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Abstract

This paper investigates new families of compositional optimization problems,
called non-smooth weakly-convex finite-sum coupled compositional optimization
(NSWC FCCO). There has been a growing interest in FCCO due to its wide-ranging
applications in machine learning and AI, as well as its ability to address the short-
comings of stochastic algorithms based on empirical risk minimization. However,
current research on FCCO presumes that both the inner and outer functions are
smooth, limiting their potential to tackle a more diverse set of problems. Our
research expands on this area by examining non-smooth weakly-convex FCCO,
where the outer function is weakly convex and non-decreasing, and the inner
function is weakly-convex. We analyze a single-loop algorithm and establish its
complexity for finding an ϵ-stationary point of the Moreau envelop of the objective
function. Additionally, we also extend the algorithm to solving novel non-smooth
weakly-convex tri-level finite-sum coupled compositional optimization problems,
which feature a nested arrangement of three functions. Lastly, we explore the appli-
cations of our algorithms in deep learning for two-way partial AUC maximization
and multi-instance two-way partial AUC maximization, using empirical studies to
showcase the effectiveness of the proposed algorithms.

1 Introduction

In this paper, we consider two classes of non-convex compositional optimization problems. The first
class is formulated as following:

min
w∈Rd

F (w) :=
1

n

∑
i∈S

fi(Eξ∼Di [gi(w; ξ)]), (1)

where S denotes a finite set of n items and Di denotes a distribution that could depend on i. The
second class is given by:

min
w∈Rd

F (w) :=
1

n1

∑
i∈S1

fi

(
1

n2

∑
j∈S2

gi(Eξ∼Di,j [hi,j(w; ξ)])

)
, (2)

where S1 denotes a finite set of n1 items and S2 denotes a finite set of n2 items and Dij denotes
a distribution that could depend on (i, j). For simplicity of discussion, we denote by gi(w) =
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Eξ∼Di [gi(w; ξ)] : Rd → Rd1 and by hi,j(w) = Eξ∼Di,j [hi,j(w; ξ)] : Rd → Rd2 . For both classes
of problems, we focus our attention on non-convex F with non-smooth non-convex functions fi
and gi, which, to the best of our knowledge, has not been studied in any prior works.

The first problem (1) with smooth functions fi and gi has been explored in previous works [26, 15, 21,
33], which is known as finite-sum coupled compositional optimization (FCCO). It is subtly different
from standard stochastic compositional optimization (SCO) [27] and conditional stochastic optimiza-
tion (CSO) [13]. FCCO has been successfully applied to optimizing a wide range of X-risks [33]
with convergence guarantee, including smooth surrogate losses of areas under the curves [20] and
ranking measures [21], listwise losses [21], and contrastive losses [36]. The second problem (2) is
a novel class and is referred to as tri-level finite-sum coupled compositional optimization (TCCO).
Both problems differ from traditional two-level or multi-level compositional optimization due to the
coupling of variables i, ξ in (1) or the coupling of variables i, j, ξ in (2) at the inner most level.

One limitation of prior works about non-convex FCCO is that their convergence analysis heavily
rely on the smoothness conditions of fi and gi [26, 15]. This raises a concern about whether
existing techniques can be leveraged for solving non-smooth non-convex FCCO problems with
non-asymptotic convergence guarantee. Non-smooth non-convex FCCO and TCCO problems have
important applications in ML and AI, e.g., group distributionally robust optimization [4] and two-way
partial AUC maximization for deep learning [44]. We defer discussions and formulations of these
problems to Section 5. The difficulty for solving smooth FCCO lies at high costs of computing a
stochastic gradient ∇gi(w)∇fi(gi(w)) for a randomly sampled i and the overall gradient ∇F (w).
To approximate the stochastic gradient, a variance-reduced estimator of gi(wt) denoted by ui,t is
usually maintained and updated for sampled data in the mini-batch i ∈ Bt. As a result, the stochastic
gradient can be approximated by ∇gi(wt; ξt)∇fi(ui,t), where ξt ∼ Di is a random sample. The
overall gradient can be estimated by averaging the stochastic gradient estimator over the mini-batch
or using variance-reduction techniques. A key insight of the convergence analysis for smooth FCCO
is to bound the following error using the L-smoothness of fi, which reduces to bounding the error of
ui,t for estimating gi(wt):

∥∇gi(wt; ξt)∇fi(ui,t)−∇gi(wt; ξt)∇fi(gi(wt))∥2 ≤ ∥∇gi(wt; ξt)∥2L∥ui,t − gi(wt)∥2.

A central question to be addressed in this paper is “Can these gradient estimators be used in stochastic
optimization for solving non-smooth non-convex FCCO with provable convergence guarantee"? To
address this question we focus our attention on a specific class of FCCO/TCCO called non-smooth
weakly-convex (NSWC) FCCO/TCCO. This approach aligns with many established works on
NSWC optimization [6–9]. Nevertheless, NSWC FCCO/TCCO is more complex than a standard
weakly-convex optimization problem because an unbiased stochastic subgradient is not readily
accessible. In addition, the convergence measure in terms of the gradient norm of smooth non-convex
objectives is not applicable to weakly convex optimization, which will complicate the analysis
involving the biased stochastic gradient estimator ∂gi(wt; ξt)∂fi(u

t
i)

1.

Contributions. A major contribution of this paper is to present novel convergence analysis of single-
loop stochastic algorithms for solving NSWC FCCO/TCCO problems, respectively. In particular,
• For non-smooth FCCO, we analyze the following single-loop updates:

wt+1 = wt − η
1

B

∑
i∈Bt

∂gi(wt; ξt)∂fi(ui,t), (3)

where Bt is a random mini-batch of B items, and ui,t is an appropriate variance-reduced estimator
of gi(wt) that is updated only for i ∈ Bt at the t-th iteration. To overcome the non-smoothness, we
adopt the tool of Moreau envelop of the objective as in previous works [6, 7]. The key difference
of our convergence analysis from previous ones for smooth FCCO is that we bound the inner
product ⟨Ei∂gi(w)∂fi(ui,t), ŵt −wt⟩, where ŵt is the solution of the proximal mapping of the
objective at wt. To this end, specific conditions of fi, gi are imposed, i.e., fi is weakly convex and
non-decreasing and gi(w) is weakly convex, under which we establish an iteration complexity of
T = O(ϵ−6) for finding an ϵ-stationary point of the Moreau envelope of F (·).

• For non-smooth TCCO, we analyze the following single-loop updates:

wt+1 = wt − η
1

B1

∑
i∈Bt1

[
1

B2

∑
j∈Bt2

∂hi,j(wt; ξt)∂gi(vi,j,t)

]
∂fi(ui,t), (4)

1We use ∇ to denote gradient of a differentiable function and ∂ to denote a subgradient of a non-smooth
function.

2



Table 1: Comparison with prior works for solving (1) and (2). In the monotonicity column, notation
↑ means the given function is required to be non-decreasing. If not specified, the given function is
only required to be monotone.

Method Objective Smoothness Weak Convexity Monotonicity Complexity

SOX [26] (1) fi, gi none none O(ϵ−4)
MSVR [15] (1) fi, gi none none O(ϵ−3)
SONX (Ours) (1) none fi, gi fi ↑ O(ϵ−6)
SONT (Ours) (2) none fi, gi, hi,j fi ↑, gi ↑ O(ϵ−6)
SONT (Ours) (2) hi,j fi, gi fi ↑, gi O(ϵ−6)

where B1
t and B2

t are random mini-batches of B1 and B2 items, respectively, and ui,t is an
appropriate variance-reduced estimator of 1

n2

∑
j∈S2

gi(hij(wt)) that is updated only for i ∈ B1
t ,

and vi,j,t is an appropriate variance-reduced estimator of hi,j(wt) that is updated only for i ∈
B1
t , j ∈ B2

t . To prove the convergence, we impose conditions of fi, gi, hi,j , i.e., fi is weakly
convex and non-decreasing and gi(·) is weakly convex and non-decreasing (or monotonic), hij is
weakly convex (or smooth), and establish an iteration complexity of T = O

(
ϵ−6
)

for finding an
ϵ-stationary point of the Moreau envelope of F (·).

• We extend the above algorithms to solving (multi-instance) two-way partial AUC maximization for
deep learning, and conduct extensive experiments to verify the effectiveness of the both algorithms.

2 Related work

Smooth SCO. There are many studies about two-level smooth SCO [27, 38, 10, 19, 3, 28] and
multi-level smooth SCO [32, 32, 1, 39]. The complexities of finding an ϵ-stationary point for two-
level smooth SCO have been improved from O(ϵ−5) [27] to O(ϵ−3) [19], and that for multi-level
smooth SCO have been improved from a level-dependent complexity of O(ϵ−(7+K)/2) [32] to a
level-independent complexity of O(ϵ−3) [32], where K is the number of levels. The improvements
mostly come from using advanced variance reduction techniques for estimating each level function or
its Jacobian and for estimating the overall gradient. Two stochastic algorithms have been developed
in [13] for CSO but suffer a limitation of requiring large batch sizes.

Smooth FCCO. FCCO was first introduced in [20] for optimizing average precision. Its algorithm
and convergence analysis was improved in [26] and [15]. The former work [26] proposed an algorithm
named SOX by using moving average (MA) to estimate the inner function values and the overall
gradient. In the smooth non-convex setting, SOX is proved to achieve an iteration complexity of
O(ϵ−4). The latter work [15] proposed a novel multi-block-single-probe variance reduced (MSVR)
estimator for estimating the inner function values, which helps achieve a lower iteration complexity
O(ϵ−3). Recently, [11] proposed an extrapolation based estimator for the inner function, which
yields a method with a complexity that matches MSVR when n ≤ ϵ2/3. These techniques have been
employed for optimizing various X-risks, including contrastive losses [36], ranking measures and
listwise losses [21], and other objectives [26, 15]. However, all of these prior works assume the
smoothness of fi and gi. Hence, their analysis is not applicable to NSWC FCCO problems. Our
novel analysis of a simple algorithm for NSWC FCCO problems yields an iteration complexity of
O(ϵ−6) for using the MSVR estimators of the inner functions. The comparison with [26, 15] is
shown in Table 1.

Non-smooth Weakly Convex Optimization. Analysis of weakly convex optimization with unbiased
stochastic subgradients was pioneered by [6, 7]. Optimization of compositional functions that are
weakly convex have been tackled in earlier works [8, 9], where the inner function is deterministic
or does not involve coupling between two random variables. A closely related work to our NSWC
FCCO is weakly-convex concave minimax optimization [22]. Assuming fi is convex, (1) can be
written as: minw maxπ∈Rn

1
n

∑
i∈S⟨πi, gi(w)⟩ − f∗i (πi), where f∗i (·) is the convex conjugate of

fi. It can be solved using existing methods [22, 31, 41, 43, 17] but with several limitations: (i) the
algorithms in [22, 31, 41, 43] have a comparable complexity of O(1/ϵ6) but have unnecessary double
loops which require setting the number of iterations for the inner loop; (ii) the algorithm in [17]
is single loop but has a worse complexity of O(1/ϵ8); (iii) these existing algorithms and analysis
does not account for complexity of updating all coordinates of π, which could be prohibitive in
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many applications; iv) these approaches are not applicable to NSWC FCCO/TCCO with weakly
convex fi. In fact, the double loop algorithm has been leveraged and extended to solving the two-way
partial AUC maximization problem, a special case of NSWC FCCO [44], by sampling and updating a
batch of coordinates of π at each iteration. However, it is less practical thus not implemented and its
analysis did not explicitly show the convergence rate dependency on n+, n− and the block batch size.

A special case of NSWC SCO problem was considered in [46], which is given by
minx∈X f(x, g(x)), with f(x, u) = Eζ [u+ κmax(0, g(x; ζ)− u)], g(x) = Eξ[g(x; ξ)].

They proposed two methods, SCS for smooth g(x) and SCS with SPIDER for non-smooth g(x). For
both proposed methods, they proved a sample complexity of O(1/ϵ6) for achieving an ϵ-stationary
point of the objective’s Moreau envelope 2. We would like to remark that the above problem with a
non-smooth g(x) is a special case of NSWC FCCO with only a convex outer function, one block
and no coupled structure. Nevertheless, their algorithm for non-smooth g(·) suffers a limitation of
requiring a large batch size in the order of O(1/ϵ2) for achieving the same convergence.

Finally, we would like to mention that non-smooth convex or strongly convex SCO problems have
been considered in [27, 42, 26], which, however, are out of scope of the present work.

3 Preliminaries
Let ∥ · ∥ be the Euclidean norm of a vector and spectral norm of a matrix. We use ΠC [·] to denote
the Euclidean projection onto {v ∈ Rm : ∥v∥ ≤ C}. For vectors, inequality notations including
≤,≥, >,< are used to denote element-wise inequality. For an expectation function f(·) = Eξ[f(·; ξ)],
let f(·;B) = 1

|B|
∑
ξ∈B f(·; ξ) be its stochastic unbiased estimator evaluated on a sample batch B. A

stochastic unbiased estimator is said to have bounded variance σ2 if Eξ[∥f(·)− f(·; ξ)∥2] ≤ σ2. The
Jacobian matrix of function f : Rm1 → Rm2 is in dimension Rm1×m2 . We recall the definition of
general subgradient and subdifferential following [6, 24].
Definition 3.1 (subgradient and subdifferential). Consider a function f : Rn → R ∪ {∞} and a
point with f(x) finite. A vector v ∈ Rn is a general subgradient of f at x, if

f(y) ≥ f(x) + ⟨v, y − x⟩+ o(∥y − x∥), as y → x.

The subdifferential ∂f(x) is the set of subgradients of f at point x.

For simplicity, we abuse the notation and also use ∂f(x) to denote one subgradient from the
corresponding subgradient set when no confusion could be caused. We use ∂f(x;B) to represent
a stochastic unbiased estimator of the subgradient ∂f(x) that is evaluated on a sample batch B. A
function is called C1-smooth if it is continuously differentiable. A function f = (f1, . . . , fm2

) :
Rm1 → Rm2 is called monotone if ∀i ∈ {1, . . . ,m2}, fi : Rm1 → R is monotone with respect to
each element of the input. Note that if a Lipschitz continuous function f : O → Rm2 is assumed to
be non-increasing (resp. non-decreasing), where the domain O ⊂ Rm1 is open, then all subgradients
of f are element-wise non-positive (resp. non-negative). We refer the details to Appendix D.1.

A function f is C-Lipschitz continuous if ∥f(x)− f(y)∥ ≤ C∥x− y∥. A differentiable function f
is L-smooth if ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. A function f : Rd → R ∪ {∞} is ρ-weakly-convex
if the function f(·) + ρ

2∥ · ∥
2 is convex. A vector-valued function f : Rd → {R ∪ {∞}}m is called

ρ-weakly-convex if it is ρ-weakly-convex for each output. It is difficult sometimes impossible to
find an ϵ-stationary point of a non-smooth weakly-convex function F , i.e., dist(0, ∂F (w)) ≤ ϵ. For
example, an ϵ-stationary point of function f(x) = |x| does not exist for 0 ≤ ϵ < 1 unless it is the
optimal solution. To tackle this issue, [6] proposed to use the stationarity of the problem’s Moreau
envelope as the convergence metric, which has become a standard metric for solving weakly-convex
problems [7, 22, 31, 41, 43, 17]. Given a weakly-convex function φ : Rm → R, its Moreau envelope
and proximal map with λ > 0 are constructed as

φλ(x) := min
y

{φ(y) + 1

2λ
∥y − x∥2}, proxλφ(x) := argmin

y
{φ(y) + 1

2λ
∥y − x∥2}.

The Moreau envelope is an implicit smoothing of the original problem. Thus it attains a continuous
differentiation. As a formal statement, the following lemma follows from standard results [6, 18].
Lemma 3.2. Given a ρ-weakly-convex function φ and λ < ρ−1, the envelope φλ is C1-smooth with
gradient given by ∇φλ(x) = λ−1(x− proxλφ(x)).

2It is notable that we use a slightly different definition of ϵ-stationary point with ∥∇Fρ(w)∥2 ≤ ϵ2.
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Algorithm 1 Stochastic Optimization algorithm for Non-smooth FCCO (SONX)
1: Initialization: w0, {ui,0 : i ∈ S}.
2: for t = 0, . . . , T − 1 do
3: Draw sample batches Bt1 ∼ S, and Bt2,i ∼ Di for each i ∈ Bt1.

4: ui,t+1 =

{
(1− τ)ui,t + τgi(wt;Bt2,i) + γ(gi(wt;Bt2,i)− gi(wt−1;Bt2,i)), i ∈ Bt1
ui,t, i ̸∈ Bt1

5: Compute Gt = 1
B1

∑
i∈Bt1

∂gi(wt;Bt2,i)∂fi(ui,t)
6: Update wt+1 = wt − ηGt
7: end for

Moreover, for any point x ∈ Rm, the proximal point x̂ := proxλφ(x) satisfies [6]
∥x̂− x∥ = λ∥∇φλ(x)∥, φ(x̂) ≤ φ(x), dist(0, ∂φ(x̂)) ≤ ∥∇φλ(x)∥.

Thus if ∥∇φλ(x)∥ ≤ ϵ, we can say x is close to a point x̂ that is ϵ-stationary, which is called nearly
ϵ-stationary solution of φ(x).

4 Algorithms and Convergence

4.1 Non-Smooth Weakly-Convex FCCO

In this section, we assume the following conditions hold for the FCCO problem (1).

Assumption 4.1. For all i ∈ S, we assume that

• fi is ρf -weakly-convex, Cf -Lipschitz continuous and non-decreasing;

• gi(·) is ρg-weakly-convex and gi(·; ξ) is Cg-Lipschitz continuous;

• Stochastic gradient estimators gi(w; ξ) and ∂gi(w; ξ) have bounded variance σ2.

Proposition 4.2. Under Assumption 4.1, F (w) in (1) is ρF weakly convex with ρF =
√
d1ρgCf +

ρfC
2
g .

One challenge in solving FCCO is the lack of access to unbiased estimation of the subgradients
1
n

∑
i∈S ∂gi(w)∂fi(gi(w)) due to the expectation form of gi(w) inside a non-linear function fi. A

common solution in existing works for solving smooth FCCO is to maintain function value estimators
{ui : i ∈ S} for {gi(w) : i ∈ S}, and approximate the true gradient by a stochastic version
1
B1

∑
i∈B1

∂gi(w;B2)∂fi(ui) [26, 15], where B1, B2 are sampled mini-batches. Simply using a
mini-batch estimator of gi inside fi does not ensure convergence if mini-batch size is small.

Inspired by existing algorithms of smooth FCCO, a simple method for solving non-smooth FCCO
is presented in Algorithm 1 referred to as SONX. A key step is the step 4, which uses the multi-
block-single-probe variance reduced (MSVR) estimator proposed in [15] to update {ui : i ∈ S} in
a block-wise manner. It is an advanced variance reduced update strategy for multi-block variable
inspired by STORM [5]. In the update of MSVR estimator, for each sampled i ∈ Bt1, ui,t is updated
following a STORM-like rule with a specialized parameter γ = n−B1

B1(1−τ) + (1 − τ) for the error
correction term. For the unsampled i ̸∈ Bt1, no update for ui,t is needed. When γ = 0, the estimator
becomes the moving average estimator analyzed in [26] for smooth FCCO, which is also analyzed
in the Appendix. With the function values of {gi(wt) : i ∈ S} well-estimated, the gradient can
be approximated by Gt in step 5. Next, we directly update wt by subgradient descent using the
stochastic gradient estimatorGt. Note that unlike existing works on smooth FCCO that often maintain
a moving average estimator [26] or a STORM estimator [15] for the overall gradient to attain better
rates, this is not possible in the non-smooth case as those variance reduction techniques for the overall
gradient critically rely on the Lipschitz continuity of ∇F , i.e., the smoothness of F .

4.2 Non-Smooth Weakly-Convex TCCO

In this section, we consider non-smooth TCCO problem and aim to extend Algorithm 1 to solve it.
First of all, for convergence analysis and to ensure the weak convexity of F (w) in (2), we make the
following assumptions.

Assumption 4.3. For all (i, j) ∈ S1 × S2, we assume that
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Algorithm 2 Stochastic Optimization algorithm for Non-smooth TCCO (SONT)
1: Initialization: w0, {ui,0 : i ∈ S1}, vi,j,0 = hi,j(w0;B0

3,i,j) for all (i, j) ∈ S1 × S2.
2: for t = 0, . . . , T − 1 do
3: Sample batches Bt1 ⊂ S1, Bt2 ⊂ S2, and Bt3,i,j ⊂ Di,j for i ∈ Bt1 and j ∈ Bt2.

4: vi,j,t+1 =


ΠC̃h [(1− τ1)vi,j,t + τ1hi,j(wt;Bt3,i,j) + γ1(hi,j(wt;Bt3,i,j)− hi,j(wt−1;Bt3,i,j))],

(i, j) ∈ Bt1 × Bt2
vi,j,t, (i, j) ̸∈ Bt1 × Bt2

5: ui,t+1 =

{
(1− τ2)ui,t +

1
B2

∑
j∈Bt2

[τ2gi(vi,j,t) + γ2(gi(vi,j,t)− gi(vi,j,t−1)], i ∈ Bt1
ui,t, i ̸∈ Bt1

6: Gt =
1
B1

∑
i∈Bt1

[(
1
B2

∑
i∈Bt2

∇hi,j(wt;Bt3,i,j)∂gi(vi,j,t)
)
∂fi(ui,t)

]
7: Update wt+1 = wt − ηGt
8: end for

• fi is Cf -Lipschitz continuous, ρf -weakly-convex and non-decreasing;

• gi is ρg-weakly-convex and Cg-Lipschitz continuous. hi,j(·; ξ) is Ch-Lipschitz continuous.

• Either gi is non-decreasing, hi,j is Lh-weakly-convex or gi is monotone, hi,j is Lh-smooth.

• Stochastic estimators hi,j(w, ξ) and ∂hi,j(w, ξ) have bounded variance σ2, and ∥hi,j(w)∥ ≤ C̃h.
Ei∥gi(v)− 1

n2

∑
j∈S2

gi(v)∥2 ≤ σ2 for any v.

The weak convexity of F (w) in (2) is guaranteed by the following Proposition.
Proposition 4.4. Under Assumption 4.3, F (w) in (2) is ρF -weakly-convex with ρF =√
d1(

√
d2LhCg + ρgC

2
h)Cf + ρfC

2
gC

2
h.

We extend SONX to Algorithm 2 for (2), which is referred to as SONT. For dealing with the extra
layer of compositional problem, we maintain another multi-block variable to track the extra layer of
function value estimation. To understand this, we first write down the true subgradient:

∂F (w) =
1

n1

∑
i∈S1

[(
1

n2

∑
j∈S2

∇hi,j(w)∂gi(hi,j(w))

)
∂fi

(
1

n2

∑
j∈S2

gi(hi,j(w))

)]
.

To approximate this subgradient, we need the estimations of 1
n2

∑
j∈S2

gi(hi,j(w)) and hi,j(w),
which can be tracked by using MSVR estimators denoted by {ui,t : i ∈ S1} and {vi,j,t : (i, j) ∈
S1 × S2}, respectively. As a result, a stochastic estimation of ∂F (wt) is computed in step 6 of
Algorithm 2, and the model parameter is updated similarly as before.

4.3 Convergence Analysis

In this section, we present the proof sketch of the convergence guarantee for Algorithm 1. The
analysis for Algorithm 2 follows in a similar manner. The detailed proofs can be found in Appendix A
(please refer to the supplement). Before starting the proof, we define a constant M2 ≥ C2

fC
2
g so that

under Assumption 4.1 we have Et[∥Gt∥2] ≤ M2. Then we start by giving the error bound of the
MSVR estimator in Algorithm 1. The following norm bound of the estimation error follows from the
squared-norm error bound in Lemma 1 from [15], whose proof is given in Appendix D.3.
Lemma 4.5. Consider the update for {ui,t : i ∈ S} in Algorithm 1. Assume gi is Cg-Lipshitz for all
i ∈ S. With γ = n−B1

B1(1−τ) + (1− τ), τ ≤ 1
2 , we have

E
[
1

n

∑
i∈S

∥ui,t+1 − gi(wt+1)∥
]
≤ (1− B1τ

2n
)t+1 1

n

∑
i∈S

∥ui,0 − gi(w0)∥+
2τ1/2σ

B
1/2
2

+
4nCgMη

B1τ1/2
.

For simplicity, denote by ŵt := proxF/ρ̄(wt). Then using the definition of Moreau envelope and the
update rule of wt, we can obtain a bound for the change in the Moreau envelope,

Et[F1/ρ̄(wt+1)] ≤ F1/ρ̄(wt) + ρ̄η⟨ŵt −wt,Et[Gt]⟩+
η2ρ̄M2

2
. (5)

where Et[Gt] = 1
n

∑
i∈S1

∂gi(wt)∂fi(ui,t) is the subgradient approximation based on the MSVR
estimator ui,t of the inner function value. This is a standard result in weakly-convex optimization [6].
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To bound the inner product ⟨ŵt−wt,Et[Gt]⟩ on the right-hand-side of (5), we apply the assumptions
that fi is weakly-convex, Lipschitz continuous and non-decreasing, and gi is weakly-convex. Its
upper bound is given as follows.

(ŵt −wt)
⊤Et[Gt] ≤ F (ŵt)− F (wt) +

1

n

∑
i∈S

[fi(gi(wt))− f(ui,t)− ∂f(ui,t)
⊤(gi(wt)− ui,t)

+ ρf∥gi(wt)− ui,t∥2 + (
ρgCf
2

+ ρfC
2
g )∥ŵt −wt∥2]. (6)

Due to the ρF -weak convexity of F (w), we have (ρ̄−ρF )-strong convexity of w 7→ F (w)+ ρ̄
2∥wt−

w∥2. Then it follows F (ŵt)−F (wt) ≤ (ρF2 − ρ̄)∥wt− ŵt∥2. Combining this with inequalities (5),
(6), and setting ρ̄ sufficiently large we have

Et[F1/ρ̄(wt+1)] ≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+
ρ̄η

n

∑
i∈S

[− ρ̄
2
∥wt − ŵt∥2

+ fi(gi(wt))− f(ui,t)− ∂fi(ui,t)
⊤(gi(wt)− ui,t) + ρf∥gi(wt)− ui,t∥2].

(7)

Recall Lemma 3.2, we have ∥wt − ŵt∥2 = 1
ρ̄2 ∥∇F1/ρ̄(wt)∥2. Moreover, the last three terms on the

R.H.S of inequality (7) can be bounded using the Lipschitz continuity of fi and the error bound given
in Lemma 4.5. Then we can conclude the complexity of SONX with the following theorem.

Theorem 4.6. Under Assumption 4.1 with γ = n−B1

B1(1−τ) + (1 − τ), τ = O(B2ϵ
4) ≤ 1

2 , η =

O(
B1B

1/2
2 ϵ4

n ), and ρ̄ = ρF + ρgCf + 2ρfC
2
g , Algorithm 1 converges to an ϵ-stationary point of the

Moreau envelope F1/ρ̄ in T = O( n

B1B
1/2
2

ϵ−6) iterations.

Remark. Similar to the complexity for smooth FCCO problems [26, 15], Theorem 4.6 guarantees that
SONX for NSWC FCCO has a parallel speed-up in terms of the batch size B1 and linear dependency
on n. The dependency of the complexity on the batch size B2 is due to the use of MSVR estimator,
which matches the results in [15]. If the MSVR estimator in SONX is replaced by moving average
estimator, the complexity becomes O( n

B1B2
ϵ−8) (cf. Appendix B).

Following a similar proof strategy, the convergence guarantee of Algorithm 2 is given below.
Theorem 4.7. (Informal) Under Assumption 4.3, with appropriate values of γ1, γ2, τ1, τ2, η and a
proper constant ρ̄, Algorithm 2 converges to an ϵ-stationary point of the Moreau envelope F1/ρ̄ in

T = O
(
max

{
1

B
1/2
3

,
n
1/4
1

B
1/4
1 n

1/4
2

,
n
1/2
1

B
1/2
1 n

1/2
2

}
n1n2

B1B2
ϵ−6

)
iterations.

Remark. In the worst case, the complexity has a worse dependency on n1/B1, i.e., O(n
3/2
1 /B

3/2
1 ).

This is caused by the two layers of block-sampling update for {ui,t, i ∈ S1} and {vi,j,t : (i, j) ∈
S1 × S2}. When n1 = B1 = 1 and B3 ≤ √

n2, the complexity of SONT becomes similar as SONX,
which is understandable as the inner two levels in TCCO is the same as FCCO.

5 Applications

NSWC FCCO finds important applications in group distributionally robust optimization (group DRO)
and two-way partial AUC (TPAUC) maximization.

Consider N groups with different distributions. Each group k has an averaged loss Lk(w) =
1
nk

∑nk
i=1 ℓ(fw(x

k
i ), y

k
i ), where w is the the model parameter and (xki , y

k
i ) is a data point. It has been

shown in previous study [23] that the group DRO problem can be formulated into

min
w

min
s
F (w, s) =

1

K

N∑
k=1

[Lk(w)− s]+ + s.

This formulation can be mapped into non-smooth weakly-convex FCCO under certain assumptions.
Due to space limitation, we defer the comprehensive discussion of group DRO to Appendix E. The
rest of this section focuses on TPAUC maximization.

Let X denote an input example and hw(X) denote a prediction of a parameterized deep net on
data X . Denote by S+ the set of n+ positive examples and by S− the set of n− negative examples.
TPAUC measures the area under ROC curve where the true positive rate (TPR) is higher than α and
the false positive rate (FPR) is lower than an upper bound β. A surrogate loss for optimizing TPAUC
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with FPR≤ β, TPR≥ α is given by [34]:

min
w

1

n+

1

n−

∑
Xi∈S↑

+[1,k1]

∑
Xj∈S↓

−[1,k2]
ℓ(hw(Xj)− hw(Xi)), (8)

where ℓ(·) is a convex, monotonically non-decreasing surrogate loss of the indicator function
I(hw(Xj) ≥ hw(Xi)), S↑

+[1, k1] is the set of positive examples with k1 = ⌊n+α⌋ smallest scores,
and S↓

−[1, k2] is the set of negative examples with k2 = ⌊n−β⌋ largest scores. To tackle the challenge
of selecting examples from S↑

+[1, k1] and S↓
−[1, k2], the above problem is cast into the following [44]:

min
w,s′,s

1

n+

∑
Xi∈S+

fi(ψi(w, si), s
′), (9)

where fi(g, s′) = s′ +
(g − s′)+

α
, ψi(w, si) =

1

n−

∑
Xj∈S−

si +
(ℓ(hw(Xj)− hw(Xi))− si)+

β
,

where s = (s1, . . . , sn+
). We will consider two scenarios, namely regular learning scenario where

Xi ∈ Rd0 is an instance, and multi-instance learning (MIL) scenario where Xi = {x1
i , . . . ,x

mi
i ∈

Rd0} contains multiple instances (e.g., one patient has hundreds of high-resolution CT images). A
challenge in MIL is that the number of instances mi for each data might be large such that it is
difficult to load all instances into the memory for mini-batch training. It becomes more nuanced
especially because MIL involves a pooling operation that aggregates the predicted information of
individual instances into a single prediction, which can be usually written as a compositional function
with the inner function being an average over instances from X . For simplicity of exposition, below
we consider the mean pooling hw(X) = 1

|X|
∑

x∈X e(we;x)
⊤wc, where e(we,x) is the encoded

feature representation of instance x with a parameter we, and wc is the parameter of the classifier.
We will map the regular learning problem as NSWC FCCO and the MIL problem as NSWC TCCO.

The problem (9) is slightly more complicated than (1) or (2) due to the presence of s′, s. In order
to understand the applicability of our analysis and results to (9), we ignore s′, s for a moment. In
the regular learning setting when hw(X) = e(we, X)⊤wc can be directly computed, we can map
the problem into NSWC FCCO, where fi(g, s′) is non-smooth, convex, and non-decreasing in terms
of g, and gi(w, si) = ψi(w, si) is non-smooth, and is proved to be weakly when ℓ(·) is convex and
hw(X) is smooth in terms of w. In the MIL setting with mean pooling, we can map the problem
into NSWC TCCO by defining hi(w) = 1

|Xi|
∑

x∈Xi e(we;x)
⊤wc, hij(w) = hj(w)− hi(w) and

gi(hi,j(w), si) = si +
(ℓ(hi,j(w))−si)+

β , and fi(gi, s′) = s′ + (gi−s′)+
α , where fi is non-smooth,

convex, and non-decreasing in terms of gi, and gi(hij(w), si) is non-smooth, convex, monotonic
in terms of hij(w) when ℓ(·) is convex and monotonically non-decreasing, and gi(hij(w), si) is
weakly convex in terms of w when hij(w) is smooth and Lipchitz continuous in terms of w. Hence,
the problem (9) satisfies the conditions in Assumption 4.1 for the regular learning setting and that
in Assumption 4.3 for the MIL with mean pooling under mild regularity conditions of the neural
network. We present full details in Appendix C.1 for interested readers.

To compute the gradient estimator w.r.t w, ui,t will be maintained for tracking gi(w, si) in the regular
setting or 1

n−

∑
Xj∈S−

gi(hi,j(w), si) in the MIL setting, vi,t will be maintained for tracking hi(w)

in the MIL setting, which are updated similar to that in SONX and SONT. One difference from
SONT is that vi,j,t is decoupled into vi,t and vj,t due to that hi,j can be decoupled. In terms of the
extra variable s′, s, the objective function is convex w.r.t both s′ and s, which allows us to simply
update s′ by SGD using the stochastic gradient estimator 1

B1

∑
i∈Bt1

∂s′fi(ui,t, s
′
t) and we update

si by SGD using the stochastic gradient estimator
[

1
B2

∑
j∈Bt2

∂sigi(vj,t − vi,t, si,t)
]
∂ufi(ui,t, s

′
t).

Detailed updates are presented in Algorithm 5 and Algorithm 6 in Appendix C.2. We can extend
the convergence analysis of SONX and SONT to the two learning settings of TPAUC maximization,
which is included in Appendix C.4. Finally, it is worth mentioning that we can also extend the results
to other pooling operations, including smoothed max pooling and attention-based pooling [45]. Due
to limit of space, we include discussions in Appendix C.3 as well.

6 Experimental Results

We justify the effectiveness of the proposed SONX and SONT algorithms for TPAUC Maximization
in the regular learning setting and MIL setting [14, 45].
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Table 2: Testing TPAUC on molecule datasets (top) and on MIL datasets (bottom). The two numbers
in parentheses of the second line refers to the lower bound of TPR and the upper bound of FPR for
evaluating TPAUC. The two numbers of each method refers to the mean TPAUC and its std.

moltox21 (t0) molmuv (t1) molpcba (t0)
Method (0.6, 0.4) (0.5, 0.5) (0.6, 0.4) (0.5, 0.5) (0.6, 0.4) (0.5, 0.5)
CE 0.067 (0.001) 0.208 (0.001) 0.161 (0.034) 0.469 (0.018) 0.095 (0.001) 0.264 (0.001)
AUC-SH 0.064 (0.008) 0.217 (0.014) 0.260 (0.130) 0.444 (0.128) 0.140 (0.003) 0.312 (0.003)
AUC-M 0.066 (0.009) 0.209 (0.01) 0.114 (0.079) 0.433 (0.053) 0.142 (0.009) 0.313 (0.003)
MB 0.067 (0.015) 0.215 (0.023) 0.173 (0.153) 0.426 (0.118) 0.095 (0.002) 0.262 (0.003)
AW-poly 0.064 (0.01) 0.206 (0.025) 0.172 (0.144) 0.393 (0.123) 0.110 (0.001) 0.281 (0.002)
SOTA-s 0.068 (0.018) 0.23 (0.021) 0.327 (0.164) 0.526 (0.122) 0.143 (0.001) 0.314 (0.002)
SONX 0.07 (0.035) 0.252 (0.025) 0.347 (0.175) 0.575 (0.122) 0.158 (0.006) 0.335 (0.006)

MUSK2 Fox
Method (0.5, 0.5) (0.3, 0.7) (0.1, 0.9) (0.5, 0.5) (0.3, 0.7) (0.1, 0.9)
AUC-M (att) 0.675 (0.1) 0.783 (0.067) 0.867 (0.036) 0.032 (0.03) 0.253 (0.098) 0.444 (0.118)
MIDAM (smx) 0.525 (0.2) 0.667 (0.149) 0.8 (0.097) 0.048 (0.059) 0.265 (0.119) 0.449 (0.113)
MIDAM (att) 0.6 (0.215) 0.717 (0.135) 0.819 (0.092) 0.016 (0.032) 0.249 (0.125) 0.509 (0.065)
SOTAs (att) 0.6 (0.267) 0.683 (0.178) 0.819 (0.097) 0.024 (0.032) 0.278 (0.059) 0.477 (0.046)
SONT (att) 0.7 (0.1) 0.8 (0.067) 0.867 (0.036) 0.12 (0.131) 0.343 (0.176) 0.578 (0.119)

Colon Lung
Method (0.5, 0.5) (0.3, 0.7) (0.1, 0.9) (0.5, 0.5) (0.3, 0.7) (0.1, 0.9)
AUC-M (att) 0.576 (0.1) 0.739 (0.061) 0.803 (0.038) 0.32 (0.181) 0.609 (0.113) 0.744 (0.082)
MIDAM (smx) 0.646 (0.083) 0.787 (0.04) 0.863 (0.026) 0.43 (0.195) 0.68 (0.128) 0.824 (0.055)
MIDAM (att) 0.548 (0.253) 0.738 (0.149) 0.826 (0.102) 0.544 (0.261) 0.716 (0.189) 0.815 (0.129)
SOTAs (att) 0.772 (0.124) 0.862 (0.073) 0.911 (0.045) 0.539 (0.153) 0.745 (0.077) 0.841 (0.049)
SONT (att) 0.8 (0.166) 0.875 (0.099) 0.916 (0.065) 0.639 (0.137) 0.779 (0.041) 0.865 (0.028)

Baselines. For regular TPAUC maximization, we compare SONX with the following competitive
methods: 1) Cross Entropy (CE) loss minimization; 2) AUC maximization with squared hinge
loss (AUC-SH); 3) AUC maximization with min-max margin loss (AUC-M) [37]; 4) Mini-Batch
based heuristic loss (MB) [16]; 5) Adhoc-Weighting based method with polynomial function (AW-
poly) [35]; 5) a single-loop algorithm (SOTAs) for optimizing a smooth surrogate for TPAUC [44].
For MIL TPAUC maximization, we consider the following baselines: 1) AUC-M with attention-based
pooling (AUC-M [att]); 2) SOTAs with attention-based pooling, which is a natural combination
between advanced TPAUC optimization and MIL pooling technique; 3) the recently proposed
provable multi-instance deep AUC maximization methods with stochastic smoothed-max pooling and
attention-based pooling (MIDAM [smx] and MIDAM [att]) [45]. The first two baselines use naive
mini-batch pooling for computing the loss function in AUC-M and SOTAs. We implement SONT for
MIL TPAUC maximization with attention-based pooling, which is referred to as SONT (att).

Datasets. For regular TPAUC maximization, we use three molecule datasets as in [44], namely
moltox21 (the No.0 target), molmuv (the No.1 target) and molpcba (the No.0 target) [29]. For MIL
TPAUC maximization, we use four MIL datasets, including two tabular datasets MUSK2 and Fox,
and two medical image datasets Colon and Lung. MUSK2 and Fox are two tabular datasets that
have been widely adopted for MIL benchmark study [14]. Colon and Lung are two histopathology
(medical image) datasets that have large image size (512×512) but local interests for classification [2].
For Colon dataset, the adenocarcinoma is regarded as positive label and benign is negative; for Lung
dataset, we treat adenocarcinoma as positive and squamous cell carcinoma as negative 3. For both of
the histopathology datasets, we uniformly randomly sample 100 positive and 1000 negative data for
experiments. For all MIL datasets, we uniformly randomly split 10% as the testing and the remaining
as the training and validation. The statistics for all used datasets are summarized in Table 3and
Table 4 in Appendix F.

Experiment Settings. For regular TPAUC maximization, we use the same setting as in [44]. The
adopted backbone Graph Nueral Network (GNN) model is Graph Isomorphism Network (GIN),
which has 5 mean-pooling layers with 64 number of hidden units and dropout rate 0.5 [30]. We
utilize the sigmoid function for the final output layer to generate the prediction score, and set the
surrogate loss ℓ(·) as squared hinge loss with a margin parameter. We follow the setups for model
training and tuning exactly the same as the prior work [44]. Essentially, the model is trained by 60
epochs and the learning rate is decreased by 10-fold after every 20 epochs. The model is initialized as
a pretrained model from CE loss on the training datasets. We fix the learning rate of SONX as 1e-2
and moving average parameter τ as 0.9; tune the parameter γ in {0, 1e-1,1e-2,1e-3}, the parameter
α, β in {0.1,0.3,0.5} and fix the margin parameter of the surrogate loss ℓ as 1.0, which cost the same

3Data available: https://www.kaggle.com/datasets/biplobdey/lung-and-colon-cancer
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Figure 1: Training Curves of SONX (left two) and SONT (right two) for TPAUC maximization with
different γ. The y-axis is the TPAUC (0.5, 0.5).
tuning effort as the other baselines. The weight decay is set as the same value (2e-4) with the other
baselines. For baselines, we directly use the results reported in [44] since we use the same setting.

For MIL TPAUC maximization, we train a simple Feed Forward Neural Network (FFNN) with
one hidden layer (the number of neurons equals to data dimension) for the two tabular datasets and
ResNet20 for the two medical image datasets. Sigmoid transformation is adopted for the output layer
to generate prediction score. The training epoch number is fixed as 100 epochs for all methods; the
bag batch size is fixed as 16 (resp. 8) and the number of sampled instances per bag is fixed as 4 (resp.
128) for tabular (resp. medical image) datasets; the learning rate is tuned in {1e-2, 1e-3, 1e-4} and
decreased by 10 folds at the end of 50-th and 75-th epoch for all baselines. For SONT (att), we set
moving average parameter τ1 = τ2 as 0.9; tune the parameter γ1 = γ2 = γ in {0, 1e-1,1e-2,1e-3}
and fix the margin parameter of the surrogate loss ℓ as 0.5, and the parameter α, β in {0.1,0.5,0.9}.
Similar parameters in baselines are set the same or tuned similarly. For all experiments, we utilize
5-fold-cross-validation to evaluate the testing performance based on the best validation performance
with possible early stopping choice.

Results. The testing results for the regular and MIL TPUAC maximization with different TPAUC
measures are summarized in the Table 2. From Table 2, we observe that our method SONX achieves
the best performance for regular TPAUC maximization. It is better than the state-of-the-art method
SOTAs for TPAUC maximization. We attribute the better performance of SONX to the fact that
the objective of SONX is an exact estimator of TPAUC while the smoothed objective of SOTAs is
an inexact estimator of TPAUC. We also observe that SONT (att) achieves the best performance
in all cases, which is not surprising since it is the only one that directly optimizes the TPAUC
surrogate. In contrast, other baselines either optimizes a different objective (MIDAM) or does not
ensure convergence due to the use of mini-batch pooling (AUC-M, SOTAs).

Ablation Study. We conduct ablation studies to demonstrate the effect of the error correction term
on the training convergence by varying the γ value for SONX and SONT, where γ1 = γ2 = γ is
set as the same value in SONT. The training convergence results are presented in Figure 1. We can
see that an appropriate value of γ > 0 can yield a faster convergence than γ = 0, which verifies the
faster convergence of using MSVR estimators than using moving average estimators. However, we
do observe a gap between theory and practice, as setting a large value of γ > 1 as in the theory might
not yield convergence. This phenomenon is also observed in [12]. We conjecture that the gap could
be fixed by considering convex objectives [40], which is left as future work.

7 Conclusions

In this paper, we have considered non-smooth weakly-convex two-level and tri-level finite-sum
coupled compositional optimization problems. We presented novel convergence analysis of two
stochastic algorithms and established their complexity. Applications in deep learning for two-way
partial AUC maximization was considered and great performance of proposed algorithms were
demonstrated through experiments on multiple datasets. A future work is to prove the convergence of
both algorithms for convex objectives.
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A Proofs of Theorem 4.6 and Theorem 4.7

In this section, we provide the detailed proofs for Theorem 4.6 and Theorem 4.7. We first give a basic
property for weakly-convex functions.

Proposition A.1 (Proposition 2.1 in [7]). Suppose function g : Rd → R ∪ {∞} is lower-
semicontinuous. Then g is ρ-weakly-convex if and only if

g(y) ≥ g(x) + ⟨v, y − x⟩ − ρ

2
∥y − x∥2 (10)

holds for all vectors v ∈ ∂g(x) and x, y ∈ Rd.

A.1 Proof of Theorem 4.6

Note that the proof of Lemma 4.5 also implies the following squared-norm error bound,

E
[
1

n

∑
i∈S

∥ui,t+1 − gi(wt+1)∥2
]
≤ (1− B1τ

2n
)t+1 1

n

∑
i∈S

∥ui,0 − gi(w0)∥2 +
4τσ2

B2
+

16n2C2
gM

2η2

B2
1τ

.

Proof of Theorem 4.6. Define ŵt := proxF/ρ̄(wt). For a given i ∈ S, we have

fi(gi(ŵt))− fi(ui,t)

(a)

≥ ∂fi(ui,t)
⊤(gi(ŵt)− ui,t)−

ρf
2
∥gi(ŵt)− ui,t∥2

≥ ∂fi(ui,t)
⊤(gi(ŵt)− ui,t)− ρf∥gi(ŵt)− gi(wt)∥2 − ρf∥gi(wt)− ui,t∥2

≥ ∂fi(ui,t)
⊤(gi(ŵt)− ui,t)− ρfC

2
g∥ŵt −wt∥2 − ρf∥gi(wt)− ui,t∥2

(b)

≥ ∂fi(ui,t)
⊤
[
gi(wt)− ui,t + ∂gi(wt)

⊤(ŵt −wt)−
ρg
2
∥ŵt −wt∥2

]
− ρfC

2
g∥ŵt −wt∥2 − ρf∥gi(wt)− ui,t∥2

(c)

≥ ∂fi(ui,t)
⊤(gi(wt)− ui,t) + ∂fi(ui,t)

⊤∂gi(wt)
⊤(ŵt −wt)− (

ρgCf
2

+ ρfC
2
g )∥ŵt −wt∥2

− ρf∥gi(wt)− ui,t∥2

where (a) follows from the ρf -weak-convexity of fi, (b) follows from that fi(·) is non-decreasing
and the weak convexity of gi, (c) is due to 0 ≤ ∂fi(ui,t) ≤ Cf . Then it follows

1

n

∑
i∈S

∂fi(ui,t)
⊤∂gi(wt)

⊤(ŵt −wt)

≤ 1

n

∑
i∈S

[
fi(gi(ŵt))− fi(ui,t)− ∂fi(ui,t)

⊤(gi(wt)− ui,t) + (
ρgCf
2

+ ρfC
2
g )∥ŵt −wt∥2

+ ρf∥gi(wt)− ui,t∥2
]

(11)

Now we consider the change in the Moreau envelope:

Et[F1/ρ̄(wt+1)] = Et
[
min
w̃

F (w̃) +
ρ̄

2
∥w̃ −wt+1∥2

]
≤ Et

[
F (ŵt) +

ρ̄

2
∥ŵt −wt+1∥2

]
= F (ŵt) + Et

[
ρ̄

2
∥ŵt − (wt − ηGt)∥2

]
≤ F (ŵt) +

ρ̄

2
∥ŵt −wt∥2 + ρ̄Et[η⟨ŵt −wt, Gt⟩] +

η2ρ̄M2

2

= F1/ρ̄(wt) + ρ̄η⟨ŵt −wt,Et[Gt]⟩+
η2ρ̄M2

2

(12)
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where

Et[Gt] =
1

n

∑
i∈S

∂gi(wt)∂fi(ui,t),

and the second inequality uses the bound of E[∥Gt∥2], which follows from the Lipschitz continuity
and bounded variance assumptions and is denoted by M .

Combining inequality (11) and (12) yields
Et[F1/ρ̄(wt+1)]

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+
ρ̄η

n

∑
i∈S

[
fi(gi(ŵt))− fi(ui,t)

− ∂fi(ui,t)
⊤(gi(wt)− ui,t) + (

ρgCf
2

+ ρfC
2
g )∥ŵt −wt∥2 + ρf∥gi(wt)− ui,t∥2

]
= F1/ρ̄(wt) +

η2ρ̄M2

2
+
ρ̄η

n

∑
i∈S

[
Fi(ŵt)− Fi(wt) + fi(gi(wt))− fi(ui,t)

− ∂fi(ui,t)
⊤(gi(wt)− ui,t) + (

ρgCf
2

+ ρfC
2
g )∥ŵt −wt∥2 + ρf∥gi(wt)− ui,t∥2

]
(13)

Due to the ρF -weak convexity of Fi(w), we have (ρ̄ − ρF )-strong convexity of w 7→ Fi(w) +
ρ̄
2∥wt −w∥2. Then it follows

Fi(ŵt)− Fi(wt) =

[
Fi(ŵt) +

ρ̄

2
∥wt − ŵt∥2

]
−
[
Fi(wt) +

ρ̄

2
∥wt −wt∥2

]
− ρ̄

2
∥wt − ŵt∥2

≤ (
ρF
2

− ρ̄)∥wt − ŵt∥2

(14)
Plugging inequality (14) into inequality (13) yields

Et[F1/ρ̄(wt+1)] ≤ E[F1/ρ̄(wt)] +
η2ρ̄M2

2
+
ρ̄η

n

∑
i∈S

[
(
ρF
2

− ρ̄)∥wt − ŵt∥2

+ fi(gi(wt))− fi(ui,t)− ∂fi(ui,t)
⊤(gi(wt)− ui,t)

+ (
ρgCf
2

+ ρfC
2
g )∥ŵt −wt∥2 + ρf∥gi(wt)− ui,t∥2

] (15)

Set ρ̄ = ρF + ρgCf + 2ρfC
2
g . We have

Et[F1/ρ̄(wt+1)] ≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+
ρ̄η

n+

∑
i∈S

[
− ρ̄

2
∥wt − ŵt∥2 + fi(gi(wt))− fi(ui,t)

− ∂fi(ui,t)
⊤(gi(wt)− ui,t) + ρf∥gi(wt)− ui,t∥2

]
(a)

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
− η

2
∥∇F1/ρ̄(wt)∥2 +

ρ̄η

n

∑
i∈S

[
fi(gi(wt))− fi(ui,t)

− ∂fi(ui,t)
⊤(gi(wt)− ui,t) + ρf∥gi(wt)− ui,t∥2

]
where inequality (a) follows from Lemma 3.2.

Using the Lipschitz continuity of fi, we have

Et[F1/ρ̄(wt+1)] ≤ F1/ρ̄(wt) +
η2ρ̄M2

2
− η

2
∥∇F1/ρ̄(wt)∥2 +

ρ̄η

n

∑
i∈S

2Cf∥gi(wt)− ui,t∥

+
ρ̄η

n

∑
i∈S

ρf∥gi(wt)− ui,t∥2
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By Lemma 4.5, the error bound of the MSVR update gives

E
[
1

n

∑
i∈S

∥ui,t − gi(wt)∥
]
≤ (1− µ)t

1

n

∑
i∈S

∥ui,0 − gi(w0)∥+R1,

E
[
1

n

∑
i∈S

∥ui,t − gi(wt)∥2
]
≤ (1− µ)t

1

n

∑
i∈S

∥ui,0 − gi(w0)∥2 +R2,

where

µ =
B1τ

2n
, R1 =

2τ1/2σ

B
1/2
2

+
4nCgMη

B1τ1/2
, R2 =

4τσ2

B2
+

16n2C2
gM

2η2

B2
1τ

Then

E[F1/ρ̄(wt+1)] ≤ F1/ρ̄(wt) +
η2ρ̄M2

2
− η

2
E[∥∇F1/ρ̄(wt)∥2]

+ 2Cf ρ̄η

(
(1− µ)t

1

n

∑
i∈S

∥gi(w0)− ui,0∥+R1

)

+ Cρf ρ̄η

(
(1− µ)t

1

n

∑
i∈S

∥gi(w0)− ui,0∥2 +R2

) (16)

Taking summation from t = 0 to T − 1 yields
E[F1/ρ̄(wT )]

≤ F1/ρ̄(w0) +
η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2]

+ 2Cf ρ̄η

(
T−1∑
t=0

(1− µ)t
1

n

∑
i∈S

∥gi(w0)− ui,0∥+R1T

)

+ Cρf ρ̄η

(
(1− µ)t

1

n

∑
i∈S

∥gi(w0)− ui,0∥2 +R2T

)
(a)

≤ F1/ρ̄(w0) +
η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2]

+
2Cf ρ̄η

nµ

∑
i∈S

∥gi(w0)− ui,0∥+ 2Cf ρ̄ηR1T +
ρf ρ̄η

nµ

∑
i∈S

∥gi(w0)− ui,0∥2 + 2ρf ρ̄ηR2T,

(17)
where (a) uses

∑T−1
t=0 (1− µ)t ≤ 1

µ .

Lower bounding the left-hand-side by minw F (w), we obtain

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2]

≤ 2

ηT

[
F1/ρ̄(w0)−min

w
F (w) +

η2ρ̄M2T

2
+

2Cf ρ̄η

n

∑
i∈S

∥gi(w0)− ui,0∥+ 2Cf ρ̄ηR1T

+
ρf ρ̄η

n

∑
i∈S

∥gi(w0)− ui,0∥2 + ρf ρ̄ηR2T

]
≤ 2∆

ηT
+ ηρ̄M2 +

4Cf ρ̄

µTn

∑
i∈S

∥gi(w0)− ui,0∥+ 4Cf ρ̄R1 +
2ρf ρ̄

µTn

∑
i∈S

∥gi(w0)− ui,0∥2 + 2ρf ρ̄R2

≤ C

T
(
1

η
+

1

µ
) + C(η +R1 +R2)

where we assume F1/ρ̄(w0, s0, s
′
0)−minw,s,s′ F (w, s, s

′) ≤ ∆ and

C = max{8∆, 12ρ̄M2,
16Cf ρ̄

n

∑
i∈S

∥gi(w0)− ui,0∥,
8ρf ρ̄

n

∑
i∈S

∥gi(w0)− ui,0∥2, 16Cf ρ̄, 8ρf ρ̄}.
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Thus

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2]

≤ C

T
(
1

η
+

2n

B1τ
) + C(η +

2τ1/2σ

B
1/2
2

+
4nCgMη

B1τ1/2
+

4τσ2

B2
+

16n2C2
gM

2η2

B2
1τ

)

= O

(
1

T
(
1

η
+

n

B1τ
) + (η +

τ1/2σ

B
1/2
2

+
nη

B1τ1/2
+
τσ2

B2
+
n2η2

B2
1τ

)

)

Setting

τ = O(B2ϵ
4), η = O

(
B1B

1/2
2 ϵ4

n

)

To reach an ϵ-stationary point, we need

T = O

(
n

B1B
1/2
2 ϵ6

)

A.2 Proof of Theorem 4.7

A formal statement in given below.

Theorem A.2. Under Assumption 4.3, with γ1 = n1n2−B1B2

B1B2(1−τ1) + (1 − τ1), γ2 = n1−B1

B1(1−τ2) +

(1 − τ2), τ1 = O
(
min{B3,

B
1/2
1 n

1/2
2

n
1/2
1

}ϵ4
)

≤ 1
2 , τ2 = O(B2ϵ

4) ≤ 1
2 , η =

O
(
min

{
B

1/2
3 ,

B
1/4
1 n

1/4
2

n
1/4
1

,
B

1/2
1 n

1/2
2

n
1/2
1

}
B1B2

n1n2
ϵ4
)

, and ρ̄ = ρF + 4ρfC
2
g + 2ρgCfC

2
h + CfCgLh,

Algorithm 2 converges to an ϵ-stationary point of the Moreau envelope F1/ρ̄ in T =

O
(
max

{
1

B
1/2
3

,
n
1/4
1

B
1/4
1 n

1/4
2

,
n
1/2
1

B
1/2
1 n

1/2
2

}
n1n2

B1B2
ϵ−6

)
iterations.

We first define constantM2 ≥ max{ 3C2
fC

2
gσ

2

B3
+

3C2
fC

2
gC

2
h

B2
+

3C2
fC

2
gC

2
h

B1
, C̃2

h+σ
2} so that Et[∥Gt∥2] ≤

M2 and ∥vi,j,t∥2 ≤ M2 for all i ∈ S1, j ∈ S2 and t. Then to prove Theorem A.2, we need the
following Lemmas.

Lemma A.3. Consider MSVR update for v. Assume hi,j(w; ξ) is Ch-Lipshitz for all (i, j) ∈ S1×S2

, and E[∥Gt∥2] ≤M2. With γ1 = n1n2−B1B2

B1B2(1−τ1) + (1− τ1), and τ1 ≤ 1
2 , we have

E
[
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥vi,j,t+1 − hi,j(wt+1)∥
]

≤ (1− B1B2τ1
2n1n2

)t+1 1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥vi,j,0 − hi,j(w0)∥+
2τ

1/2
1 σ

B
1/2
3

+
4n1n2ChMη

B1B2τ
1/2
1

E
[
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥vi,j,t+1 − hi,j(wt+1)∥2
]

≤ (1− B1B2τ1
2n1n2

)2(t+1) 1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥vi,j,0 − hi,j(w0)∥2 +
4τ1σ

2

B3
+

16n21n
2
2C

2
hM

2η2

B2
1B

2
2τ1
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Lemma A.4. Consider MSVR update for u. Assume gi(·) is Cg-Lipshitz for all i ∈ S1. With
γ2 = n+−B1

B1(1−τ2) + (1− τ2) and τ2 ≤ 1
2 , we have

E

 1

n1

∑
i∈S1

∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥


≤ (1− B1τ2

2n1
)t+1 1

n1

∑
i∈S1

∥ui,0 −
1

n2

∑
j∈S2

gi(vi,j,0)∥+
2τ

1/2
2 σ

B
1/2
2

+
C2n

1/2
1 B

1/2
2 τ1

B
1/2
1 n

1/2
2 τ

1/2
2

+
C2n

3/2
1 n

1/2
2 η

B
3/2
1 B

1/2
2 τ

1/2
2

where C2 is a constant defined in the proof.

Proof of Theorem A.2. Consider the change in the Moreau envelope:

Et[F1/ρ̄(wt+1)] = Et
[
min
w̃

F (w̃) +
ρ̄

2
∥w̃ −wt+1∥2

]
≤ Et

[
F (ŵt) +

ρ̄

2
∥ŵt −wt+1∥2

]
= F (ŵt) + Et

[
ρ̄

2
∥ŵt − (wt − ηGt)∥2

]
≤ F (ŵt) +

ρ̄

2

(
∥ŵt −wt∥2

)
+ ρ̄Et[η⟨ŵt −wt, Gt⟩] +

η2ρ̄M2

2

= F1/ρ̄(wt) + ρ̄Et[η⟨ŵt −wt, Gt⟩] +
η2ρ̄M2

2

(18)

Note that

Et[Gt] =
1

n1

n1∑
i=1

[
1

n2

n2∑
j=1

∇hi,j(wt)∂gi(vi,j,t)

]
∂fi (ui,t) ,

and the second inequality uses the bound of E[∥Gt∥2], which follows from the Lipschitz continuity
and bounded variance assumptions and is denoted by M .
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Define ŵt := proxF/ρ̄(wt). For a given i ∈ {1, . . . ,m}, we have
1

n1

∑
i∈S1

fi(
1

n2

∑
j∈S2

gi(hi,j(ŵt)))−
1

n1

∑
i∈S1

fi(ui,t)

(a)

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤(

1

n2

∑
j∈S2

gi(hi,j(ŵt))− ui,t)−
1

n1

∑
i∈S1

ρf
2
∥ 1

n2

∑
j∈S2

gi(hi,j(ŵt))− ui,t∥2

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤(

1

n2

∑
j∈S2

gi(hi,j(ŵt))− ui,t)

− 1

n1

∑
i∈S1

ρf∥
1

n2

∑
j∈S2

gi(hi,j(ŵt))−
1

n2

∑
j∈S2

gi(vi,j,t)∥2 −
1

n1

∑
i∈S1

ρf∥
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t∥2

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤(

1

n2

∑
j∈S2

gi(hi,j(ŵt))− ui,t)−
1

n1

∑
i∈S1

1

n2

∑
j∈S2

ρfC
2
g∥hi,j(ŵt)− vi,j,t∥2

− 1

n1

∑
i∈S1

ρf∥
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t∥2

(b)

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤
[
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t +
1

n2

∑
j∈S2

∂gi(vi,j,t)
⊤(hi,j(ŵt)− vi,j,t)

− 1

n2

∑
j∈S2

ρg
2
∥hi,j(ŵt)− vi,j,t∥2

]
− 1

n1

∑
i∈S1

1

n2

∑
j∈S2

2ρfC
2
g∥hi,j(wt)− vi,j,t∥2

− 2ρfC
2
g∥ŵt −wt∥2 −

1

n1

∑
i∈S1

ρf∥
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t∥2

(c)

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤
[
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

]
+

1

n1

∑
i∈S1

1

n2

∑
j∈S2

⟨∂fi(ui,t)⊤∂gi(vi,j,t)⊤(hi,j(ŵt)− vi,j,t)︸ ︷︷ ︸
A1

− 1

n1

∑
i∈S1

1

n2

∑
j∈S2

ρgCf
2

∥hi,j(ŵt)− vi,j,t∥2 −
1

n1

∑
i∈S1

1

n2

∑
j∈S2

2ρfC
2
g∥hi,j(wt)− vi,j,t∥2

− 2ρfC
2
g∥ŵt −wt∥2 −

1

n1

∑
i∈S1

ρf∥
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t∥2

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤
[
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

]
+

1

n1

∑
i∈S1

1

n2

∑
j∈S2

⟨∂fi(ui,t)⊤∂gi(vi,j,t)⊤(hi,j(ŵt)− vi,j,t)︸ ︷︷ ︸
A1

− 1

n1

∑
i∈S1

1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

− (2ρfC
2
g + ρgCfC

2
h)∥ŵt −wt∥2 −

1

n1

∑
i∈S1

ρf∥
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t∥2

(19)
where (a) follows from the convexity of fi, (b) uses the assumption that fi(·) is non-decreasing and
gi is weak convex, (c) is due to 0 ≤ ∂fi(ui,t) ≤ Cf .
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The Lh-smoothness assumption of hi,j(w) (or weakly-convexity of hi,j(w), then only the second
inequality holds) for all i,w implies

hi,j(ŵt) ≤ hi,j(wt) +∇hi,j(wt)
⊤(ŵt −wt) +

Lh
2
∥ŵt −wt∥2,

hi,j(ŵt) ≥ hi,j(wt) +∇hi,j(wt)
⊤(ŵt −wt)−

Lh
2
∥ŵt −wt∥2.

(20)

We first assume that gi(·) is non-increasing. Since ∂fi(ui,t) ≥ 0 and ∂gi(vi,j,t) ≤ 0, we bound A1

as following
A1 = ∂fi(ui,t)∂

⊤gi(vi,j,t)
⊤(hi,j(ŵt)− vi,j,t)

(a)

≥ ⟨∂fi(ui,t)⊤∂gi(vi,j,t)⊤(hi,j(wt)− vi,j,t) + ∂fi(ui,t)
⊤∂gi(vi,j,t)

⊤∇hi,j(wt)
⊤(ŵt −wt)

+ ∂fi(ui,t)
⊤∂gi(vi,j,t)

⊤Lh
2
∥ŵt −wt∥2⟩

(b)

≥ −CfCg∥hi,j(wt)− vi,j,t∥+ ∂fi(ui,t)
⊤∂gi(vi,j,t)

⊤∇hi,j(wt)
⊤(ŵt −wt)

− CfCgLh
2

∥ŵt −wt∥2

(21)
where inequality (a) follows from the first inequality in (20), (b) follows from the Lipschitz continuity
and monotone assumptions on fi, gi, hi,j . On the other hand, if we assume gi(·) is non-decreasing,
we may use the second inequality in (20) and obtain the same result as (21). Now plugging the new
formulation of A1 back to inequality (19) yields

1

n1

∑
i∈S1

fi(
1

n2

∑
j∈S2

gi(hi,j(ŵt)))−
1

n1

∑
i∈S1

fi(ui,t)

≥ 1

n1

∑
i∈S1

∂fi(ui,t)
⊤
[
1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

]
+

1

n1

∑
i∈S1

1

n2

∑
j∈S2

−CfCg∥hi,j(wt)− vi,j,t∥

+
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∂fi(ui,t)
⊤∂gi(vi,j,t)

⊤∇hi,j(wt)
⊤(ŵt −wt)−

CfCgLh
2

∥ŵt −wt∥2

− 1

n1

∑
i∈S1

1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

− (2ρfC
2
g + ρgCfC

2
h)∥ŵt −wt∥2 −

1

n1

∑
i∈S1

ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2
≥ 1

n1

∑
i∈S1

−Cf
∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥+ 1

n1

∑
i∈S1

1

n2

∑
j∈S2

−CfCg∥hi,j(wt)− vi,j,t∥

+ ⟨Et[Gt], ŵt −wt⟩ −
1

n1

∑
i∈S1

1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

− (2ρfC
2
g + ρgCfC

2
h +

CfCgLh
2

)∥ŵt −wt∥2 −
1

n1

∑
i∈S1

ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2
It follows
⟨Et[Gt], ŵt −wt⟩

≤ 1

n1

∑
i∈S1

fi(
1

n2

∑
j∈S2

gi(hi,j(ŵt)))−
1

n1

∑
i∈S1

fi(ui,t) +
1

n1

∑
i∈S1

Cf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥
+

1

n1

∑
i∈S1

1

n2

∑
j∈S2

CfCg∥hi,j(wt)− vi,j,t∥+
1

n1

∑
i∈S1

1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

+ (2ρfC
2
g + ρgCfC

2
h +

CfCgLh
2

)∥ŵt −wt∥2 +
1

n1

∑
i∈S1

ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2
(22)
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Combining inequality (22) and (18) yields
Et[F1/ρ̄(wt+1)]

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+ ρ̄η

{
1

n1

∑
i∈S1

[
fi(

1

n2

∑
j∈S2

gi(hi,j(ŵt)))− fi(ui,t)

+ Cf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥+ 1

n2

∑
j∈S2

CfCg∥hi,j(wt)− vi,j,t∥

+
1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

+ (2ρfC
2
g + ρgCfC

2
h +

CfCgLh
2

)∥ŵt −wt∥2 + ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2]}

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+ ρ̄η

{
1

n1

∑
i∈S1

[
Fi(ŵt)− Fi(wt) + Fi(wt)− fi(

1

n2

∑
j∈S2

gi(vi,j,t))

+ fi(
1

n2

∑
j∈S2

gi(vi,j,t))− fi(ui,t) + Cf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥
+

1

n2

∑
j∈S2

CfCg∥hi,j(wt)− vi,j,t∥+
1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

+ (2ρfC
2
g + ρgCfC

2
h +

CfCgLh
2

)∥ŵt −wt∥2 + ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2]}
(a)

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+ ρ̄η

{
1

n1

∑
i∈S1

[
Fi(ŵt)− Fi(wt) + 2Cf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥
+

1

n2

∑
j∈S2

2CfCg∥hi,j(wt)− vi,j,t∥+
1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

+ (2ρfC
2
g + ρgCfC

2
h +

CfCgLh
2

)∥ŵt −wt∥2 + ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2]}
(23)

where (a) follows from the Lipschitz continuity of fi, gi, hi,j .

Due to the ρF -weak convexity of Fi(w), we have (ρ̄ − ρF )-strong convexity of w 7→ Fi(w) +
ρ̄
2∥wt −w∥2. Then it follows

Fi(ŵt)− Fi(wt) =

[
Fi(ŵt) +

ρ̄

2
∥wt − ŵt∥2

]
−
[
Fi(wt) +

ρ̄

2
∥wt −wt∥2

]
− ρ̄

2
∥wt − ŵt∥2

≤ (
ρF
2

− ρ̄)∥wt − ŵt∥2

(24)
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Plugging inequality (24) back into (23), we obtain
Et[F1/ρ̄(wt+1)]

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+ ρ̄η

{
1

n1

∑
i∈S1

[
(
ρF
2

− ρ̄)∥wt − ŵt∥2 + 2Cf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥
+

1

n2

∑
j∈S2

2CfCg∥hi,j(wt)− vi,j,t∥+
1

n2

∑
j∈S2

(2ρfC
2
g + ρgCf )∥hi,j(wt)− vi,j,t∥2

+ (2ρfC
2
g + ρgCfC

2
h +

CfCgLh
2

)∥ŵt −wt∥2 + ρf

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2]}
(a)

≤ F1/ρ̄(wt) +
η2ρ̄M2

2
+ ρ̄η

{
1

n1

∑
i∈S1

[
− ρ̄

2
∥wt − ŵt∥2 + C1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥
+

1

n2

∑
j∈S2

C1∥hi,j(wt)− vi,j,t∥+
1

n2

∑
j∈S2

C1∥hi,j(wt)− vi,j,t∥2

+ C1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2]}
(b)
= F1/ρ̄(wt) +

η2ρ̄M2

2
− η

2
∥∇F1/ρ̄(wt)∥2 + C1ρ̄η

1

n1

∑
i∈S1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥
+ C1ρ̄η

1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(wt)− vi,j,t∥+ C1ρ̄η
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(wt)− vi,j,t∥2

+ C1ρ̄η
1

n1

∑
i∈S1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2
where in inequality (a) we use ρ̄ = ρF + 4ρfC

2
g + 2ρgCfC

2
h + CfCgLh and C1 =

max{2CfCg, 2Cf , (2ρfC2
g + ρgCf ), ρf}, and equality (b) uses Lemma 3.2.

With general error bounds
1

n1

∑
i∈S1

1

n2

∑
j∈S2

E[∥hi,j(wt)− vi,j,t∥] ≤ (1− µ1)
t 1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(w0)− vi,j,0∥+R1,

1

n1

∑
i∈S1

1

n2

∑
j∈S2

E[∥hi,j(wt)− vi,j,t∥2] ≤ (1− µ1)
t 1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(w0)− vi,j,0∥2 +R2,

1

n1

∑
i∈S1

E
[∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥] ≤ (1− µ2)
t 1

n+

∑
i∈S+

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,0)− ui,0

∥∥∥∥+R3,

1

n1

∑
i∈S1

E
[∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,t)− ui,t

∥∥∥∥2] ≤ (1− µ2)
t 1

n+

∑
i∈S+

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,0)− ui,0

∥∥∥∥2 +R4,

we have
E[F1/ρ̄(wt+1)]

≤ E[F1/ρ̄(wt)] +
η2ρ̄M2

2
− η

2
E[∥∇F1/ρ̄(wt)∥2] + C1ρ̄η(1− µmin)

t

[
1

n1

∑
i∈S1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,0)− ui,0

∥∥∥∥
+

1

n1

∑
i∈S1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,0)− ui,0

∥∥∥∥2 + 1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(w0)− vi,j,0∥

+
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(w0)− vi,j,0∥2
]
+ C1ρ̄η(R1 +R2 +R3 +R4),

where µmin = min{µ1, µ2}.
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Taking summation from t = 0 to T − 1 yields
E[F1/ρ̄(wT )]

≤ E[F1/ρ̄(w0)] +
η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2] + C1ρ̄η
T−1∑
t=0

(1− µmin)
t∆0

+ TC1ρ̄η(R1 +R2 +R3 +R4)

≤ E[F1/ρ̄(w0)] +
η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2] +
C1ρ̄η∆0

µmin
+ TC1ρ̄η(R1 +R2 +R3 +R4)

where we use
∑T−1
t=0 (1− µmin)

t ≤ 1
µmin

and define constant ∆0 such that[
1

n1

∑
i∈S1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,0)− ui,0

∥∥∥∥+ 1

n1

∑
i∈S1

∥∥∥∥ 1

n2

∑
j∈S2

gi(vi,j,0)− ui,0

∥∥∥∥2
+

1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(w0)− vi,j,0∥+
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥hi,j(w0)− vi,j,0∥2
]
≤ ∆0.

Then it follows
1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2]

≤ 2

ηT

[
F1/ρ̄(w0)− E[F1/ρ̄(wT )] +

η2ρ̄M2T

2
+
C1ρ̄η∆0

µmin
+ TC1ρ̄η(R1 +R2 +R3 +R4)

]
≤ 2∆

ηT
+ ηρ̄M2 +

2C1ρ̄∆0

µminT
+ 2C1ρ̄(R1 +R2 +R3)

= O(
1

T
(
1

η
+

1

µmin
) + η +R1 +R2 +R3 +R4)

where we define constant ∆ such that F1/ρ̄(w0, s0, s
′
0)− E[F1/ρ̄(wT , sT , s

′
T )] ≤ ∆.

With MSVR updates for vi,j,t and ui,t, following from Lemma A.3 and Lemma A.4, we have

µ1 =
B1B2τ1
2n1n2

, µ2 =
B1τ2
2n1

, R1 =
2τ

1/2
1 σ

B
1/2
3

+
4n1n2

√
ChMη

B1B2τ
1/2
1

R2 =
4τ1σ

2

B3
+

16n21n
2
2ChM

2η2

B2
1B

2
2τ1

, R3 =
2τ

1/2
2 σ

B
1/2
2

+
C2n

1/2
1 B

1/2
2 τ1

B
1/2
1 n

1/2
2 τ

1/2
2

+
C2n

3/2
1 n

1/2
2 η

B
3/2
1 B

1/2
2 τ

1/2
2

,

R4 =
4τ2σ

2

B2
+
C2

2n1B2τ
2
1

B1n2τ2
+
C2

2n
3
1n2η

2

B3
1B2τ2

.

Then
1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2]

≤ O
(
1

T
(
1

η
+

1

µmin
) + η +

τ
1/2
1

B
1/2
3

+
τ1
B3

+
τ
1/2
2

B
1/2
2

+
τ2
B2

+
n1n2η

B1B2τ
1/2
1

+
n21n

2
2η

2

B2
1B

2
2τ1

+
n
1/2
1 B

1/2
2 τ1

B
1/2
1 n

1/2
2 τ

1/2
2

+
n
3/2
1 n

1/2
2 η

B
3/2
1 B

1/2
2 τ

1/2
2

+
n1B2τ

2
1

B1n2τ2
+
n31n2η

2

B3
1B2τ2

)

≤ O
(
1

T
(
1

η
+

1

µmin
) +

τ
1/2
1

B
1/2
3

+
τ
1/2
2

B
1/2
2

+
n1n2η

B1B2τ
1/2
1

+
n
1/2
1 B

1/2
2 τ1

B
1/2
1 n

1/2
2 τ

1/2
2

+
n
3/2
1 n

1/2
2 η

B
3/2
1 B

1/2
2 τ

1/2
2

)
.
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Algorithm 3 Stochastic Optimization algorithm for Non-smooth FCCO with coordinate moving
average

1: Initialization: w0, {ui,0 : i ∈ S}.
2: for t = 0, . . . , T − 1 do
3: Draw sample batches Bt1 ∼ S, and Bt2,i ∼ Di for each i ∈ Bt1.

4: ui,t+1 =

{
(1− τ)ui,t + τgi(wt;Bt2,i), i ∈ Bt1
ui,t, i ̸∈ Bt1

5: Compute Gt = 1
B1

∑
i∈Bt1

∂gi(wt;Bt2,i)∂fi(ui,t)
6: Update wt+1 = wt − ηGt
7: end for
8: return wt̄ with uniformly sampled t̄ ∈ {0, T − 1}.

Setting

τ1 = O

(
min{B3,

B
1/2
1 n

1/2
2

n
1/2
1

}ϵ4
)
, τ2 = O(B2ϵ

4),

η = O

(
min

{
B1B2

n1n2
τ
1/2
1 ϵ2,

B
3/2
1 B

1/2
2

n
3/2
1 n

1/2
2

τ
1/2
2

})

= O

(
min

{
B

1/2
3 ,

B
1/4
1 n

1/4
2

n
1/4
1

,
B

1/2
1 n

1/2
2

n
1/2
1

}
B1B2

n1n2
ϵ4

)
,

then with

T = O

(
max

{
1

B
1/2
3

,
n
1/4
1

B
1/4
1 n

1/4
2

,
n
1/2
1

B
1/2
1 n

1/2
2

}
n1n2
B1B2

ϵ−6

)
,

we have

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2] ≤ ϵ2

B Solving Non-smooth FCCO and TCCO with Coordinate Moving Average

In this section we consider solving non-smooth weakly-convex FCCO and TCCO without variance
reduction method. To be specific, we use coordinate moving average updates for function values
estimations instead of MSVR. This allows us to weaken the assumption on the Lipschitz continuity,
i.e. the Lipschitz continuity of the stochastic function value estimation is not required, and can
be replaced by the Lipschitz continuity of the function value. Moreover, compared with MSVR,
coordinate moving average update does not need the stochastic evaluation from the previous iteration,
and thus has a simpler implementation. However, as a result of not using variance reduction technique,
the algorithms suffer from worse convergence rates in terms of ϵ.

B.1 Solving Non-smooth FCCO with Coordinate Moving Average

We first assume the followings assumptions hold.

Assumption B.1. For all i ∈ S, we assume that

• fi(·) is ρf -weakly-convex, Cf -Lipschitz continuous and non-decreasing;

• gi(·) is ρg-weakly-convex and Cg-Lipschitz continuous;

• Stochastic gradient estimators gi(w; ξ) and ∂gi(w; ξ) have bounded variance σ2.

With coordinate moving average update, we present the following lemma of error bound.
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Lemma B.2. Consider the coordinate moving average update for {ui,t : i ∈ S1} in Algorithm 3,
assume gi(w) is Cg-Lipschitz continuous for all i ∈ S1 and τ ≤ 1, then we have

E[∥ui,t+1 − gi(wt+1)∥] ≤ (1− B1τ

4n1
)t+1∥ui,0 − gi(w0)∥+

2
√
2τ1/2σ

B
1/2
2

+
4
√
2n1CgMη

B1τ
,

E[∥ui,t+1 − gi(wt+1)∥2] ≤ (1− B1τ

4n1
)2(t+1)∥ui,0 − gi(w0)∥2 +

8τσ2

B2
+

32n21C
2
gM

2η2

B2
1τ

2
.

Then we have a convergence analysis similar to Theorem 4.6.

Theorem B.3. Consider non-smooth weakly-convex FCCO problem, under Assumption B.1, setting
τ = O(B2ϵ

4) ≤ 1, η = O(B1B2

n1
ϵ6), Algorithm 3 converges to an ϵ-stationary point of the Moreau

envelope F1/ρ̄ in T = O( n1

B1B2
ϵ−8) iterations.

Proof of Theorem B.3. Since the only difference between SONX and Algorithm 3 is the update for
{ui,t : i ∈ S1}, the proof of Theorem 4.6 still holds with the error bound replaced by Lemma B.2,
i.e.,

E
[
1

n

∑
i∈S

∥ui,t+1 − gi(wt+1)∥
]
≤ (1− µ)t+1 1

n

∑
i∈S

∥ui,0 − gi(w0)∥+R1,

E
[
1

n

∑
i∈S

∥ui,t+1 − gi(wt+1)∥2
]
≤ (1− µ)t+1 1

n

∑
i∈S

∥ui,0 − gi(w0)∥2 +R2,

µ =
B1τ

4n1
, R1 =

2
√
2τ1/2σ

B
1/2
2

+
4
√
2n1CgMη

B1τ
, R2 =

8τσ2

B2
+

32n21C
2
gM

2η2

B2
1τ

2
.

Then proof proceeds to

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt)∥2] ≤ O
(
1

T
(
1

η
+

1

µ
) + η +R1 +R2

)

= O

(
1

T
(
1

η
+

n1
B1τ

) + η +
τ1/2σ

B
1/2
2

+
n1η

B1τ
+
τσ2

B2
+
n21η

2

B2
1τ

2

)
.

Setting

τ = O(B2ϵ
4), η = O(

B1B2

n1
ϵ6),

then to reach a nearly ϵ-stationary point, Algorithm 3 needs

T = O(
n1

B1B2
ϵ−8)

iterations.

B.2 Solving Non-smooth TCCO with Coordinate Moving Average

We first assume the following assumptions hold.

Assumption B.4. For all (i, j) ∈ S1 × S2, we assume that

• fi(·) is ρf -weakly-convex, Cf -Lipschitz continuous and non-decreasing;

• gi(·) is ρg-weakly-convex and Cg-Lipschitz continuous. hi,j(·) is differentiable and Ch-Lipschitz
continuous.

• Either gi is monotone and hi,j(·) is Lh-smooth, or gi is non-decreasing and hi,j(·) is Lh-weakly-
convex.

• Stochastic estimators hi,j(w, ξ), ∂hi,j(w, ξ) and gi(vi,j) have bounded variance σ2, and
∥hi,j(w)∥ ≤ C̃h.

With coordinate moving average update, we present the following lemmas of error bounds.
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Algorithm 4 Stochastic Optimization algorithm for Non-smooth TCCO with coordinate moving
average

1: Initialization: w0, {ui,0 : i ∈ S1}, vi,j,0 = hi,j(w0;B0
3,i,j) for all (i, j) ∈ S1 × S2.

2: for t = 0, . . . , T − 1 do
3: Sample batches Bt1 ⊂ S1, Bt2 ⊂ S2, and Bt3,i,j ⊂ Di,j for i ∈ Bt1 and j ∈ Bt2.

4: vi,j,t+1 =

{
(1− τ1)vi,j,t + τ1hi,j(wt;Bt3,i,j), (i, j) ∈ Bt1 × Bt2
vi,j,t, (i, j) ̸∈ Bt1 × Bt2

5: ui,t+1 =

{
(1− τ2)ui,t +

1
B2

∑
j∈Bt2

τ2gi(vi,j,t), i ∈ Bt1
ui,t, i ̸∈ Bt1

6: Gt =
1
B1

∑
i∈Bt1

[(
1
B2

∑
i∈Bt2

∇hi,j(wt;Bt3,i,j)∂gi(vi,j,t)
)
∂fi(ui,t)

]
7: Update wt+1 = wt − ηGt
8: end for
9: return wt̄ with uniformly sampled t̄ ∈ {0, T − 1}.

Lemma B.5. Consider the coordinate moving average update for {vi,j,t : (i, j) ∈ S1 × S2} in
Algorithm 4, assume hi,j(w) is Ch-Lipschitz continuous for all (i, j) ∈ S1 ×S2 and τ1 ≤ 1, then we
have

E

 1

n1n2

∑
i∈S1

∑
j∈S2

∥vi,j,t+1 − hi,j(wt+1)∥


≤ (1− B1B2τ1

4n1n2
)t+1 1

n1n2

∑
i∈S1

∑
j∈S2

∥vi,j,0 − hi,j(w0)∥+
2
√
2τ

1/2
1 σ

B
1/2
3

+
4
√
2n1n2ChMη

B1B2τ1
,

E

 1

n1n2

∑
i∈S1

∑
j∈S2

∥vi,j,t+1 − hi,j(wt+1)∥2


≤ (1− B1B2τ1
4n1n2

)2(t+1) 1

n1n2

∑
i∈S1

∑
j∈S2

∥vi,j,0 − hi,j(w0)∥2 +
8τ1σ

2

B3
+

32n21n
2
2C

2
hM

2η2

B2
1B

2
2τ

2
1

.

Lemma B.6. Consider the coordinate moving average update for {ui,t : i ∈ S1} in Algorithm 4,
assume gi(·) is Cg-Lipschitz continuous for all i ∈ S1 and τ2 ≤ 1, then we have

E

 1

n1

∑
i∈S1

∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥
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n1

∑
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1

n2
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2
√
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B
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+
4
√
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,
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n2

∑
j∈S2

gi(vi,j,t+1)∥2
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≤ (1− B1τ2
4n1
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∑
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1
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8τ2σ
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+

32C2
gM

2n1B2τ
2
1

B1n2τ22
.

Then we have a convergence analysis similar to Theorem A.2.

Theorem B.7. Consider non-smooth weakly-convex TCCO problem, under Assumption B.4,

setting τ1 = O
(
min

{
B3ϵ

4,
B

1/2
1 n

1/2
2

n
1/2
1 B

1/2
2

B2ϵ
6

})
≤ 1, τ2 = O(B2ϵ

4) ≤ 1, η =

O
(
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B3ϵ
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1 n

1/2
2

n
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B2ϵ
6

}
B1B2

n1n2
ϵ2
)

, Algorithm 4 converges to an ϵ-stationary point of the

Moreau envelope F1/ρ̄ in T = O
(
max

{
1
B3
,

n
1/2
1

B
1/2
1 B

1/2
2 n

1/2
2

ϵ−2

}
n1n2

B1B2
ϵ−8

)
iterations.
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Proof of Theorem B.7. Since the only difference between SONT and Algorithm 4 is the update for
{ui,t : i ∈ S1} and {vi,j,t : (i, j) ∈ S1 × S2}, the proof of Theorem A.2 still holds with the error
bound replaced by Lemma B.5 and Lemma B.6, i.e.,

1

n1n2

∑
i∈S1

∑
j∈S2

E[∥hi,j(wt)− vi,j,t∥] ≤ (1− µ1)
t 1

n1n2
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Then the proof proceeds to
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then to reach a nearly ϵ-stationary point, Algorithm 4 need

T = O
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n
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iterations.
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C Details for TPAUC Maximization

C.1 Assumption Verification

We first present two lemmas about the weak convexity of the objective in the regular learning setting
and in the multi-instance learning setting with mean pooling.

Lemma C.1. Consider the formulation in problem (9) in the regular learning setting and assume
that function ℓ(·) is non-decreasing, Cℓ Lipschitz continuous and ρℓ-weakly-convex, and function
hw(Xi) is Ch Lipschitz continuous and ρh-weakly-convex. then the following statements are true:

• fi(g, s′) is convex and Cf -Lipschitz continuous w.r.t. (g, s′), and non-decreasing w.r.t. g.

• ψi(w, si) is ρψ-weakly-convex w.r.t. (w, si), and the stochastic estimator of the finite sum
function value ψi(w, si) is Cψ-Lipschitz continuous w.r.t. (w, si).

• 1
n+

∑
i∈S+

fi(ψi(w, si), s
′) is ρF -weakly-convex w.r.t. (w, s, s′).

Lemma C.2. Consider the formulation in problem (9) in the multi-instance learning setting with
mean pooling, and assume that function hi(w) = 1

|Xi|
∑

x∈Xi e(we;x)
⊤wc is L̃h-smooth and is

bounded by C̃h, and hi(w; ξ) = e(we; ξ)
⊤wc is Ch-Lipschitz continuous and has bounded variance

σ2, ℓ is non-decreasing and Lℓ-weakly-convex, then the followings are true:

• fi(g, s′) is convex and Cf -Lipschitz-continuous w.r.t. (g, s′), and non-decreasing w.r.t. g;

• gi(v, si) = si +
(ℓ(v)−si)+

β is ρg-weakly convex and non-decreasing w.r.t. v, convex w.r.t.
si, and Cg-Lipschitz continuous w.r.t. (v, si);

• hi,j(w) = hj(w)− hi(w) is Lh-weakly-convex, and hi,j(w; ξ, ζ) is Ch-Lipschitz continu-
ous;

• 1
n+

∑
Xi∈S+

fi(gi(hi,j(w), si), s
′) is ρF -weakly-convex w.r.t. (w, s, s′).

C.1.1 Proof of Lemma C.1

Proof of Lemma C.1. The convexity of fi(g, s′) with respect to (g, s′) follows from the convexity
definition. With subgradients ∂s′fi(g, s′) ∈ [1− 1

α , 1], ∂gfi(g, s
′) ∈ [0, 1

α ], we can see that fi(g, s′)
is 1
α -Lipschitz continuous w.r.t. (g, s′), and non-decreasing w.r.t. u.

We first show that ℓ(hw(Xj)− hw(Xi)) is weakly-convex w.r.t. w.
ℓ(hw̃(Xj)− hw̃(Xi))

≥ ℓ(hw(Xj)− hw(Xi)) + ⟨∂ℓ(hw(Xj)− hw(Xi)), (hw̃(Xj)− hw̃(Xi))− (hw(Xj)− hw(Xi))⟩

+
ρℓ
2
∥(hw̃(Xj)− hw̃(Xi))− (hw(Xj)− hw(Xi))∥2

(a)

≥ ℓ(hw(Xj)− hw(Xi)) + ⟨∂ℓ(hw(Xj)− hw(Xi)), ⟨∇hw(Xj)−∇hw(Xi), w̃ −w⟩⟩
+ 2ρℓC

2
h∥w̃ −w∥2

where (a) uses the weak-convexity of hw(Xi) and hw(Xj),

hw̃(Xj)− hw(Xj) ≥ ⟨∇hw(Xj), w̃ −w⟩ − ρh
2
∥w̃ −w∥2,

− hw̃(Xi) + hw(Xi) ≥ −⟨∇hw(Xi), w̃ −w⟩+ ρh
2
∥w̃ −w∥2.

Thus ℓ(hw(Xj)− hw(Xi)) is 4ρℓC2
h-weakly-convex w.r.t. w.
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By convexity of (ℓ, si) 7→ si +
(ℓ−si)+

β , we have

ψi(w̃, s̃i)

≥ ψi(w, si) + ⟨∂ℓψi(w, si), ℓ(hw̃(Xj)− hw̃(Xi))− ℓ(hw(Xj)− hw(Xi))⟩+ ⟨∂siψi(w, si), s̃i − si⟩
(a)

≥ ψi(w, si) + ∂ℓψi(w, si)

[
∂ℓ(hw(Xj)− hw(Xi))⟨∇hw(Xj)−∇hw(Xi), w̃ −w⟩⟩ − 2ρℓC

2
h∥w̃ −w∥2

]
+ ⟨∂siψi(w, si), s̃i − si⟩

(b)

≥ ψi(w, si) + ∂ℓψi(w, si)∂ℓ(hw(Xj)− hw(Xi))⟨∇hw(Xj)−∇hw(Xi), w̃ −w⟩⟩

+ ⟨∂siψi(w, si), s̃i − si⟩ −
2ρℓC

2
h

β
∥w̃ −w∥2

where (a) follows from the monotonicity of ψi w.r.t. ℓ and weak-convexity of ℓ(hw(Xj)− hw(Xi)),

and (b) is due to the Lipschitz continuity of (ℓ, si) 7→ si +
(ℓ−si)+

β w.r.t. ℓ. Thus ψi is 4ρℓC
2
h

β -weakly-
convex w.r.t. (w, si).

With a similar argument using the convexity and Lipschitz continuity of fi(g, s′) w.r.t. (g, s′) and
the weak-convexity of ψi(w, si), we can show that fi(ψi(w, si), s′) is 4ρℓC

2
h

β -weakly-convex w.r.t.

(w, si, s
′). Thus, F (w, si, s′) is ρF =

4ρℓC
2
h

β -weakly-convex w.r.t. (w, s, s′).

Now we show the Lipschitz continuity of ψi(w, si;Xj), i.e. an unbiased stochastic estimator of
ψi(w, si). We have

∥ψi(w, si;Xj)− ψi(w̃, s̃i;Xj)∥2

=

∥∥∥∥(si + (ℓ(hw(Xj)− hw(Xi))− si)+
β

)− (s̃i +
(ℓ(hw̃(Xj)− hw̃(Xi))− s̃i)+

β
)

∥∥∥∥2
≤ 2∥si − s̃i∥2 + 2

∥∥∥∥ (ℓ(hw(Xj)− hw(Xi))− si)+
β

− (ℓ(hw̃(Xj)− hw̃(Xi))− s̃i)+
β

∥∥∥∥2
≤ 2∥si − s̃i∥2 +

2

β2
(8C2

ℓC
2
h∥w̃ −w∥2 + 2∥s̃i − si∥2)

≤ (2 +
4 + 16C2

ℓC
2
h

β2
)(∥w̃ −w∥2 + ∥s̃i − si∥2).

Thus ψi(w, si;Xj) is (2 + 4+16C2
ℓC

2
h

β2 )1/2-Lipschitz continuous w.r.t. (w, si).

C.1.2 Proof of Lemma C.2

Proof of Lemma C.2. First of all, the convexity of fi(u, s′) w.r.t. (u, s′) and the convexity of
gi(vij , si) w.r.t. (ℓ, si) directly follows from the convexity definition. Moreover, one can see
from the formulation that ∂s′fi(g, s′) ∈ [1 − 1

α , 1], ∂ufi(g, s
′) ∈ [0, 1

α ], ∂ℓgi(vij , si) ∈ [1 − 1
β , 1],

∂sigi(vij , si) ∈ [0, 1
β ]. Thus fi is Cf = 1

α -Lipschitz continuous w.r.t. (u, s′) and non-decreasing
w.r.t. u, gi is 1

β -Lipschitz continuous w.r.t. (ℓ, si) and non-decreasing w.r.t. ℓ. Since ℓ(·) is non-
decreasing, gi(vij , si) is non-decreasing w.r.t. vij . As a result of Proposition 4.2, gi(vij , si) is
ρg =

1
βLℓ-weakly-convex w.r.t. vij . Due to the composition structure and the Lipschitz continuity of

gi and ℓ, one can see that gi(vij , si) is Cg = 1
βCℓ-Lipschitz continuous w.r.t. (vij , si).

The Lh = 2L̃h-weakly-convexity of hi,j(w) and Ch = 2C̃h-Lipschitz continuity of hi,j(w; ξ, ζ)

directly follows from the L̃h-smoothness of hi(w) and C̃h-Lipschitz continuity of hi(w; ξ). Finally,
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we show the weakly-convexity of fi(gi(hi,j(w), si), s
′):

fi(gi(hi,j(w̃), s̃i)s̃
′)

(a)

≥ fi(gi(hi,j(w), si), s
′) + ⟨∂s′fi(gi(hi,j(w), si), s

′), s̃′ − s′⟩
+ ⟨∂ufi(gi(hi,j(w), si), s

′), gi(hi,j(w̃), s̃i)− gi(hi,j(w), si)⟩
(b)

≥ fi(gi(hi,j(w), si), s
′) + ⟨∂s′fi(gi(hi,j(w), si), s

′), s̃′ − s′⟩
+ ⟨∂ufi(gi(hi,j(w), si), s

′), ⟨∂ℓgi(hi,j(w), si), ℓ(hi,j(w̃))− ℓ(hi,j(w))⟩⟩
+ ⟨∂ufi(gi(hi,j(w), si)s

′), ⟨∂sigi(hi,j(w), si), s̃i − si⟩⟩
(c)

≥ fi(gi(hi,j(w), si), s
′) + ⟨∂s′fi(gi(hi,j(w), si), s

′), s̃′ − s′⟩
+ ⟨∂ufi(gi(hi,j(w), si), s

′)∂ℓgi(hi,j(w), si)∂ℓ(hi,j(w)), hi,j(w̃)− hi,j(w)⟩

− CfCgLℓ
2

∥hi,j(w̃)− hi,j(w)∥2 + ⟨∂ufi(s′, gi(hi,j(w), si))∂sigi(hi,j(w), si), s̃i − si⟩

(d)

≥ fi(gi(hi,j(w), si), s
′) + ⟨∂s′fi(gi(hi,j(w), si), s

′), s̃′ − s′⟩
+ ⟨∂ufi(gi(hi,j(w), si), s

′)∂ℓgi(hi,j(w), si)∂ℓ(hi,j(w))∇hi,j(w), w̃ −w⟩

+ ⟨∂ufi(gi(hi,j(w), si), s
′)∂sigi(hi,j(w), si), s̃i − si⟩ − (

CfCgC
2
hLℓ

2
+
CfCgLh

2
)∥w̃ −w∥2

where (a) uses the convexity of fi, (b) uses the monotonicity of fi w.r.t. u and convexity of gi(ℓ, si)
w.r.t. (ℓ, si), (c) uses monotonicity of fi w.r.t. u, monotonicity of gi w.r.t. ℓ and Lℓ-weak-convexity
of ℓ, (d) uses the smoothness of hi,j . Thus fi(gi(hi,j(w), si), s

′) is ρF = (CfCgC
2
hLℓ +CfCgLh)-

weakly-convex w.r.t. (w, si, s′). Therefore, 1
n+

∑
i∈S+ fi(gi(hi,j(w), si), s

′) is ρF -weakly-convex
w.r.t. (w, s, s′).

C.2 Algorithms for TPAUC and Multi-instance TPAUC Maximization

Algorithm 5 SONX for TPAUC
1: Initialization: w0, {ui,0 : i ∈ S+}, {si,0 : i ∈ S+}, s′0
2: for t = 0, . . . , T − 1 do
3: Sample batches Bt1 ⊂ S+ and Bt2 ⊂ S−.

4: ui,t+1 =

{
(1− τ)ui,t + τψi(wt, si,t;Bt2) + γ(ψi(wt, si,t;Bt2)− ψi(wt−1, si,t−1;Bt2)), i ∈ Bt1
ui,t, i ̸∈ Bt1

5: si,t+1 =

{
si,t − η 1

B1
∂sψi(wt, si,t;Bt2)∂uf(ui,t, s′t), i ∈ Bt1

si,t, i ̸∈ Bt1
6: s′t+1 = s′t − η 1

B1

∑
i∈Bt1

∂s′f(ui,t, s
′
t)

7: Compute Gt = 1
B1

∑
i∈Bt1

∂wψi(wt, si,t;Bt2)∂uf(ui,t, s′t)
8: Update wt+1 = wt − ηGt
9: end for

10: return wt̄ with t̄ uniformly sampled from {0, . . . , T − 1}.
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Algorithm 6 SONT for Multi-instance TPAUC
1: Initialization: w0, {ui,0 : i ∈ S+}, {si,0 : i ∈ S+}, s′0, {vi,j,0 : (i, j) ∈ S+ × S−}
2: for t = 0, . . . , T − 1 do
3: Sample batches Bt1 ⊂ S+, Bt2 ⊂ S−, and Bt3,i ⊂ Xi for i ∈ Bt1 ∪ Bt2.

4: vi,t+1 =


ΠC̃h [(1− τ1)vi,t + τ1hi(wt;Bt3,i) + γ1(hi(wt;Bt3,i)− hi(wt−1;Bt3,i))], i ∈ Bt1
ΠC̃h [(1− τ1)vi,t + τ1hi(wt;Bt3,i) + γ2(hi(wt;Bt3,i)− hi(wt−1;Bt3,i))], i ∈ Bt2
vi,t, i ̸∈ Bt1 and i ̸∈ Bt2

5: ui,t+1 =


(1− τ2)ui,t +

1
B2

∑
j∈Bt2

[τ2g(vj,t − vi,t, si,t)

+γ3(g(vj,t − vi,t, si,t)− g(vj,t−1 − vi,t−1, si,t−1))], i ∈ Bt1
ui,t, i ̸∈ Bt1

6: si,t+1 =

{
si,t − η1

1
B1

[
1
B2

∑
j∈Bt2

∂sig(vj,t − vi,t, si,t)
]
∂uf(s

′
t, ui,t), i ∈ Bt1

si,t, i ̸∈ Bt1
7: s′t+1 = s′t − η2

1
B1

∑
i∈Bt1

∂s′f(ui,t, s
′
t)

8: Gt =
1
B1

∑
i∈Bt1

∂uf(ui,t, s
′
t)

9:
[

1
B2

∑
j∈Bt2

(
∇hj(wt;Bt3,j)−∇hi(wt;Bt3,i)

)
∂vg(vj,t − vi,t, si,t)

]
10: Update wt+1 = wt − ηGt
11: end for
12: return wt̄ with t̄ uniformly sampled from {0, . . . , T − 1}.

C.3 TPAUC in MIL with smoothed-max pooling and attention-based pooling

We can extend our results to smoothed-max pooling and attention-based pooling.

Smoothed-max Pooling. The smoothed-max pooling can be written as [45]:

hw(X) = τ log

(
1

|X|
∑
x∈X

exp(ϕ(w;x)/τ)

)
, (25)

where τ > 0 is a hyperparameter and ϕ(w;x) = e(we,x)
⊤wc is the prediction score for instance x.

We can see that hw(X) itself is a compositional function. To map the problem into TCCO, we define
hi(w) = 1

|Xi|
∑

x∈Xi exp(ϕ(w;x)/τ) +C, where C > 0 is a constant. Then the objective function
becomes

min
w,s′,s

1

n+

∑
Xi∈S+

fi(ψi(w, si), s
′),

where fi(g, s′) = s′ +
(g − s′)+

α
,

ψi(w, si) =
1

n−

∑
Xj∈S−

si +
(ℓ(τ log hj(w)− τ log hi(w))− si)+

β
,

(26)

In this case we define gi(ℓ(v), si) = si +
(ℓ(τ log v1−τ log v2)−si)+

β and hi,j(w) = [hi(w), hj(w)].
We can still prove that gi(ℓ(v), si) is monotone w.r.t to each component of v. It is not difficult to prove
that ℓ(τ log v1 − τ log v2) is weakly convex w.r.t v because τ log v1 − τ log v2 is a smooth mapping
of v due to v ≥ C and ℓ is a convex function [8]. As a result, since gi(ℓ, si) is non-decreasing and
convex w.r.t to ℓ, it is easy to prove that gi(ℓ(v), si) is weakly convex w.r.t v and is monotone (either
non-decreasing or non-increasing) w.r.t to each component of v. Hence, assuming hi(w) is a smooth
and Lipchitz continuous function, we can prove that gi(hi,j(w), si) is weakly convex w.r.t. to w.

Attention-based Pooling. Attention-based pooling was recently introduced for deep MIL [14], which
aggregates the feature representations using attention, i.e.,

E(w;X) =
∑
x∈X

exp(g(w;x))∑
x′∈X exp(g(w;x′))

e(we;x) (27)
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where g(w;x) is a parametric function, e.g., g(w;x) = w⊤
a tanh(V e(we;x)) + C, where V ∈

Rm×do and wa ∈ Rm. Based on the aggregated feature representation, the bag level prediction can
be computed by

hw(w, X) = (w⊤
c E(w;X)) (28)

=

(∑
x∈X

exp(g(w;x))δ(w;x)∑
x′∈X exp(g(w;x′))

)
,

where δ(w;x) = w⊤
c e(we;x).

We can see that hw(X) itself is a compositional function. To map the problem into TCCO, we define
h1i (w) = 1

|Xi|
∑

x∈Xi exp(g(w;x))δ(w;x), and h2i (w) = 1
|Xi|

∑
x′∈Xi exp(g(w;x′)). Assume

|w⊤
a tanh(V e(we;x))| ≤ Cb then h2i (w) ≥ exp(C − Cb). Then the objective function becomes

min
w,s′,s

1

n+

∑
Xi∈S+

fi(ψi(w, si), s
′),

where fi(g, s′) = s′ +
(g − s′)+

α
, ψi(w, si) =

1

n−

∑
Xj∈S−

si +
(ℓ(

h1
j (w)

h2
j (w)

− h1
i (w)

h2
i (w)

)− si)+

β
,

(29)

In this case we define gi(ℓ(v), si) = si +
(ℓ(

v3
v4

− v1
v2

)−si)+
β and hi,j(w) =

[h1i (w), h2i (w), h1j (w), h2j (w)]. We can still prove that gi(ℓ(v), si) is monotone w.r.t to
each component of v. It is not difficult to prove that ℓ(v3v4 − v1

v2
) is weakly convex w.r.t v because

v3
v4

− v1
v2

is a smooth mapping of v when v2, v4 are lower bounded and ℓ is a convex function [8]. As
a result, since gi(ℓ, si) is non-decreasing and convex w.r.t to ℓ, it is easy to prove that gi(ℓ(v), si)
is weakly convex w.r.t v and is monotone (either non-decreasing or non-increasing) w.r.t to each
component of v. Hence, assuming h1i (w), h2i (w) are smooth and Lipchitz continuous, we can prove
that gi(hi,j(w), si) is weakly convex w.r.t. to w.

C.4 Convergence Analysis of TPAUC Maximization

C.4.1 Convergence analysis for Algorithm 5

We first consider TPAUC maximization in the regular learning setting. Define F (w, s, s′) :=
1
n+

∑
Xi∈S+

fi(ψi(w, si), s
′). Due to the weak-convexity ofF (w, s, s′) w.r.t. (w, s, s′), we consider

the following Moreau envelope and proximal map defined as

Fλ(w, s, s
′) = min

w̃,s̃,s̃′
F (w̃, s̃, s̃′) +

1

2λ

(
∥w̃ −w∥2 + ∥s̃− s∥2 + ∥s̃′ − s′∥2

)
,

proxλF (w, s, s
′) = argmin

w̃,s̃,s̃′
F (w̃, s̃, s̃′) +

1

2λ

(
∥w̃ −w∥2 + ∥s̃− s∥2 + ∥s̃′ − s′∥2

)
.

Following the same proof of Lemma 4.5, we have the following error bound

Lemma C.3. Consider the update for {ui,t : Xi ∈ S+} in Algorithm 5. Assume
ψi(w, si) is Cψ-Lipshitz continuous for all Xi ∈ S+. Assume Et[∥Gt∥2] ≤ M2 and
Et[∥ 1

B1

∑
Xi∈Bt1

∂sψi(wt, si,t;Bt2)∂uf(ui,t, s′t)ei∥2] ≤M2, where ei is the n+-dimensional vector

with 1 at the i-th entry and 0 everywhere else. With γ = n+−B1

B1(1−τ) + (1− τ) and τ ≤ 1
2 , we have

E
[

1

n+

∑
Xi∈S+

∥ui,t+1 − ψi(wt+1, si,t+1)∥
]

≤ (1− B1τ

2n1
)t+1 1

n

∑
Xi∈S+

∥ui,0 − ψi(w0, si,0)∥+
2τ1/2σ

B
1/2
2

+
8n+CψMη

B1τ1/2
.

Then we have following convergence guarantee.
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Theorem C.4. Under the assumptions given in Lemma C.1, with γ = n+−B1

B1(1−τ) + (1 − τ), τ =

O(B2ϵ
4) ≤ 1

2 , η = O(
B1B

1/2
2 ϵ4

n+
), and ρ̄ = ρF + ρψCf , Algorithm 5 converges to an ϵ-stationary

point of the Moreau envelope F1/ρ̄ in T = O( n+

B1B
1/2
2

ϵ−6) iterations.

Proof of Theorem C.4. Define (ŵt, ŝt, ŝ
′
t) := proxF/ρ̄(wt, st, s

′
t). For a given Xi ∈ S+, we have

fi(ψi(ŵt, ŝi,t), ŝ
′
t)− fi(ui,t, s

′
t)

(a)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)(ψi(ŵt, ŝi,t)− ui,t)

(b)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)

[
ψi(wt, si,t)− ui,t + ⟨∂wψi(wt, si,t), ŵt −wt⟩

− ρψ
2
∥ŵt −wt∥2 + ⟨∂siψi(wt, si,t), ŝi,t − si,t⟩ −

ρψ
2
∥ŝi,t − si,t∥2

]
(c)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)
[
ψi(wt, si,t)− ui,t

]
+ ⟨∂ufi(ui,t, s′t)∂wψi(wt, si,t), ŵt −wt⟩

+ ⟨∂ufi(ui,t, s′t)∂siψi(wt, si,t), ŝi,t − si,t⟩ −
ρψCf
2

(
∥ŵt −wt∥2 + ∥ŝi,t − si,t∥2

)
where (a) follows from the convexity of fi, (b) follows from the monotonicity of fi(·, s′) and weak
convexity of ψi, (c) is due to 0 ≤ ∂ufi(ui,t, s

′
t) ≤ Cf . Then it follows

1

n+

∑
Xi∈S+

[
∂s′fi(ui,t, s

′
t)(ŝ

′
t − s′t) + ⟨∂ufi(ui,t, s′t)∂wψi(wt, si,t), ŵt −wt⟩

+ ⟨∂ufi(ui,t, s′t)∂siψi(wt, si,t), ŝi,t − si,t⟩
]

≤ 1

n+

∑
Xi∈S+

[
fi(ψi(ŵt, ŝi,t), ŝ

′
t)− fi(ui,t, s

′
t)− ∂ufi(ui,t, s

′
t)
[
ψi(wt, si,t)− ui,t

]
+
ρψCf
2

(
∥ŵt −wt∥2 + ∥ŝi,t − si,t∥2

) ]
(30)

Now we consider the change in the Moreau envelope:
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

= Et
[
min
w̃,s̃,s̃′

F (w̃, s̃t, s̃
′
t) +

ρ̄

2

(
∥w̃ −wt+1∥2 + ∥s̃− st+1∥2 + ∥s̃′ − s′t+1∥2

)]
≤ Et

[
F (ŵt, ŝt, ŝ

′
t) +

ρ̄

2

(
∥ŵt −wt+1∥2 + ∥ŝt − st+1∥2 + ∥ŝ′t − s′t+1∥2

)]
= F (ŵt, ŝt, ŝ

′
t) + Et

[
ρ̄

2

(
∥ŵt − (wt − ηGt)∥2 + ∥ŝt − (st − ηG1

t )∥2

+ ∥ŝ′t − (s′t − ηG2
t )∥2

)]
≤ F (ŵt, ŝt, ŝ

′
t) +

ρ̄

2

(
∥ŵt −wt∥2 + ∥ŝt − st∥2 + ∥ŝ′t − s′t∥2

)
+ ρ̄Et[η⟨ŵt −wt, Gt⟩+ η⟨ŝt − st, G

1
t ⟩+ η⟨ŝ′t − s′t, G

2
t ⟩] +

3η2ρ̄M2

2

= F1/ρ̄(wt, st, s
′
t) + ρ̄Et[η⟨ŵt −wt, Gt⟩+ η⟨ŝt − st, G

1
t ⟩+ η⟨ŝ′t − s′t, G

2
t ⟩]

+
3η2ρ̄M2

2

(31)

where for simplicity we denote G1
t = 1

B1

∑
Xi∈Bt1

∂ufi(ui,t, s
′
t)∂sψi(wt, si,t;Bt2) and G2

t =
1
B1

∑
Xi∈Bt1

∂s′fi(ui,t, s
′
t). The second inequality in the above derivation uses the bounds of

E[∥Gt∥2],E[∥G1
t∥2] and E[∥G2

t∥2], which follow from the Lipschitz continuity and bounded variance
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assumptions and are denoted by M . Moreover, we have
Et[η⟨ŵt −wt, Gt⟩+ η⟨ŝt − st, G

1
t ⟩+ η⟨ŝ′t − s′t, G

2
t ⟩]

= η⟨ŵt −wt,Et[Gt]⟩+ η⟨ŝt − st,Et[G1
t ]⟩+ η⟨ŝ′t − s′t,Et[G2

t ]⟩,
and

Et[Gt] =
1

n+

∑
Xi∈S+

∂ufi(ui,t, s
′
t)∂wψi(wt, si,t)

Et[G1
t ] =

1

n+

∑
Xi∈S+

∂ufi(ui,t, s
′
t)∂sψi(wt, si,t)

Et[G2
t ] =

1

n+

∑
Xi∈S+

∂s′fi(ui,t, s
′
t).

Combining inequality (30) and (31) yields
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
+
ρ̄η

n+

∑
Xi∈S+

[
fi(ψi(ŵt, ŝi,t), ŝ

′
t)− fi(ui,t, s

′
t)

− ∂ufi(ui,t, s
′
t)
[
ψi(wt, si,t)− ui,t

]
+
ρψCf
2

(
∥ŵt −wt∥2 + ∥ŝi,t − si,t∥2

) ]
≤ F1/ρ̄(wt, st, s

′
t) +

3η2ρ̄M2

2
+ ρ̄η(F (ŵt, ŝt, ŝ

′
t)− F (wt, st, s

′
t))

+
ρ̄η

n+

∑
Xi∈S+

[
fi(ψi(wt, si,t), s

′
t)− fi(ui,t, s

′
t)− ∂ufi(ui,t, s

′
t)
[
ψi(wt, si,t)− ui,t

]
+
ρψCf
2

(
∥ŵt −wt∥2 + ∥ŝi,t − si,t∥2

) ]

(32)

Due to the ρF -weak convexity of F (w, s, s′), we have (ρ̄ − ρF )-strong convexity of (w, s, s′) 7→
F (w, s, s′) + ρ̄

2∥(wt, st, s
′
t)− (w, s, s′)∥2. Then it follows

F (ŵt, ŝt, ŝ
′
t)− F (wt, st, s

′
t) =

[
F (ŵt, ŝt, ŝ

′
t) +

ρ̄

2
∥(wt, st, s

′
t)− (ŵt, ŝt, ŝ

′
t)∥2

]
−
[
F (wt, st, s

′
t) +

ρ̄

2
∥(wt, st, s

′
t)− (wt, st, s

′
t)∥2

]
− ρ̄

2
∥(wt, st, s

′
t)− (ŵt, ŝt, ŝ

′
t)∥2

≤ (
ρF
2

− ρ̄)∥(wt, st, s
′
t)− (ŵt, ŝt, ŝ

′
t)∥2

(33)

Plugging inequality (33) into inequality (32) yields
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

≤ E[F1/ρ̄(wt, st, s
′
t)] +

3η2ρ̄M2

2
+ ρ̄η(

ρF
2

− ρ̄)∥(wt, st, s
′
t)− (ŵt, ŝt, ŝ

′
t)∥2

+
ρ̄η

n+

∑
Xi∈S+

[
fi(ψi(wt, si,t), s

′
t)− fi(ui,t, s

′
t)− ∂ufi(ui,t, s

′
t)
[
ψi(wt, si,t)− ui,t

]
+
ρψCf
2

(
∥ŵt −wt∥2 + ∥ŝi,t − si,t∥2

) ]
(34)

Set ρ̄ = ρF + ρψCf . We have
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Et[F1/ρ̄(wt+1, st+1, s
′
t+1)]

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
− ρ̄2η

2
∥(wt, st, s

′
t)− (ŵt, ŝt, ŝ

′
t)∥2

+
ρ̄η

n+

∑
Xi∈S+

[
fi(ψi(wt, si,t), s

′
t)− fi(ui,t, s

′
t)− ∂ufi(ui,t, s

′
t)
[
ψi(wt, si,t)− ui,t

]]
(a)

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
− η

2
∥∇φ1/ρ̄(wt, st, s

′
t)∥2

+
ρ̄η

n+

∑
Xi∈S+

[
fi(ψi(wt, si,t), s

′
t)− fi(ui,t, s

′
t)− ∂ufi(ui,t, s

′
t)
[
ψi(wt, si,t)− ui,t

]]

where inequality (a) follows from Lemma 3.2.

Using the Lipschitz continuity of f , we have
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
− η

2
∥∇F1/ρ̄(wt, st, s

′
t)∥2

+
ρ̄η

n+

∑
Xi∈S+

2Cf∥ψi(wt, si,t)− ui,t∥
(35)

With the error bound from Lemma C.3, we have

E

 1

n+

∑
Xi∈S+

∥ψi(wt, si,t)− ui,t∥

 ≤ (1− µ)t
1

n+

∑
Xi∈S+

∥ψi(w0, si,0)− ui,0∥+R

with µ = B1τ
2n+

, R = 2τ1/2σ

B
1/2
2

+
4n+CψMη

B1τ1/2 +
4n

1/2
+ CψMη

B1τ1/2 . Then

E[F1/ρ̄(wt+1, st+1, s
′
t+1)]

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
− η

2
E[∥∇F1/ρ̄(wt, st, s

′
t)∥2]

+ 2Cf ρ̄η

(1− µ)t
1

n+

∑
Xi∈S+

∥ψi(w0, si,0)− ui,0∥+R

 (36)

Taking summation from t = 0 to T − 1 yields
E[F1/ρ̄(wT , sT , s

′
T )]

≤ F1/ρ̄(w0, s0, s
′
0) +

3η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt, st, s
′
t)∥2]

+ 2Cf ρ̄η

T−1∑
t=0

(1− µ)t
1

n+

∑
Xi∈S+

∥ψi(w0, si,0)− ui,0∥+RT


(a)

≤ F1/ρ̄(w0, s0, s
′
0) +

3η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt, st, s
′
t)∥2]

+
4Cf ρ̄η

µ

∑
Xi∈S+

1

n+
∥ψi(w0, si,0)− ui,0∥+ 2Cf ρ̄ηRT

(37)

where (a) uses
∑T−1
t=0 (1− µ)t ≤ 1

µ .
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Lower bounding the left-hand-side by minw,s,s′ F1/ρ̄(w, s, s
′), we obtain

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt, st, s
′
t)∥2]

≤ 2

ηT

[
F1/ρ̄(w0, s0, s

′
0)− min

w,s,s′
F1/ρ̄(w, s, s

′) +
3η2ρ̄M2T

2

+
4Cf ρ̄η

n+

∑
Xi∈S+

∥ψi(w0, si,0)− ui,0∥+ 2Cf ρ̄ηRT

]
≤ 2∆

ηT
+ 3ηρ̄M2 +

8Cf ρ̄

µTn+

∑
Xi∈S+

∥ψi(w0, si,0)− ui,0∥+ 4Cf ρ̄R

≤ C

T
(
1

η
+

1

µ
) + C(η +R)

where we assume F1/ρ̄(w0, s0, s
′
0)−minw,s,s′ F1/ρ̄(w, s, s

′) ≤ ∆ and

C = max{8∆, 12ρ̄M2, 32Cf ρ̄
∑

Xi∈S+

∥ψi(w0, si,0)− ui,0∥, 16Cf ρ̄}.

Plugging the expression of µ and R yields

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt, st, s
′
t)∥2]

≤ O

(
1

T
(
1

η
+

n+
B1τ

) + (
τ1/2σ

B
1/2
2

+
n+η

B1τ1/2
)

)
Setting τ = O(B2ϵ

4) and η = O(
B1B

1/2
2

n+
ϵ4), with T = O( n+

B1B
1/2
2

ϵ−6) iterations, we have

1

T

T−1∑
t=0

E[∥∇F1/ρ̄(wt, st, s
′
t)∥2] ≤ ϵ2.

C.4.2 Convergence analysis for Algorithm 6

We now consider MIL TPAUC maximization with mean pooling. Define F (w, s, s′) :=
1
n+

∑
Xi∈S+

fi(gi(hj(w)−hi(w), si), s
′). Due to the weak-convexity of F (w, s, s′) w.r.t. (w, s, s′),

we consider the following Moreau envelope and proximal map defined as

Fλ(w, s, s
′) = min

w̃,s̃,s̃′
F (w̃, s̃, s̃′) +

1

2λ

(
∥w̃ −w∥2 + ∥s̃− s∥2 + ∥s̃′ − s′∥2

)
,

proxλF (w, s, s
′) = argmin

w̃,s̃,s̃′
F (w̃, s̃, s̃′) +

1

2λ

(
∥w̃ −w∥2 + ∥s̃− s∥2 + ∥s̃′ − s′∥2

)
.

Following the same proofs of Lemma A.3 and Lemma A.4, we have the following error bounds

Lemma C.5. Consider the update for {vi,t : Xi ∈ S+ ∪ S−} in Algorithm 6. Assume hi(w; ξ)

is Ch-Lipshitz for all Xi ∈ S+ ∪ S−, and E[∥Gt∥2] ≤ M2. With γ1 = n+−B1

B1(1−τ1) + (1 − τ1),
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γ2 = n−−B2

B2(1−τ1) + (1− τ1) and τ1 ≤ 1
2 , we have

E
[

1

n+

∑
Xi∈S+

∥vi,t+1 − hi(wt+1)∥
]
≤ (1− B1τ1

2n+
)t+1

∑
Xi∈S+

∥vi,0 − hi(wt)∥+ 2τ
1/2
1 σ +

4n+ChMη

B1τ
1/2
1

E
[

1

n−

∑
Xj∈S−

∥vj,t+1 − hj(wt+1)∥
]
≤ (1− B1τ1

2n−
)t+1 1

n−

∑
Xj∈S−

∥vj,0 − hj(wt)∥+ 2τ
1/2
1 σ +

4n−ChMη

B1τ
1/2
1

E
[

1

n+

∑
Xi∈S+

∥vi,t+1 − hi(wt+1)∥2
]
≤ (1− B1τ1

2n+
)2(t+1) 1

n+

∑
Xi∈S+

∥vi,0 − hi(wt)∥2 + 4τ1σ
2 +

16n2+C
2
hM

2η2

B2
1τ1

E
[

1

n−

∑
Xj∈S−

∥vj,t+1 − hj(wt+1)∥2
]
≤ (1− B1τ1

2n−
)2(t+1) 1

n−

∑
Xj∈S−

∥vj,0 − hj(wt)∥2 + 4τ1σ
2 +

16n2−C
2
hM

2η2

B2
1τ1

Lemma C.6. Consider update for {ui,t : Xi ∈ S+} in Algorithm 6. Assume gi(vij , si) isCg-Lipshitz
w.r.t. (vij , si) for all Xi ∈ S+ and Xj ∈ S−. With γ3 = n+−B1

B1(1−τ2) + (1− τ2) and τ2 ≤ 1
2 , we have

E

 1

n+

∑
Xi∈S+

∥ui,t+1 −
1

n−

∑
Xj∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥


≤ (1− B1τ2

2n+
)t+1 1

n+

∑
Xi∈S+

∥ui,0 −
1

n−

∑
Xj∈S−

gi(vj,0 − vi,0, si,0)∥+ 2τ
1/2
2 σ

+ C2
n+
B1

(
B

1/2
1

n
1/2
+

+
B

1/2
2

n
1/2
−

)
τ1

τ
1/2
2

+ C2
n+
B1

(
n
1/2
+

B
1/2
1

+
n
1/2
−

B
1/2
2

)
η

τ
1/2
2

+ C2
n
1/2
+ η

B1τ
1/2
2

where C2 is a constant defined in the proof.

Then we have the following covnergence guarantee.

Theorem C.7. Under assumptions given in Lemma C.2, with γ1 = n1−B1

B1(1−τ1) +

(1 − τ1), γ2 = n2−B2

B2(1−τ1) + (1 − τ1), γ3 = n1−B1

B1(1−τ2) + (1 − τ2), τ1 =

O
(
min

{
B3,

B1

n+
min{ n

1/2
+

B
1/2
1

,
n
1/2
−

B
1/2
2

}B1/2
2

}
ϵ4
)

≤ 1/2, τ2 = O(B2ϵ
4) ≤ 1/2, η =

O
(
min

{
min{B1

n+
, B2

n−
}min{B1/2

3 ,
B

1/2
1

n
1/2
+

min{ n
1/4
+

B
1/4
1

,
n
1/4
−

B
1/4
2

}B1/4
2 }, B1

n+
min{B

1/2
1

n
1/2
+

,
B

1/2
2

n
1/2
−

}B1/2
3

}
ϵ4
)

,

then after

T ≥ O

(
max

{
max{n+

B1
,
n−
B2

}max{ 1

B
1/2
3

,
n
1/2
+

B
1/2
1

max{B
1/4
1

n
1/4
+

,
B

1/4
2

n
1/4
−

} 1

B
1/4
2

}, n+
B1

max{
n
1/2
+

B
1/2
1

,
n
1/2
−

B
1/2
2

} 1

B
1/2
2

}
ϵ−6

)
iterations, Algorithm 6 gives ϵ-stationary point to the Moreau envelope, i.e.,

1

T

T−1∑
t=0

∥∇F1/ρ̄(wt, st, s
′
t)∥2 ≤ ϵ2.

where ρ̄ = ρF + ρgCf + 8ρgCfCh + CfCgLh.
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Proof of Theorem C.7. Consider the change in the Moreau envelope:
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

= Et
[
min
w̃,s̃,s̃′

F (w̃, s̃t, s̃
′
t) +

ρ̄

2

(
∥w̃ −wt+1∥2 + ∥s̃− st+1∥2 + ∥s̃′ − s′t+1∥2

)]
≤ Et

[
F (ŵt, ŝt, ŝ

′
t) +

ρ̄

2

(
∥ŵt −wt+1∥2 + ∥ŝt − st+1∥2 + ∥ŝ′t − s′t+1∥2

)]
= F (ŵt, ŝt, ŝ

′
t) + Et

[
ρ̄

2

(
∥ŵt − (wt − ηGt)∥2 + ∥ŝt − (st − ηG1

t )∥2

+ ∥ŝ′t − (s′t − ηG2
t )∥2

)]
≤ F (ŵt, ŝt, ŝ

′
t) +

ρ̄

2

(
∥ŵt −wt∥2 + ∥ŝt − st∥2 + ∥ŝ′t − s′t∥2

)
+ ρ̄Et[η⟨ŵt −wt, Gt⟩+ η⟨ŝt − st, G

1
t ⟩+ η⟨ŝ′t − s′t, G

2
t ⟩] +

3η2ρ̄M2

2

= F1/ρ̄(wt, st, s
′
t) + ρ̄Et[η⟨ŵt −wt, Gt⟩+ η⟨ŝt − st, G

1
t ⟩+ η⟨ŝ′t − s′t, G

2
t ⟩]

+
3η2ρ̄M2

2

(38)

where for simplicity we denote G2
t =

1
B1

∑
i∈Bt1

∂s′fi(ui,t, s
′
t), and G1

t is a n+-dimensional vector
whose i-th coordinate is defined as{

1
B1
∂ufi(ui,t, s

′
t)
[

1
B2

∑
Xj∈Bt2

∂sigi(vj,t − vi,t, si,t)
]
, Xi ∈ Bt1

0, Xi ̸∈ Bt1
.

The second inequality in the above derivation uses the bounds of E[∥Gt∥2],E[∥G1
t∥2] and E[∥G2

t∥2],
which follow from the Lipschitz continuity and bounded variance assumptions and are denoted by
M .

Note that
Et[Gt]

=
1

n+

∑
Xi∈S+

∂ufi(ui,t, s
′
t)

 1

n−

∑
Xj∈S−

∂vgi(vj,t − vi,t, si,t) (∇hi(w)−∇hj(w))


Et[G1

t ] =
1

n+

∑
Xi∈S+

∂ufi(ui,t, s
′
t)

 1

n−

∑
Xj∈S−

∂sgi(vj,t − vi,t, si,t)


Et[G2

t ] =
1

n+

∑
Xi∈S+

∂s′fi(ui,t, s
′
t)
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Define (ŵt, ŝt, ŝ
′
t) := proxF/ρ̄(wt, st, s

′
t). For a given i ∈ {1, . . . ,m}, we have

fi(
1

n−

∑
Xj∈S−

gi(hj(ŵt)− hi(ŵt), ŝi,t), ŝ
′
t)− fi(ui,t, s

′
t)

(a)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)(

1

n−

∑
Xj∈S−

gi(hj(ŵt)− hi(ŵt), ŝi,t)− ui,t)

(b)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)

[
1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

+
1

n−

∑
Xj∈S−

⟨∂vgi(vj,t − vi,t, si,t), (hj(ŵt)− hi(ŵt))− (vj,t − vi,t))⟩

− 1

n−

∑
Xj∈S−

ρg
2
∥(hj(ŵt)− hi(ŵt))− (vj,t − vi,t)∥2

+ ⟨ 1

n−

∑
Xj∈S−

∂sigi(vj,t − vi,t), si,t, ŝi,t − si,t⟩ −
ρg
2
∥ŝi,t − si,t∥2

]
(c)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)

[
1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

]
+

1

n−

∑
Xj∈S−

⟨∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t), (hj(ŵt)− hi(ŵt))− (vj,t − vi,t))⟩︸ ︷︷ ︸
A1

+
1

n−

∑
Xj∈S−

⟨∂ufi(ui,t, s′t)∂sigi(vj,t − vi,t, si,t), ŝi,t − si,t⟩

− 1

n−

∑
Xj∈S−

ρgCf
2

∥(hj(ŵt)− hi(ŵt))− (vj,t − vi,t)∥2 −
ρgCf
2

∥ŝi,t − si,t∥2

(39)

where (a) follows from the convexity of fi, (b) follows from the monotonicity of fi(·, s′) and weak
convexity of gi, (c) is due to 0 ≤ ∂ufi(ui,t, s

′
t) ≤ Cf .

The Lh-smoothness assumption of hi(w)− hj(w) for all i,w implies
hi(ŵt)− hj(ŵt)

≥ hi(wt)− hj(wt) + ⟨(∇hi(wt)−∇hj(wt)), ŵt −wt⟩ −
Lh
2
∥ŵt −wt∥2

(40)

Since ∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t) ≥ 0, we bound A1 as following
A1 = ⟨∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t), (hj(ŵt)− hi(ŵt))− (vj,t − vi,t))⟩

(a)

≥ ⟨∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t), (hi(wt)− hj(wt))− (vj,t − vi,t))⟩

− ⟨∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t),
Lh
2
∥ŵt −wt∥2⟩

+ ⟨∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t)(∇hi(wt)−∇hj(wt)), ŵt −wt⟩
(b)

≥ −CfCg[∥hi(wt)− vi,t∥+ ∥hj(wt)− vj,t∥]−
CfCgLh

2
∥ŵt −wt∥2

+ ⟨∂ufi(ui,t, s′t)∂ℓgi(vj,t − vi,t, si,t)(∇hi(wt)−∇hj(wt)), ŵt −wt⟩
where inequality (a) follows from inequality (40), (b) follows from the Lipschitz continuity and mono-
tone assumptions on fi, gi, hi, hj . Then plugging the new formulation of A1 back to inequality (39)
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yields

fi(
1

n−

∑
Xj∈S−

gi(hj(ŵt)− hi(ŵt), ŝi,t), ŝ
′
t)− fi(ui,t, s

′
t)

≥ ∂s′fi(ui,t, s
′
t)(ŝ

′
t − s′t) + ∂ufi(ui,t, s

′
t)

[
1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

]
+

1

n−

∑
Xj∈S−

[−CfCg[∥hi(wt)− vi,t∥+ ∥hj(wt)− vj,t∥]]−
CfCgLh

2
∥ŵt −wt∥2

+
1

n−

∑
Xj∈S−

⟨∂ufi(ui,t, s′t)∂vgi(vj,t − vi,t, si,t)(∇hi(wt)−∇hj(wt)), ŵt −wt⟩

+
1

n−

∑
Xj∈S−

⟨∂ufi(ui,t, s′t)∂sigi(vj,t − vi,t, si,t), ŝi,t − si,t⟩

− 1

n−

∑
Xj∈S−

ρgCf
2

∥(hj(ŵt)− hi(ŵt))− (vj,t − vi,t)∥2 −
ρgCf
2

∥ŝi,t − si,t∥2

Taking average over i ∈ S+ gives
1

n+

∑
Xi∈S+

fi(
1

n−

∑
Xj∈S−

gi(hj(ŵt)− hi(ŵt), ŝi,t), ŝ
′
t)− fi(ui,t, s

′
t)

≥ ⟨Et[G2
t ], ŝ

′
t − s′t⟩+ ⟨Et[Gt], ŵt −wt⟩+ ⟨Et[G1

t ], ŝt − st⟩

+
1

n+

∑
Xi∈S+

∂ufi(ui,t, s
′
t)

[
1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

]

− CfCg

 1

n+

∑
Xi∈S+

∥hi(wt)− vi,t∥+
1

n−

∑
Xj∈S−

∥hj(wt)− vj,t∥

− CfCgLh
2

∥ŵt −wt∥2

− 1

n+

∑
Xi∈S+

1

n−

∑
Xj∈S−

ρgCf
2

∥(hj(ŵt)− hi(ŵt))− (vj,t − vi,t)∥2 −
1

n+

∑
Xi∈S+

ρgCf
2

∥ŝi,t − si,t∥2

It follows
⟨Et[G2

t ], ŝ
′
t − s′t⟩+ ⟨Et[Gt], ŵt −wt⟩+ ⟨Et[G1

t ], ŝt − st⟩

≤ 1

n+

∑
Xi∈S+

[
fi(

1

n−

∑
Xj∈S−

gi(hj(ŵt)− hi(ŵt), ŝi,t), ŝ
′
t)− fi(ui,t, s

′
t)

− ∂ufi(ui,t, s
′
t)

[
1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

]

+
1

n−

∑
Xj∈S−

ρgCf
2

∥(hj(ŵt)− hi(ŵt))− (vj,t − vi,t)∥2 +
ρgCf
2

∥ŝi,t − si,t∥2
]

+ CfCg

[
1

n+

∑
Xi∈S+

∥hi(wt)− vi,t∥+
1

n−

∑
Xj∈S−

∥hj(wt)− vj,t∥
]
+
CfCgLh

2
∥ŵt −wt∥2

(41)
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Combining inequality (38) and (41) yields
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

= F1/ρ̄(wt, st, s
′
t) + ρ̄η

[
⟨ŵt −wt,Et[Gt]⟩+ ⟨ŝt − st,Et[G1

t ]⟩+ ⟨ŝ′t − s′t,Et[G2
t ]⟩
]

+
3η2ρ̄M2

2
(a)

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
+ ρ̄η

{
1

n+

∑
Xi∈S+

[
Fi(ŝ

′
t, ŵt, ŝi,t)− Fi(s

′
t,wt, si,t)

+ CfCg
1

n−

∑
Xj∈S−

[
∥hi(wt)− vi,t∥+ ∥hj(wt))− vj,t∥

]
+ Cf

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥+ Cf

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥
+

1

n−

∑
Xj∈S−

ρgCf
[
∥(hi(ŵt)− vi,t∥2 + ∥hj(ŵt))− vj,t∥2

]
+
ρgCf
2

∥ŝi,t − si,t∥2
]

+ CfCg

[
1

n+

∑
Xi∈S+

∥hi(wt)− vi,t∥+
1

n−

∑
Xj∈S−

∥hj(wt)− vj,t∥
]
+
CfCgLh

2
∥ŵt −wt∥2

}

= F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
+ ρ̄η(F (ŵt, ŝt, ŝ

′
t)− F (wt, st, s

′
t))

+ ρ̄η

{
1

n+

∑
Xi∈S+

[
2CfCg
n−

∑
Xj∈S−

[
∥hi(wt)− vi,t∥+ ∥hj(wt))− vj,t∥

]
+

2ρgCf
n−

∑
Xj∈S−

[
∥hi(wt)− vi,t∥2 + ∥hj(wt))− vj,t∥2

]
+ 4ρgCfCh∥ŵt −wt∥2

+ 2Cf

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥+ ρgCf
2

∥ŝi,t − si,t∥2
]
+
CfCgLh

2
∥ŵt −wt∥2

}
(42)

where (a) follows from the Lipschitz continuity of fi, gi, hi, hj and inequality (41).

Due to the ρF -weak convexity of F (w, si, s′), we have (ρ̄− ρF )-strong convexity of (w, si, s′) 7→
F (w, s, s′) + ρ̄

2∥(wt, st, s
′
t)− (w, s, s′)∥2. Then it follows

F (ŵt, ŝt, ŝ
′
t)− Fi(wt, st, s

′
t) =

[
Fi(ŵt, ŝt, ŝ

′
t) +

ρ̄

2
∥(wt, st, s

′
t)− (ŵt, ŝt, ŝ

′
t)∥2

]
−
[
Fi(wt, st, s

′
t) +

ρ̄

2
∥(wt, st, s

′
t)− (wt, st, s

′
t)∥2

]
− ρ̄

2
∥(wt, st, s

′
t)− (ŵt, ŝt, ŝ

′
t)∥2

≤ (
ρF
2

− ρ̄)∥(wt, st, s
′
t)− (ŵt, ŝt, ŝ

′
t)∥2

(43)
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Plugging inequality (43) back into (42), we obtain
Et[F1/ρ̄(wt+1, st+1, s

′
t+1)]

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
+ ρ̄η

{
1

n+

∑
Xi∈S+

[
(
ρF
2

− ρ̄)∥(wt, st, s
′
t)− (ŵt, ŝt, ŝ

′
t)∥2

+
2CfCg
n−

∑
Xj∈S−

[
∥hi(wt)− vi,t∥+ ∥hj(wt)− vj,t∥

]
+

2ρgCf
n−

∑
Xj∈S−

[
∥hi(wt)− vi,t∥2 + ∥hj(wt)− vj,t∥2

]
+ 2Cf

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥+ ρgCf
2

∥ŝi,t − si,t∥2
]
+ (4ρgCfCh +

CfCgLh
2

)∥ŵt −wt∥2
}

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
+ ρ̄η

{
1

n+

∑
Xi∈S+

[
− ρ̄

2
∥(wt, st, s

′
t)− (ŵt, ŝt, ŝ

′
t)∥2

+
C1

n−

∑
Xj∈S−

[
∥hi(wt)− vi,t∥+ ∥hj(wt)− vj,t∥+ ∥hi(wt)− vi,t∥2 + ∥hj(wt)− vj,t∥2

]
+ C1

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥]
}

(b)

≤ F1/ρ̄(wt, st, s
′
t) +

3η2ρ̄M2

2
− η

2
∥∇F1/ρ̄(wt, st, s

′
t)∥2

+
ρ̄ηC1

n+n−

∑
Xi∈S+

∑
Xj∈S−

[
∥hi(wt)− vi,t∥+ ∥hj(wt)− vj,t∥+ ∥hi(wt)− vi,t∥2 + ∥hj(wt)− vj,t∥2

]
+
ρ̄ηC1

n+

∑
Xi∈S+

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥
where in inequality (a) we use ρ̄ = ρF + ρgCf + 8ρgCfCh + CfCgLh and C1 =
max{2CfCg, 2ρgCf , 2Cf}, and inequality (b) uses Lemma 3.2.

With general error bounds
1

n+

∑
Xi∈S+

E[∥hi(wt)− vi,t∥] ≤ (1− µ1)
t 1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥+R1,

1

n−

∑
Xj∈S−

E[∥hj(wt)− vj,t∥] ≤ (1− µ2)
t 1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥+R2,

1

n+

∑
Xi∈S+

E[∥hi(wt)− vi,t∥2] ≤ (1− µ1)
t 1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥2 +R3,

1

n−

∑
Xj∈S−

E[∥hj(wt)− vj,t∥2] ≤ (1− µ2)
t 1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥2 +R4,

1

n+

∑
Xi∈S+

E
[∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vj,t − vi,t, si,t)− ui,t

∥∥∥∥]

≤ (1− µ3)
t 1

n+

∑
Xi∈S+

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vi,0 − vj,0, si,0)− ui,0

∥∥∥∥+R5,
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we have
E[F1/ρ̄(wt+1, st+1, s

′
t+1)]

≤ E[F1/ρ̄(wt, st, s
′
t)] +

3η2ρ̄M2

2
− η

2
E[∥∇F1/ρ̄(wt, st, s

′
t)∥2]

+ ρ̄ηC1

[
(1− µ1)

t 1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥+ (1− µ2)
t 1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥

+ (1− µ1)
t 1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥2 + (1− µ2)
t 1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥2

+ (1− µ3)
t 1

n+

∑
Xi∈S+

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vi,0 − vj,0, si,0)− ui,0

∥∥∥∥+R1 +R2 +R3 +R4 +R5

]

≤ E[F1/ρ̄(wt, st, s
′
t)] +

3η2ρ̄M2

2
− η

2
E[∥∇F1/ρ̄(wt, st, s

′
t)∥2]

+ ρ̄ηC1

[
(1− µmin)

t

(
1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥+
1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥

+
1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥2 +
1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥2

+
1

n+

∑
Xi∈S+

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vi,0 − vj,0, si,0)− ui,0

∥∥∥∥)+R1 +R2 +R3 +R4 +R5

]
where µmin = min{µ1, µ2, µ3}.

Taking summation from t = 0 to T − 1 yields
E[F1/ρ̄(wT , sT , s

′
T )]

≤ F1/ρ̄(w0, s0, s
′
0) +

3η2ρ̄M2T

2
− η

2

T−1∑
t=0

E[∥∇F1/ρ̄(wt, st, s
′
t)∥2]

+ ρ̄ηC1

[ T−1∑
t=0

(1− µmin)
t

(
1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥+
1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥

+
1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥2 +
1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥2

+
1

n+

∑
Xi∈S+

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vi,0 − vj,0, si,0)− ui,0

∥∥∥∥)+ T (R1 +R2 +R3 +R4 +R5)

]

≤ F1/ρ̄(w0, s0, s
′
0) +

3η2ρ̄M2T

2
− η

2

T−1∑
t=0

∥∇F1/ρ̄(wt, st, s
′
t)∥2

+ ρ̄ηC1

[
∆0

µmin
+ T (R1 +R2 +R3 +R4 +R5)

]
where we use

∑T−1
t=0 (1− µmin)

t ≤ 1
µmin

and define constant ∆0 such that(
1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥+
1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥

+
1

n+

∑
Xi∈S+

∥hi(w0)− vi,0∥2 +
1

n−

∑
Xj∈S−

∥hj(w0)− vj,0∥2

+
1

n+

∑
Xi∈S+

∥∥∥∥ 1

n−

∑
Xj∈S−

gi(vi,0 − vj,0, si,0)− ui,0

∥∥∥∥) ≤ ∆0.
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Then it follows
1

T

T−1∑
t=0

∥∇F1/ρ̄(wt, st, s
′
t)∥2

≤ 2

ηT

[
F1/ρ̄(w0, s0, s

′
0)− E[F1/ρ̄(wT , sT , s

′
T )] +

3η2ρ̄M2T

2

+ ρ̄ηC1

[
∆0

µmin
+ T (R1 +R2 +R3 +R4 +R5)

]]

≤ 2∆

ηT
+ (2 +

n+
B1

)ηρ̄M2 +
2ρ̄C1∆0

µminT
+ 2ρ̄C1(R1 +R2 +R3 +R4 +R5)

= O
(
1

T
(
1

η
+

1

µmin
) + η +R1 +R2 +R3 +R4 +R5

)
where we define constant ∆ such that F1/ρ̄(w0, s0, s

′
0)− E[F1/ρ̄(wT , sT , s

′
T )] ≤ ∆.

With MSVR updates for vi,t and ui,t, following from Lemma C.5 and Lemma C.6, we have

µ1 =
B1τ1
2n+

, µ2 =
B1τ1
2n−

, µ3 =
B1τ2
2n+

R1 =
2τ

1/2
1 σ

B
1/2
3

+
4n+ChMη

B1τ
1/2
1

, R2 =
2τ

1/2
1 σ

B
1/2
3

+
4n−ChMη

B2τ
1/2
1

R3 =
4τ1σ

2

B3
+

16n2+C
2
hM

2η2

B2
1τ1

, R4 =
4τ1σ

2

B3
+

16n2−C
2
hM

2η2

B2
2τ1

R5 =
2τ

1/2
2 σ

B
1/2
2

+ C2
n+
B1

(
B

1/2
1

n
1/2
+

+
B

1/2
2

n
1/2
−

)
τ1

τ
1/2
2

+ C2
n+
B1

(
n
1/2
+

B
1/2
1

+
n
1/2
−

B
1/2
2

)
η

τ
1/2
2

+ C2
n
1/2
+ η

B1τ
1/2
2

Then we have
1

T

T−1∑
t=0

∥∇F1/ρ̄(wt, st, s
′
t)∥2

≤ O

(
1

T
(
1

η
+

1

µmin
) + (

τ
1/2
1

B
1/2
3

+
τ
1/2
2

B
1/2
2

)σ

+
n+η

B1τ
1/2
1

+
n−η

B2τ
1/2
1

+
n+
B1

max{B
1/2
1

n
1/2
+

,
B

1/2
2

n
1/2
−

} τ1

τ
1/2
2

+
n+
B1

max{
n
1/2
+

B
1/2
1

,
n
1/2
−

B
1/2
2

} η

τ
1/2
2

)
Setting

τ1 = O

(
min

{
B3,

B1

n+
min{

n
1/2
+

B
1/2
1

,
n
1/2
−

B
1/2
2

}B1/2
2

}
ϵ4

)
, τ2 = O(B2ϵ

4),

η = O

(
min

{
min{B1

n+
,
B2

n−
}min{B1/2

3 ,
B

1/2
1

n
1/2
+

min{
n
1/4
+

B
1/4
1

,
n
1/4
−

B
1/4
2

}B1/4
2 }, B1

n+
min{B

1/2
1

n
1/2
+

,
B

1/2
2

n
1/2
−

}B1/2
3

}
ϵ4

)
,

Then with

T ≥ O

(
max

{
max{n+

B1
,
n−
B2

}max{ 1

B
1/2
3

,
n
1/2
+

B
1/2
1

max{B
1/4
1

n
1/4
+

,
B

1/4
2

n
1/4
−

} 1

B
1/4
2

}, n+
B1

max{
n
1/2
+

B
1/2
1

,
n
1/2
−

B
1/2
2

} 1

B
1/2
2

}
ϵ−6

)
iterations, we have

1

T

T−1∑
t=0

∥∇F1/ρ̄(wt, st, s
′
t)∥2 ≤ ϵ2.
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D Proofs of Lemmas and Propositions

D.1 Additional Proposition

Proposition D.1. Consider a Lipschitz continuous function f : O → R where O ⊂ Rd is an open
set. Assume f to be non-increasing (resp. non-decreasing) with respect to each element in the input,
then all subgradients of f are element-wise non-positive (resp. non-negative).

Proof of Proposition D.1. Let D be the subset of O where f is differentiable. By Theorem 9.60 in
[24], a Lipschitz continuous function f : O → R, where O ⊂ Rd is an open set, is differentiable
almost everywhere, i.e., D is dense in O. Then by Theorem 9.61 in [24], the subdifferential of f at x
is defined as

∂f(x) = con{v|∃xk → x with xk ∈ D,∇f(xk) → v},
where con denotes the convex hull. If we assume that f is non-increasing with respect to each
element in the input, then ∇f(x) ≤ 0 (element-wise) for all differentiable points x ∈ D. It implies
that the all vectors in {v|∃xk → x with xk ∈ D,∇f(xk) → v} are element-wise non-positive.
Therefore, all subgradients of f are element-wise non-positive. On the other hand, if we assume that
f is non-decreasing, one may follow the same argument and conclude that all subgradients of f are
element-wise non-negative.

For functions f : O → Rm where O ⊂ Rd is an open set, one may write f = (f1, . . . , fm) and
apply the above proposition for each fk, k = 1, . . . ,m.

D.2 Proofs of Proposition 4.2 and Proposition 4.4

To prove Proposition 4.2 and Proposition 4.4, we first present the following proposition on the
weak-convexity of composition functions.

Proposition D.2. Assume f : Rd → R is ρ1-weakly-convex and C1-Lipschitz continuous, g : Rd̄ →
Rd is C2-Lipschitz continuous, and either of the followings holds:

1. f(·) is monotone and g(·) is L2-smooth;

2. f(·) is non-decreasing and g(·) is L2-weakly-convex,

then f ◦ g is ρ̃-weakly-convex with ρ̃ =
√
dL2C1 + ρ1C

2
2 .

Proof of Proposition D.2. The weak convexity of f implies

f(g(y)) ≥ f(g(x)) + v⊤(g(y)− g(x))− ρ1
2
∥g(y)− g(x)∥2

≥ f(g(x)) + v⊤(g(y)− g(x))− ρ1C
2
2

2
∥x− y∥2

where v ∈ ∂f(g(x)). Moreover, due to the smoothness of g(·) (or weakly-convexity of g(·), then
only the second inequality holds), we have

g(y)− g(x) ≤ ∇g(x)⊤(y − x) + v

(
L2

2
∥x− y∥2

)
,

g(y)− g(x) ≥ ∇g(x)⊤(y − x)− v

(
L2

2
∥x− y∥2

)
.

(44)

where v(e) denotes a d-dimensional vector with value e on each dimensions. We first assume that f
is non-increasing, then we may use the first inequality in (44) and the Lipschitz continuity of g to get

f(g(y)) ≥ f(g(x)) + v⊤
[
∇g(x)⊤(y − x) + v

(
L2

2
∥x− y∥2

)]
− ρ1C

2
2

2
∥x− y∥2

≥ f(g(x)) + v⊤∇g(x)⊤(y − x) + v⊤v

(
L2

2
∥x− y∥2

)
− ρ1C

2
2

2
∥x− y∥2

≥ f(g(x)) + ⟨v⊤∇g(x)⊤(y − x)−
√
dL2C1 + ρ1C

2
2

2
∥x− y∥2.

45



On the other hand, if we assume f is non-decreasing, the same result follows from the second
inequality in (44). Thus f ◦ g is ρ̃-weakly-convex with ρ̃g =

√
dL2C1 + ρ1C

2
2 .

Proof of Proposition 4.2. Under Assumption 4.1, Proposition D.2 directly implies the ρF -weak-
convexity of F (w) with ρF =

√
d1ρgCf + ρfC

2
g .

Proof of Proposition 4.4. Under Assumption 4.3, we first apply Proposition D.2 to the composite
function gi(hi,j(·)) and obtain its ρg̃ =

√
d2LhCg + ρgC

2
h-weak-convexity. To show it Lipschitz

continuity, we use the Lipschitz continuity of gi and hi,j to obtain
∥gi(hi,j(w))− gi(hi,j(w̃))∥2 ≤ C2

gC
2
h∥w − w̃∥2.

Thus gi(hi,j(w)) is Cg̃ = CgCh-Lipschitz-continuous

Since we assume fi(·) is non-decreasing, ρf -weakly-convex and Cf -Lipschitz continuous, and
gi(hi,j(·)) is ρg̃-weakly-convex and Cg̃-Lipschitz-continuous, we apply Proposition D.2 again to
conclude that F (·) is ρF =

√
d1ρg̃Cf + ρfC

2
g̃ -weakly-convex.

D.3 Proof of Lemma 4.5

Proof of Lemma 4.5. With γ = n1−B1

B1(1−τ) +(1−τ), τ ≤ 1
2 , MSVR update gives recursive error bound

[15]
E[∥ui,t+1 − gi(wt+1)∥2]

≤ (1− B1τ

n1
)E[∥ui,t − gi(wt)∥2] +

2τ2B1σ
2

n1B2
+

8n1C
2
g

B1
E[∥wt −wt+1∥2]

≤ (1− B1τ

n1
)E[∥ui,t − gi(wt)∥2] +

2τ2B1σ
2

n1B2
+

8n1C
2
g

B1
η2E[∥Gt∥2]

≤ (1− B1τ

2n1
)2E[∥ui,t − gi(wt)∥2] +

2τ2B1σ
2

n1B2
+

8n1C
2
gM

2η2

B1

Applying this inequality recursively, we obtain

E[∥ui,t+1 − gi(wt+1)∥2]

≤ (1− B1τ

2n1
)2(t+1)∥ui,0 − gi(w0)∥2 +

t∑
j=0

(1− B1τ

2n1
)2(t−j)

(
2τ2B1σ

2

n1B2
+

8n+C
2
gM

2η2

B1

)

≤ (1− B1τ

2n1
)2(t+1)∥ui,0 − gi(w0)∥2 +

4τσ2

B2
+

16n21C
2
gM

2η2

B2
1τ

where we use
∑t
j=0(1−

B1τ
2n1

)2(t−j) ≤ 2n1

B1τ
.

It follows
E [∥ui,t+1 − gi(wt+1)∥]2

≤ E[∥ui,t+1 − gi(wt+1)∥2]

≤ (1− B1τ

2n1
)2(t+1)∥ui,0 − gi(w0)∥2 +

4τσ2

B2
+

16n21C
2
gM

2η2

B2
1τ

≤
[
(1− B1τ

2n1
)t+1∥ui,0 − gi(w0)∥+

2τ1/2σ

B
1/2
2

+
4n1CgMη

B1τ1/2

]2
Thus

E
[
∥ui,t+1 − gi(wt+1)∥

]
≤ (1− B1τ

2n1
)t+1∥ui,0 − gi(w0)∥+

2τ1/2σ

B
1/2
2

+
4n1CgMη

B1τ1/2

46



Taking summation over i ∈ S, we obtain the desired result

E
[
1

n

∑
i∈S

∥ui,t+1 − gi(wt+1)∥
]

≤ (1− B1τ

2n1
)t+1 1

n

∑
i∈S

∥ui,0 − gi(w0)∥+
2τ1/2σ

B
1/2
2

+
4nCgMη

B1τ1/2

D.4 Proof of Lemma C.6

Proof of Lemma C.6. With γ3 = n+−B1

B1(1−τ2) +(1− τ2) and τ2 ≤ 1
2 , MSVR update gives the following

recursive error bound [15]

E[∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥2]

≤ (1− B1τ2
n+

)E[∥ui,t −
1

n−

∑
j∈S−

gi(vj,t − vi,t, si,t)∥2] +
2τ22B1σ

2

n+B2

+
8n+C

2
g

B1
E[∥(vj,t − vi,t, si,t)− (vj,t+1 − vi,t+1, si,t+1)∥2]

≤ (1− B1τ2
n+

)E[∥ui,t −
1

n−

∑
j∈S−

gi(vj,t − vi,t, si,t)∥2] +
2τ22B1σ

2

n+B2

+
16n+C

2
g

B1
E[∥vi,t − vi,t+1∥2 + ∥vj,t − vj,t+1∥2] +

8C2
gM

2η2

B1

(45)

It remains to bound E[∥vi,t− vi,t+1∥2] and E[∥vj,t− vj,t+1∥2]. We bound the former, and the latter’s
bound naturally follows. Consider the update of vi,t+1 and we have

E[∥vi,t − vi,t+1∥2]

≤ E
[
B1

n+
∥τ1vi,t − τ1h

(i)(wt;Bt3,i)− γ1(h
(i)(wt;Bt3,i)− h(i)(wt−1;Bt3,i))∥2

]
≤ E

[
2B1τ

2
1

n+
∥vi,t − h(i)(wt;Bt3,i)∥2 +

2B1γ
2
1

n+
∥h(i)(wt;Bt3,i)− h(i)(wt−1;Bt3,i)∥2

]
≤ E

[
2B1τ

2
1

n+
∥vi,t − h(i)(wt;Bt3,i)∥2 +

2B1γ
2
1Ch

n+
∥wt −wt−1∥2

]
(a)

≤ 8B1τ
2
1M

2

n+
+

8n+C
2
hη

2M2

B1

where inequality (a) uses τ1 ≤ 1/2 and γ1 = n+−B1

B1(1−τ1) + (1 − τ1) ≤ 2n+

B1
. Plugging the above

inequality back into inequality (45) gives

E[∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥2]

≤ (1− B1τ2
n+

)E[∥ui,t −
1

n−

∑
j∈S−

gi(vj,t − vi,t, si,t)∥2] +
2τ22B1σ

2

n+B2

+
16n+C

2
g

B1

(
8τ21M

2(
B1

n+
+
B2

n−
) + 8C2

hη
2M2(

n+
B1

+
n−
B2

)

)
+

8C2
gM

2η2

B1

≤ (1− B1τ2
n+

)E[∥ui,t −
1

n−

∑
j∈S−

gi(vj,t − vi,t, si,t)∥2] +
2τ22B1σ

2

n+B2

+ 128C2
gM

2n+
B1

(
B1

n+
+
B2

n−
)τ21 + 128C2

gC
2
hM

2n+
B1

(
n+
B1

+
n−
B2

)η2 +
8C2

gM
2η2

B1
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Applying this inequality recursively, we obtain

E[∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥2]

≤ (1− B1τ2
2n+

)2(t+1)∥ui,0 −
1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥2 +
t∑

j=0

(1− B1τ2
2n+

)2(t−j)
(
2τ22B1σ

2

n+B2

+ 128C2
gM

2n+
B1

(
B1

n+
+
B2

n−
)τ21 + 128C2

gC
2
hM

2n+
B1

(
n+
B1

+
n−
B2

)η2 +
8C2

gM
2η2

B1

)
≤ (1− B1τ2

2n+
)2(t+1)∥ui,0 −

1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥2 +
4τ2σ

2

B2

+ 256C2
gM

2n
2
+

B2
1

(
B1

n+
+
B2

n−
)
τ21
τ2

+ 256C2
gC

2
hM

2n
2
+

B2
1

(
n+
B1

+
n−
B2

)
η2

τ2
+

16n+C
2
gM

2η2

B2
1τ2

≤ (1− B1τ2
2n+

)2(t+1)∥ui,0 −
1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥2 +
4τ2σ

2

B2
+ C2

2

n2+
B2

1

(
B1

n+
+
B2

n−
)
τ21
τ2

+ C2
2

n2+
B2

1

(
n+
B1

+
n−
B2

)
η2

τ2
+ C2

2

n+η
2

B2
1τ2

where we use
∑t
j=0(1 − B1τ2

2n+
)2(t−j) ≤ 2n+

B1τ1
and denotes C2

2 =

2max{256C2
gM

2, 256C2
gC

2
hM

2, 16C2
gM

2}. Taking average over i ∈ S+ gives the squared-
norm error bound.

To derive the norm error bound, we derive

E[∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥]2

≤ E[∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥2]

≤ (1− B1τ2
2n+

)2(t+1)∥ui,0 −
1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥2 +
4τ2σ

2

B2
+ C2

2

n2+
B2

1

(
B1

n+
+
B2

n−
)
τ21
τ2

+ C2
2

n2+
B2

1

(
n+
B1

+
n−
B2

)
η2

τ2
+ C2

2

n+η
2

B2
1τ2

≤
[
(1− B1τ2

2n+
)t+1∥ui,0 −

1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥+
2τ

1/2
2 σ

B
1/2
2

+ C2
n+
B1

(
B

1/2
1

n
1/2
+

+
B

1/2
2

n
1/2
−

)
τ1

τ
1/2
2

+ C2
n+
B1

(
n
1/2
+

B
1/2
1

+
n
1/2
−

B
1/2
2

)
η

τ
1/2
2

+ C2
n
1/2
+ η

B1τ
1/2
2

]2
Thus

E[∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥]

≤ (1− B1τ2
2n+

)t+1∥ui,0 −
1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥+
2τ

1/2
2 σ

B
1/2
2

+ C2
n+
B1

(
B

1/2
1

n
1/2
+

+
B

1/2
2

n
1/2
−

)
τ1

τ
1/2
2

+ C2
n+
B1

(
n
1/2
+

B
1/2
1

+
n
1/2
−

B
1/2
2

)
η

τ
1/2
2

+ C2
n
1/2
+ η

B1τ
1/2
2
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Taking average over i ∈ S+, we obtain the norm error bound

E

 1

n+

∑
i∈S+

∥ui,t+1 −
1

n−

∑
j∈S−

gi(vj,t+1 − vi,t+1, si,t+1)∥


≤ (1− B1τ2

2n+
)t+1 1

n+

∑
i∈S+

∥ui,0 −
1

n−

∑
j∈S−

gi(vi,0 − vj,0, si,0)∥+
2τ

1/2
2 σ

B
1/2
2

+ C2
n+
B1

(
B

1/2
1

n
1/2
+

+
B

1/2
2

n
1/2
−

)
τ1

τ
1/2
2

+ C2
n+
B1

(
n
1/2
+

B
1/2
1

+
n
1/2
−

B
1/2
2

)
η

τ
1/2
2

+ C2
n
1/2
+ η

B1τ
1/2
2

49



D.5 Proof of Lemma A.3

Proof of Lemma A.3. With γ1 = n1n2−B1B2

B1B2(1−τ1) +(1−τ1) and τ1 ≤ 1
2 , MSVR update has the following

recursive error bound [15][15]
E[∥vi,j,t+1 − hi,j(wt+1)∥2]

≤ (1− B1B2τ1
n1n2

)E[∥vi,j,t − hi,j(wt)∥2] +
2τ21B1B2σ

2

n1n2B3
+

8n1n2C
2
h

B1B2
E[∥wt −wt+1∥2]

≤ (1− B1B2τ1
2n1n2

)2E[∥vi,j,t − hi,j(wt)∥2] +
2τ21B1B2σ

2

n1n2B3
+

8n1n2C
2
hM

2η2

B1B2

Applying this inequality recursively, we obtain

E[∥vi,j,t+1 − hi,j(wt+1)∥2]

≤ (1− B1B2τ1
2n1n2

)2(t+1)∥vi,j,0 − hi,j(w0)∥2 +
t∑

j=0

(1− B1B2τ1
2n1n2

)2(t−j)(
2τ21B1B2σ

2

n1n2B3
+

8n1n2C
2
hM

2η2

B1B2
)

≤ (1− B1B2τ1
2n1n2

)2(t+1)∥vi,j,0 − hi,j(w0)∥2 +
4τ1σ

2

B3
+

16n21n
2
2C

2
hM

2η2

B2
1B

2
2τ1

where we use
∑t
j=0(1−

B1B2τ1
2n1n2

)2(t−j) ≤ 2n1n2

B1B2τ1
. Taking average over (i, j) ∈ S1 × S2 gives the

squared-norm error bound.

To derive the norm error bound, we derive
E[∥vi,j,t+1 − hi,j(wt+1)∥]2

≤ E[∥vi,j,t+1 − hi,j(wt+1)∥2]

≤ (1− B1B2τ1
2n1n2

)2(t+1)∥vi,j,0 − hi,j(w0)∥2 +
4τ1σ

2

B3
+

16n21n
2
2C

2
hM

2η2

B2
1B

2
2τ1

≤
[
(1− B1B2τ1

2n1n2
)t+1∥vi,j,0 − hi,j(w0)∥+

2τ
1/2
1 σ

B
1/2
3

+
4n1n2ChMη

B1B2τ
1/2
1

]2
Thus

E[∥vi,j,t+1 − hi,j(wt+1)∥]

≤ (1− B1B2τ1
2n1n2

)t+1∥vi,j,0 − hi,j(w0)∥+
2τ

1/2
1 σ

B
1/2
3

+
4n1n2ChMη

B1B2τ
1/2
1

Taking average over (i, j) ∈ S1 × S2, we obtain the norm error bound

E
[
1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥vi,j,t+1 − hi,j(wt+1)∥
]

≤ (1− B1B2τ1
2n1n2

)t+1 1

n1

∑
i∈S1

1

n2

∑
j∈S2

∥vi,j,0 − hi,j(w0)∥+
2τ

1/2
1 σ

B
1/2
3

+
4n1n2ChMη

B1B2τ
1/2
1

.

D.6 Proof of Lemma A.4

Proof of Lemma A.4. With γ2 = n1−B1

B1(1−τ2) + (1− τ2) and τ2 ≤ 1
2 , MSVR update has the following

recursive error bound [15]

E[∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥2]

≤ (1− B1τ2
n1

)E[∥ui,t −
1

n2

∑
j∈S2

gi(vi,j,t)∥2] +
2τ22B1σ

2

n1B2
+

8n1C
2
g

B1
E[∥vi,j,t+1 − vi,j,t∥2]

(46)
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It remains to bound E[∥vi,j,t+1 − vi,j,t∥2], which is done as following
E[∥vi,j,t+1 − vi,j,t∥2]

≤ E
[
B1B2

n1n2
∥τ1vi,j,t − τ1hi,j(wt;Bt3,i,j)− γ1(hi,j(wt;Bt3,i,j)− hi,j(wt−1;Bt3,i,j))∥2

]
≤ E

[
2B1B2τ

2
1

n1n2
∥vi,j,t − hi,j(wt;Bt3,i,j)∥2 +

2B1B2γ
2
1

n1n2
∥hi,j(wt;Bt3,i,j)− hi,j(wt−1;Bt3,i,j)∥2

]
≤ E

[
2B1B2τ

2
1

n1n2
∥vi,j,t − hi,j(wt;Bt3,i,j)∥2 +

2B1B2γ
2
1Ch

n1n2
∥wt −wt−1∥2

]
(a)

≤ 8B1B2τ
2
1M

2

n1n2
+

8n1n2C
2
hη

2M2

B1B2

where inequality (a) uses τ1 ≤ 1/2 and γ1 = n1n2−B1B2

B1B2(1−τ1) + (1− τ1) ≤ 2n1n2

B1B2
. Plugging the above

inequality back into inequality (46) gives

E[∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥2]

≤ (1− B1τ2
n1

)E[∥ui,t −
1

n2

∑
j∈S2

gi(vi,j,t)∥2] +
2τ22B1σ

2

n1B2
+

8n1C
2
g

B1

(
8B1B2τ

2
1M

2

n1n2
+

8n1n2C
2
hη

2M2

B1B2

)

≤ (1− B1τ2
n1

)E[∥ui,t −
1

n2

∑
j∈S2

gi(vi,j,t)∥2] +
2τ22B1σ

2

n1B2
+

64B2τ
2
1M

2C2
g

n2
+

64n21n2C
2
hη

2M2C2
g

B2
1B2

Applying this inequality recursively, we obtain

E[∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥2]

≤ (1− B1τ2
2n1

)2(t+1)∥ui,0 −
1

n2

∑
j∈S2

gi(vi,j,0)∥2 +
t∑

j=0

(1− B1τ2
2n1
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(
2τ22B1σ

2

n1B2
+

64B2τ
2
1M

2C2
g

n2

+
64n21n2C

2
hη

2M2C2
g

B2
1B2

)
≤ (1− B1τ2

2n1
)2(t+1)∥ui,0 −

1

n2

∑
j∈S2

gi(vi,j,0)∥2 +
4τ2σ

2
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+

128n1B2τ
2
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g
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+

128n31n2C
2
hη

2M2C2
g

B3
1B2τ2

where we use
∑t
j=0(1−

B1τ2
2n1

)2(t−j) ≤ 2n1

B1τ1
. Taking average over i ∈ S1 gives the squared-norm

error bound.

To derive the norm error bound, we derive

E[∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥]2

≤ E[∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥2]

≤ (1− B1τ2
2n1

)2(t+1)∥ui,0 −
1

n2

∑
j∈S2

gi(vi,j,0)∥2 +
4τ2σ

2
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+
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2
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g

B1n2τ2
+
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2
hη

2M2C2
g
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1B2τ2

≤
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2n1
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1
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∑
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+
8
√
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Taking squared root on both sides and taking average over i ∈ S1, we obtain the norm error bound

E

 1

n1

∑
i∈S1

∥ui,t+1 −
1

n2

∑
j∈S2

gi(vi,j,t+1)∥


≤ (1− B1τ2

2n1
)t+1 1

n1
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i∈S1

∥ui,0 −
1

n2
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2τ

1/2
2 σ
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2
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2 τ1

B
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1 n

1/2
2 τ

1/2
2

+
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B
3/2
1 B
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2 τ
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2

where C2 = max{8
√
2MCg, 8

√
2ChMCg}.

D.7 Proof of Lemma B.2

Proof of Lemma B.2. Define
ũi,t = (1− τ)ui,t + τgi(wt;Bt2,i)

Then we have
EBt2,i [∥ũi,t − gi(wt)∥2]

= EBt2,i [∥(1− τ)(ui,t − gi(wt)) + τ(gi(wt;Bt2,i)− gi(wt))∥2]

= EBt2,i [(1− τ)2∥ui,t − gi(wt)∥2 + τ2∥gi(wt;Bt2,i)− gi(wt)∥2

+ 2(1− τ)τ⟨ui,t − gi(wt), gi(wt;Bt2,i)− gi(wt)⟩]

≤ (1− τ)2∥ui,t − gi(wt)∥2 +
τ2σ2

B2

It follows
EBt2,iEBt1 [∥ui,t+1 − gi(wt)∥2]

=
B1

n1
EBt2,i [∥ũi,t − gi(wt)∥2] + (1− B1

n1
)∥ui,t − gi(wt)∥2

≤ B1

n1
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B1τ
2σ2
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≤ (1− B1τ
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= 1− 2τ
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B1

n1
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+ (
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2n1
)2 = (1− τB1
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)2

Then
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≤ Et
[
(1 +

B1τ

4n1
)∥ui,t+1 − gi(wt)∥2 + (1 +

4n1
B1τ

)∥gi(wt)− gi(wt+1)∥2
]

≤ (1 +
B1τ

4n1
)(1− B1τ

2n1
)2∥ui,t − gi(wt)∥2 + (1 +

B1τ

4n1
)
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+
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B1τ
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gEt∥wt −wt+1∥2]
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2B1τ
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+

8n1C
2
gM
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B1τ
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where we use B1τ
4n1

≤ 1. Applying this inequality recursively, we obtain

E[∥ui,t+1 − gi(wt+1)∥2]

≤ (1− B1τ

4n1
)2E[∥ui,t − gi(wt)∥2] +

2B1τ
2σ2

n1B2
+

8n1C
2
gM

2η2

B1τ

≤ (1− B1τ

4n1
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[
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+
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2
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2η2
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]

≤ (1− B1τ
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)2(t+1)∥ui,0 − gi(w0)∥2 +

8τσ2
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+

32n21C
2
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2η2
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2

where we use
∑t
j=0(1−

B1τ
4n1

)2(t−j) ≤ 4n1

B1τ
.

To obtain the absolute bound, we derive
E[∥ui,t+1 − gi(wt+1)∥]2 ≤ E[∥ui,t+1 − gi(wt+1)∥2]

≤ (1− B1τ

4n1
)2(t+1)∥ui,0 − gi(w0)∥2 +

8τσ2

B2
+
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The desired result follows by taking squared root on both sides.

D.8 Proof of Lemma B.5

Proof of Lemma B.5. The proof of Lemma B.5 is the same as Lemma B.2.

D.9 Proof of Lemma B.6

Proof of Lemma B.6. Define
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It follows
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Applying this inequality recursively, we obtain
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To obtain the absolute bound, we derive
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The desired result follows by taking squared root on both sides.

E Group Distributionally Robust Optimization

NSWC FCCO finds an important application in group distributionally robust optimization (group
DRO), particularly valuable in addressing distributional shift [25]. Consider N groups with different
distributions. Each group k has an averaged loss Lk(w) = 1

nk

∑nk
i=1 ℓ(fw(x

k
i ), y

k
i ), where w is the

the model parameter and (xki , y
k
i ) is a data point. For robust optimization, we assign different weights

to different groups and form the following robust loss minimization problem:

min
w

max
p∈Ω

N∑
k=1

pkLk(w),

where Ω ⊂ ∆ and ∆ denotes a simplex. A common choice for Ω is Ω = {p ∈ ∆, pi ≤ 1/K}
where K is an integer, resulting in the so-called CVaR losses, i.e., average of top-K group losses.
Consequently, the above problem can be equivalently reformulated as [23]:

min
w

min
s
F (w, s) =

1

K

N∑
k=1

[Lk(w)− s]+ + s.

This formulation can be mapped into non-smooth weakly-convex FCCO when the loss function ℓ(·, ·)
is weakly convex in terms of w. In comparison to directly solving the min-max problem, solving
the above FCCO problem avoids the need of dealing with the projection onto the constraint Ω and
expensive sampling as in existing works [4].

F More Information for Experiments

F.1 Dataset Statistics

Table 3: Datasets Statistics. The percentage in parenthesis represents the proportion of positive
samples.

Dataset Train Validation Test
moltox21(t0) 5834 (4.25%) 722 (4.01%) 709 (4.51%)
molmuv(t1) 11466 (0.18%) 1559 (0.13%) 1709 (0.35%)
molpcba(t0) 120762 (9.32%) 19865 (11.74%) 20397 (11.61%)

Table 4: Data statistics for the MIL datasets. D+/D− is the positive/negative bag number.

Data Format Dataset D+ D−
average
bag size #features

Tabular MUSK2 39 63 64.69 166
Fox 100 100 6.6 230

Histopathological Lung 100 1000 256 32x32x3
Image Lung 100 1000 256 32x32x3
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F.2 Illustration for Histopathology Dataset on MIL Task

Colon Ade. Colon SCC

Bag Bag

Figure 2: Illustration for Histopathology Dataset on MIL Task. Ade. is abbreviated for adenocarci-
noma and SCC is short for squamous cell carcinoma. In this work, each RGB image is separated by
32×32 non-overlapped patches, which constitute the bag.
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