails? For an
input point x, we can answer this question in the affirmative by obtaining an adversarial example x̄
for gRS such that x̄ lies inside our certified set Cλ(x). Then, this perturbation v = x− x̄ is certified
by our method, but has `2 norm larger than rRS(x) (by definition of the RS certificate).

To obtain such adversarial examples, we first train a standard CNN classifier f for MNIST, and then
use RS7 to obtain the classifier gRS

σ . Then, for any (x, y), we perform projected gradient descent to
obtain x̄ = xT by performing the following steps T times, starting with x0 ← x:

I. xt ← ProjB`2
(x,ε)

(

xt−1 + η∇xLoss(g
RS
σ (xt), y)

)

II. xt ← ProjCλ(x)
(xt) (13)

Unlike the standard PGD attack (step I), the additional projection (step II) is not straightforward, and
requires us to solve a quadratic optimization problem, which can be found in Appendix F. We can
now evaluate gRS

σ on these perturbations to empirically estimate the robust accuracy over Cλ, i.e.,

ProjectionRobustAcc(ε) = Pr
x,y∼pMNIST

(

∃x̄ ∈ B`2(x, ε) ∩ Cλ(x) such that gRS(x̄) 6= y
)

.
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Figure 5: Comparing RS with Our
method for adversarial perturbations
computed by repeating Steps I, II (13).

The results are plotted in Fig. 5, as the dotted curves.
We also plot the certified accuracies7 for comparison, as
the solid curves. We see that the accuracy certified by
RS drops below random chance (0.1) around ε = 0.06
(solid red curve). Similar to other certified defenses, RS
certifies only a subset of the true robust accuracy of a
classifier in general. This true robust accuracy curve
is pointwise upper-bounded by the empirical robust ac-
curacy curve corresponding to any attack, obtained via
the steps I, II described earlier (dotted red curve). We
then see that even the upper-bound drops below random
chance around ε = 0.4, suggesting that this might be a
large enough attack strength so that an adversary only
constrained in `2 norm is able to fool a general classi-
fier. However, we are evaluating attacks lying on our
certified set and it is still possible to recover the true

7 Further details (e.g., smoothing parameters, certified accuracy computation) are provided in Appendix F.
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class (blue solid curve), albeit by our specialized classifier gλ suited to the data structure. Ad-
ditionally, this suggests that our certified set contains useful class-specific information – this is
indeed true, and we present some qualitative examples of images in our certified set in Appendix F.
To summarize, we have numerically demonstrated that exploiting data structure in classifier design
leads to certified regions capturing class-relevant regions beyond `p-balls.
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Figure 6: Comparing Certified Accuracy
after combining our method with RS.

Comparison along `2 balls. For the second case, we ask
the question: Are there perturbations for which RS is cer-
tifiably correct, but our method is not? When an input
point x has a large enough RS certificate rRS(x) ≥ r0,
some part of the sphere B`2(x, r

RS(x)) might lie outside
our polyhedral certificate Cλ(x) (blue region in Fig. 4).
In theory, the minimum r0 required can be computed via
an expensive optimization program that we specify in
Appendix F. In practice, however, we use a black-box
attack [9] to find such perturbations. We provide qualita-
tive examples and additional experiments on CIFAR-10 in
Appendix F.

Combining Our Method with RS. We now improve our
certified regions using randomized smoothing. For this
purpose, we treat our classifier gλ as the base classifier f
in (12), to obtain Smoothσ(gλ) (abbreviated as OursRS

σ ).
We then plot the `2 certified accuracy7 [11, Sec 3.2.2] in
Fig. 6, where note that, as opposed to Fig. 5, the attacks are not constrained to lie on our certificate
anymore.

As a final remark, we note that our objective in Fig. 6 was simply to explore RS as a method for
obtaining an `2 certificate for our method, and we did not tune our method or RS for performance.
In particular, we believe that a wide array of tricks developed in the literature for improving RS
performance [41, 45, 63] could be employed to improve the curves in Fig. 6. We now discuss our
work in the context of existing literature in adversarial robustness, and sparse representation learning.

6 Discussion and Related Work

Our proof techniques utilize tools from high-dimensional probability, and have the same flavor as
recent impossibility results for adversarial robustness [12, 48, 47]. Our geometric treatment of the
dual optimization problem is similar to the literature on sparse-representation [13, 20] and subspace
clustering [50, 51, 64, 25], which is concerned with the question of representing a point x by the linear
combination of columns of a dictionary S using sparse coefficients c. As mentioned in Section 4,
there exist geometric conditions on S such that all such candidate vectors c are subspace-preserving,
i.e., for all the indices i in the support of c, it can be guaranteed that si belongs to the correct
subspace. On the other hand, the question of classification of a point x in a union of subspaces
given by the columns of S, or subspace classification, has also been studied extensively in classical
sparse-representation literature [62, 61, 7, 27, 65, 65, 65, 39, 23, 32]. The predominant approach is
to solve an `1 minimization problem to obtain coefficients c so that x = Sc+ e, and then predict the
subspace that minimizes the representation error. Various global conditions can be imposed on S to
guarantee the success of such an approach [62], and its generalizations [15, 16]. Our work differs
from these approaches in that we aim to obtain conditions on perturbations to x that ensure accurate
classification, and as such we base our robust classification decision upon properties of solutions of
the dual of the `1 problem.

Our results are complementary to [44, 5], who obtain a lower bound on the robust risk R(f, ε), in a
binary classification setting, in terms of the Wasserstein distance D between the class conditionals
q0 and q1, i.e., R(f, ε) ≥ 1−D(q0, q1). Using this result, [44, 5] roughly state that the robust risk
increases as the class conditionals get closer, i.e., it becomes more likely to sample x ∼ q0, x

′ ∼ q1,
such that ‖x− x′‖ ≤ ε. In comparison, for two classes, our Theorem 3.1 roughly states that for low
robust risk, q0 and q1 should be concentrated on small-volume subsets separated from one another.
Thus, the message is similar, while our Theorem 3.1 is derived in a more general multi-class setting.
Note that [44, 5] do not explicitly require small-volume subsets, but this is implicit, as 1−D(q0, q1)
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is large due to concentration of measure when q0, q1 do not concentrate on very small subsets. We
provide an analogue of the empirical results of [44, 5] in Appendix F.6.

Our notion of concentration is also related to concentration of a measure µ, as considered in [35, 36,
70], which denotes how much the µ-measure of any set blows up after expansion by ε. Under this
definition, the uniform measure has a high degree of concentration in high dimensions, and this is
called the concentration of measure phenomenon. In contrast, our Definition 2.2 of concentrated
data distributions can be seen as a relative notion of concentration with respect to the uniform
measure µ, in that we call a class conditional q concentrated when it assigns a large q-measure to a
set of very small volume, (i.e., q(S) is high whereas µ(S) is very low). In essence, Definition 2.2
defines concentration relative to the uniform distribution, whereas [35, 36, 70] define concentration
independently. Definition 2.2 is useful in the context of adversarial robustness as it allows us to
separate the concentration of data distributions (which is unknown) from the concentration of the
uniform measure in high dimensions (for which there is a good understanding). This allows us to
derive results in the non-realizable setting, where errors are measured against a probabilistic ground
truth label Y , which is strictly more general than the realizable setting which requires a deterministic
ground truth classifier f∗. As a result of this realizable setting, the analysis in [21, 35, 36, 70] needs
to assume a non-empty error region A for the learnt classifier g with respect to f∗, in order to reason
about ε-expansions A+ε. The results in [35, 36] indicate that the robust risk grows quickly as the
volume of A increases. However, humans seem to be a case where the natural accuracy is not perfect
(e.g., we might be confused between a 6 and a poorly written 5 in MNIST), yet we seem to be very
robust against small `2 perturbations. This points to a slack in the analysis in [35, 36], and our work
fills this gap by considering ε expansions of a different family of sets.

Finally, our work is also related to recent empirical work obtaining robust classifiers by denoising
a given input x of any adversarial corruptions, before passing it to a classifier [46, 38]. However,
such approaches lack theoretical guarantees, and might be broken using specialized attacks [40].
Similarly, work on improving the robustness of deep network-based classifiers by adversarial training
off the data-manifold can be seen as an empirical generalization of our attack model [24, 37, 69, 33].
More generally, it has been studied how adversarial examples relate to the underlying data-manifold
[53, 26, 34]. Recent work also studies the robustness of classification using projections onto a single
low-dimensional linear subspace [3, 2, 43]. The work in [3] studies an the attack model of bounded
`2, `∞ attacks, and they provide robustness certificates by obtaining guarantees on the distortion of a
data-point x as it is projected onto a single linear subspace using a projection matrix Π. In contrast,
our work can be seen as projecting a perturbed point onto a union of multiple low-dimensional
subspaces. The resultant richer geometry allows us to obtain more general certificates.

7 Conclusion and Future Work

To conclude, we studied conditions under which a robust classifier exists for a given classification
task. We showed that concentration of the data distribution on small subsets of the input space is
necessary for any classifier to be robust to small adversarial perturbations, and that a stronger notion
of concentration is sufficient. We then studied a special concentrated data distribution, that of data
distributed near low-dimensional linear subspaces. For this special case of our results, we constructed
a provably robust classifier, and then experimentally evaluated its benefits w.r.t. known techniques.

For the above special case, we assume access to a clean dataset S lying perfectly on the union of
low-dimensional linear subspaces, while in reality one might only have access to noisy samples.
In light of existing results on noisy subspace clustering [59], an immediate future direction is to
adapt our guarantees to support noise in the training data. Similarly, while the assumption of low-
dimensional subspace structure in S enables us to obtain novel unbounded robustness certificates,
real world datasets might not satisfy this structure. We hope to mitigate this limitation by extending
our formulation to handle data lying on a general image manifold in the future.
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A Proof of Theorem 2.1

We will make the technical assumption in Section 2 precise. Recall that all quantities are normalized
so that X is an `2 ball of radius 1, i.e., X = B`2(0, 1). Recall that qk : X → R≥0 denotes the
conditional distribution for class k ∈ Y , having support Qk. We will assume that there is a sufficient
gap between the supports and the boundary of the domain, i.e., Qk ⊆ B`2(0, c), and that the
`2-adversarial attack has strength ε ≤ c, for some constant c, say c = 0.1.

Theorem 2.1. If there exists an (ε, δ)-robust classifier f for a data distribution p, then at least
one of the class conditionals q1, q2, . . . , qK , say qk̄, must be (C̄, ε, δ)–concentrated. Further, if
the classes are balanced, then all the class conditionals are (Cmax, ε,Kδ)-concentrated. Here,
C̄ = Vol{x : f(x) = k̄}, and Cmax = maxk Vol{x : f(x) = k} are constants dependent on f .

Proof. Note that the definition (1) of (ε, δ)-robustness may be rewritten as

R(f, ε) =
∑

k

pX|Y (Xadmits an ε-adversarial example|Y = k)pY (y = k)

=
∑

k

qk({x ∈ X : ∃x̄ ∈ B(x, ε) such that f(x̄) 6= k})pY (y = k), (14)

where q(S) denotes the q-measure of the set S. We are given f such that R(f, ε) ≤ δ, and we want
to find a set S ⊆ X over which p concentrates.

R(f, ε) ≤ δ

=⇒
∑

k

qk({x ∈ X : ∃x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k})pY (y = k) ≤ δ (15)

Since
∑

k pY (y = k) = 1, the LHS in (15) is a convex combination, and we have

=⇒ ∃k̂ qk̄({x ∈ X : ∃x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k̂}) ≤ δ, (16)

=⇒ qk̄(U) ≤ δ, where

U = {x ∈ X : ∃x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k̂}.

We will express q
k̂
(U) in terms of the classification regions of f .

Let A ⊆ X denote the region where the classifier predicts k̂, i.e. A = {x ∈ X : f(x) = k̂}. Define
A−ε to be the set of all points in A at a `2 distance atleast ε from the boundary, i.e. A−ε = {x ∈
A : B(x, ε) ⊆ A}. Now consider any point x ∈ X . We have the following 4 mutually exclusive, and
exhaustive cases:

1. x lies outside A, i.e., x 6∈ A. In this case, x ∈ U trivially as f(x) 6= k.

2. x ∈ A, and the entire ε-ball around x lies inside A, i.e., B(x, ε) ⊆ A. In this case, every

point in the ε-ball around x is classified into class k̂, and x has no ε-adversarial example for

class k̂. Note that the set of all these points is A−ε by definition.

3. x ∈ A, and some portion of the ε-ball around x lies outside A, i.e., B(x, ε) 6⊆ A, and, there
is a point x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k. In this case, x̄ is an adversarial example for
x, and x̄ ∈ U .

4. x ∈ A, and some portion of the ε-ball around x lies outside A, i.e., B(x, ε) 6⊆ A, but
there is no point x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k. This can happen only when for all
x̄ ∈ B(x, ε) \A we have x̄ 6∈ X . In other words, any ε perturbation that takes x outside A,
also takes it outside the domain X . This implies that B(x, ε) 6⊆ X , which in turn means that
the distance of x from the boundary of X is atmost ε.

We see that U comprises of the points covered in cases (1) and (3). Recall that we assumed that any
point having distance less than 0.1 to the boundary of X does not lie in the support of qk̄. But all
points covered in case (4) lie less than ε-close to the boundary, and ε ≤ 0.1. This implies that qk̄
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assigns 0 measure to the points covered in case (4). Together, cases (1), (3) and (4) comprise the set
(X \A) ∪ (A \A−ε). Thus, we have shown

q
k̂
(U) = q

k̂
(X \A−ε)

=⇒ q
k̂
(A−ε) ≥ 1− δ. (17)

Next, we will show that the set A−ε is exponentially small, by appealing to the Brunn-Minkowski
inequality, which states that for compact sets E,F ⊂ R

n,

Vol(E + F )
1

n ≥ Vol(E)
1

n +Vol(F )
1

n ,

where Vol is the n-dimensional volume in R
n, and E + F denotes the minkowski sum of the sets E

and F . Applying the inequality with E = A−ε and F = B`2(0, ε), we have

Vol(A−ε +B`2(0, ε))
1

n ≥ Vol(A−ε)
1

n +Vol(B`2(0, ε))
1

n

=⇒ Vol(A)
1

n ≥ Vol(A−ε)
1

n + εVol(B`2(0, 1))
1

n

=⇒ Vol(A)
1

n ≥ Vol(A−ε)
1

n + εVol(A)
1

n

=⇒
Vol(A−ε)

1

n

Vol(A)
1

n

≤ (1− ε)

=⇒ Vol(A−ε) ≤ Vol(A)(1− ε)n ≤ Vol(A) exp(−εn)

=⇒ Vol(A−ε) ≤ C̄ exp(−nε), (18)

where C̄ = Vol(A). From (17) and (18), we see that qk̄ is (C̄, ε, δ)-concentrated. Additionally, if
the classes are balanced, we can use the fact that every term of (15) can be atmost Kδ, and apply
the above reasoning for each class to conclude that each qk is (Cmax, ε,Kδ)-concentrated, for some
suitable choice of Cmax, e.g., Cmax = maxk Vol{x ∈ X : f(x) = k}.

B Proof of Theorem 3.1

Theorem 3.1. If the data distribution p is (ε, δ, γ)-strongly-concentrated, then there exists an (ε, δ +
γ)-robust classifier for p.

Proof. For each k ∈ {1, 2, . . . ,K}, let Sk be the support of the conditional density qk. Recall that
S+ε is defined to be the ε-expansion of the set S. Define Ck to be the ε-expanded version of the
concentrated region Sk but removing the ε-expanded version of all other regions Sk′ , as

Ck =
(

S+ε
k \ ∪k′ 6=kS

+ε
k′

)

∩ X .

We will use these regions to define our classifier f : X → {1, 2, . . . ,K} as

f(x) =































1, if x ∈ C1

2, if x ∈ C2

...

K, if x ∈ CK
1, otherwise

.

We will show that R(f, ε) ≤ δ + γ, which can be recalled to be

R(f, ε) =
∑

k

qk({x ∈ X : ∃x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k})pY (y = k).

In the above expression, the qk mass is over the set of all points x ∈ X that admit an ε-adversarial
example for the class k, as

Uk = {x ∈ X : ∃x̄ ∈ B(x, ε) ∩ X such that f(x̄) 6= k}. (19)

Define C−ε
k to be the set of points in Ck at a distance atleast ε from the boundary of Ck as C−ε

k =
{x ∈ Ck : B(x, ε) ⊆ Ck}. For any point x ∈ Uk, we can find x̄ ∈ B(x, ε) from (19) such that
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x̄ 6∈ Ck, showing that x 6∈ C−ε
k . Thus, Uk is a subset of the complement of C−ε

k , i.e., Uk ⊆ X \C
−ε
k ,

and we have

R(f, ε) =
∑

k

qk(Uk)pY (y = k) ≤
∑

k

(1− qk(C
−ε
k ))pY (y = k).

Now we will need to show a few properties of the ε-contraction. Firstly, for a set M = N ∩O, we
have M−ε = N−ε ∩O−ε, which can be seen as

M−ε = {x : x ∈M,B(x, ε) ⊆M}

= {x : x ∈ N, x ∈ O,B(x, ε) ⊆ N,B(x, ε) ⊆ O} = N−ε ∩O−ε.

Secondly, for a set M = N c, where c denotes complement, we have M−ε = (N+ε)c. This can be
seen as

M−ε = {x : x ∈M,B(x, ε) ⊆M} = {x : x 6∈ N,B(x, ε) ⊆ N c}

= {x : x 6∈ N, ∀x′ ∈ B(x, ε) x′ 6∈ N}

= {x : ∀x′ ∈ B(x, ε) x′ 6∈ N}

=⇒ (M−ε)c = {x : ∃x′ ∈ B(x, ε) x′ ∈ N}

= N+ε.

Thirdly, for a set M = N \O, we have M−ε = (N ∩Oc)−ε = N−ε ∩ (Oc)−ε by the first property,
and then N−ε ∩ (Oc)−ε = N−ε ∩ (O+ε)c by the second property. This implies

(N \O)−ε = N−ε \O+ε.

Fourthly, for a set M = N ∪O, we have M c = N c ∩Oc. Taking ε-contractions, and applying the
first and second properties, we get M+ε = N+ε ∪O+ε. Applying the above properties to C−ε

k , we
have

C−ε
k =

(

S+ε
k \ ∪k′ 6=kS

+ε
k′

)−ε
∩ X−ε

=
(

Sk \
(

∪k′ 6=k S
+ε
k′

)+ε
)

∩ X−ε

⊇
(

Sk \ ∪k′ 6=kS
+2ε
k′

)

∩ X−ε.

Recall that qk(X
−ε) = q(X ) = 1 by the support assumption. Hence, we have

qk(C
−ε
k ) ≥ qk

(

Sk \ ∪k′ 6=kS
+2ε
k′

)

= qk(Sk)− qk
(

∪k′ 6=kS
+2ε
k′

)

≥ (1− δ)− γ

=⇒ 1− qk(C
−ε
k ) ≤ δ + γ.

Finally, as
∑

k pY (y = k) = 1, we have R(f, ε) ≤ δ + γ by convexity.

C Proofs for Example 3.1

Let θ0 ≤ π/2. We will show that the following classifier f is robust in the setting of Example 3.1:

f(x) =

{

1, if x>P ≥ θ0
2, otherwise

.

Let C1 = {x ∈ S
n−1 : x>P ≥ θ0} be the set of points classified into class 1 by f . Similarly, let

C2 = S
n−1 \ C1 be the set of points classified into class 2. The robust risk of f (measured w.r.t.

perturbations in the geodesic distance d) can be expanded as

Rd(f, ε) = 0.5q1(d
+ε(C2)) + 0.5q2(d

+ε(C1)), (20)

where d+ε(S) denotes the ε-expansion of the set S under the distance d. Let ε ≤ θ0 (otherwise, the
first term is 1/2). Recall that the class conditional q1 is defined as

q1(x) =

{

1
cψ

ψ(d(x,P ))
sinn−2 d(x,P )

, if d(x, P ) ≤ θ0

0, otherwise
,
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where cψ is a normalizing constant which ensures that q1 integrates to 1, i.e., cψ =
∫

Sn−1 q1. Then,

q2 was defined to be uniform over the complement of the support of q1, i.e. q2 = Unif({x ∈
S
n−1 : d(x, P ) > θ0}).

We can expand the first term of Eq. (20) as

q1(d
+ε(C2)) = q1(d

+ε(C2) \ C2) + q1(C2)

= q1({x : 0 < d(x,C2) ≤ ε}) + 0.

Now for any x 6∈ C2, we have d(x,C2) = θ0−d(x, P ). Hence, {x : 0 < d(x,C2) ≤ ε} = {x : 0.1−
ε ≤ d(x, P ) < θ0}. Let θ(x) denote the angle that x makes with P . Then, the geodesic distance is
d(x, P ) = θ(x). The earlier set is the same as the set of all points satisfying θ0− ε ≤ θ(x) < 1. This
is nothing but the ε-base of the hyper-spherical cap having angle θ0.

We continue,

q1({x : θ0 − ε < d(x, P ) ≤ θ0) = q1({x : θ0 − ε ≤ θ(x) < θ0})

With a change of variables, the above can be evaluated as

q1({θ0 − ε ≤ θ(x) < θ0}) =
1

cψ

∫

θ0−ε≤θ(x)<θ0

ψ(d(x, P ))

sin(d(x, P ))n−2
dx

=
1

cψ

∫ θ0

θ0−ε

ψ(θ)

(sin θ)n−2
µn−2({x ∈ S

n−1 : θ(x) = θ})dθ,

where µn−2 is the n− 2-dimensional volume (n− 1-dimensional surface area). Now, µn−2({x ∈
S
n−1 : θ(x) = θ}) is nothing but the volume of an slice of the hypersphere S

n−1. This slice is in
itself a hypersphere in R

n−1, having radius sin θ. Thus, its volume is the same as the volume of the
S
n−2, scaled by (sin θ)n−2. We continue,

∫ θ0

θ0−ε

ψ(θ)

(sin θ)n−2
µn−2({x ∈ S

n−1 : θ(x) = θ})dθ =

∫ θ0

θ0−ε

ψ(θ)

(sin θ)n−2
(sin θ)n−2dθ

=

∫ θ0

θ0−ε

ψ(θ)dθ

For illustration, we can take ψ(θ) = 1, giving q1(d
+ε(C1)) = ε/C from the above integral, with

cψ =
∫ θ0

0
ψ(θ)dθ = θ0 = θ0.

We can now follow the same process as above, and expand the Eq. (20) as

q2(d
+ε(C1)) = µn−1({x : θ0 ≤ θ(x) ≤ θ0 + ε),

where µn−1 is again the n − 1-dimensional volume. We use the following formula [31] for the
surface area of a hyperspherical cap (valid when α ≤ π/2):

µn−1({x : 0 ≤ θ(x) ≤ α}) = m(α)
def
= 0.5µn−1(S

n−1)Isin2 α

(

n− 1

2
,
1

2

)

,

where I(·, ·) is the incomplete regularized beta function. Letting dθ0 = m(π/2) +m(π/2)−m(θ0),
we continue,

q2(d
+ε(C1)) =











1
dθ0

(

m(θ0 + ε)−m(θ0)
)

, if ε+ θ0 ≤ π/2
1
dθ0

(

m(π/2) +m(π/2)−m(θ0 + ε− π/2)
)

, if π/2 ≤ ε+ θ0 ≤ π
1
dθ0

, else

.

The risk from class 1 dominates till ε reaches around π/2, then the risk from class 2 shoots up. We
plot the resultant risk in Fig. 7 (left).

Having presented the basic construction, we now comment on how Example 3.1 can be generalized.
Firstly, we can vary the support of q1, to have it cover a different fraction of the sphere. For instance,
we can set θ0 = π/2 to get a modified q1 as

q′1(x) =

{

1
C

1
sinn−2 d(x,P )

, if d(x, P ) ≤ π/2

0, otherwise
,
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Figure 7: Robust risk for classifiers for concentrated distributions on the sphere S
n−1, for dimension

n = 100. (Left): A plot of Rd(f, ε) w.r.t p1. As ε grows from 0 to 0.1, class 1 is the major contributor
to the risk. At ε = 0.1, all points in class 1 admit an adversarial perturbation, taking them to class 2.
As ε grows further, the risk for class 2 grows slowly, till ε reaches close to π/2, after which it blows
up abruptly due to the high-dimensional fact that most of the mass of the uniform distribution lies
near the equator of the sphere. (Middle): A plot of Rd(g, ε) w.r.t. p2. As we make the support of the
concentrated class larger, the distribution admits a classifier g with slightly improved robustness for
smaller ε values (≤ 0.1). (Right): A plot of Rd(g, ε) w.r.t. p3: Finally, as both class conditionals are
made concentrated, the classifier g becomes quite robust.

and let q′2 be uniform over the complement of the support of q′1. Along with balanced classes (i.e.,
P (Y = 1) = P (Y = 2) = 1/2), this gives the data distribution p2. The robust classifier would now
be given by the half-space {x : d(x, P ) ≤ π/2}. The risk over p2 can be computed as earlier, and is
plotted in Fig. 7 (middle).

We can take this example further, and make both q1 and q2 concentrated. This can be done, for
instance, by setting q′′1 = q1, and setting q′′2 as follows:

q′′2 (x) =

{

1
C

1
sinn−2 d(x,−P )

, if d(x,−P ) ≤ π/2

0, otherwise
,

where −P is the antipodal point of P . As both class conditionals are now concentrated, the halfspace
separating their supports becomes quite robust. This can be seen in the Fig. 7 (right).

Lastly, ψ can be taken to be a rapidly decaying function for even greater concentration and lesser
robust risk, e.g., ψ(θ) = exp(−θ).

D Proofs for Example 4.1

Example 4.1. The data domain is the ballB`∞(0, 1) equipped with the `2 distance. The label domain

is {1, 2}. Subspace S1 is given by S1 = {x : x>e1 = 0}, and S2 is given by S2 = {x : x>e2 = 0},
where e1, e2 are the standard unit vectors. The conditional densities are defined as

q1 = Unif({x : ‖x‖∞ ≤ 1, |x>e1| ≤ e
−α/2}), and,

q2 = Unif({x : ‖x‖∞ ≤ 1, |x>e2| ≤ e
−α/2}),

where α > 0 is a large constant. Finally, the classes are balanced, i.e., pY (1) = pY (2) = 1/2.
With these parameters, q1, q2 are both (0.5, α/n− 1, 0)-concentrated over their respective supports.
Additionally, p is (ε, 0, e−α/2 + 2ε)–strongly-concentrated. A robust classifier f can be constructed
following the proof of Theorem 3.1, and it obtains a robust accuracy R(f, ε) ≤ e−α/2 + 2ε. See
Appendix D for more details.

It would be helpful to have Fig. 8 in mind for what follows.

19



ë

ë

f(x) = 1

f(x) = 2

Figure 8: A plot of q1 (orange), q2 (violet) and the decision boundaries of f (dashed).

We will demonstrate that the classifier f illustrated in Fig. 8 has low robust risk. We define f for any
x ∈ B∞(0, 1), as follows (let γ = e−α):

f(x) =







1, if |x1| ≤ γ/2 + ε, |x2| ≥ γ/2 + ε

2, if |x2| ≤ γ/2 + ε, |x1| ≥ γ/2 + ε

1, otherwise

.

The reason for splitting the cases for predicting 1 into two subcases, is that we will only need to
analyse the first subcase and the second will not contribute to the robust risk.

Defining U1 to be the set of all points x which admit an adversarial example for the class 1, i.e.
U1 = {x : ∃x̄ such that ‖x̄− x‖2 ≤ ε, f(x̄) = 2}. It is clear that

U1 ⊆ {x : |x1| ≥ γ/2 or |x2| ≤ γ/2 + 2ε}.

U2 is defined analogously, and

U2 ⊆ {x : |x2| ≥ γ/2 or |x1| ≤ γ/2 + 2ε}.

Now, R(f, ε) = 0.5q1(U1) + 0.5q2(U2). We look at the first term, and simplify an upper bound:

q1(U1) ≤ q1({x : |x1| ≥ γ/2 or |x2| ≤ γ/2 + 2ε)

≤ q1({x : |x1| ≥ γ/2}) + q1({x : |x2| ≤ γ/2 + 2ε)

= 0 + q1({x : |x2| ≤ γ/2 + 2ε}). (21)

Now, recall that q1 = Unif({x : |x1| ≤ γ/2}), hence the expression in (21) evaluates to

q1({x : |x2| ≤ γ/2 + 2ε}) =
1

Vol({x : |x1| ≤ γ/2})
Vol({x : |x2| ≤ γ/2 + 2ε, |x1| ≤ γ/2})

=
1

2n−1γ
2n−2 · (γ + 4ε) · γ

= 0.5γ + 2ε

The situation for q2 is symmetric, and hence q2(U2) = 0.5(γ + 4ε). Adding them together, we see
that the robust risk is upper bounded by

R(f, ε) ≤ 0.5(e−α + 4ε)
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For the concentration parameters, note that the support of q1, i.e., S1 = {x : |x1| ≤ γ/2, ‖x‖∞ ≤ 1}
has volume γ2n−1 = 2n−1 exp(−α) = 0.5 2n exp(−n(α/n)) ≤ 0.5 exp(−n(α/n − 1)). Hence,
q1 is (0.5, α/n − 1, 0) concentrated over S1. Similarly, q2 is (0.5, α/n − 1, 0)-concentrated over
S2 = {x : |x2| ≤ γ/2, ‖x‖∞ ≤ 1}. Finally,

q1(S
+2ε
2 ) = q1({‖x‖∞ ≤ 1, ‖x1‖ ≤ γ/2, ‖x2‖ ≤ γ/2 + 2ε})

= 2n−2γ(γ + 4ε)γ−121−n

= 0.5γ + 2ε

E Proof of Theorem 4.1

Theorem 4.1. The set of active constraints Aλ defined in (7) is robust, i.e., Aλ(x
′) = Aλ(x) for all

λx′ ∈ C(x), where C(x) is the polyhedron defined as

C(x) = F (x) + V (x), (8)

with F ⊆ K◦ being a facet of the polyhedron K◦ that x projects to, defined as

F (x) =

{

d

∣

∣

∣

∣

∣

t>i d = 1, ∀ti ∈ Aλ(x)

t>i d < 1, otherwise

}

, (9)

and V being the cone generated by the constraints active at (i.e., normal to) F , defined as

V (x) =







∑

ti∈Aλ(x)

αiti : αi ≥ 0, ∀ti ∈ Aλ(x)







. (10)

Proof. Let λx′ ∈ C(x) as defined in (8). There exist f ∈ F (x), v ∈ V (x) such that λx′ = f + v.
We will show that the projection of λx′ onto F is given by f . Recall that

Aλ(x
′) = {ti : 〈ti, d

∗
λ(x

′)〉 = 1}, where d∗λ(x
′) = ProjK◦(λx′). (22)

Choose any z ∈ K◦. Recall that ProjK◦(λx′) = minz∈K◦ ‖z − λx′‖2. Consider the objective,

‖z − λx′‖22 = ‖(z − f)− v‖22 = ‖z − f‖22 + ‖v‖
2
2 − 2〈z − f, v〉. (23)

We will show that 〈z − f, v〉 is negative. Consider any ti ∈ Aλ(x), and observe that 〈z, ti〉 ≤ 1, as
z ∈ K◦. However, from the definition of F (x) recall that 〈f, ti〉 = 1. This implies that 〈z−f, ti〉 ≤ 0.
Using the fact that v ∈ V (x), we expand the inner product as

〈z − f, v〉 =
∑

ti∈Aλ(x)

αi〈z − f, ti〉 ≤ 0. (24)

Using (24) in (23) to obtain

‖z − λx′‖22 ≥ ‖z − f‖
2
2 + ‖v‖

2
2 ≥ 0. (25)

The minimizer above is obtained at z = f ∈ C(x), and hence we have shown that for all λx′ ∈ C(x),
ProjK◦(λx′) = f . Finally, d∗λ(x

′) = ProjK◦(λx′) = f ∈ F (x). The theorem statement then
follows from the definition of F (x).

F Further Experimental Details and Qualitative Examples

F.1 Comparison along Projection on Cλ

In this section, we will provide more details on attacking a classifier with perturbations that lie on our
certified set Cλ.
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Details of the Projection Step II in (13) Recall from Theorem 4.1 that Cλ(x) is defined as the
Minkowski sum of the face Fλ(x) (9) and the cone Vλ(x) (10). Given an iterate xt, we can compute
its projection onto Cλ(x

0) by solving the following optimization problem

ProjCλ(x0)(x
t) = argmin

x
‖xt − x‖2 s.t. x ∈ Cλ(x

0)

Now every x ∈ Cλ(x
0) can be written as x = d + v where d ∈ F (x0), v ∈ V (x0). d is such that

t>d = 1 for all ti ∈ Aλ(x
0), and t>d ≤ 1 otherwise. Then, v is such that v =

∑

ti∈Aλ(x0) αiti
for some αi ≥ 0. Recall that T = [t1, t2, . . . , t2M ] denotes the matrix containing the training

data-points as well as their negations. Let the matrix A1 ∈ R
d×|Aλ(x

t)| contain all the columns of T

in Aλ(x
t) and let A2 ∈ R

d×(2M−|Aλ(x
t)|) contain all the remaining columns. Then the objective of

the optimization problem above can be written as

min
α,d

∥

∥xt −A1α− d
∥

∥

2

2
s.t. A>

1 d = 1, A>
2 d ≤ 1, α ≥ 0 (26)

(26) is a linearly constrained quadratic program, and can be solved by standard optimization tools. In
particular, we use the qp solver from the python cvxopt library.

Visualization of the Certified Set In Fig. 9, we visualize the set Aλ(x), i.e., the set of active
constraints at the optimal solution of the dual problem, for several x in the MNIST test set. It can be
seen that Aλ(x) contains images of the same digit as x in most cases. This is expected, as taking
the majority label among Aλ(x) gives an accuracy of around 97% (solid blue curve in Fig. 5). Note
that all these images t ∈ Aλ(x) are also contained in the certified set, Cλ(x), which can be seen as
t = t+ 0, with t ∈ Fλ(x), and 0 ∈ Vλ(x).

x Aλ(x) x Aλ(x)

Figure 9: A visualization of the set of active constraints Aλ(x) for several x. Atmost 5 members of
Aλ(x) are shown for every x.
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Visualization of Attacks restricted to the Certified Set In Fig. 10, we visualize the attacks
restricted to our certified set Cλ computed by (13) for the classifier gRS

0.02. We observe that we can
identify the correct digit from most of the attacked images, but the randomized smoothing classifier is
incorrect at higher ε. A small number of these attacked images are close to the actual class decision
boundary, and the class is ambigous. This is expected, both due to the inherent class ambiguity
present in some MNIST images, as well as the large ε we are attacking with. For all these images, the
prediction of our classifier gλ is certified to be accurate. For comparison, the RS certificate is unable
to certify anything beyond ε ≥ 0.06.

x
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Figure 10: A visualization of attacks on the RS classifier gRS
0.02 restricted to our certified set Cλ

obtained by (13). Different rows plot different attack strengths ε. Whenever an image is misclassified,
the red annotation on the top left shows the class predicted by gRS

0.02.

F.2 Comparison along `2 balls

Exact Certification for gλ In this section, we first state and prove Theorem 4.1 that allows us to
exactly compute the `2 certified radius for our classifier gλ at any point x.

Lemma F.1. For all x′ ∈ C(x) as defined in Theorem 4.1, we have gλ(x
′) = gλ(x). Additionally,

for all ‖v‖2 ≤ r0(x) we have gλ(x+ v) = gλ(x), where

r0(x) = min
u

−〈x,u〉

sub. to ‖u‖2 = 1, 〈u, ti〉 ≤ 0 ∀ti ∈ Aλ(x), 〈u, v〉 ≤ 1 ∀v ∈ ext(F (x)),
(27)

where ext(F (x)) is the set of extreme points of the polyhedron F (x).

Discussion Before presenting the proof, let us ponder over the result. We see that (27) involves
solving an optimization problem having as many constraints as the number of extreme points of the
polyhedron F (x). In general, this can be very large in high dimensions, and hence computationally
inefficient to compute. As a result, while Lemma F.1 provides an exact certificate in theory, it is hard
to use in practice without further approximations.

Proof. Recall that given a set Aλ(x), the polyhedron C(x) is defined in (8) as

C(x) = F (x) + V (x), (28)

where F (x) is a polyhedron, and V (x) is a cone given as the conic hull of Aλ(x), i.e., V (x) =
cone(Aλ(x)). We want to find the size r(x) of the largest `2 ball centered at x, i.e., B(x, r(x)), that
can be inscribed within C(x). From convex geometry [4], we know that any polyhedron can be
described as an intersection over halfspaces obtained from its polar, C◦ as

C(x) = ∩
u∈C◦(x)H

−(u, 0), (29)
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where H−(u, 0) = {x : 〈u, x〉 ≤ 0}. The distance of x from the boundary of C(x) is the same as
the smallest distance of x from any halfspace in (29). However, this distance is simply

dist(x,H−(u, 0)) = −

〈

x,
u

‖u‖2

〉

. (30)

In other words, we can expressing C(x) as the intersection over halfspaces whose normals lie in
C◦(x), i.e.,

r(x) =
(

min
u

−〈x,u〉, sub. to ‖u‖2 = 1,u ∈ C◦(x)
)

. (31)

All that is left is to obtain a description of C◦(x). This can be done by first expressing C(x) in a
standard form, as

C(x) = conv(ext(F (x))) + cone(Aλ(x)), (32)

where ext(F (x)) denotes the extreme points of the polyhedron F (x), conv(·) denotes the convex
hull and cone(·) denotes the conic hull. Now we can apply a theorem in convex geometry to obtain
the polar ([4, Th. 2.79]) as

C◦(x) =

{

u :
〈u, ti〉 ≤ 0 ∀ti ∈ Aλ(x)
〈u, v〉 ≤ 1 ∀v ∈ ext(F (x))

}

(33)

Combining (31) and (33), we obtain the lemma statement. Finally, we note that as Theorem 4.1 shows
that Aλ(x

′) = Aλ(x) for all λx′ ∈ C(x), and the classifier gλ(x) is purely a function of Aλ(x), we
have that gλ(x

′) = gλ(x) for all λx′ ∈ C(x).

Black Box Attacks on gλ Since our classifier gλ is not explicitly differentiable with respect to its
input, we use the HopSkipJump [9] black-box attack to obtain adversarial perturbations that cause a
misclassification. The obtained attacked images, and the pertubation magnitude are shown in Fig. 11.

0.74 1.0 0.17 0.750.470.22 0.750.990.6 0.48
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Figure 11: A visualization of attacks on our classifier gλ obtained by the HopSkipJump black box
attack [9]. The label predicted by gλ is shown as a red annotation on the top left. The `2 perturbation
magnitude ε is shown at the bottom. Note that the ε values are not nice fractions because they are set
by the HopSkipJump attack using a binary search to find the minimum attack strength that causes a
misclassification.

F.3 Details of Randomized Smoothing Certificates

For obtaining the certified accuracy curves using Randomized Smoothing [11] (solid lines in Figs. 5
and 6), we follow the certification and prediction algorithms for RS in [11, Sec 3.2.2]: given a base
classifier f and a test image x, we use n0 = 100 samples from an isotropic gaussian distribution
N (0, σ) to prediction the majority class gRS

σ (x). We then use n = 100 samples to estimate the
prediction probability pA under N (0, σ) with confidence atleast 0.999. If pA is at least 0.5, we report

the certified radius σΦ−1(pA). Otherwise, if pA < 0.5, we abstain and return a certified radius of 0.

Evaluating the Dual Classifier gλ We normalize each image in the MNIST dataset to have unit
`2 norm, and resize to 32× 32. We pick 10000 images si at random from the training set to obtain
our data matrix S ∈ R

1024×10000. We now pick a test point x, and then solve the dual problem
(5) with λ = 2, to obtain the dual solution d∗λ(x). This allows us to then obtain the set of active
constraints Aλ(x) in (7). Then, we use the majority rule as the aggregate function in (11) to obtain
the classfication output from the dual classifier gλ(x). We sample 100 and 500 images x uniformly
at random from the MNIST test set for generating the curves in Figs. 5 and 6, respectively. All
experiments are performed on a NVIDIA GeForce RTX 2080 Ti GPU with 12 GB memory.
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F.4 Discussion of Computational Cost

The computational complexity of obtaining the certificate C(x) in Theorem 4.1 is dominated by
solving the linear optimization problem (6) to obtain the set Aλ, which has n+M variables. It is
known that in practice, the cost of solving LPs is much lower than the worst case [52], and it takes us
11.7 seconds on average on a single CPU for each image x without parallel processing.

For comparison to other certified defenses (like Randomized Smoothing), we perform T = 20 steps
of (13), and each Step II of (13) requires solving a quadratic optimization program, given in (26).
This is a linearly constrained quadratic program. In practice it takes us 18.1 seconds on average on a
single CPU for each x without parallel processing.

F.5 Experiments on CIFAR-10

We provide experiments for our method applied to CIFAR-10. To do this, we first embed each
CIFAR-10 image into a feature space, designed such that `2-bounded perturbations in the feature
space, i.e., φ(x+v), ‖v‖2 ≤ ε, correspond to semantic perturbations in the input space, e.g., distorting
the image. Such a feature space is obtained following recent popular work in learning perceptual
metrics in vision [67], where the task is precisely to learn a feature representation where `2 distances
align with human perception. We now use our subspace model on φ(X), and perform exactly the
experiments in Section 5, and make similar observations: we obtain reasonable robust accuracy using
our method (Fig. 12 blue lines), and this accuracy is maintained within our certified polyhedra at high
ε, where existing defenses are not robust.

Though such experiments showing feature space certificates have appeared in the literature [58], the
question of whether the perceptual representation is itself susceptible to small adversarial perturbations
still remains for future exploration.
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Figure 12: Comparing Randomized Smoothing (RS) with Our Method from Section 4, for adversarial
perturbations computed by repeating Steps I, II from Eq. (13). This figure is the counterpart of
Fig. 5, where the MNIST dataset has been changed to φ(CIFAR-10), and the transformation φ is
given by (left) 384-dimensional slice of LPIPS [67] features (i.e., output of the third Conv2D layer)
and (right) 128-dimensional input features used by SENet [68]. Observation 1: Our method retains
robustness even when the dashed empirical upper bound for robust accuracy for the RS classifier
drops to random chance. Observation 2: Our robust accuracy (solid blue line) gets higher from left to
right, as the feature space of SENet is closer to a union of subspaces than LPIPS. On the other hand,
the left feature space aligns better with human perception than the right feature space.

F.6 Evaluating Theorem 3.1 on Empirical Distributions

The empirical results in [44, 5] create an empirical distribution p̂ by selecting two classes from
CIFAR-10, which simply places probability mass 1/N on each of the N samples in the dataset.
[44, 5] evaluate their lower bounds on p̂, and not on the actual real world distribution p, which might
be arbitrarily complex. Hence, it is unclear whether the trends observed hold for p. Nevertheless, the
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same experiment can be translated to our setting for any real world dataset, our Theorem 3.1 would
then show the existence of a robust classifier for p̂. We would need to solve a discrete optimization
problem for finding the concentrated sets in Theorem 3.1. Even though valid only for p̂, this analysis
is interesting, and is reported in Fig. 13.
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Figure 13: Instantiating Theorem 3.1 for the CIFAR-10 empirical distribution. We construct the
empirical distribution p̂ which assigns equal probability to each (x, y) pair in the CIFAR-10 test set.
This leads to empirical class conditionals q̂1, . . . , q̂10, corresponding to the 10 classes. We set γ = 0
in Theorem 3.1, and greedily construct the sets S1, . . . , S10: sort all images in decreasing order of
their distance to their nearest neighbor in the test set, pick the first m images, and then compute
the concentration parameters (minimum separation εm and mass δm = 1−mini q̂i(Si)). We then
plot (εm, 1 − δm) for several choices of m. Applying Theorem 3.1, each (εm, δm) guarantees the
existence of a (εm, δm)-robust classifier for p̂.

G Discussion on Strong Concentration

Are Natural Image Distributions Strongly Concentrated? Consider the task of classifying im-
ages of dogs vs cats. Any small `2 perturbation (say of size ε = 0.1) to an image of a dog is not
likely to change it to an image of a cat – the true label (or a human decision) does not change with
small perturbations. Let Scat be the set of images that are cats with a high confidence, and similarly
for Sdog. What we just said was that any image in the ε-expansion of Scat is not likely to be a dog,
and vice versa. This is precisely the condition of separation in the definition of strong concentration:
qdog(S

+ε
cat) ≤ γ, and qcat(S

+ε
dog) ≤ γ, for a small γ.

Now, despite the above, the task of practically classifying an image into a dog or a cat is not trivial at
all, as the sets Sdog and Scat might be very complex, and hence it might be computationally hard
to find a predictor (neural network, or any other classifier) for distinguishing Sdog and Scat. Using
modern deep learning, one is able to learn an approximation to these sets that leads to small standard
error, but this approximation is still bad enough that the learned predictor is very susceptible to
adversarial examples. This is to say that task of robustly classifying an image into dog or cat is even
harder.

Tightness of Strong Concentration In Definition 3.1, we are trying to obtain a sufficient condition
for the existence of a robust classifier. There are two parts to Definition 3.1: the concentration, and the
separation conditions. The first is essential, as Theorem 2.1 asserts that whenever a robust classifier
exists for a data distribution, the class conditionals are concentrated (i.e., it is necessary).

As we argued above, the separation condition is not very strong, and should be satisfied by image
distributions like MNIST, CIFAR-10 and ImageNet. Let us walk through this condition to see if
it can be further relaxed. As we note at the start of Section 3, if all the class conditionals were
to be concentrated on subsets Sk that have high intersection among each other, then even benign
classification would be hard (i.e., benign risk will be high), let alone robust classification. So, even
for the existence of a good benign classifier, it is essential for Sk ∩ Sk′ to be close to empty, for all
k 6= k′.
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Now, even if Sk ∩ Sk′ were almost empty, for a robust classifier, we care about the ε-expansions
of these sets to not intersect. In other words, we do not want an ε-perturbed cat to look like a dog.
Hence, for the existence of a good robust classifier, Sk ∩S

+ε
k′ should be close to empty, for all k 6= k′.

This can be generalized in measure terms, to require qk(S
+ε
k′ ) ≤ γ , for a small γ. Upto this, all these

conditions are essential for obtaining a robust classifier.

Now, note that in Definition 3.1, the expansion is taken for 2ε, instead of ε. This is where our proof
technique for Theorem 3.1 incurs a slack of ε, and we believe a different approach for constructing the
robust classifier might be able to reduce the expansion requirement to ε. This could be an interesting
future avenue for relaxing Definition 3.1 and thereby strengthening Theorem 3.1.
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