
Journal of Data-centric Machine Learning Research (2024) Submitted 3/24; Revised 4/24; Published 5/24

Learning to Rank for One-Round Active Learning

Zixin Ding zixin@uchicago.edu
University of Chicago

Si Chen chensi@vt.edu
Virginia Tech

Ruoxi Jia ruoxijia@vt.edu
Virginia Tech

Yuxin Chen chenyuxin@uchicago.edu
University of Chicago

Abstract
Active learning is a promising paradigm to reduce the labeling cost by strategically requesting
labels to improve model performance. However, existing active learning methods often rely
on expensive acquisition function to compute, extensive modeling retraining and multiple
rounds of interaction with annotators. To address these limitations, we propose a novel
approach for active learning, which aims to select batches of unlabeled instances through a
learned surrogate model for data acquisition. A key challenge in this approach is developing
an acquisition function that generalizes well, as the history of data, which forms part of the
utility function’s input, grows over time. Our novel algorithmic contribution is a multi-task
bilevel optimization framework that predicts the relative utility, measured by the validation
accuracy, of different training sets, and ensures the learned acquisition function generalizes
effectively. For cases where validation accuracy is expensive to evaluate, we introduce
efficient interpolation-based surrogate models to estimate the utility function, reducing
the evaluation cost. We demonstrate the performance of our approach through extensive
experiments on standard active classification benchmarks.
Keywords: Active Learning, Utility Model, Acquisition for ML

1 Introduction

Many decision making tasks involve maximization of utility functions (Chen et al., 2015b;
Jackson et al., 2019). As an example, utility in active learning (AL) can be represented in var-
ious forms, such as expected error rate reduction (Mussmann et al., 2022; Roy and McCallum,
2001), mutual information between the labeled and unlabeled datasets (Sourati et al., 2016;
Adaimi and Thomaz, 2019; Lindley, 1956), or the uncertainty of model predictions (Settles,
2012; Shen et al., 2017; Kossen et al., 2022). However, maximizing utility under budget
constraints in AL is notoriously challenging. It is well-known that determining the optimal
set containing maximal information under cardinality constraint is NP-hard (Ko et al., 1995;
Chen et al., 2015a). In classification tasks, determining the groundtruth utility of subset of
training data needs retraining classifier on that set (and then evaluate it on the validation
set). It’s computationally infeasible to calculate out the utility for the best possible subset
for downstream tasks without carefully examining every possible subset (Engstrom et al.,
2024). Moreover, common AL methods rely on acquisition functions with high adaptivity

to the environment, in which the selection choices for current round depend on the responses

©2024 Ding et al..

to the labeling requests for all previous rounds. This reliance poses major concerns for the
deployment of these algorithms to real-world applications, as there could be a substantial
delay between requesting labels and receiving feedback. For instance, in scientific experiments,
feedback from wet-lab or physics experiments can take days or even months to obtain (Botu
and Ramprasad, 2015; Yang et al., 2019), limiting the rounds of interactions with labelers,
thus bearing the risk of sampling redundant or less effective training examples within a batch.

Pretraining

Acquisition<latexit sha1_base64="uC+6URnVeUW8wFmKq5pbpKCYNEo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseiF48V7Ae0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GdzO//cS1EbF6xEnC/YgOlQgFo2ildm9EMUun/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+bnTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jsZCM0ZyokllGlhbyVsRDVlaBMq2RC85ZdXSeui6l1Vaw+XlfptHkcRTuAUzsGDa6jDPTSgCQzG8Ayv8OYkzovz7nwsWgtOPnMMf+B8/gCu7Y/Q</latexit>

û

pretraining
dataset

<latexit sha1_base64="x8xJQ1vmmx7daKVUEWJ/pwV+l98=">AAAB/XicbVDJSgNBEO2JW4zbuNy8DAbB0zAjbsegF48RzAKZIfR0apImPQvdNUIcgr/ixYMiXv0Pb/6NnWQOmvig4PFeFVX1glRwhY7zbZSWlldW18rrlY3Nre0dc3evqZJMMmiwRCSyHVAFgsfQQI4C2qkEGgUCWsHwZuK3HkAqnsT3OErBj2g/5iFnFLXUNQ88QWUfPAEherkneX+AdtesOrYzhbVI3IJUSYF61/zyegnLIoiRCapUx3VS9HMqkTMB44qXKUgpG9I+dDSNaQTKz6fXj61jrfSsMJG6YrSm6u+JnEZKjaJAd0YUB2rem4j/eZ0Mwys/53GaIcRstijMhIWJNYnC6nEJDMVIE8ok17dabEAlZagDq+gQ3PmXF0nz1HYv7PO7s2rtuoijTA7JETkhLrkkNXJL6qRBGHkkz+SVvBlPxovxbnzMWktGMbNP/sD4/AG6q5Vq</latexit> {

R
an

kN
et

fe
at

ur
e

ex
tra

ct
or

<latexit sha1_base64="VEpwpTZpxxDXZOKevvov6Z07Vkk=">AAAB7XicbVDJSgNBEK1xjXGLevTSGARPYSa4HYNePEYwCyRD6On0JG16Gbp7hDDkH7x4UMSr/+PNv7GTzEETHxQ83quiql6UcGas7397K6tr6xubha3i9s7u3n7p4LBpVKoJbRDFlW5H2FDOJG1YZjltJ5piEXHaika3U7/1RLVhSj7YcUJDgQeSxYxg66RmvZcF1UmvVPYr/gxomQQ5KUOOeq/01e0rkgoqLeHYmE7gJzbMsLaMcDopdlNDE0xGeEA7jkosqAmz2bUTdOqUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MbXYcZkkloqyXxRnHJkFZq+jvpMU2L52BFMNHO3IjLEGhPrAiq6EILFl5dJs1oJLisX9+fl2k0eRwGO4QTOIIArqMEd1KEBBB7hGV7hzVPei/fufcxbV7x85gj+wPv8AQiWjso=</latexit>

P12

unlabeled
pool

fe
at

ur
e

ex
tra

ct
or

input set 2

labeled
subset

utility function u
<latexit sha1_base64="x8xJQ1vmmx7daKVUEWJ/pwV+l98=">AAAB/XicbVDJSgNBEO2JW4zbuNy8DAbB0zAjbsegF48RzAKZIfR0apImPQvdNUIcgr/ixYMiXv0Pb/6NnWQOmvig4PFeFVX1glRwhY7zbZSWlldW18rrlY3Nre0dc3evqZJMMmiwRCSyHVAFgsfQQI4C2qkEGgUCWsHwZuK3HkAqnsT3OErBj2g/5iFnFLXUNQ88QWUfPAEherkneX+AdtesOrYzhbVI3IJUSYF61/zyegnLIoiRCapUx3VS9HMqkTMB44qXKUgpG9I+dDSNaQTKz6fXj61jrfSsMJG6YrSm6u+JnEZKjaJAd0YUB2rem4j/eZ0Mwys/53GaIcRstijMhIWJNYnC6nEJDMVIE8ok17dabEAlZagDq+gQ3PmXF0nz1HYv7PO7s2rtuoijTA7JETkhLrkkNXJL6qRBGHkkz+SVvBlPxovxbnzMWktGMbNP/sD4/AG6q5Vq</latexit> {

<latexit sha1_base64="DKJp8gMQOtseukuJDVTxehw6sFc=">AAACC3icbVC7TsMwFHV4lvIKMLJYrZCYqgTxGitYGItEH1ITVY5z01p1nMh2kKqoOwu/wsIAQqz8ABt/g9sGCVqObOnonHt9fU+Qcqa043xZS8srq2vrpY3y5tb2zq69t99SSSYpNGnCE9kJiALOBDQ10xw6qQQSBxzawfB64rfvQSqWiDs9SsGPSV+wiFGijdSzK14AfSZyat5Q47Ln/RwQYSH27KpTc6bAi8QtSBUVaPTsTy9MaBaD0JQTpbquk2o/J1IzysEMyRSkhA5JH7qGChKD8vPpLmN8ZJQQR4k0V2g8VX935CRWahQHpjImeqDmvYn4n9fNdHTp50ykmQZBZ4OijGOd4EkwOGQSqOYjQwiVzPwV0wGRhGoTX9mE4M6vvEhaJzX3vHZ2e1qtXxVxlNAhqqBj5KILVEc3qIGaiKIH9IRe0Kv1aD1bb9b7rHTJKnoO0B9YH9/rt5pb</latexit> �
��

��

utility function

<latexit sha1_base64="F17lfqlwyKDbbf/4v9VTqWpxH5Q=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZpMhs7PDTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsr0lJY9P1vr7Cyura+UdwsbW3v7O6V9w8ebZoZxhsslalpRdRyKRRvoEDJW9pwmkSSN6Ph7dRvPnFjRaoecKR5mNC+ErFgFJ3U7ESizzLdLVf8qj8DWSZBTiqQo94tf3V6KcsSrpBJam078DWGY2pQMMknpU5muaZsSPu87aiiCbfheHbuhJw4pUfi1LhSSGbq74kxTawdJZHrTCgO7KI3Ff/z2hnG1+FYKJ0hV2y+KM4kwZRMfyc9YThDOXKEMiPcrYQNqKEMXUIlF0Kw+PIyeTyrBpfVi/vzSu0mj6MIR3AMpxDAFdTgDurQAAZDeIZXePO09+K9ex/z1oKXzxzCH3ifP2XYj6A=</latexit>�
shared
history

queries

<latexit sha1_base64="sWluShspNue3rvxN4Rk+I7+r1OA=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RjBLJIMoafTkzTpZejuEcKQr/DiQRGvfo43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kmP3YgNVMJT0ytX/Ko/A1omQU4qkKPeK391+4qkgkpLODamE/iJDTOsLSOcTkrd1NAEkxEe0I6jEgtqwmx28ASdOKWPYqVdSYtm6u+JDAtjxiJynQLboVn0puJ/Xie18XWYMZmklkoyXxSnHFmFpt+jPtOUWD52BBPN3K2IDLHGxLqMSi6EYPHlZdI8qwaX1Yv780rtJo+jCEdwDKcQwBXU4A7q0AACAp7hFd487b14797HvLXg5TOH8Afe5w8aPpCf</latexit>�

<latexit sha1_base64="sWluShspNue3rvxN4Rk+I7+r1OA=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68RjBLJIMoafTkzTpZejuEcKQr/DiQRGvfo43/8ZOMgdNfFDweK+KqnpRwpmxvv/tFVZW19Y3ipulre2d3b3y/kHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1up37riWrDlHyw44SGAg8kixnB1kmP3YgNVMJT0ytX/Ko/A1omQU4qkKPeK391+4qkgkpLODamE/iJDTOsLSOcTkrd1NAEkxEe0I6jEgtqwmx28ASdOKWPYqVdSYtm6u+JDAtjxiJynQLboVn0puJ/Xie18XWYMZmklkoyXxSnHFmFpt+jPtOUWD52BBPN3K2IDLHGxLqMSi6EYPHlZdI8qwaX1Yv780rtJo+jCEdwDKcQwBXU4A7q0AACAp7hFd487b14797HvLXg5TOH8Afe5w8aPpCf</latexit>�

em
be

dd
in

g

set-based neural network

input set 1

validation set

<latexit sha1_base64="x8xJQ1vmmx7daKVUEWJ/pwV+l98=">AAAB/XicbVDJSgNBEO2JW4zbuNy8DAbB0zAjbsegF48RzAKZIfR0apImPQvdNUIcgr/ixYMiXv0Pb/6NnWQOmvig4PFeFVX1glRwhY7zbZSWlldW18rrlY3Nre0dc3evqZJMMmiwRCSyHVAFgsfQQI4C2qkEGgUCWsHwZuK3HkAqnsT3OErBj2g/5iFnFLXUNQ88QWUfPAEherkneX+AdtesOrYzhbVI3IJUSYF61/zyegnLIoiRCapUx3VS9HMqkTMB44qXKUgpG9I+dDSNaQTKz6fXj61jrfSsMJG6YrSm6u+JnEZKjaJAd0YUB2rem4j/eZ0Mwys/53GaIcRstijMhIWJNYnC6nEJDMVIE8ok17dabEAlZagDq+gQ3PmXF0nz1HYv7PO7s2rtuoijTA7JETkhLrkkNXJL6qRBGHkkz+SVvBlPxovxbnzMWktGMbNP/sD4/AG6q5Vq</latexit> {
<latexit sha1_base64="mPPmPNTA9L9yk3s74yRO0Kd25GA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9kVqx6LXrxZoV/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wucv8zhNVmkWyaaYx9QUeSRYygk0mPTQH3qBccavuHGiVeDmpQI7GoPzVH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzW2fozCpDFEbKljRorv6eSLHQeioC2ymwGetlLxP/83qJCW/8lMk4MVSSxaIw4chEKHscDZmixPCpJZgoZm9FZIwVJsbGU7IheMsvr5L2RdW7qtYeLyv12zyOIpzAKZyDB9dQh3toQAsIjOEZXuHNEc6L8+58LFoLTj5zDH/gfP4AdamN3w==</latexit>

OT1

<latexit sha1_base64="p61h1W4JFGv4fag7Jh5tInQY6D0=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKewGX8egF29GyAuSJcxOZpMhM7PLzKwQlvyCFw+KePWHvPk3ziZ70MSChqKqm+6uIOZMG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wucv8zhNVmkWyaaYx9QUeSRYygk0mPTQHtUG54lbdOdAq8XJSgRyNQfmrP4xIIqg0hGOte54bGz/FyjDC6azUTzSNMZngEe1ZKrGg2k/nt87QmVWGKIyULWnQXP09kWKh9VQEtlNgM9bLXib+5/USE974KZNxYqgki0VhwpGJUPY4GjJFieFTSzBRzN6KyBgrTIyNp2RD8JZfXiXtWtW7ql4+XlTqt3kcRTiBUzgHD66hDvfQgBYQGMMzvMKbI5wX5935WLQWnHzmGP7A+fwBdy2N4A==</latexit>

OT2

<latexit sha1_base64="pKWStFmaMR0dsKatLn886IiEJ7k=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSyCq5KIr2XRjcuK9gFNCJPppB06eTBzUywhbvwVNy4UcetfuPNvnLZZaOuBC4dz7uXee/xEcAWW9W0sLC4tr6yW1srrG5tb2+bOblPFqaSsQWMRy7ZPFBM8Yg3gIFg7kYyEvmAtf3A99ltDJhWPo3sYJcwNSS/iAacEtOSZ+05IoE+JyO5yL3OAPUA2JCLPPbNiVa0J8DyxC1JBBeqe+eV0Y5qGLAIqiFId20rAzYgETgXLy06qWELogPRYR9OIhEy52eSDHB9ppYuDWOqKAE/U3xMZCZUahb7uHN+rZr2x+J/XSSG4dDMeJSmwiE4XBanAEONxHLjLJaMgRpoQKrm+FdM+kYSCDq2sQ7BnX54nzZOqfV49uz2t1K6KOEroAB2iY2SjC1RDN6iOGoiiR/SMXtGb8WS8GO/Gx7R1wShm9tAfGJ8/6K6X2Q==</latexit>

Sval

em
be

dd
in

g

utility
maximization

<latexit sha1_base64="W1q9EyzaFSxKjjWNbkrucvolUHI=">AAAB7HicbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCsYU2lMl00g6dTMLMjVBCv8GNC0Xc+kHu/BunbRbaemDgcM49zL0nTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR7dRvPXFtRKIecJzyIKYDJSLBKFrJ7/YTNL1qza27M5Bl4hWkBgWaveqXzbEs5gqZpMZ0PDfFIKcaBZN8UulmhqeUjeiAdyxVNOYmyGfLTsiJVfokSrR9CslM/Z3IaWzMOA7tZExxaBa9qfif18kwug5yodIMuWLzj6JMEkzI9HLSF5ozlGNLKNPC7krYkGrK0PZTsSV4iycvk8ezundZv7g/rzVuijrKcATHcAoeXEED7qAJPjAQ8Ayv8OYo58V5dz7moyWnyBzCHzifP/Sojsw=</latexit>. . .

Figure 1: Overview of the RAMBO algorithm. In the pretraining stage, we learn a RankNet
over pairs of utility samples via multi-task bilevel optimization; in the acquisition stage, we
follow the learned utility function to iteratively query data points in minibatches. Details of
the algorithm are provided in Section 3.

In this paper, we focus on enhancing the robustness and generalizability of deep active
learning under one round setting. We propose a novel learning-based acquisition strategy
called RAMBO (Ranking-based Active learning via Multitask Bilevel Optimization) that
addresses the limitations of existing methods reliant on expensive acquisition functions or
overly generic heuristics. Our algorithm is summarized in Fig. 1. Given the variability in
deep learning models due to different initializations, hyperparameters, network architectures
and training procedures (Jiang et al., 2021; D’Amour et al., 2022; Zhong et al., 2021), the
one-shot estimate of validation accuracy can be highly stochastic, and thus we resort to the
idea of ranking as a strategy to mitigate the inherent uncertainty. To make our approach
account for growing labeled pool, we separate samples based on the size of inputs and employ
bilevel training to account for the growing training history. We introduce a multi-task
learning framework that uses the optimal transport distance (Alvarez-Melis and Fusi, 2020)
between the current labeled data and validation set as a supplementary loss, regularizing
the utility model to further generalize to unseen unlabeled data, while being oblivious to
training dynamics of the underlying classifier. Our experimental results on various image
classification tasks demonstrate the effectiveness of the proposed approach.

2 Problem Statement

Consider a ground set of data points X with a ground truth labeling function f
⇤ : X ! Y.

The active learning problem in our study unfolds in a two-stage protocol: a pretraining stage

and an acquisition stage. Given an initial pool of data points in the pretraining stage, we
proceed to actively select a set of new examples to label all at once for the acquisition stage.
We denote the initial pretraining (labeled) set by S0 with S0 ✓ X and |S0| = k, and denote
the labeled set after the acquisition stage by S1 with |S1| = k + B where B represents the
labeling budget. The unlabeled set at initiation and after acquisition is represented as U0

and U1 respectively. The groundtruth utility function is defined as u : 2X ! R, where u(⇠)
quantifies the utility of a subset ⇠ ✓ X by evaluating the validation accuracy of the classifier

2

f induced by the (labeled) data in ⇠. Our goal is to find the optimal subset S⇤
1 such that f ,

trained on it achieves maximal validation accuracy, i.e., optimizes the utility function u:

S⇤
1 2 arg max

S0✓S1✓X ,|S1\S0|=B

u(S1) (1)

Here, u(S1) = Ex[(f(x) 6= f
⇤(x))] for classification tasks, and can be estimated by the error

rate of the resulting f on a validation set Sval ✓ X .
In our setting, learning u in Equation 1 is difficult. Indeed, even approximating u requires

the groundtruth utility for certain number of susbets of labeled pool, under the practical
constraints of limited labeling budget. We emphasize that the instances are selected non-

adaptively in the acquisition stage, i.e., our selection of instances do not depend on the labels
of previous selected instances in the acquisition process. Our goal is to devise an acquisition
strategy to perform subset selection which maximally improves downstream classification.

3 Methodology

We introduce our algorithm, RAMBO, following the two-stage learning protocol described
previously. In a nutshell, RAMBO (1) collects training samples for pretraining utility model,
and (2) greedily selects the batch with the maximal estimated utility value from one to total
batches t in the acquisition stage. We divide the pretraining stage into ⌧1 iterations and
acquisition stage into ⌧2 iterations with mini-batch size b for each iteration. More precisely,
we instantiate RAMBO into following building blocks: a) Develop a set-based multitask
neural network model û as surrogate model for pretraining; b) define the loss function for
the utility model û; c) sample a collection of subsets {(⇠, u(⇠))}i ✓ S0 where i 2 [1, ⌧1] as a
growing labeled set up to S0 for training û; d) update the set based model û per iteration of
the pretraining stage; e) greedily follow the learned utility model û in the acquisition stage.

3.1 A Two-Stage Active Learning Framework

So far, we have defined the framework and will unravel a)-d) above and discuss each relevant
aspect respectively:

a) What surrogate models û should we use? Similar to Ilyas et al. (2022), by
parametrizing a surrogate model with training samples, we transform the surrogate model
construction into supervised learning task (See Definition 1). In our context, the training
samples ⇠ are subsets of pretraining set S0 and the utility value is u(⇠). Throughout this
work, we refer the pairs (⇠, u(⇠)) as utility samples. It is appealing to adopt their linearity
assumption into AL setting due to strong theoretical footing (Saunshi et al., 2022) and
simplicity in model architectures. Nevertheless, to avoid extensive samples collection and
model retraining as Ilyas et al. (2022), we hence prefer more complex architectures for
modeling interaction between elements within each utility sample. One natural candidate for
û is set-based neural networks due to their strong expressive power (i.e., Set Transformer
(Lee et al., 2019) or Deep Sets (Zaheer et al., 2017)). Denote the general set-based neural
network(NN) as net(⇠) = net(x1, ..., xa) = ⇢(pool({�(x1), ...�(xa)}) where {xi}ai=1 represents
a single utility sample ⇠ with size a and �, ⇢ is the feature extractor and regressor for the
set-based NN itself.

In experiments, we find set-based NN could serve as a primitive for utility model, but still,
it lacks principled supervision signals for model training. Engstrom et al. (2024) train millions

3

of cheap datamodels (Ilyas et al., 2022) in the hope for better generalization for unseen tasks,
while in our setting, we cannot afford large-scale training due to computational infeasibility
and aim to obtain good utility model with hundreds of samples for faster deployment.
Therefore, we need more fine-grained signal that would tie labeled data and validation set
in principle. In particular, Alvarez-Melis and Fusi (2020) introduce the notion of geometric
distance via optimal transport (OT) between two datasets and Just et al. (2023) extend it as
a learning-agnostic proxy for measuring model performance on Sval. The celebrated success
of OT distance in predicting validation set accuracy (Just et al., 2023) enables us to cast the
groundtruth OT distance between utility samples and validation set (Alvarez-Melis and Fusi,
2020) as a supervision signal for utility model.1

Definition 1 (Surrogate Utility Model) Let X be the instance domain, and ⇠ be any

sampled subset drawn from distribution D over X . A surrogate utility model û(⇠) is a set

function: 2X ! R, optimized to predict the true utility u(⇠) on a training set ⇠ ⇠ D:

û = arg min
ũw

Ê⇠⇠D[L(ũw(⇠), u(⇠)] (2)

where L(·, ·) denotes the loss function, and ũw is a parametric set function to approximate u.

b) What loss function should we minimize? One natural choice is to directly
minimize the MSE(mean square error) of estimated and true utility value as L = (û� u)2.
However, the evaluation of validation accuracy is non-deterministic (thus stochastic) due to
the aleatoric uncertainty of the classifier itself (Park et al., 2023). While the simplistic way is
to train a neural network to approximate the utility value in regression fashion and minimize
the MSE, we fail to learn a good utility model by regressing validation accuracy on set of
utility samples (See Section B.2.2 for ablation study on casting utility model as regression).
A natural way to design our loss function lies in the idea of pairwise ranking, simplifying
regression problem to ranking problem. Yoo and Kweon (2019) introduce a loss prediction
module to predict the classifier loss on single data point and handicraft the loss function
for predicting the classifier loss in pairwise ranking fashion. For a minibatch samples with
size d, Yoo and Kweon (2019) divide it into d/2 pairs and rank the differences between each
pair of predicted and groundtruth losses to discard the overall loss scale. Extending the
idea of ranking classification loss between pairs of data point to rank the utility value, we
incorporate the classical RankNet (Burges et al., 2005) structure to rank between pairs of
equal size utility samples with OT distance as a regularizer in the final loss.

Definition 2 (Ranking Loss) Given X , and let ⇠1, ⇠2 be two sampled subset drawn from

distribution D over X with equal size d. Denote the utility value (validation accuracy) of ⇠1

as u1 and the utility value of ⇠2 as u2. W.l.o.g. suppose u1 > u2, u12 = u1 � u2. Specifically,

u1 > u2 is taken to mean that the surrogate utility model û asserts that ⇠1 B ⇠2. Denote

the modeled posterior P (u1 B u2) by P12, and let P̄12 be the desired target values for those

posteriors. The Binary Cross Entropy(BCE) loss for pair (⇠1, ⇠2) is written as

LRank12 = �P̄12 log P12 � (1� P̄12) log(1� P12).

1. For implementation of OT distance calculation, we use https://github.com/microsoft/otdd between each

utility sample and validation dataset.

4

Definition 3 (OT Distance Loss) Given two utility samples ⇠1, ⇠2 and its corresponding

ground truth OT distance value as OT1, OT2 and the predicted values as ÔT 1 and ÔT 2. The

loss is defined as LOT = �1(ÔT 1�OT1)2+�2(ÔT 2�OT2)2��3(min(ÔT 1, 0)+min(ÔT 2, 0))
where �1, �2, �3 are hyperparameters. The first two terms are mean squared error for OT

distances and the third terms are positive constraints.

Definition 4 (Total Loss for Utility Model) LTotal = LRank12 + �OT · LOT where �OT

is a hyperparameter.

c) How do we collect utility samples iteratively? The very first question encountered
during pretraining is how to generate utility samples. Ilyas et al. (2022) construct training
subsets by random sampling a fixed-length subset. One caveat in our setting is the growing
length of labeled set as the progression of the active learner. To enable the model to adapt
to growing length of utility samples, one needs to incorporate diversity in the size of ⇠. One
natural choice is to perform rejection sampling from the powerset of S0, i.e., ⇠ ⇠ 2S0 . Instead
of fixing the sampling proportion, we propose to fix the number of utility samples collected
from S0 per iteration during pretraining as n.

d) How do we update the set-based NN during pretraining? As mentioned
in Section 3.1, the length of labeled utility samples grows and random split for training
and validation set may fail to capture the notion of generalizability in neural batch active
learning. The goal of utility model is to generalize to longer length of utility samples and
learn a general mapping from utility sample to validation accuracy. Inspired by bilevel
training work (Franceschi et al., 2018; Grazzi et al., 2020; Borsos et al., 2021), we employ a
bilevel framework to separate the utiltiy samples by length. In practice, we separate out the
validation set and training set by 50% and 50% for simplicity. We retrain the set-based NN
per iteration with the accumulation of utility samples per iteration. We defer the complete
discussion of bi-level training to Section 3.2.

e) How do we acquire data in the acquisition stage? In the context of utility
maximization, perhaps the simplest candidate is to select the instance with largest predicted
utility. Popular approaches rely on sequentially picking one data point per round (Houlsby
et al., 2011; Gal et al., 2017) though the addition of single data point cause minimal change
to validation accuracy while increasing the cost of model retraining. Alieva et al. (2020)
suggest that for many sequential decision making problems, greedy heuristics for sequentially
selecting actions exhibits superior performance without invoking expensive evaluation oracles.
Recall that one could interpret û as a score-based acquisition function and leverage it for
sequential decision making, i.e. to greedily select unlabeled data with highest predicted
utility. Inspired by Citovsky et al. (2021), we employ Margin Sampling (Roth and Small,
2006) as a filter for unlabeled instance i.e., select M unlabeled instances with lowest margin
scores, per iteration in the acquisition stage (See Fig. 2). We propose to randomly split U0

into batches of size b, concatenate each batch to the current labeled pool, and then use the
concatenated batch as input to û for utility prediction. We perform sequential batch selection
within the acquisition stage and select the unlabeled batch with the largest predicted score.

3.2 The RAMBO Algorithm
Bi-Level Optimization We initialize the utility model by collecting and training samples
from offline datasets, providing an initial estimate of the feature extractor �0. To align with

5

1: Input: B, U0, S0 X , b, M , n, Sval.
2: Output: S1

3: Initialize (û0, �0) from offline dataset
4: Randomly divide S0 into S0 with size k1 and

{s1, s2...s⌧1} with each size b

5: Set U0 = U0, ⌧1 = k�k1
b

and ⌧2 = B

b

6: Train f on S0 and get accuracy on Sval as acc0

7: D0 {}
8: for i = 0 : ⌧1 do . Pretraining
9: Si+1 Si [{si+1}

10: Train f on Si+1

11: Obtain accuracy on Sval as acci+1

12: Di+1
13: Utility-Samples-Augmentation(Si, Si+1, n, acci, acci+1, Di)
14: Train ûi from Di+1 . Bilevel Optimization
15: for j = 0 : ⌧2 do . Acquisition
16: Sj+1, Uj+1
17: Greedy-Margin(û⌧1 , j, b, Sj , M, Uj)

18: S1, U1 = S⌧2 , U⌧2

19: procedure Greedy-Margin
20: Input: û, j, b, Sj , M , Uj .
21: Output: Sj+1, Uj+1

22: R! a subset obtained by smallest margin scores
M examples from Uj \ Sj

23: Randomly divide R into {bR
b
c} batches of sub-

sets {(xi)bi=1}.
24: bmax arg max{(xi)bi=1}2{b

R
b c}

û(Sj [(xi)bi=1)

25: Sj+1 Sj [{bmax}
26: Uj+1 Uj \ {bmax}

27: procedure Utility-Samples-Augmentation
28: Input: Si, Si+1, n, acci, acci+1, Di.
29: Output: Di

30: for i 2 range(n) do
31: Sample (⇠1, ⇠2) from Si with equal size
32: Compute distance between �(⇠1) and �(Si)

as d1,i and distance between �(⇠1) and �(Si+1) as
d1,i+1. Same Rule applies to ⇠2 to obtain d2,i and
d2,i+1.

33: Calculate u1, u2 for ⇠1 and ⇠2 by Definition 5
34: Di Di [{(⇠1, u1), (⇠2, u2)}

Figure 2: The RAMBO Algorithm

growing labeled pool of active learning setting, a core requirement of our utility model is the
capability to generalize to longer and unseen data by drawing on prior utility samples. A line
of research (Rajeswaran et al., 2019; Liu et al., 2019) suggests that meta-learning shall lead to
fast adaptation and generalization to new tasks. One formulation of meta-learning is bi-level
optimization (Maclaurin et al., 2015) where the inner objective represents adaptation to a
given task and the outer problem is the meta-training objective. Motivated by Franceschi
et al. (2018), we formulate utility model training as bilevel optimization, combining gradient-
based hyperparameter optimization and meta-learning in which the outer optimization
problem is solved subject to the optimality of an inner optimization problem. To improve the
utility model’s generalization capability on samples with varied lengths, we divide the utility
samples (⇠, u(⇠)) at iteration i to training Dtr and validation set Dval by length, where Dtr

corresponds to utility samples with length smaller than the median and vice versa, and treat
them as input dataset for inner objective L and outer objective E. Formally, we consider
the bilevel optimization framework as min� E(w(�), �) s.t. w(�) = arg minŵ2Rd L(ŵ)
where � is a hyperparameter, E and L are continuously differentiable functions, the outer
objective E(w(�), �) :=

P
{(S0

1,u(S
0
1)),(S

0
2,u(S

0
2))}2Dval

LTotal(ŵ), and the inner objective as
L(ŵ) =

P

{(S0
1,u(S

0
1)),(S

0
2,u(S

0
2))}2Dtr

LTotal(ŵ) + ⌦�(ŵ) where Dtr = {(⇠1, u(⇠1)), (⇠2, u(⇠2))}ni=1

is a set of pair of utility samples attributed to training set and LTotal(·) is the BCE loss
induced by the supervised algorithm and ⌦� is a regularizer parametrized by �. The outer
objective is the proxy of generalization error of û(·), given by the average loss of Dval.

The inner optimization is aimed at utility model optimization, i.e., finding the best
parameters that minimizing the loss on smaller length training samples Dtr. Conversely, the
outer optimization targets to generalize the model to longer-length utility samples Dval, which
seeks the optimal regularizer parameterized by �. With this bilevel formulation, RAMBO

6

shows better and more stable performance when performing unlabeled data selection on
CIFAR10 with labeling budge 5000 (as suggested by Table 3). Table 3 shows average
performance of models with bilevel training used in optimization, mostly outperforms the
rest of counterparts without bilevel training, illustrating the enhanced generalizability across
various model architectures and training algorithms.

Interpolation-Based Utility Samples In contrast to thousands or even millions of
training samples for datamodels framework Ilyas et al. (2022); Engstrom et al. (2024), the
scarcity of utility samples poses challenges to the efficacy of our utility model training. We
resort to the consistency regularization techniques from semi-supervised learning to augment
artificial (⇠, u(⇠)). Inspired by Parvaneh et al. (2022), the latent space of the classifier’s
feature extractor shall contain valuable representations that can be interpolated within
labeled instances. The empirical success suggests a change in perspective—rather than
twisting the classifier, we leverage the shared representations in û throughout the progress of
optimization. In particular, we adopt the interpolation consistency regularization strategy
(Verma et al., 2022) (Definition 5). The pseudo code for utility samples augmentation is
outlined in Fig. 2.

Definition 5 (Utility Value Interpolation) Denote the validation accuracy at iteration

i as acci. For a given utility sample ⇠1, let d1,i be its distance with the previous labeled pool

Si and d1,i+1 the distance with the current labeled pool Si+1. The augmented utility value u1

for ⇠1 yields as u1 = ↵ · ui + (1� ↵) · ui+1 with ↵ := d1,i+1

d1,i+1+d1,i
.

4 Experimental Results
Experimental Setup Here, we evaluate the performance of RAMBO against several
state-of-the-art baselines on four image datasets MNIST (LeCun et al., 1998), FashionMNIST
(Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009), SVHN(Netzer et al., 2011). To
ensure a comprehensive comparison among all algorithms, we evaluate them across various
acquisition stage budget B as {500, 700, 900, 1000} for MNIST and FashionMNIST with
k = 200, {5000, 7000, 9000, 10000} for CIFAR10 and SVHN with k = 2500. For main
results, we focus on the accuracy of validation set as the key performance metric. We fix
the validation size to be 1000 across all datasets. Lastly, we run each experiment ten times
and report average and standard error across all experiments. Depending on the type of
dataset, we consider different network architectures for classifiers. We consider two classifier
structures: one is Beck et al. (2021)’s neural network structure, a model similar to LeNet
(LeCun et al., 1998) for MNIST and FashionMNIST and the other is ResNet-18 (He et al.,
2016) for CIFAR10 and SVHN. We provide details of utility model architecture to the
Appendix.

We fit all classifiers using cross-entropy loss with optimizer Adam until training accuracy
exceeds 99% with maximum 100 epochs and learning rate 0.001. No learning rate schedulers
and data augmentations are used. 2

Baselines For all experiments, we consider the following baselines: Margin Sampling:
Selects B examples from U0 with smallest difference between the first and second most

2. Baselines use implementations from open-source AL toolkit DISTIL Team (2023). All models are trained

in PyTorch (Paszke et al., 2017).

7

(a) MNIST (b) FashionMNIST (c) CIFAR10 (d) SVHN

Figure 3: Experimental results: Accuracy vs. Labeling budget. Results are given in %.

probable classes predicted by f (Roth and Small, 2006). BADGE: A hyperparameter-free
approach that trades off between diversity and uncertainty using k-means++ in hallucinated
gradient space (Ash et al., 2019). CoreSet: A diversity based approach using greedy
approximation to the k-center problem on representations from the current classifier’s
penultimate layer (Sener and Savarese, 2017). GLISTER: A learning-based approach
selecting B instances from S0 that would maximize the log-likelihood on held-out validation
set Sval by converting it as a mixed discrete continuous bilevel optimization. We adopt
the GLISTER-ONLINE version as an approximation for the inner optimization problem by
taking a single gradient step update (Killamsetty et al., 2021). Random: Selects B samples
uniformly at random.

Results In Figure 3, RAMBO outperforms most of baselines across multiple architectures
and various labeling budget for acquisition stage. For easy datasets like FashionMNIST
and MNIST, RAMBO shall learn a good shared representation for effective utility value
interpolation and can easily beats all the baselines oblivious to different labeling budgets
which suggests RAMBO is a good choice regardless of labeling budget. As BADGE and
CoreSet operate on the penultimate layer with limited budget, both algorithms fail to perform
well as their learned representations might not be accurate. However, RAMBO performs
interpolation techniques to augment utility samples within limited labeled pool and generalize
to predictions of longer history of labeled data, leading to learning-based acquisition function
amenable to growing labeled pool.

Even for hard datasets, for CIFAR10 and SVHN, when the model fails to have a good
architecture priors due to limited pool, BADGE and CoreSet cannot learn meaningful
representations. Occationally, CoreSet might not outperform passive learning, for instance,
labeling Budget is 7000 for CIFAR10.

5 Conclusion

We have demonstrated existing state-of-the-art methods are suboptimal in single round
selection. We show that under certain budget for pretraining, RAMBO would achieve
better generalization performance compared to other active learning algorithms, and that
most of validation accuracy improvement is realized by our two-stage algorithm. Finally, we
illustrate how behaviors of all algorithms change with variation of pretraining and single
round acquisition budget across multiple datasets and architectures. One potential direction
for future work could be to determine an optimal budget allocation for both the pretraining
and acquisition stages, as well as the extension of RAMBO to the few-rounds setting.

8

References

R. Adaimi and E. Thomaz. Leveraging active learning and conditional mutual information
to minimize data annotation in human activity recognition. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3):1–23, 2019.

A. Alieva, A. Aceves, J. Song, S. Mayo, Y. Yue, and Y. Chen. Learning to make decisions
via submodular regularization. In International Conference on Learning Representations,
2020.

D. Alvarez-Melis and N. Fusi. Geometric dataset distances via optimal transport. Advances

in Neural Information Processing Systems, 33:21428–21439, 2020.

J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal. Deep batch active
learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671,
2019.

P. Bachman, A. Sordoni, and A. Trischler. Learning algorithms for active learning. CoRR,
abs/1708.00088, 2017. URL http://arxiv.org/abs/1708.00088.

N. Beck, D. Sivasubramanian, A. Dani, G. Ramakrishnan, and R. Iyer. Effective evaluation
of deep active learning on image classification tasks. arXiv preprint arXiv:2106.15324,
2021.

Z. Borsos, M. Tagliasacchi, and A. Krause. Semi-supervised batch active learning via bilevel
optimization. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 3495–3499. IEEE, 2021.

V. Botu and R. Ramprasad. Adaptive machine learning framework to accelerate ab initio
molecular dynamics. International Journal of Quantum Chemistry, 115(16):1074–1083,
2015.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. In Proceedings of the 22nd international conference

on Machine learning, pages 89–96, 2005.

Y. Chen, S. H. Hassani, A. Karbasi, and A. Krause. Sequential information maximization:
When is greedy near-optimal? In Conference on Learning Theory, pages 338–363. PMLR,
2015a.

Y. Chen, S. Javdani, A. Karbasi, J. Bagnell, S. Srinivasa, and A. Krause. Submodular
surrogates for value of information. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 29, 2015b.

G. Citovsky, G. DeSalvo, C. Gentile, L. Karydas, A. Rajagopalan, A. Rostamizadeh, and
S. Kumar. Batch active learning at scale. Advances in Neural Information Processing

Systems, 34:11933–11944, 2021.

C. Coleman, C. Yeh, S. Mussmann, B. Mirzasoleiman, P. Bailis, P. Liang, J. Leskovec, and
M. Zaharia. Selection via proxy: Efficient data selection for deep learning. arXiv preprint

arXiv:1906.11829, 2019.

9

http://arxiv.org/abs/1708.00088

A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen, J. Deaton,
J. Eisenstein, M. D. Hoffman, et al. Underspecification presents challenges for credibility in
modern machine learning. The Journal of Machine Learning Research, 23(1):10237–10297,
2022.

L. Engstrom, A. Feldmann, and A. Madry. Dsdm: Model-aware dataset selection with
datamodels. arXiv preprint arXiv:2401.12926, 2024.

M. Fang, Y. Li, and T. Cohn. Learning how to active learn: A deep reinforcement learning
approach. CoRR, abs/1708.02383, 2017. URL http://arxiv.org/abs/1708.02383.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for
hyperparameter optimization and meta-learning. In International Conference on Machine

Learning, pages 1568–1577. PMLR, 2018.

Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image data. In
International Conference on Machine Learning, pages 1183–1192. PMLR, 2017.

R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On the iteration complexity of hypergradient
computation. 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

A. Ilyas, S. M. Park, L. Engstrom, G. Leclerc, and A. Madry. Datamodels: Understanding
predictions with data and data with predictions. In International Conference on Machine

Learning, pages 9525–9587. PMLR, 2022.

C. Jackson, A. Presanis, S. Conti, and D. De Angelis. Value of information: Sensitivity
analysis and research design in bayesian evidence synthesis. Journal of the American

Statistical Association, 114(528):1436–1449, 2019.

Y. Jiang, V. Nagarajan, C. Baek, and J. Z. Kolter. Assessing generalization of sgd via
disagreement. In International Conference on Learning Representations, 2021.

H. A. Just, F. Kang, T. Wang, Y. Zeng, M. Ko, M. Jin, and R. Jia. LAVA: Data valuation
without pre-specified learning algorithms. In The Eleventh International Conference on

Learning Representations, 2023. URL https://openreview.net/forum?id=JJuP86nBl4q.

A. Karatzoglou, L. Baltrunas, and Y. Shi. Learning to rank for recommender systems. In
Proceedings of the 7th ACM Conference on Recommender Systems, pages 493–494, 2013.

K. Killamsetty, D. Sivasubramanian, G. Ramakrishnan, and R. Iyer. Glister: Generalization
based data subset selection for efficient and robust learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 35, pages 8110–8118, 2021.

10

http://arxiv.org/abs/1708.02383
https://openreview.net/forum?id=JJuP86nBl4q

C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy sampling.
Operations Research, 43(4):684–691, 1995.

K. Konyushkova, R. Sznitman, and P. Fua. Learning active learning from data. Advances in

neural information processing systems, 30, 2017.

J. Kossen, S. Farquhar, Y. Gal, and T. Rainforth. Active surrogate estimators: An active
learning approach to label-efficient model evaluation. Advances in Neural Information

Processing Systems, 35:24557–24570, 2022.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework
for attention-based permutation-invariant neural networks. In International conference on

machine learning, pages 3744–3753. PMLR, 2019.

H. Li. Learning to rank for information retrieval and natural language processing. Springer
Nature, 2022.

M. Li, X. Liu, J. van de Weijer, and B. Raducanu. Learning to rank for active learning: A
listwise approach. In 2020 25th International Conference on Pattern Recognition (ICPR),
pages 5587–5594. IEEE, 2021.

Y. Li and J. Oliva. Active feature acquisition with generative surrogate models. In Interna-

tional Conference on Machine Learning, pages 6450–6459. PMLR, 2021.

D. V. Lindley. On a measure of the information provided by an experiment. The Annals of

Mathematical Statistics, 27(4):986–1005, 1956.

S. Liu, A. Davison, and E. Johns. Self-supervised generalisation with meta auxiliary learning.
Advances in Neural Information Processing Systems, 32, 2019.

T.-Y. Liu et al. Learning to rank for information retrieval. Foundations and Trends® in

Information Retrieval, 3(3):225–331, 2009.

D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pages
2113–2122. PMLR, 2015.

S. Mussmann, J. Reisler, D. Tsai, E. Mousavi, S. O’Brien, and M. Goldszmidt. Active
learning with expected error reduction. arXiv preprint arXiv:2211.09283, 2022.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

11

S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry. Trak: Attributing model
behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

A. Parvaneh, E. Abbasnejad, D. Teney, G. R. Haffari, A. Van Den Hengel, and J. Q.
Shi. Active learning by feature mixing. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 12237–12246, 2022.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients.
Advances in neural information processing systems, 32, 2019.

D. Roth and K. Small. Margin-based active learning for structured output spaces. In Machine

Learning: ECML 2006: 17th European Conference on Machine Learning Berlin, Germany,

September 18-22, 2006 Proceedings 17, pages 413–424. Springer, 2006.

N. Roy and A. McCallum. Toward optimal active learning through monte carlo estimation
of error reduction. ICML, Williamstown, 2:441–448, 2001.

N. Saunshi, A. Gupta, M. Braverman, and S. Arora. Understanding influence functions and
datamodels via harmonic analysis. arXiv preprint arXiv:2210.01072, 2022.

O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

B. Settles. Active learning. Synthesis lectures on artificial intelligence and machine learning,
6(1):1–114, 2012.

Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar. Deep active learning for
named entity recognition. arXiv preprint arXiv:1707.05928, 2017.

S. Sinha, S. Ebrahimi, and T. Darrell. Variational adversarial active learning. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 5972–5981, 2019.

J. Sourati, M. Akcakaya, J. G. Dy, T. K. Leen, and D. Erdogmus. Classification active
learning based on mutual information. Entropy, 18(2):51, 2016.

D. Team. distil. https://github.com/decile-team/distil, 2023.

V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, A. Solin, Y. Bengio, and D. Lopez-Paz.
Interpolation consistency training for semi-supervised learning. Neural Networks, 145:
90–106, 2022.

T. Wang, S. Chen, and R. Jia. One-round active learning. CoRR, abs/2104.11843, 2021.
URL https://arxiv.org/abs/2104.11843.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

12

https://github.com/decile-team/distil
https://arxiv.org/abs/2104.11843

B. Xie, L. Yuan, S. Li, C. H. Liu, and X. Cheng. Towards fewer annotations: Active learning
via region impurity and prediction uncertainty for domain adaptive semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8068–8078, 2022.

S. Yan, S. Zhang, and X. He. Budget-aware few-shot learning via graph convolutional
network. arXiv preprint arXiv:2201.02304, 2022.

K. K. Yang, Z. Wu, and F. H. Arnold. Machine-learning-guided directed evolution for protein
engineering. Nature methods, 16(8):687–694, 2019.

O. Yehuda, A. Dekel, G. Hacohen, and D. Weinshall. Active learning through a covering
lens. arXiv preprint arXiv:2205.11320, 2022.

D. Yoo and I. S. Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 93–102, 2019.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola.
Deep sets. Advances in neural information processing systems, 30, 2017.

R. Zhong, D. Ghosh, D. Klein, and J. Steinhardt. Are larger pretrained language models
uniformly better? comparing performance at the instance level. In Findings of the

Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3813–3827, 2021.

13

Appendix A. Related Work

Utility model learning Surrogate models build on a rich and growing body of machine
learning literature (Konyushkova et al., 2017; Coleman et al., 2019; Kossen et al., 2022; Ilyas
et al., 2022; Engstrom et al., 2024). These works improve data acquisition by: training a
regressor to predict expected error rate reduction (Konyushkova et al., 2017), trimming down
model architectures/training epochs as proxy models (Coleman et al., 2019), approximate the
distribution of labels and unobserved features (Li and Oliva, 2021), and harness datamodels
(Ilyas et al., 2022) framework by minimizing trained model loss on target tasks (Engstrom
et al., 2024). In contrast, our method use ranking-based neural networks to learn a data
acquisition function(utility model) estimating which subset would yield higher utility value
given a pair of equal size of subset training data. Contrary to Ilyas et al. (2022), we train
the utility model by collecting much less samples and sampling from various sizes of subsets
rather than fixing subset sizes.

Planning-based vs learning-based AL strategies Classical AL have predefined acqui-
sition strategy including uncertainty sampling (Settles, 2012; Shen et al., 2017; Gal et al.,
2017), diversity sampling (Sener and Savarese, 2017; Yehuda et al., 2022) or their combined
approaches (Xie et al., 2022; Citovsky et al., 2021). Meanwhile, there is a long line of work on
learning-based acquisition function (Fang et al., 2017; Bachman et al., 2017; Wang et al., 2021;
Sinha et al., 2019; Yan et al., 2022; Yoo and Kweon, 2019; Li and Oliva, 2021; Killamsetty
et al., 2021). For instance, Killamsetty et al. (2021) cast designing acquisition function into
bi-level optimization framework and jointly optimizing model parameters for both training
and validation loss. Borsos et al. (2021) extend bi-level optimization to design learning-based
acquisition function in the fashion of semi-supervised learning. Yoo and Kweon (2019) adopt
the idea of ranking the predicted classifier loss in comparing two instances as “loss prediction
module”, querying instances that the classifier is likely to predict wrong, and learn it to predict
target losses of unlabeled inputs. We draw inspirations from Killamsetty et al. (2021); Yoo
and Kweon (2019) by leveraging bi-level training as a subroutine for learning generalizable
utility model incorporating growing labeled pool and reducing utility maximization problem
by choosing highest ranked batch of unlabeled instances.

Learning to rank Ranking techniques have been foundational in fields such as information
retrieval (Liu et al., 2009), recommendation systems (Karatzoglou et al., 2013; Li, 2022) and
large language models (Ouyang et al., 2022). Motivated by Yoo and Kweon (2019); Li et al.
(2021), we shift from the traditional approach of learning cross-entropy loss on unlabeled
instances to ranking the utility for paired subsets of data. While both works (Yoo and
Kweon, 2019; Li et al., 2021) view ranking predicted losses as an uncertainty measure, our
methodology centers on gauging the utility of labeled data subsets, with the utility being the
validation accuracy post-training. To the best of our knowledge, our method is the first to
incorporate the idea of ranking between pairs of subsets and link it directly to performance of
the learning algorithm on the validation set. Our unique contribution lies in introducing such
a ranking mechanism and integrating it under the RankNet (Burges et al., 2005) framework,
in tandem with plugging in optimal transport distance under a multitask learning scenario.

14

Appendix B. Supplemental Experimental Results

B.1 Utility Model Architecture

Here, we describe the acquisition network (Utility Model) discussed in Section 4.

B.1.1 MNIST and FashionMNIST

Our architecture performs the following operations on pairs of subsets of images (Utility
Samples) with equal size. We use below networks as feature extractor for pairs of raw
embeddings of images. For each one within the pair:

1. 2-D convolution on set of images.
2. 2-D Max Pool on output of (1).
3. ReLU on output of (2).
4. 2-D DropOut on output of (3).
5. 2-D Max Pool on output of (4).
6. ReLU on output of (5).
7. Fully-Connected Layer on Output of (6).
8. ReLU on output of (7).
9. 2-D DropOut on output of (8).
10. Fully-Connected Layer on output of (9).
11. ReLU on output of (10).

B.1.2 CIFAR10 and SVHN

We use pretrained ResNet-18 on ImageNet as feature extractor and perform the following
operations on pairs of subsets of extracted features for each image. For each one within the
pair:

1. Fully Connected Layer on set of feature embeddings.
2. ReLU on output of (1).
3. Fully Connected Layer on output of (2).

B.1.3 Mutitask Set-based Neural Networks with RankNet

After average pooling of output of (11) for MNIST and FashionMNIST and output of (3) for
CIFAR10 and SVHN, for each one within the pair, we perform the following operations:

1. Fully Connected Layer on extracted features
2. ReLU on output of (1).
3. Fully Connected Layer on output of (2).
4. Sigmoid function on output of (3).
Denote the output of (4) as �1 and �2.
For the prediction of probability score that which subset has larger utility value in the

pair, we apply RankNet on �1 and �2 for pair comparison. The output score predicted by
RankNet is the final probability score that we shall use to determine whether the first set
has larger utility value than the second.

For the interpolation of utility value, we use �1 and �2 as embedding.
For the prediction of optimal transport distance, we use MLP projection head for �1 and

�2:

15

1. Fully Connected Layer on �1 and �2

2. ReLU on outputs of (1)
3. Fully-Connected Layer on outputs of (2).
We use the outputs of (3) as a supervision signal in designing the loss function for the

neural acquisition function (see Definition 3 in Section 3).
We chose �1, �2 to be 0.5 and �3 to be 1.

B.2 Supplemental Experimental Results

(a) FashionMNIST (b) MNIST

(c) CIFAR10 (d) SVHN

Figure 4: Experimental results: Ablation on k.

B.2.1 Size of Pretraining Set

Figure 4 illustrates the impact of the size of pretraining set on final validation set accuracy.
One shall see RAMBO outperforms the rest of baselines with most of pretraining splits.
The only outlier case could be SVHN, similar to CIFAR10 setting. One possibility could be
k = 5500 is suffice for BADGE to learn an accurate-enough gradient embedding space for
single round selection. Another interesting observation is GLISTER often performs worse
than most of baselines for FashionMNIST and MNIST when pretraining budget is extremely
low as k = 100. One possible explanation could be extremely small pretraining budget can
not guarantee good inner-level optimization for maximizing training set log-likelihood for
extremely small labeled data.

16

B.2.2 Bi-level training, OT Distance and RankNet

Next, we shift to study the intertwined effects of three design choices. To prove the efficacy
of synergizing three seemingly irrelevant submodules together, we provide ablation study of
three submodules. Table 1, 2, 3 and 4 show the impact of turning off each submodule on the
final validation set accuracy for FashionMNIST, MNIST, CIFAR10 and SVHN respectively.

The cross mark for RankNet means regression based acquisition function and the loss
is designed as MSE between predicted utility vs. true utility value. One thing to note is
that if the performance of regression based acquisition function without bi-level training and
OT distance is similar to random, which corroborates our intuition about ranking instead of
regressing validation accuracy on labeled samples.

For simplicity, the checkmarks for optimal transport means �OT = 1 and the crossmarks
for RankNet denotes regression-based utility model as stated in the main paper. In particular,
we only collect single utility sample and develop multitask learning framework on the single
utility sample. We still use the feature extractor explained in Section B.1.1 for MNIST and
FashionMNIST and Section B.1.2 for CIFAR10 and SVHN. For the regression style acquisition
function, we impose MLP head on the shared representation space � for predicting validation
accuracy with û = g(�) = W

(2)(�(W (1))) where � is a RELU non-linearity, very much similar
to the description of predicting OT distance in Section B.1.3. For OT distance regularization,
we adopt the same MLP projection head architecture described in Section B.1.3.

Table 1: Ablation study on three submodules with pretraining set k = 200 and acquisition
budget B = 500 for FashionMNIST. The last row corresponds to the random baseline.

Bilevel Optimal Transport RankNet Accuracy

X X X 83.1 ± 0.1
X X ⇥ 81.9 ± 0.2
X ⇥ X 81.2 ± 0.4
X ⇥ ⇥ 81.8 ± 0.2
⇥ X X 81.0 ± 0.3
⇥ X ⇥ 81.7 ± 0.2
⇥ ⇥ X 80.9 ± 0.3
⇥ ⇥ ⇥ 81.6 ± 0.1
- - - 81.2 ± 0.2

B.2.3 Hyperparameter Tuning for OT distance

By definition, LTotal = LRank12 + �OT · LOT (Definition 4). One can change the scale of
�OT for utility model training in pretraining. We study the effect of hyperparameter �OT in
final model performance on validation set. We highlight the importance of incorporating
OT distance into the loss structure which makes û insensitive to the scale of �OT. When
�OT > 0, the overall validation accuracy is larger than �OT = 0. The choice of �OT is specific
to dataset and batch setting and we present one setting of �OT with varied Labeling Budget
for acquisition stage in Figure 5c.

Figure 5 illustrates the benefits of incorporating optimal transport distance into the loss
structure of our utility model. Figure 5 shall serve as a complement to uncover the usefulness

17

Table 2: Ablation study on three submodules with pretraining set k = 200 and acquisition
budget B = 500 for MNIST. The last row corresponds to the random baseline.

Bilevel Optimal Transport RankNet Accuracy

X X X 95.3 ± 0.2
X X ⇥ 94.9 ± 0.2
X ⇥ X 95.0 ± 0.1
X ⇥ ⇥ 94.8 ± 0.2
⇥ X X 94.6 ± 0.1
⇥ X ⇥ 94.9 ± 0.1
⇥ ⇥ X 95.0 ± 0.2
⇥ ⇥ ⇥ 94.8 ± 0.2
- - - 93.4 ± 0.1

Table 3: Ablation study on three submodules with pretraining set k = 3500 and acquisition
budget B = 5000. The last row corresponds to the random baseline.

Bilevel Optimal Transport RankNet Accuracy

X X X 77.3 ± 0.2
X X ⇥ 76.1 ± 0.3
X ⇥ X 76.2 ± 0.4
X ⇥ ⇥ 70.5 ± 0.3
⇥ X X 75.5 ± 0.3
⇥ X ⇥ 75.5 ± 0.3
⇥ ⇥ X 76.0 ± 0.8
⇥ ⇥ ⇥ 74.6 ± 0.7
- - - 74.7 ± 0.3

Table 4: Ablation study on three submodules with pretraining set k = 3500 and acquisition
budget B = 5000 for SVHN. The last row corresponds to the random baseline.

Bilevel Optimal Transport RankNet Accuracy

X X X 88.1 ± 0.3
X X ⇥ 86.7 ± 0.2
X ⇥ X 87.8 ± 0.3
X ⇥ ⇥ 86.5 ± 0.3
⇥ X X 86.1 ± 0.2
⇥ X ⇥ 87.8 ± 0.2
⇥ ⇥ X 87.5 ± 0.1
⇥ ⇥ ⇥ 86.1 ± 0.2
- - - 86.5 ± 0.3

of optimal transport distance, regardless of the scale of �OT , for various datasets of interest.
Regardless of datasets and classification networks architecture, the incorporation of optimal
transport distance finds utility in reducing generalization error, measured by the increase
of validation set accuracy. Even though �OT can be a hard hyperparameter for fine-tuning,

18

(a) FashionMNIST (b) MNIST

(c) CIFAR10 (d) SVHN

Figure 5: Different choices of �OT for pretraining set size k = 200 for (a) and (b) and
k = 2500 for (c) and (d) by different acquisition budget

Figure 5 suggests final validation set accuracy for �OT 6= 0 is higher than its counterpart for
�OT = 0.

B.2.4 Runtime Analysis

All models are trained using NVIDIA A40 GPU with 48GB. To increase the running speed
of our experiments, we use data parallelism on multiple GPUs in implementations. The
time recorded below is for Pytorch training with 2 GPUs. As stated in main text, all the
experiments are repeated for 10 trials to reduce the training stochasticity. We fix k = 2500
and B = 5000 for CIFAR10 and SVHN with n = 30 utility samples collected per batch with
⌧1 = 2, b = 1000 and k1 = 500 for pretraining stage with each batch trained for 20 epochs.
For CIFAR10, we collect 500 pairs of utility samples for û offline training with roughly 3
hours and 20 minutes. Then, the total training time for both pretraining and acquisition
stage is 1 hour and 20 minutes with pretraining stage 50 minutes and acquisition stage 30
minutes. For SVHN, we collect 500 pairs of utility samples for offline training with roughly
1 hour and 40 minutes. Then, the total training time for both pretraining and acquisition
stage is roughly 1 hour with pretraining stage 29 minutes and acquisition stage 34 minutes.

We fix k = 200 and B = 500 for MNIST and FashionMNIST with n = 50 utility samples
collected per batch with ⌧1 = 3, b = 50 and k1 = 50 for pretraining stage with each batch

19

trained for 20 epochs. For MNIST, we first randomly collect 500 pairs of utility samples and
the total training time for utility model û for offline training is 50 minutes. Then, the total
training time for both pretraining and acquisition stage is 59 minutes with pretraining stage
39 minutes and acquisition stage 20 minutes. For FashionMNIST, the offline training for
utility model û is 50 minutes for 500 pairs of utility samples. The total training time for
both pretraining and acquisition stage is 50 minutes with pretraining stage 32 minutes and
acquisition stage 18 minutes.

20

	Introduction
	Problem Statement
	Methodology
	A Two-Stage Active Learning Framework
	The RAMBO Algorithm

	Experimental Results
	Conclusion
	Related Work
	Supplemental Experimental Results
	Utility Model Architecture
	MNIST and FashionMNIST
	CIFAR10 and SVHN
	Mutitask Set-based Neural Networks with RankNet

	Supplemental Experimental Results
	Size of Pretraining Set
	Bi-level training, OT Distance and RankNet
	Hyperparameter Tuning for OT distance
	Runtime Analysis

