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Abstract — Collaborative robots transit from the traditional
robot-in-a-cell scenarios to a human-robot-shared workspace.
This demands robots to better understand their human partners
and then assist them. Existing robot learning from
demonstration work mainly focuses on enabling robots to repeat
human demonstrated tasks alone and usually require significant
training efforts but have limited scalability to new tasks. This
paper proposes a new task constraint-guided inverse
reinforcement learning (TC-IRL) approach to learn assembly
tasks from human demonstrations with significantly reduced
state and action space (leading to less training data requirement)
and computational efforts (landing to better real-time
performance) than the conventional IRL. The TC-IRL is also
extended to new geometric-scaled tasks to generate robot
assistance to human in collaborative assembly. The proposed
approaches are validated and evaluated through human-robot
collaborative assembly experiments.

I. INTRODUCTION

Collaborative robots are designed to work safely with
humans in a shared workspace, which requires robots to
accomplish flexible tasks in a changeable environment. To
reduce the robot programming effort and improve the
efficiency, the approaches of robot learning from
demonstrations (RLfDs) [1] are investigated as feasible
solutions for flexible tasks. Various techiques of demostration
have been studied, such as kinesthetic demonstration [2],
motion-sensor demonstration [3], and teleoperateed
demonstration [4]. Abu-Dakka et al. [5] demonstrated
peg-in-hole tasks on KUKA LWR arm in gravity
comenpasation mode via kinesthetic guiding. In the
demonstration, the human repeately guided the robot’s tool
center point along the disired trajectory that can successfully
inserts the peg into the hole, meanwhile, the Cartesian space
trajectories and the joint torques are recorded. Edmonds et al.
[6] used a glove with taqctile sensors and IMUs to record both
forces and positions of human hand in demonstrations of
opening medicine bottle. Ferreira et al. [7] developed a
vision-based real-time tool tracking system to record the tool
trjectories in six degree-of-freedoms in human demonstrations,
which can be used to program the industrial robots.

After task information in human demonstrations is
captured, different learning models have been proposed to
interpret the tasks for robot learning. For instance, the hidden
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Markov model (HMM) was applied to encode the
demonstrated trajectories [8] as well as force-based behaviors
[9]. Goto et al. [10] applied the finite state machine (FSM) to
formulate a human-robot collaborative assembly task. Wang
et al. [11] developed the assembly graph (AG) to interpret the
pre-defined constraints of assembly tasks. Kim et al. [12]
implemented the Gaussian Mixture Model (GMM) to model
robot motions. However, these approaches mainly focus on
making robots repeat the tasks that humans have demonstrated
and lack of scalability to new tasks.

Recently, some studies have applied inverse reinforcement
learning (IRL) on task learning from human demonstrations,
which use reward functions to capture human working
patterns [13]-[16]. However, due to the large state and action
space of IRL, it usually requires a large amount of training
data and computational efforts.

To address the above challenges of existing approaches,
this paper proposes a new task constraint-guided inverse
reinforcement learning (TC-IRL) approach to make
collaborative robots learn the tasks from human teaching
demonstrations and then assist humans to collaboratively
accomplish the tasks including new tasks with larger
geometric scales instead of repeating the learned tasks.
Compared to conventional IRL, it can significantly reduce the
state and action space and computational efforts, and therefore
lead to less training data requirement and better real-time
performance. Furthermore, a robot assistance generation
approach with task extension is then proposed to generate
assistive robot actions to collaborate with humans to
accomplish not only the demonstrated tasks but also new tasks
with larger geometric scales.

The proposed approaches potentially allow humans to teach
the robot by just a few small-scale demonstrations and then the
robot can assist humans to accomplish a series of larger-scale
tasks in the human-robot collaboration process.

II. HUMAN-ROBOT COLLABORATIVE ASSEMBLY

In the conventional inverse reinforcement learning (IRL)
approach [13], an assembly task can be modeled by a Markov
decision process (MDP), which can be described by a tuple as

M=(S,AT,7,R) 1)
where S represents the assembly state space, A represents
the assembly action space, I =H(s'|s,a) is the state

transition probability, 7 €[0, 1) is the discount factor, and R

is the reward function.
In this IRL formulation, task constraints are connotative in
the definitions of task states. Generally, all the potential states
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and actions that satisfy the task constraints must be defined in
the model. For collaborative assembly applications, the
actions and states in the MDP depend on parts, tools, assembly
locations, sequences, etc. Therefore, the size of the action and
state space will increase dramatically when the options of
parts, tools, and task scales are slightly increased. As known,
the size of the state and action space is proportional to the
number of unknown parameters that need to be learned
through IRL, and the number of unknown parameters
indicates the required amount of data for training of IRL. In
addition, the size of the state and action space is also
proportional to the computational costs of implementing IRL.
Therefore, when applying conventional IRL to learning
assembly tasks, due to the wide variety of the parts, tools, and
assembly task variations, it will require a very large state and
action space and therefore require a large amount of data for
training and significant computational efforts for
implementation. This makes it difficult to be applied to
realistic assembly scenarios. To address this issue, we propose
the task constraint-guided inverse reinforcement learning
(TC-IRL) approach. To formulate the human-robot
collaborative assembly task, the set of tools can be defined as

Ts ={ts,,18,,...,Isy } 2)
where IV, is the total number of tools.
The set of parts to be assembled is defined as
Pt={ply, ply...o.pty } 3)

where N 18 the total number of parts. The parts are

distinguished from each other by a set of attributes, such as
shape, color, mass, etc.
The set of the attributes that are used to describe different
parts is defined as
Ar={an,ar,,...,ar, }

“4)

where IV, is the total number of attributes. Each attribute can
have different values, which can be written as

_ qany, an ar
Ve ={"v0" vy V,w;,,,}

)
where ar; €Ar is an attribute, N, is the total number of

values corresponding to the attribute &;.

The set of assembly locations can be written as

Le={lc,,lc,,....lcy } (6)

where IV, is the total number of assembly locations. The

number of locations in the human-robot collaboration phase
can be variant and different from that in the human teaching
phase. The former location set depends on how the human
worker wants to extend the task scale, while the later location
set is generally the minimal scale of human demonstrations,
which are enough to teach all the task constraints and human
preferences. In this paper, we present the derivation of the
proposed approaches in two-dimensional assembly scenarios.

III. LEARNING COLLABORATIVE ASSEMBLY TASKS VIA

TC-IRL
In this section, we present the detail of the
task-constraint-guided  inverse reinforcement learning

(TC-IRL). A general form of the MDP in the TC-IRL can be

written as

M, =(S,,4.T.7.R) @)
where S, is the task constraint-guided state space, 4 is the
task constraint-guided action space, I, ZP(SI'|St,at) is the
state transition probability, ¥ €[0,1) is the discount factor,

and R is the task constraint-guided reward function.

In TC-IRL, the robot first learns the task constraints from
human demonstrations, and the learned task constraints are
then used to construct task constraint-guided state and action
space which is much smaller than the original space. The task
constraint-guided reward is then defined based on this
constrained space and learning is conducted to learn the
unknown parameters for assembly tasks from human
demonstrations. In the following, we will first introduce the
learning of task constraints including object-based task
constraints, location-based task constraints, and human
hand-based task constraints which are used to limit the size of
the state and action space and then introduce the learning
algorithm to learn how the human accomplishes the task.

A. Learning of Task Constraints

1) Object-based Task Constraints
The object-based constraints are defined to represent the
part-tool pairs, which indicate the corresponding tools for each
part. Based on the definitions in the previous section, the

object-based constraints can be represented by a matrix:
C1,1 C1,2 CI,N

Pt

C,=| i e )

c c c
Nigl N »2 NigsN e

NigxN,,
corresponds to the tool ZS; in the

C

obj

where the i” row of Cobj

set Ts, while the jth column of corresponds to the part

Pt; in the set Pr. To indicate the object-based constraints,
the element ¢, ; =1if the part pt ; should be assembled with

the tool S, otherwise, ¢, ; =0.

The object-based constraints can be learned by tracking the
human hand motions and the state of parts/tools in the human
demonstrations. The combined state at any given time can be
represented as

5, (6) =[obj, (1), 0bj (1)) ©)
where 0lj, (f) and 0lji(t) indicate the object in the human’s
left and right hand at the moment 7 =¢ . To simplify the
problem, we assume that each hand can be with either a part or
a tool in hand or remain empty at each moment. Based on

human operations in the demonstrations, a statistic-based
approach is used to learn the object-based constraints.
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For the " demonstration, let de be the overall length of
the state sequence in the demonstration, 4, be the times of

appearances of s, = , A, be the times of

[%s,, pt

appearances of s, =[ ptj,tsl.] , and IV}, be the total number

of demonstrations. The probability that the part p?; should be

assembled with tool ZS; can be written as

A, + A4,
P(ts,, pt, )——Z 1

T (10)
D k=1

i

This probability is then used to update each elementin C,; y

where for each part pf; in the set P¥, the tool with the highest

probability is considered the object-based constraint, and the
corresponding element is set as 1.
2) Location-based Task Constraints

The location-based constraints are used to describe the
requirements that any given assembly location must have the
corresponding part installed in the final assembly. The
location-based constraint of a two-dimensional assembly
scenario can be written in matrix format as

01,1 01,2 OI,W

C.=| + (11)

o o o
H .1 H.2 HW |

where H and W are the height and width for the
demonstrated tasks and 0; ; is a vector, which indicates the

values of attributes of the object assembled at the
corresponding assembly location.

Considering all the parts that have been installed at a given
assembly location throughout multiple human demonstrations.

The probability distribution for a specific attribute @&;at the

assembly location (x,y) can be calculated by
count(ar,
N

=v))

Plar,=v, [ X =x,Y =y)= (12)

D

where count(-) function means to count the times of

appearance of the given condition. /N, means the total number
of rounds of human demonstrations.

Let P, be the probability of human demonstration errors.

For the part at assembly location (x,y), the attribute

@;should have the value V; as the constraint if it satisfies
Plar, =v, | X=x,Y=y)>1-p, (13)

This probability is then used to update the element in G,
where the attributes whose probabilities satisfy (12) are all
considered as constraints in 0; ;.

3) Human Hand-based Task Constraint
Different human workers may have different hand

preference for specific parts or tools. In order to deliver parts
and corresponding tools to proper human hands based on their

preference, the human hand-based task constraint with respect
to part-tool pairs is defined, which can be represented by a
matrix

th

>N pt

(14)

L2 hN.N
15> 1524V pr Nl\'XNp/

The i row corresponds to the tool Z5; in the set 75, while

the jlh column corresponds to the part pZ; in the set Pr. For

those part-tool pairs, which are not satisfied with the
object-based constraints or have never been appeared in any of
human demonstrations, the corresponding element is set as

h ;=0 . The element 4 ;=1if the part pf; should be
delivered to the right hand, while the tool should be delivered
to the left hand. The element h, = —1 represents the opposite

hand preference
With the definitions of variables in (10), for each specific

part-tool pair (s, Pt ), the probability of different hand over

methods among all the human demonstrations can be
computed by

1 &4,
P(L:ts,.,R=ptj)=—z—
ND k=1 Li
LNy (15)
P(L=pt ,R=ts)=—"> —2&
, N2

The higher probability in (15) is regarded as the human
hand preference on this specific part-tool pair (s, Pt ). The
values, -1 or 1, are signed to the corresponding elements in

C,,.u based on the probability.

B. IRL Learning of Assembly Tasks with Tasks Constraints

In order to learn how human accomplishes the assembly
task, the state and action space in (7) is firstly constructed.
Both the learned object-based and location-based task

constraints will help limit the size of the state space 3,

because only the constrained part-tool pairs C; ; learned in

C

o and only parts whose attributes satisfy the constraint

vector O, ; in C,. are considered in the state definition. The

human hand-based task constraint will help limit the action

space 4 because for a specific part or tool, which hand to use

in the action will be specified in the constraint C,,,; . With the

definition of constrained state space and action space, the size
of the entire state and action space (i.e., different action
options at different states) will then be significantly reduced.
Additionally, the learning of assembly tasks is not only to
learn the final assembly state but also to learn the process of
how the human conduct the assembly during demonstrations.
This process can be captured by a set of feature functions

defined by
F =l S S (16)
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where each f, is defined in the state and action space
ﬁ((S)E{O,l} to specify a special feature of the human

assembly process. Each different value of the vector fis

corresponding to a human working style in the assembly, such
as assembly the part row by row, left to right, from far to near
with respect to his/her body position, etc.

The overall human assembly process can be then reflected
by a task constraint-guided reward function which is defined
as a weighted sum of the feature functions

R(s)=W'f(s,a)=Y w,f,(s,a) (17)

where W=[w;,m,..]" is a set of weights to determine the
preferences of the human on different features during
assembly. The weights together will determine how the human
would like to accomplish the assembly tasks.

In this paper, we propose to apply the maximum entropy
inverse reinforcement learning (MaxEnt-IRL) [18] to learn the
weights in the reward function from human demonstrations.
We assume that the MDP is deterministic in this work.
Therefore, according to the MaxEnt-IRL principle, the
distribution over assembly strategy under deterministic
transitions can be defined as

PG M, W)= Z(IW) exp(z w' i (S,a)j (18)

where ¢ is the assembly strategy in human demonstrations,

Z(W) is the partition function. The weights of features in the

reward function can then be optimized by maximizing the
entropy through

W =argmax log P(s | M, W)
w

(19)
= arg max [Z w," f.(s)—log Z(W))

IV. TC-IRL GUIDED ROBOT ASSISTANCE

In this section, we will introduce how to generate assistive
robot actions to collaborate with humans to accomplish not
only the demonstrated tasks but also new tasks with larger
geometric scales. The robot will ask the human through
natural language about the dimensions of the new scaled tasks
and the human will respond through natural language before
the collaboration starts.

A. Extension of TC-IRL

When the collaborative assembly task is extended to a larger
geometric scale, the object-based task constraints and the
human hand-based task constraints should usually remain the
same. However, the location-based task constraints for the
extended task must be updated to fit the extended tasks.

In the two-dimensional assembly scenarios, each assembly
location in the human-demonstrated tasks is regarded as a
center of a cluster and then each assembly location in
human-demonstrated tasks can be mapped to a new center of a

cluster in the extend tasks throughout a linear scaling
transformation, which can be written as

x':_exx’ ‘e 20
w, 4 Vde (20)

where W, and H, are the width and height of the enlarged

assembly process. W, and H; are the width and height of the
demonstrated assembly. The location-based task constraint at
each assembly location (x,y) in human-demonstrated tasks
formats a center of location-based constraint cluster at
(x»") in the enlarged assembly task. Afterward, the

constraint of each assembly location in the extended assembly
task is determined by the k-nearest neighbor (KNN) classifier,
which can be written as

C KNN

cex (xex’yex) = H xW, (x'7y') (21)
where X, €[LW ]and ¥, €[l,H, ] gives a specific assembly

the

location-based task constraint corresponding to the given
assembly location. The right side of the equation means
selecting the same location-based task constraint
corresponding to the center of the closest cluster among all the

location in the extended assembly task, C, is

nearby clusters which are centered at different (x%"). The

minimal Euler distance is used as the criterion for the KNN to
select the closest cluster in the enlarged assembly task.

When the collaborative assembly task is extended to a larger
scale, the MDP model in TC-IRL must also be updated to fit
the extended tasks. After knowing the dimensions (height and
the width) of the extended task from the human, the task
constraints will be first updated for the new task. Based on the
new task constraints, the task constraint-guided states, actions,
and rewards can be defined in the same way as the originally
demonstrated task in Section III.B. to construct a new task
constraint-guided MDP and therefore result in a new TC-IRL.
The new MDP and TC-IRL will also retain the advantage of
small size for state and action space because the learned task
constraint has been fully extended to the new scalable tasks to
guide the definition and state and action space.

Because the human does not change for the new scalable
task, his or her preference on how to accomplish the task
giving the state and action space should retain the same.
Therefore, the feature functions will remain the same as the
originally TC-IRL, and more importantly, the optimized
weights w * which are previously learned from human
demonstrations can also be used for the new task. This means
that we do not need to re-train the TC-IRL at all although the
tasks have been extended to a larger scale. We only need to
use the learned reward function to update the reward map for
the new tasks with newly updated state and action space and
then use the assistance action generation approach which is
introduced in the following section to generate appropriate
robot assistance for the human.
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B. Robot Assistance Generation

After the reward map is updated based on the reward
function for the new task, the value function of the extended
MDP can be determined through value iterations:

Via(s)= maX[ZR(S) +yVi(s ')j
CA (22)

st s—s'

where s' is the next state of the system after the action @ is

executed at the state S. The converged value function with

respect to the state S is noted as V(s).

Since we aim to make the robot assist human to accomplish
the assembly task, we will, therefore, require the human to
initialize the task. The human first needs to accomplish two
assembly actions based on his/her preference to establish an
initial condition for the robot. Then, to generate appropriate
assistance, the robot will first recognize the current state of the
task via its sensing system in real-time and then determines
which action to choose from the action space of the extended
MDP model.

a" =argmax(R(s)+yV(s")
‘ (23)
st. s—s'

The optimized action «° can also infers the assembly
location that the human should be working on, the robot can
then search all the available parts that can be assembled to this
assembly location based on the location-based constraints. To
determine which robot arm should be used to pick which
available part, the Euclidean distances from the work home
positions of both robot arms to each available part are
calculated. The arm and the part corresponding to the minimal
Euclidean distance are paired. According to the selected part,
the robot then generates the list of all the available tools based
on the object-based constraints. Similarly, the arm and the tool
corresponding to the minimal Euclidean distance are paired.
Based on the selected part-tool pair, the delivery targets are
determined with the human hand preference. Afterward, the
robot will execute the pick and handover actions to use
different arms to pick up the correct part and tool and deliver
them to the correct hands of the human to assist him/her to
accomplish the assembly task.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup

The human stands face to face with the ABB Yumi robot to
work in a shared workspace. The six cameras of the VICON
motion capture system are set up on the roof surrounding the
workspace to capture the motion of human hands. The origin
of VICON is set at the center of the desk, and the location of
each grid is calibrated. The Kinect RGB-D sensor offers a
top-view point cloud of the workspace, which is used to verify
the object states besides the VICON system.

In our experiments, the configuration of the workspace is
illustrated in Fig. 1. The part/fastener stack zone is close to the
robot, and the assembly zone is near to the human in the
shared workspace. The 15 fasteners belong to three different

types, square, hex, and crisscross. The 18 parts belong to three
different types, square, hex, and crisscross, and three different
colors, red, yellow, and blue. Mechanically, a part and a
fastener can be assembled if and only if they have the same
type. Initially, all the parts and fasteners are sorted in the stack
zone and the assembly zone is empty.

In the human demonstration process, the human
manipulates the parts and fasteners in the workspace by
his/her both hands directly. The human operations are tracked
by hand motion capture. Since the object-based constraints
and the human hand preference are learned via statistic-based
approaches, the sample size is critical for the human teaching
and robot learning phase. The human starts the demonstration
according to the natural language introduction of the robot.
After the human finishes all the object manipulations through
naturally pick-assembly-place operations, the human should
put both hands at the work home position to indicate the robot

2 Assembly
Zone

Fig. 1. The workspace configuration and collaborative assembly

TABLE 1.
RESULTS OF ROBOT ASSISTANCE IN 4 X 3 ASSEMBLY

State Process Robot Assistance
Prediction Arm  Part/Tool Hand
[10, “000000000011”"] 9(1,4) L Part: B/H R
L Tool: W/H L
[9, “000000000111™] 8(3,3) L Part: B/S R
R Tool: W/S L
[8, “0000000011117] 7(2,3) R Part: B/C R
L Tool: W/C L
[7, 0000000111117 6(1,3) R Part: B/S R
L Tool: W/S L
[6, 0000001111117 5(@3,2) R Part: R/C R
R Tool: W/C L
[5,“000001111111™] 4(2,2) R Part: R/H R
R Tool: H L
[4,000011111111™] 3(L,2) R Part: R/S R
L Tool: W/S L
[3,“000111111111™] 23,1 L Part: R/C R
R Tool: W/C L
[2,“0011111111117] 12,1 L Part: R/H R
L Tool: W/H L
[1,“011111111111™] 0(L, 1) L Part: R/S R
R Tool: W/S L
[0, “111111111111™] -1 (end) Stop N/A N/A

* Arm: L-pick by left robot arm, R- pick right robot arm.
* Part: B-blue, R-red, H-hex, S-square, C-crisscross.
* Tool: W-white, H-hex, S-square, C-crisscross.

257
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 31,2024 at 07:04:48 UTC from IEEE Xplore. Restrictions apply.



that the demonstration is accomplished.

B. Results of TC-IRL in Collaborative Assembly

In the experiment, the proposed approaches are verified on
a designed assembly task that the upper half of the assembly
locations are expected to be red parts but no specific constraint
in shape; the lower half of the assembly locations are expected
to be blue parts but no constraint on the shape. Three rounds of
2 x 2 human demonstrations are given. In the demonstrations,
the parts in red color but with different shapes are installed to
the assembly locations in the upper half plane, while the parts
in blue color but with different shapes are installed to the
assembly location in the lower half plane. Meanwhile, human
always use the left hand for tool operations and manipulate the
parts with the right hand. All the three demonstrations are
accomplished raw by raw, right to left, and from near to far
with respect to the human’s body position. The overall process
of the 2 x 2 human demonstration is shown in the attached
video.

The result of a collaborative assembly case for an extended
4 x 3 assembly task based on the human demonstrations of the
previous section is shown in Table I.. In the human-robot
collaboration phase, the human first picked up the
blue/crisscross with his right hand and a corresponding
white/cross tool with his left hand and placed the assembled
part at location 11 (3, 4). Then, the human picked up a
blue/hex part with his right hand and a corresponding
white/hex tool with his left hand and placed the assembled part
at location 10 (2, 4). After this, the task state was successfully
initialized by the human, and the robot started to assist the
human in the following steps of the task. The column of
process prediction in Table I. gives the assembly locations
predicted by the robot at different task states. The columns of
robot assistance illustrate the robot’s decisions on using which
robot arm to pick up which part or tool and delivering to which

human hand based on the real-time task state and the learned
task constraints. The overall process of the robot assistance is
shown in the attached video.

C. Evaluations

To evaluate the proposed model, we tested the model with
different assembly processes, human hand preferences, and
extended tasks with larger dimensions in assembly with 9
different kinds of parts and 3 different kinds of tools. Each
participant is first introduced about how to demonstrate the
object-based constraint, location-based constraint, human
hand-based constraint, and assembly process by giving three
human demonstrations with 2 x 2 dimensions based on his/her
preferences. After the robot learning phase, the 2 x 5 and 4 x 3
collaborative assembly tasks are accomplished with robot
assistance. The results in Table III show that with correctly
calibrated the motion capture system, the robot tool center
points, and the location of the objects, the proposed approach
can obtain 100% accuracy in assembly sequence prediction,
pick-delivery action

Based on the same workspace configuration and the same
collaborative assembly task, the comparison on the action
space size, the state space size, the transition map size, and
computation effort are shown in Table II. For the TC-IRL, the
corresponding results are automatically generated online by
setting the proper parameters of the task size. For conventional
IRL, we assume that the robot can use either left or right arm
to pick up a part or a tool then deliver to either left or right
human hand in each manipulation. The sizes of state and
action spaces are then calculated for conventional IRL
respectively.

We can see that with TC-IRL, the size of the action space,
state space and state transition matrix of the MDP process in
the model are significantly reduced compared with the model
without the constraint extractions. Based on our task

TABLE III
Statistic Results of Robot Assistance
No. of . No. of No. of . No. of
A;;zg:;’:y Prg::e(:lce Prediction No'(;:;wk Handover Prediction NO'(::;;'CI( Handover  Accuracy
(2x5) (2x5) (4x3) (4x3)
1 L 8/8 16/16 16/16 10/10 20/20 20/20 100%
R 8/8 16/16 16/16 10/10 20/20 20/20 100%
5 L 8/8 16/16 16/16 10/10 20/20 20/20 100%
R 8/8 16/16 16/16 10/10 20/20 20/20 100%
3 L 8/8 16/16 16/16 10/10 20/20 20/20 100%
R 8/8 16/16 16/16 10/10 20/20 20/20 100%
4 L 8/8 16/16 16/16 10/10 20/20 20/20 100%
R 8/8 16/16 16/16 10/10 20/20 20/20 100%
* The elements from the 2™ column to the 7" column are represented by “number of correct actions / numbers of total actions”
TABLE II
TC-IRL vs Conventional IRL

Task Size of Action Set Size of State Set Size of Transition Map Computation Effort

Size TC-IRL IRL TC-IRL IRL TC-IRL IRL TC-IRL IRL
2x2 4 432 28 1.2754¢7 3136 7.0277e16 0.00076 s >10 min
2x3 6 648 186 2.7894el 1 207576 5.0420e25 0.02174 s >10 min
2x4 8 864 1016 1.1387el6 8258048 1.1204e35 0.4286 s >10 min
2x5 10 1080 5110 7.4713e20 261121000 6.0287¢44 11.10s >10 min
4x3 12 1296 24564 7.1895€25 7240681152 6.6989¢54 292.2s >10 min

* The 2 x 2 tasks are used in human demonstrations on the real robot
* The 2 x 5 and 4 x 3 tasks are tested on the real robot
* The computation effort includes the time cost of the extended MDP generation and training of IRL
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configuration, the size of the state and action space for
TC-IRL is significantly smaller than conventional IRL and the
advantages become more obvious when the task dimension
increase, which leads to a dramatic increase of the state and
action space for IRL. Based on the principle of IRL, The
reduced size also implies reduced requirement on the training
data, which is why our proposed approach only requires
several human demonstrations. At the same time, because of
the reduced size, the computational cost is also significantly
reduced, which leads to better real-time performance.

VI. CONCLUSIONS

In this paper, we proposed a new learn-to-collaboration
approach with TC-IRL method that generate robot assistance
to assist humans in human-robot collaborative assembly. The
task constraint guided IRL approach can significantly reduce
the size of the action and state space and lead to a reduced
requirement of training data and computational cost compared
to traditional IRL. The proposed approach can also allow
humans to teach the robot to accomplish new larger-scale
tasks by learning from several small-scale demonstrations.
The experiment results demonstrated the effectiveness and
advantages of the proposed approach. The proposed
approaches can potentially integrate into existing robot
systems and workflow if the robot systems are collaborative
and have proper vision or other sensing system to indicate the
human operations. The objects used in the experiment can be
replaced by real industrial parts with proper definitions of the
tasks.
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