
  

 

Abstract — Collaborative robots transit from the traditional 
robot-in-a-cell scenarios to a human-robot-shared workspace. 
This demands robots to better understand their human partners 
and then assist them. Existing robot learning from 
demonstration work mainly focuses on enabling robots to repeat 
human demonstrated tasks alone and usually require significant 
training efforts but have limited scalability to new tasks. This 
paper proposes a new task constraint-guided inverse 
reinforcement learning (TC-IRL) approach to learn assembly 
tasks from human demonstrations with significantly reduced 
state and action space (leading to less training data requirement) 
and computational efforts (landing to better real-time 
performance) than the conventional IRL. The TC-IRL is also 
extended to new geometric-scaled tasks to generate robot 
assistance to human in collaborative assembly. The proposed 
approaches are validated and evaluated through human-robot 
collaborative assembly experiments.   

I. INTRODUCTION 

Collaborative robots are designed to work safely with 
humans in a shared workspace, which requires robots to 
accomplish flexible tasks in a changeable environment. To 
reduce the robot programming effort and improve the 
efficiency, the approaches of robot learning from 
demonstrations (RLfDs) [1] are investigated as feasible 
solutions for flexible tasks. Various techiques of demostration 
have been studied, such as kinesthetic demonstration [2], 
motion-sensor demonstration [3],  and teleoperateed 
demonstration [4]. Abu-Dakka et al. [5] demonstrated 
peg-in-hole tasks on KUKA LWR arm in gravity 
comenpasation mode via kinesthetic guiding. In the 
demonstration, the human repeately guided the robot’s tool 
center point along the disired trajectory that can successfully 
inserts the peg into the hole, meanwhile, the Cartesian space 
trajectories and the joint torques are recorded. Edmonds et al. 
[6] used a glove with taqctile sensors and IMUs to record both 
forces and positions of human hand in demonstrations of 
opening medicine bottle. Ferreira et al. [7] developed a 
vision-based real-time tool tracking system to record the tool 
trjectories in six degree-of-freedoms in human demonstrations, 
which can be used to program the industrial robots.  

After task information in human demonstrations is 
captured, different learning models have been proposed to 
interpret the tasks for robot learning. For instance, the hidden 
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Markov model (HMM) was applied to encode the 
demonstrated trajectories [8] as well as force-based behaviors 
[9]. Goto et al. [10] applied the finite state machine (FSM) to 
formulate a human-robot collaborative assembly task. Wang 
et al. [11] developed the assembly graph (AG) to interpret the 
pre-defined constraints of assembly tasks. Kim et al. [12] 
implemented the Gaussian Mixture Model (GMM) to model 
robot motions. However, these approaches mainly focus on 
making robots repeat the tasks that humans have demonstrated 
and lack of scalability to new tasks.  

Recently, some studies have applied inverse reinforcement 
learning (IRL) on task learning from human demonstrations, 
which use reward functions to capture human working 
patterns [13]–[16]. However, due to the large state and action 
space of IRL, it usually requires a large amount of training 
data and computational efforts.  

To address the above challenges of existing approaches, 
this paper proposes a new task constraint-guided inverse 
reinforcement learning (TC-IRL) approach to make 
collaborative robots learn the tasks from human teaching 
demonstrations and then assist humans to collaboratively 
accomplish the tasks including new tasks with larger 
geometric scales instead of repeating the learned tasks. 
Compared to conventional IRL, it can significantly reduce the 
state and action space and computational efforts, and therefore 
lead to less training data requirement and better real-time 
performance. Furthermore, a robot assistance generation 
approach with task extension is then proposed to generate 
assistive robot actions to collaborate with humans to 
accomplish not only the demonstrated tasks but also new tasks 
with larger geometric scales.  

The proposed approaches potentially allow humans to teach 
the robot by just a few small-scale demonstrations and then the 
robot can assist humans to accomplish a series of larger-scale 
tasks in the human-robot collaboration process.  

II.  HUMAN-ROBOT COLLABORATIVE ASSEMBLY 

    In the conventional inverse reinforcement learning (IRL) 
approach [13], an assembly task can be modeled by a Markov 
decision process (MDP), which can be described by a tuple as 

 ( , , , , )M S A T R   (1) 

where S  represents the assembly state space, A  represents 

the assembly action space, ( ' | , )T P s s a  is the state 

transition probability, [0,1)   is the discount factor, and R  

is the reward function.  
In this IRL formulation, task constraints are connotative in 

the definitions of task states. Generally, all the potential states 
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and actions that satisfy the task constraints must be defined in 
the model. For collaborative assembly applications, the 
actions and states in the MDP depend on parts, tools, assembly 
locations, sequences, etc. Therefore, the size of the action and 
state space will increase dramatically when the options of 
parts, tools, and task scales are slightly increased. As known, 
the size of the state and action space is proportional to the 
number of unknown parameters that need to be learned 
through IRL, and the number of unknown parameters 
indicates the required amount of data for training of IRL. In 
addition, the size of the state and action space is also 
proportional to the computational costs of implementing IRL. 
Therefore, when applying conventional IRL to learning 
assembly tasks, due to the wide variety of the parts, tools, and 
assembly task variations, it will require a very large state and 
action space and therefore require a large amount of data for 
training and significant computational efforts for 
implementation. This makes it difficult to be applied to 
realistic assembly scenarios. To address this issue, we propose 
the task constraint-guided inverse reinforcement learning 
(TC-IRL) approach. To formulate the human-robot 
collaborative assembly task, the set of tools can be defined as 

 1 2{ , ,..., }
tsNTs ts ts ts   (2) 

where tsN  is the total number of tools.  

The set of parts to be assembled is defined as 
 1 2{ , ,..., }

ptNPt pt pt pt   (3) 

where ptN  is the total number of parts. The parts are 

distinguished from each other by a set of attributes, such as 
shape, color, mass, etc.  

The set of the attributes that are used to describe different 
parts is defined as 

 1 2{ , ,..., }
arNAr ar ar ar   (4) 

where arN  is the total number of attributes. Each attribute can 

have different values, which can be written as 
 

1 2{ , ,..., }i i i

i ari

ar ar ar
ar NV v v v   (5) 

where iar Ar  is an attribute, 
iarN  is the total number of 

values corresponding to the attribute iar .  

The set of assembly locations can be written as 
 1 2{ , ,..., }

lcNLc lc lc lc   (6) 

where lcN  is the total number of assembly locations. The 

number of locations in the human-robot collaboration phase 
can be variant and different from that in the human teaching 
phase. The former location set depends on how the human 
worker wants to extend the task scale, while the later location 
set is generally the minimal scale of human demonstrations, 
which are enough to teach all the task constraints and human 
preferences. In this paper, we present the derivation of the 
proposed approaches in two-dimensional assembly scenarios. 

III. LEARNING COLLABORATIVE ASSEMBLY TASKS VIA 

TC-IRL 

In this section, we present the detail of the 
task-constraint-guided inverse reinforcement learning 
(TC-IRL).  A general form of the MDP in the TC-IRL can be 
written as 

 ( , , , , )t t t t tM S A T R   (7) 

where tS  is the task constraint-guided state space, tA  is the 

task constraint-guided action space, ( ' | , )t t t tT P s s a  is the 

state transition probability, [0,1)   is the discount factor, 

and tR  is the task constraint-guided reward function.  

In TC-IRL, the robot first learns the task constraints from 
human demonstrations, and the learned task constraints are 
then used to construct task constraint-guided state and action 
space which is much smaller than the original space. The task 
constraint-guided reward is then defined based on this 
constrained space and learning is conducted to learn the 
unknown parameters for assembly tasks from human 
demonstrations. In the following, we will first introduce the 
learning of task constraints including object-based task 
constraints, location-based task constraints, and human 
hand-based task constraints which are used to limit the size of 
the state and action space and then introduce the learning 
algorithm to learn how the human accomplishes the task.  

A. Learning of Task Constraints 

1) Object-based Task Constraints 
The object-based constraints are defined to represent the 

part-tool pairs, which indicate the corresponding tools for each 
part. Based on the definitions in the previous section, the 
object-based constraints can be represented by a matrix: 

 

1,1 1,2 1,

,1 ,2 ,

c c

=
pt

ts ts ts pt
ts pt

N

obj

N N N N
N N

c

C

c c c


 
 
 
 
 



   


  (8) 

where the thi  row of objC  corresponds to the tool its   in the 

set Ts , while the 
thj  column of objC  corresponds to the part 

jpt  in the set Pt . To indicate the object-based constraints, 

the element , 1i jc  if the part jpt should be assembled with 

the tool its , otherwise, , 0i jc  . 

The object-based constraints can be learned by tracking the 
human hand motions and the state of parts/tools in the human 
demonstrations. The combined state at any given time can be 
represented as 

 ( ) [ ( ), ( )]T
h L Rs t obj t obj t   (9) 

where ( )Lobj t  and ( )Robj t  indicate the object in the human’s 

left and right hand at the moment T t  . To simplify the 
problem, we assume that each hand can be with either a part or 
a tool in hand or remain empty at each moment. Based on 
human operations in the demonstrations, a statistic-based 
approach is used to learn the object-based constraints.  
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    For the thk  demonstration, let 
d

kL  be the overall length of 

the state sequence in the demonstration, 1kA  be the times of 

appearances of [ , ]T
h i js ts pt , 2kA  be the times of 

appearances of [ , ]T
h j is pt ts , and DN  be the total number 

of demonstrations. The probability that the part jpt  should be 

assembled with tool its  can be written as 

 1 2

1

1
( , )

dN
k k

i j
kD i

A A
P ts pt

N L


    (10) 

    This probability is then used to update each element in objC  

where for each part jpt in the set Pt , the tool with the highest 

probability is considered the object-based constraint, and the 
corresponding element is set as 1.  

2) Location-based Task Constraints 
The location-based constraints are used to describe the 

requirements that any given assembly location must have the 
corresponding part installed in the final assembly. The 
location-based constraint of a two-dimensional assembly 
scenario can be written in matrix format as 

 
1,1 1,2 1,

,1 ,2 ,

=
W

loc

H H H W H W

o o o

C

o o o


 
 
 
  


   


  (11) 

where H  and W  are the height and width for the 

demonstrated tasks and ,i jo  is a vector, which indicates the 

values of attributes of the object assembled at the 
corresponding assembly location. 

Considering all the parts that have been installed at a given 
assembly location throughout multiple human demonstrations. 

The probability distribution for a specific attribute iar at the 

assembly location ( , )x y can be calculated by 

 
D

( )
( | , ) i j

i j

count ar v
P ar v X x Y y

N


      (12) 

where  count   function means to count the times of 

appearance of the given condition. DN means the total number 

of rounds of human demonstrations.  

Let hep  be the probability of human demonstration errors. 

For the part at assembly location ( , )x y , the attribute  

iar should have the value jv as the constraint if it satisfies 

 ( | , ) 1i j heP ar v X x Y y p       (13) 

This probability is then used to update the element in locC  

where the attributes whose probabilities satisfy (12) are all 

considered as constraints in ,i jo . 

3) Human Hand-based Task Constraint 
Different human workers may have different hand 

preference for specific parts or tools. In order to deliver parts 
and corresponding tools to proper human hands based on their 

preference, the human hand-based task constraint with respect 
to part-tool pairs is defined, which can be represented by a 
matrix 

 

1,1 1,2 1,

,1 ,2 ,

=
pt

ts ts ts pt
ts pt

N

hand

N N N N
N N

h h h

C

h h h


 
 
 
 
 



   


  (14) 

    The thi  row corresponds to the tool its   in the set Ts , while 

the 
thj  column corresponds to the part jpt  in the set Pt .  For 

those part-tool pairs, which are not satisfied with the 
object-based constraints or have never been appeared in any of 
human demonstrations, the corresponding element is set as 

, 0i jh  . The element , 1i jh  if the part jpt should be 

delivered to the right hand, while the tool should be delivered 

to the left hand. The element , 1i jh   represents the opposite 

hand preference 
With the definitions of variables in (10), for each specific 

part-tool pair ( , )i jts pt , the probability of different hand over 

methods among all the human demonstrations can be 
computed by 

 

1

1

2

1

1
( , )

1
( , )

d

d

N
k

i j
kD i

N
k

j i
kD i

A
P L ts R pt

N L

A
P L pt R ts

N L





  

  




  (15) 

 The higher probability in (15) is regarded as the human 

hand preference on this specific part-tool pair ( , )i jts pt . The 

values, -1 or 1, are signed to the corresponding elements in 

handC  based on the probability. 

B. IRL Learning of Assembly Tasks with Tasks Constraints 

In order to learn how human accomplishes the assembly 
task, the state and action space in (7) is firstly constructed. 
Both the learned object-based and location-based task 

constraints will help limit the size of the state space tS  

because only the constrained part-tool pairs ,i jc learned in 

objC  and only parts whose attributes satisfy the constraint 

vector ,i jo  in locC  are considered in the state definition. The 

human hand-based task constraint will help limit the action 

space tA  because for a specific part or tool, which hand to use 

in the action will be specified in the constraint handC . With the 

definition of constrained state space and action space, the size 
of the entire state and action space (i.e., different action 
options at different states) will then be significantly reduced.  
     Additionally, the learning of assembly tasks is not only to 
learn the final assembly state but also to learn the process of 
how the human conduct the assembly during demonstrations. 
This process can be captured by a set of feature functions 
defined by  

 1 2[ , ,..., ,...]T
kf f f f   (16) 
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where each kf  is defined in the state and action space  

( ) {0,1}kf s  to specify a special feature of the human 

assembly process. Each different value of the vector f  is 

corresponding to a human working style in the assembly, such 
as assembly the part row by row, left to right, from far to near 
with respect to his/her body position, etc. 

The overall human assembly process can be then reflected 
by a task constraint-guided reward function which is defined 
as a weighted sum of the feature functions  

 ( ) ( , ) ( , )T
t k k

k

R s W f s a w f s a    (17) 

where 1 2[ , ,...]TW w w  is a set of weights to determine the 

preferences of the human on different features during 
assembly. The weights together will determine how the human 
would like to accomplish the assembly tasks.  

In this paper, we propose to apply the maximum entropy 
inverse reinforcement learning (MaxEnt-IRL) [18] to learn the 
weights in the reward function from human demonstrations. 
We assume that the MDP is deterministic in this work. 
Therefore, according to the MaxEnt-IRL principle, the 
distribution over assembly strategy under deterministic 
transitions can be defined as 

 
1

( | , ) exp ( , )
( )

T
t k k

k

P M W w f s a
Z W

    
 
   (18) 

where  is the assembly strategy in human demonstrations, 

( )Z W  is the partition function. The weights of features in the 

reward function can then be optimized by maximizing the 
entropy through 

 

* arg max log ( | , )

arg max ( ) log ( )

W

T
k k

W k

W P s M W

w f s Z W



   
 


  (19) 

IV. TC-IRL GUIDED ROBOT ASSISTANCE   

In this section, we will introduce how to generate assistive 
robot actions to collaborate with humans to accomplish not 
only the demonstrated tasks but also new tasks with larger 
geometric scales. The robot will ask the human through 
natural language about the dimensions of the new scaled tasks 
and the human will respond through natural language before 
the collaboration starts.  

A. Extension of TC-IRL 

When the collaborative assembly task is extended to a larger 
geometric scale, the object-based task constraints and the 
human hand-based task constraints should usually remain the 
same. However, the location-based task constraints for the 
extended task must be updated to fit the extended tasks. 

In the two-dimensional assembly scenarios, each assembly 
location in the human-demonstrated tasks is regarded as a 
center of a cluster and then each assembly location in 
human-demonstrated tasks can be mapped to a new center of a 

cluster in the extend tasks throughout a linear scaling 
transformation, which can be written as  

 ' , 'ex ex

d d

W W
x x y y

W W
    (20) 

where exW and exH are the width and height of the enlarged 

assembly process. dW and dH are the width and height of the 

demonstrated assembly. The location-based task constraint at 

each assembly location ( , )x y  in human-demonstrated tasks 

formats a center of location-based constraint cluster at 

( ', ')x y in the enlarged assembly task. Afterward, the 

constraint of each assembly location in the extended assembly 
task is determined by the k-nearest neighbor (KNN) classifier, 
which can be written as 

 ( , ) ( ', ')
d d

KNN
ex ex ex H Wc x y C x y   (21) 

where [1, ]ex exx W and [1, ]ex exy H  gives a specific assembly 

location in the extended assembly task, exc  is the 

location-based task constraint corresponding to the given 
assembly location. The right side of the equation means 
selecting the same location-based task constraint 
corresponding to the center of the closest cluster among all the 

nearby clusters which are centered at different ( ', ')x y . The 

minimal Euler distance is used as the criterion for the KNN to 
select the closest cluster in the enlarged assembly task. 

When the collaborative assembly task is extended to a larger 
scale, the MDP model in TC-IRL must also be updated to fit 
the extended tasks. After knowing the dimensions (height and 
the width) of the extended task from the human, the task 
constraints will be first updated for the new task. Based on the 
new task constraints, the task constraint-guided states, actions, 
and rewards can be defined in the same way as the originally 
demonstrated task in Section III.B. to construct a new task 
constraint-guided MDP and therefore result in a new TC-IRL. 
The new MDP and TC-IRL will also retain the advantage of 
small size for state and action space because the learned task 
constraint has been fully extended to the new scalable tasks to 
guide the definition and state and action space.   

Because the human does not change for the new scalable 
task, his or her preference on how to accomplish the task 
giving the state and action space should retain the same. 
Therefore, the feature functions will remain the same as the 
originally TC-IRL, and more importantly, the optimized 
weights *W  which are previously learned from human 
demonstrations can also be used for the new task. This means 
that we do not need to re-train the TC-IRL at all although the 
tasks have been extended to a larger scale. We only need to 
use the learned reward function to update the reward map for 
the new tasks with newly updated state and action space and 
then use the assistance action generation approach which is 
introduced in the following section to generate appropriate 
robot assistance for the human.  
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B. Robot Assistance Generation  

After the reward map is updated based on the reward 
function for the new task, the value function of the extended 
MDP can be determined through value iterations: 

 
1

'

( ) max ( ) ( ')

. . '

i i
a

s

a

V s R s V s

s t s s


   
 




  (22) 

where 's  is the next state of the system after the action a is 
executed at the state s. The converged value function with 

respect to the state s is noted as ( )V s . 

Since we aim to make the robot assist human to accomplish 
the assembly task, we will, therefore, require the human to 
initialize the task. The human first needs to accomplish two 
assembly actions based on his/her preference to establish an 
initial condition for the robot. Then, to generate appropriate 
assistance, the robot will first recognize the current state of the 
task via its sensing system in real-time and then determines 
which action to choose from the action space of the extended 
MDP model. 

 
 * arg max ( ) ( ')

. . '

a

a

a R s V s

s t s s

 


  (23) 

The optimized action *a  can also infers the assembly 
location that the human should be working on, the robot can 
then search all the available parts that can be assembled to this 
assembly location based on the location-based constraints. To 
determine which robot arm should be used to pick which 
available part, the Euclidean distances from the work home 
positions of both robot arms to each available part are 
calculated. The arm and the part corresponding to the minimal 
Euclidean distance are paired. According to the selected part, 
the robot then generates the list of all the available tools based 
on the object-based constraints. Similarly, the arm and the tool 
corresponding to the minimal Euclidean distance are paired. 
Based on the selected part-tool pair, the delivery targets are 
determined with the human hand preference. Afterward, the 
robot will execute the pick and handover actions to use 
different arms to pick up the correct part and tool and deliver 
them to the correct hands of the human to assist him/her to 
accomplish the assembly task. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experiment Setup 

The human stands face to face with the ABB Yumi robot to 
work in a shared workspace. The six cameras of the VICON 
motion capture system are set up on the roof surrounding the 
workspace to capture the motion of human hands. The origin 
of VICON is set at the center of the desk, and the location of 
each grid is calibrated. The Kinect RGB-D sensor offers a 
top-view point cloud of the workspace, which is used to verify 
the object states besides the VICON system. 

In our experiments, the configuration of the workspace is 
illustrated in Fig. 1. The part/fastener stack zone is close to the 
robot, and the assembly zone is near to the human in the 
shared workspace. The 15 fasteners belong to three different 

types, square, hex, and crisscross. The 18 parts belong to three 
different types, square, hex, and crisscross, and three different 
colors, red, yellow, and blue. Mechanically, a part and a 
fastener can be assembled if and only if they have the same 
type. Initially, all the parts and fasteners are sorted in the stack 
zone and the assembly zone is empty.  

In the human demonstration process, the human 
manipulates the parts and fasteners in the workspace by 
his/her both hands directly. The human operations are tracked 
by hand motion capture. Since the object-based constraints 
and the human hand preference are learned via statistic-based 
approaches, the sample size is critical for the human teaching 
and robot learning phase. The human starts the demonstration 
according to the natural language introduction of the robot. 
After the human finishes all the object manipulations through 
naturally pick-assembly-place operations, the human should 
put both hands at the work home position to indicate the robot 

 
Fig. 1. The workspace configuration and collaborative assembly 

TABLE I.  
RESULTS OF ROBOT ASSISTANCE IN 4 X 3 ASSEMBLY 

State 
Process 

Prediction 
Robot Assistance 

Arm Part/Tool Hand 
[10, “000000000011”] 9 (1, 4) L Part: B/H R 

  L Tool: W/H L 
[9, “000000000111”] 8 (3, 3) L Part: B/S R 

  R Tool: W/S L 
[8, “000000001111”] 7 (2, 3) R Part: B/C R 

  L Tool: W/C L 
[7, “000000011111”] 6 (1, 3) R Part: B/S R 

  L Tool: W/S L 
[6, “000000111111”] 5 (3, 2) R Part: R/C R 

  R Tool: W/C L 
[5, “000001111111”] 4 (2, 2) R Part: R/H R 

  R Tool: H L 
[4, “000011111111”] 3 (1, 2) R Part: R/S R 

  L Tool: W/S L 
[3, “000111111111”] 2 (3, 1) L Part: R/C R 

  R Tool: W/C L 
[2, “001111111111”] 1 (2, 1) L Part: R/H R 

  L Tool: W/H L 
[1, “011111111111”] 0 (1, 1) L Part: R/S R 

  R Tool: W/S L 
[0, “111111111111”] -1 (end) Stop N/A N/A 
* Arm: L-pick by left robot arm, R- pick right robot arm. 
* Part: B-blue, R-red, H-hex, S-square, C-crisscross. 
* Tool: W-white, H-hex, S-square, C-crisscross. 
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that the demonstration is accomplished. 

B. Results of TC-IRL in Collaborative Assembly 

    In the experiment, the proposed approaches are verified on 
a designed assembly task that the upper half of the assembly 
locations are expected to be red parts but no specific constraint 
in shape; the lower half of the assembly locations are expected 
to be blue parts but no constraint on the shape. Three rounds of 
2 x 2 human demonstrations are given. In the demonstrations, 
the parts in red color but with different shapes are installed to 
the assembly locations in the upper half plane, while the parts 
in blue color but with different shapes are installed to the 
assembly location in the lower half plane. Meanwhile, human 
always use the left hand for tool operations and manipulate the 
parts with the right hand. All the three demonstrations are 
accomplished raw by raw, right to left, and from near to far 
with respect to the human’s body position. The overall process 
of the 2 x 2 human demonstration is shown in the attached 
video.  

The result of a collaborative assembly case for an extended 
4 x 3 assembly task based on the human demonstrations of the 
previous section is shown in Table I.. In the human-robot 
collaboration phase, the human first picked up the 
blue/crisscross with his right hand and a corresponding 
white/cross tool with his left hand and placed the assembled 
part at location 11 (3, 4). Then, the human picked up a 
blue/hex part with his right hand and a corresponding 
white/hex tool with his left hand and placed the assembled part 
at location 10 (2, 4). After this, the task state was successfully 
initialized by the human, and the robot started to assist the 
human in the following steps of the task. The column of 
process prediction in Table I. gives the assembly locations 
predicted by the robot at different task states. The columns of 
robot assistance illustrate the robot’s decisions on using which 
robot arm to pick up which part or tool and delivering to which 

human hand based on the real-time task state and the learned 
task constraints. The overall process of the robot assistance is 
shown in the attached video. 

C. Evaluations 

To evaluate the proposed model, we tested the model with 
different assembly processes, human hand preferences, and 
extended tasks with larger dimensions in assembly with 9 
different kinds of parts and 3 different kinds of tools. Each 
participant is first introduced about how to demonstrate the 
object-based constraint, location-based constraint, human 
hand-based constraint, and assembly process by giving three 
human demonstrations with 2 x 2 dimensions based on his/her 
preferences. After the robot learning phase, the 2 x 5 and 4 x 3 
collaborative assembly tasks are accomplished with robot 
assistance. The results in Table III show that with correctly 
calibrated the motion capture system, the robot tool center 
points, and the location of the objects, the proposed approach 
can obtain 100% accuracy in assembly sequence prediction, 
pick-delivery action 

Based on the same workspace configuration and the same 
collaborative assembly task, the comparison on the action 
space size, the state space size, the transition map size, and 
computation effort are shown in Table II. For the TC-IRL, the 
corresponding results are automatically generated online by 
setting the proper parameters of the task size. For conventional 
IRL, we assume that the robot can use either left or right arm 
to pick up a part or a tool then deliver to either left or right 
human hand in each manipulation. The sizes of state and 
action spaces are then calculated for conventional IRL 
respectively.  

We can see that with TC-IRL, the size of the action space, 
state space and state transition matrix of the MDP process in 
the model are significantly reduced compared with the model 
without the constraint extractions. Based on our task 

TABLE III  
Statistic Results of Robot Assistance 

Assembly 
Process 

Hand 
Preference 

No. of 
Prediction 

(2x5) 

No. of Pick 
(2x5) 

No. of 
Handover 

(2x5) 

No. of 
Prediction 

(4x3) 

No. of Pick 
(4x3) 

No. of 
Handover 

(4x3) 
Accuracy 

1 
L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

2 
L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

3 
L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

4 
L 8/8 16/16 16/16 10/10 20/20 20/20 100% 
R 8/8 16/16 16/16 10/10 20/20 20/20 100% 

* The elements from the 2nd column to the 7th column are represented by “number of correct actions / numbers of total actions” 

TABLE II 
TC-IRL vs Conventional IRL 

Task 
Size 

Size of Action Set Size of State Set Size of Transition Map Computation Effort 
TC-IRL IRL TC-IRL IRL TC-IRL IRL TC-IRL IRL 

2 x 2 4 432 28 1.2754e7 3136 7.0277e16 0.00076 s >10 min 
2 x 3 6 648 186 2.7894e11 207576 5.0420e25 0.02174 s >10 min 
2 x 4 8 864 1016 1.1387e16 8258048 1.1204e35 0.4286 s >10 min 
2 x 5 10 1080 5110 7.4713e20 261121000 6.0287e44 11.10 s >10 min 
4 x 3 12 1296 24564 7.1895e25 7240681152 6.6989e54 292.2 s >10 min 

* The 2 x 2 tasks are used in human demonstrations on the real robot 
* The 2 x 5 and 4 x 3 tasks are tested on the real robot 
* The computation effort includes the time cost of the extended MDP generation and training of IRL  
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configuration, the size of the state and action space for 
TC-IRL is significantly smaller than conventional IRL and the 
advantages become more obvious when the task dimension 
increase, which leads to a dramatic increase of the state and 
action space for IRL. Based on the principle of IRL, The 
reduced size also implies reduced requirement on the training 
data, which is why our proposed approach only requires 
several human demonstrations. At the same time, because of 
the reduced size, the computational cost is also significantly 
reduced, which leads to better real-time performance.  

VI. CONCLUSIONS 

In this paper, we proposed a new learn-to-collaboration 
approach with TC-IRL method that generate robot assistance 
to assist humans in human-robot collaborative assembly. The 
task constraint guided IRL approach can significantly reduce 
the size of the action and state space and lead to a reduced 
requirement of training data and computational cost compared 
to traditional IRL. The proposed approach can also allow 
humans to teach the robot to accomplish new larger-scale 
tasks by learning from several small-scale demonstrations. 
The experiment results demonstrated the effectiveness and 
advantages of the proposed approach. The proposed 
approaches can potentially integrate into existing robot 
systems and workflow if the robot systems are collaborative 
and have proper vision or other sensing system to indicate the 
human operations. The objects used in the experiment can be 
replaced by real industrial parts with proper definitions of the 
tasks. 
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