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Abstract

This paper investigates new families of compositional optimization problems,
called non-smooth weakly-convex finite-sum coupled compositional eptimization
(NSWC FCCO). There has been a growing interest in FCCO due to its wide-ranging
applications in machine learning and Al, as well as its ability to address the short-
comings of stochastic algorithms based on empirical risk minimization. However,
current research on FCCO presumes that both the inner and outer functions are
smooth, limiting their potential to tackle a more diverse set of problems. Our
research expands on this area by examining non-smooth weakly-convex FCCO,
where the outer function is weakly convex and non-decreasing, and the inner
function is weakly-convex. We analyze a single-loop algorithm and establish its
complexity for finding an e-stationary point of the Moreau envelop of the objective
function. Additionally, we also extend the algorithm to solving novel non-smooth
weakly-convex tri-level finite-sum coupled compositional optimization problems,
which feature a nested arrangement of three functions. Lastly, we explore the appli-
cations of our algorithms in deep learning for two-way partial AUC maximization
and multi-instance two-way partial AUC maximization, using empirical studies to
showcase the effectiveness of the proposed algorithms.

1 Introduction

In this paper, we consider two classes of non-convex compositional optimization problems. The first
class is formulated as following:

min F(w) := % Zies fi(Eenp, [9i (W3 §)]), @

weRd
where S denotes a finite set of n items and D; denotes a distribution that could depend on i. The
second class is given by:

1 1
in F = — il — i(Eewp, . |hii(W; , 2
v?élﬁld (w) n1 Ziesl f <n2 Zje&g( ¢ D”[ (W 8])) @
where S; denotes a finite set of 72; items and S, denotes a finite set of n, items and D;; denotes
a distribution that could depend on (i, 7). For simplicity of discussion, we denote by g;(w) =
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Eevp,[gi(w; €)] : RT = R% and by h; j(w) = Eeap, |, [hi;(w;€)] : R — R, For both classes
of problems, we focus our attention on non-convex F' with non-smooth non-convex functions f;
and g;, which, to the best of our knowledge, has not been studied in any prior works.

The first problem (1) with smooth functions f; and g; has been explored in previous works [26, 15, 21,
33], which is known as finite-sum coupled compositional optimization (FCCO). It is subtly different
from standard stochastic compositional optimization (SCO) [27] and conditional stochastic optimiza-
tion (CSO) [13]. FCCO has been successfully applied to optimizing a wide range of X-risks [33]
with convergence guarantee, including smooth surrogate losses of areas under the curves [20] and
ranking measures [21], listwise losses [21], and contrastive losses [36]. The second problem (2) is
a novel class and is referred to as tri-level finite-sum coupled compositional optimization (TCCO).
Both problems differ from traditional two-level or multi-level compositional optimization due to the
coupling of variables ¢, £ in (1) or the coupling of variables ¢, j, £ in (2) at the inner most level.

One limitation of prior works about non-convex FCCO is that their convergence analysis heavily
rely on the smoothness conditions of f; and g; [26, 15]. This raises a concern about whether
existing techniques can be leveraged for solving non-smooth non-convex FCCO problems with
non-asymptotic convergence guarantee. Non-smooth non-convex FCCO and TCCO problems have
important applications in ML and Al, e.g., group distributionally robust optimization [4] and two-way
partial AUC maximization for deep learning [44]. We defer discussions and formulations of these
problems to Section 5. The difficulty for solving smooth FCCO lies at high costs of computing a
stochastic gradient Vg;(w)V f;(g;(w)) for a randomly sampled ¢ and the overall gradient VF'(w).
To approximate the stochastic gradient, a variance-reduced estimator of g;(w;) denoted by u; ; is
usually maintained and updated for sampled data in the mini-batch ¢ € B;. As a result, the stochastic
gradient can be approximated by Vg;(wy; &)V fi(u; ), where & ~ D; is a random sample. The
overall gradient can be estimated by averaging the stochastic gradient estimator over the mini-batch
or using variance-reduction techniques. A key insight of the convergence analysis for smooth FCCO
is to bound the following error using the L-smoothness of f;, which reduces to bounding the error of
u; ¢ for estimating g;(w):

IVgi(We; €0V fi(uie) = Vgi(wes €)'V fi(gis (W) I? < [V gi(wes &) lIP Llluie — gi(we )|

A central question to be addressed in this paper is “Can these gradient estimators be used in stochastic
optimization for solving non-smooth non-convex FCCO with provable convergence guarantee”? To
address this question we focus our attention on a specific class of FCCO/TCCO called non-smooth
weakly-convex (NSWC) FCCO/TCCO. This approach aligns with many established works on
NSWC optimization [6-9]. Nevertheless, NSWC FCCO/TCCO is more complex than a standard
weakly-convex optimization problem because an unbiased stochastic subgradient is not readily
accessible. In addition, the convergence measure in terms of the gradient norm of smooth non-convex
objectives is not applicable to weakly convex optimization, which will complicate the analysis
involving the biased stochastic gradient estimator dg; (wy; &)0 f; (ul) !.

Contributions. A major contribution of this paper is to present novel convergence analysis of single-
loop stochastic algorithms for solving NSWC FCCO/TCCO problems, respectively. In particular,

* For non-smooth FCCO, we analyze the following single-loop updates:

1
Wipt =W =5 > 00i(Wi &)0 i (i), 3)

where B; is a random mini-batch of B items, and u; ; is an appropriate variance-reduced estimator
of g;(w;) that is updated only for ¢ € B; at the ¢-th iteration. To overcome the non-smoothness, we
adopt the tool of Moreau envelop of the objective as in previous works [6, 7]. The key difference
of our convergence analysis from previous ones for smooth FCCO is that we bound the inner
product (E;0g; (W) f;(u; ), W, — wy), where Wy is the solution of the proximal mapping of the
objective at w. To this end, specific conditions of f;, g; are imposed, i.e., f; is weakly convex and
non-decreasing and g;(w) is weakly convex, under which we establish an iteration complexity of
T = O(e~°) for finding an e-stationary point of the Moreau envelope of F(-).

* For non-smooth TCCO, we analyze the following single-loop updates:

1 1
Wikl = Wi =g Ziezs; |:B2 Zjezs; Ohi j(wt;€)0gi(vije) | Ofiuie), “

'We use V to denote gradient of a differentiable function and O to denote a subgradient of a non-smooth
function.



Table 1: Comparison with prior works for solving (1) and (2). In the monotonicity column, notation
1 means the given function is required to be non-decreasing. If not specified, the given function is
only required to be monotone.

Method Objective  Smoothness Weak Convexity Monotonicity Complexity
SOX [26] (1) fi> Gi none none O(e™*)
MSVR [15] (1) fi, gi none none O(e73)
SONX (Ours) (1) none fi, gi fi 1 O(e7)
SONT (OI.II'S) (2) none fi7 gi, hi,j fz T, g T 0(6_6)
SONT (Ours) (2) hij fis 9 fi 1,9 O(e™®)

where B} and B} are random mini-batches of B; and By items, respectively, and wu;, is an
appropriate variance-reduced estimator of n% > jes, 9i(hij(wy)) that is updated only for i € B,
and v, ;; is an appropriate variance-reduced estimator of h; ;(w) that is updated only for i €
Bi,j € B2. To prove the convergence, we impose conditions of fi, g, hi j, i.e., fi is weakly
convex and non-decreasing and g;(-) is weakly convex and non-decreasing (or monotonic), h;; is
weakly convex (or smooth), and establish an iteration complexity of 7’ = O (6’6) for finding an
e-stationary point of the Moreau envelope of F(+).

* We extend the above algorithms to solving (multi-instance) two-way partial AUC maximization for
deep learning, and conduct extensive experiments to verify the effectiveness of the both algorithms.

2 Related work

Smooth SCO. There are many studies about two-level smooth SCO [27, 38, 10, 19, 3, 28] and
multi-level smooth SCO [32, 32, 1, 39]. The complexities of finding an e-stationary point for two-
level smooth SCO have been improved from O(e=?) [27] to O(e~3) [19], and that for multi-level
smooth SCO have been improved from a level-dependent complexity of O (e~ (T+& )/ 2)[32]to a
level-independent complexity of O(e~3) [32], where K is the number of levels. The improvements
mostly come from using advanced variance reduction techniques for estimating each level function or
its Jacobian and for estimating the overall gradient. Two stochastic algorithms have been developed
in [13] for CSO but suffer a limitation of requiring large batch sizes.

Smooth FCCO. FCCO was first introduced in [20] for optimizing average precision. Its algorithm
and convergence analysis was improved in [26] and [15]. The former work [26] proposed an algorithm
named SOX by using moving average (MA) to estimate the inner function values and the overall
gradient. In the smooth non-convex setting, SOX is proved to achieve an iteration complexity of
O(e*). The latter work [15] proposed a novel multi-block-single-probe variance reduced (MSVR)
estimator for estimating the inner function values, which helps achieve a lower iteration complexity
O(e=3). Recently, [11] proposed an extrapolation based estimator for the inner function, which
yields a method with a complexity that matches MSVR when n < €2/3. These techniques have been
employed for optimizing various X-risks, including contrastive losses [36], ranking measures and
listwise losses [21], and other objectives [26, 15]. However, all of these prior works assume the
smoothness of f; and g;. Hence, their analysis is not applicable to NSWC FCCO problems. Our
novel analysis of a simple algorithm for NSWC FCCO problems yields an iteration complexity of
O(e7) for using the MSVR estimators of the inner functions. The comparison with [26, 15] is
shown in Table 1.

Non-smooth Weakly Convex Optimization. Analysis of weakly convex optimization with unbiased
stochastic subgradients was pioneered by [6, 7]. Optimization of compositional functions that are
weakly convex have been tackled in earlier works [8, 9], where the inner function is deterministic
or does not involve coupling between two random variables. A closely related work to our NSWC
FCCO is weakly-convex concave minimax optimization [22]. Assuming f; is convex, (1) can be
written as: miny maxzern + >, 5{mi, g;(W)) — f7(m;), where f7(:) is the convex conjugate of
fi- It can be solved using existing methods [22, 31, 41, 43, 17] but with several limitations: (i) the
algorithms in [22, 31, 41, 43] have a comparable complexity of O(1/¢%) but have unnecessary double
loops which require setting the number of iterations for the inner loop; (ii) the algorithm in [17]
is single loop but has a worse complexity of O(1/¢e®); (iii) these existing algorithms and analysis
does not account for complexity of updating all coordinates of 7, which could be prohibitive in



many applications; iv) these approaches are not applicable to NSWC FCCO/TCCO with weakly
convex f;. In fact, the double loop algorithm has been leveraged and extended to solving the two-way
partial AUC maximization problem, a special case of NSWC FCCO [44], by sampling and updating a
batch of coordinates of 7 at each iteration. However, it is less practical thus not implemented and its
analysis did not explicitly show the convergence rate dependency on n,n_ and the block batch size.

A special case of NSWC SCO problem was considered in [46], which is given by

mingex f(2, 9(x)), with f(z, u) = Ec[u + smax(0, g(2; () —u)],  g(x) = Eelg(; £)].
They proposed two methods, SCS for smooth g(x) and SCS with SPIDER for non-smooth g(x). For
both proposed methods, they proved a sample complexity of O(1/€%) for achieving an e-stationary
point of the objective’s Moreau envelope 2. We would like to remark that the above problem with a
non-smooth g(z) is a special case of NSWC FCCO with only a convex outer function, one block
and no coupled structure. Nevertheless, their algorithm for non-smooth g(-) suffers a limitation of
requiring a large batch size in the order of O(1/€?) for achieving the same convergence.

Finally, we would like to mention that non-smooth convex or strongly convex SCO problems have
been considered in [27, 42, 26], which, however, are out of scope of the present work.

3 Preliminaries

Let || - || be the Euclidean norm of a vector and spectral norm of a matrix. We use II¢[] to denote
the Euclidean projection onto {v € R™ : ||v|| < C}. For vectors, inequality notations including
<, >, >, < are used to denote element-wise inequality. For an expectation function f(-) = E¢[f(-; )],
let f(-;B) = ﬁ >cen f(+1€) be its stochastic unbiased estimator evaluated on a sample batch B. A

stochastic unbiased estimator is said to have bounded variance o2 if E¢[|| f(-) — f(;€)|?] < . The
Jacobian matrix of function f : R™ — R™2 is in dimension R™ *""2_ We recall the definition of
general subgradient and subdifferential following [6, 24].

Definition 3.1 (subgradient and subdifferential). Consider a function f : R” — R U {co} and a
point with f(z) finite. A vector v € R™ is a general subgradient of f at z, if

f(y)2f(x)+<v,y—x>+0(||y—:r||)7 asy — x.
The subdifferential Jf () is the set of subgradients of f at point .

For simplicity, we abuse the notation and also use 9f(z) to denote one subgradient from the
corresponding subgradient set when no confusion could be caused. We use 9 f(x; BB) to represent
a stochastic unbiased estimator of the subgradient J f () that is evaluated on a sample batch 5. A
function is called C''-smooth if it is continuously differentiable. A function f = (fi,..., fm,) :
R™2 — R™2 js called monotone if Vi € {1,...,ma}, f; : R™ — R is monotone with respect to
each element of the input. Note that if a Lipschitz continuous function f : O — R™2 is assumed to
be non-increasing (resp. non-decreasing), where the domain O C R™! is open, then all subgradients
of f are element-wise non-positive (resp. non-negative). We refer the details to Appendix D.1.

A function f is C-Lipschitz continuous if || f(x) — f(y)|| < C||z — y||. A differentiable function f
is L-smooth if ||V f(z) — V f(y)|| < L||z — y||. A function f : R? — R U {oo} is p-weakly-convex
if the function f(-) + &| - ||* is convex. A vector-valued function f : R? — {R U {o0}}™ is called
p-weakly-convex if it is p-weakly-convex for each output. It is difficult sometimes impossible to
find an e-stationary point of a non-smooth weakly-convex function F, i.e., dist(0, 0F (w)) < e. For
example, an e-stationary point of function f(z) = |x| does not exist for 0 < e < 1 unless it is the
optimal solution. To tackle this issue, [6] proposed to use the stationarity of the problem’s Moreau
envelope as the convergence metric, which has become a standard metric for solving weakly-convex
problems [7, 22, 31, 41, 43, 17]. Given a weakly-convex function ¢ : R™ — R, its Moreau envelope
and proximal map with A > 0 are constructed as

. 1 )
yrmn{sO(y)JrﬁHy |7}
The Moreau envelope is an implicit smoothing of the original problem. Thus it attains a continuous

differentiation. As a formal statement, the following lemma follows from standard results [6, 18].

. 1
pa(@) == min{ep(y) + oy lly = l’} prox,, (v) = arg

Lemma 3.2. Given a p-weakly-convex function o and X < p~!, the envelope ) is C-smooth with
gradient given by Vo, (x) = A\ 71 (x — proxy,()).

?It is notable that we use a slightly different definition of e-stationary point with |V F,,(w)||? < €%



Algorithm 1 Stochastic Optimization algorithm for Non-smooth FCCO (SONX)

1: Initialization: wo, {u; : i € S}.

2: fort=0,...,7T—1do

3. Draw sample batches Bf ~ S, and BS ; ~ D; for each i € Bi.

(U= A Tgi(wies By ;) +v(gi(we; BY ;) — gi(wi—13 B3 ), i€ By
Ui t+1 = . t ’ ’
Ui, & BY

5: Compute Gy = 5 >c s 09i (Wi BS ;) fi(uie)
6: Update Wip1 = Wi — ’f]Gt
7: end for

»

Moreover, for any point € R™, the proximal point & := prox /\(p(x) satisfies [6]

12—z = A[Ver(@)ll,  ©(@) < @), dist(0,¢0(2)) < [[Ver(z)ll.
Thus if ||V (x)]| < €, we can say z is close to a point 4 that is e-stationary, which is called nearly
e-stationary solution of ¢(x).

4 Algorithms and Convergence

4.1 Non-Smooth Weakly-Convex FCCO
In this section, we assume the following conditions hold for the FCCO problem (1).

Assumption 4.1. For all i € S, we assume that

* f;1is pr-weakly-convex, C (-Lipschitz continuous and non-decreasing;
Pf y f-Lap g
* g;(-) is pg-weakly-convex and g;(-; §) is C,-Lipschitz continuous;

* Stochastic gradient estimators g;(w; &) and Og;(w; ) have bounded variance o2,

Proposition 4.2. Under Assumption 4.1, F(w) in (1) is pp weakly convex with pp = \/d1p,Cy +
2
piCy-

One challenge in solving FCCO is the lack of access to unbiased estimation of the subgradients
L5 es09:(wW)3 fi(g;(w)) due to the expectation form of g;(w) inside a non-linear function f;. A
common solution in existing works for solving smooth FCCO is to maintain function value estimators
{u; : i € 8} for {g;(w) : i € S}, and approximate the true gradient by a stochastic version
B% ZiEBl 0g;(w; B2)dfi(u;) [26, 15], where By, B are sampled mini-batches. Simply using a
mini-batch estimator of g; inside f; does not ensure convergence if mini-batch size is small.

Inspired by existing algorithms of smooth FCCO, a simple method for solving non-smooth FCCO
is presented in Algorithm 1 referred to as SONX. A key step is the step 4, which uses the multi-
block-single-probe variance reduced (MSVR) estimator proposed in [15] to update {u; : ¢ € S} in
a block-wise manner. It is an advanced variance reduced update strategy for multi-block variable
inspired by STORM [5]. In the update of MSVR estimator, for each sampled i € B}, u; ; is updated

following a STORM-like rule with a specialized parameter v = B’I%B) + (1 — 7) for the error

1
—T
correction term. For the unsampled ¢ ¢ 8%, no update for u; ; is needed. When v = 0, the estimator
becomes the moving average estimator analyzed in [26] for smooth FCCO, which is also analyzed
in the Appendix. With the function values of {g;(w) : ¢ € S} well-estimated, the gradient can
be approximated by G in step 5. Next, we directly update w, by subgradient descent using the
stochastic gradient estimator GG;. Note that unlike existing works on smooth FCCO that often maintain
a moving average estimator [26] or a STORM estimator [15] for the overall gradient to attain better
rates, this is not possible in the non-smooth case as those variance reduction techniques for the overall
gradient critically rely on the Lipschitz continuity of VF', i.e., the smoothness of F'.

4.2 Non-Smooth Weakly-Convex TCCO

In this section, we consider non-smooth TCCO problem and aim to extend Algorithm 1 to solve it.
First of all, for convergence analysis and to ensure the weak convexity of F'(w) in (2), we make the
following assumptions.

Assumption 4.3. For all (i,j) € S; X S, we assume that



Algorithm 2 Stochastic Optimization algorithm for Non-smooth TCCO (SONT)
1: Initialization: Wo, {uio:i€ 81}, vi 50 = hij(Wo; Bg i J) forall (4,j) € &1 x Sa.
2: fort =0,. —1do
3: Sample batches Bl C &, By € So,and B

5., CDijforic Bfandjc B

e, (1= 71)vig¢ + Trhi g (Wes BS,i,j) + 71 (hi i (W Bs,m') — hij(Wi—1; Bgzg))]?

»

Vijt+1 = (Za.]) € Bi X Bé
Vi, (4,9) & Bf x Bj
4 _ (1 —72)u; e + B% Zjegé [T29i (Vi j.t) + 7v2(9: (Vi j ) — i (Vi je—1)], ©€E Bt
Ui t+1 = Ui s i € B’{
6: Gi= 5 Yicnt [(B% > iy Vhij(we Bé,i,j)agi(vi»j7t)) 8f¢(ui,f,)}

7: Update Wiyl = Wi — ’f]Gt
8: end for

w

* fiis Cy-Lipschitz continuous, ps-weakly-convex and non-decreasing;
* g; is pg-weakly-convex and C,-Lipschitz continuous. h; ;(-; &) is Cp,-Lipschitz continuous.

* Either g; is non-decreasing, h; ; is Lj,-weakly-convex or g; is monotone, h; ; is Lj-smooth.

« Stochastic estimators h; j(w, ) and dh; ;(w, &) have bounded variance o2, and ||h; ;(w)|| < Ch.
Eillgi(v) — ,%2 Y ies, 9i(v)[|* < o for any v.

The weak convexity of F'(w) in (2) is guaranteed by the following Proposition.

Proposition 4.4. Under Assumption 4.3, F(w) in (2) is pp-weakly-convex with pp =
Vdi(Vd2 LiCy + pyCR)Cs + pyCFCF.

We extend SONX to Algorithm 2 for (2), which is referred to as SONT. For dealing with the extra
layer of compositional problem, we maintain another multi-block variable to track the extra layer of
function value estimation. To understand this, we first write down the true subgradient:

1 1 1
OF(w) = ny 27’651 an Zjes Vhi’j(w)agi(hi’j(W») of; (n ZjESQ gi(hiJ(W))ﬂ '
To approximate this subgradient, we need the estimations of -1 =2 jess gi(h; j(w)) and h; ;(w),

which can be tracked by using MSVR estimators denoted by {Uz,t i€ Srtand {v, i, (4,4) €
S x 8o}, respectively. As a result, a stochastic estimation of OF (w;) is computed in step 6 of
Algorithm 2, and the model parameter is updated similarly as before.

4.3 Convergence Analysis

In this section, we present the proof sketch of the convergence guarantee for Algorithm 1. The
analysis for Algorithm 2 follows in a similar manner. The detailed proofs can be found in Appendix A
(please refer to the supplement). Before starting the proof, we define a constant M2 > C’J% Cg2 so that

under Assumption 4.1 we have E.[||G;|?] < M?. Then we start by giving the error bound of the
MSVR estimator in Algorithm 1. The following norm bound of the estimation error follows from the
squared-norm error bound in Lemma 1 from [15], whose proof is given in Appendix D.3.

Lemma 4.5. Consider the update for {u; ; : i € S} in Algorithm 1. Assume g; is C4-Lipshitz for all
1€S. Withy = %—l—(l—T),TS 1,wehave
2r1/%¢ 4nCyMn

1
E[ngm,m—gi(wﬁ)n <(1- 2 o = sl + =’ + Tt

BlT t+1

For simplicity, denote by W := proxp / p(wt). Then using the definition of Moreau envelope and the
update rule of w;, we can obtain a bound for the change in the Moreau envelope,
2772

n-pM

Ei[F1)5(Wir1)] < Fuyp(we) + pn(We — wi, B [Gy]) + ®)

where E; [G}] = = Zie s, 99i(W+)0 fi(ui ) is the subgradient approximation based on the MSVR
estimator u; 4 of the inner function value. This is a standard result in weakly-convex optimization [6].



To bound the inner product (W; — wy, E;[G;]) on the right-hand-side of (5), we apply the assumptions
that f; is weakly-convex, Lipschitz continuous and non-decreasing, and g; is weakly-convex. Its
upper bound is given as follows.

(Wt - Wt)TEt[Gt} < F(Wt) - F(Wt) + % Z[fz(gz(wt)) - f(uzt) - 8f(ui,t)T(gi(Wt) - Ui,t)
€S

C
+ (P4 G w0 = wil . ©)

Due to the pp-weak convexity of F'(w), we have (p— pr)-strong convexity of w +— F(w)+ 2 ||w; —
w||2. Then it follows F/(W,) — F(w;) < (& — p)||lw; — W||*. Combining this with inequalities (5),
(6), and setting p sufficiently large we have

2172 = _
n-pM=  pn p 2
Ee[F1/p(Wer1)] < Fryp(we) + —5—+ = Zies[7§Hwt — Wl

+ filgi(we)) = f(uie) = Ofi(uie) T (9 (We) = wie) + prllgi(we) — uie]?].
Recall Lemma 3.2, we have ||w; — Ww;||? = ﬁ%HVFl /5(w¢)||2. Moreover, the last three terms on the

R.H.S of inequality (7) can be bounded using the Lipschitz continuity of f; and the error bound given
in Lemma 4.5. Then we can conclude the complexity of SONX with the following theorem.

Theorem 4.6. Under Assumption 4.1 with v = % + (1 —7), 7= 0(Be?) < % n =

+ppllgi(we) — uiel® +

(N

1/2
O(&) and p = pp + psCy + 2pf02, Algorithm 1 converges to an e-stationary point of the
Moreau envelope F'y 5 in T = 0(71/26 6) iterations.

Remark. Similar to the complexity for smooth FCCO problems [26, 15], Theorem 4.6 guarantees that
SONX for NSWC FCCO has a parallel speed-up in terms of the batch size B; and linear dependency
on n. The dependency of the complexity on the batch size Bs is due to the use of MSVR estimator,
which matches the results in [15]. If the MSVR estimator in SONX is replaced by moving average
estimator, the complexity becomes O( 31"32 €~ 8) (cf. Appendix B).

Following a similar proof strategy, the convergence guarantee of Algorithm 2 is given below.

Theorem 4.7. (Informal) Under Assumption 4.3, with appropriate values of v1, Y2, T1, T2, 1) and a
proper constant p, Algorithm 2 converges to an e-stationary point of the Moreau envelope F' ;5 in

1 /4 nl/2 6
— 1 1 ninz — ’ 7
T = O | max BI75 BT BT BBy € iterations.

Remark. In the worst case, the complexity has a worse dependency on ny/Bj, i.e., O(ni’/ 2/ Bf/ %).
This is caused by the two layers of block-sampling update for {u;;,7 € S1} and {v; ;. : (4,7) €
S1 X S2}. Whenny = By = 1and Bs < /N2, the complexity of SONT becomes similar as SONX,
which is understandable as the inner two levels in TCCO is the same as FCCO.

5 Applications

NSWC FCCO finds important applications in group distributionally robust optimization (group DRO)
and two-way partial AUC (TPAUC) maximization.

Consider N groups with different distributions. Each group k has an averaged loss L (w) =
= 2ok U fuw (%), yi), where w is the the model parameter and (27, y) is a data point. It has been
shown in previous study [23] that the group DRO problem can be formulated into

N

1

rrbi)nmsin F(w,s) = 7 ];[Lk(w) — sy + s
This formulation can be mapped into non-smooth weakly-convex FCCO under certain assumptions.
Due to space limitation, we defer the comprehensive discussion of group DRO to Appendix E. The
rest of this section focuses on TPAUC maximization.

Let X denote an input example and h, (X) denote a prediction of a parameterized deep net on
data X. Denote by S the set of n positive examples and by S_ the set of n_ negative examples.
TPAUC measures the area under ROC curve where the true positive rate (TPR) is higher than v and
the false positive rate (FPR) is lower than an upper bound /3. A surrogate loss for optimizing TPAUC



with FPR< 3, TPR> « is given by [34]:

o101
m“l,n Eni ZXiGSI[lJﬁ] ZXjGSf [1,k2] g(hw(XJ) - hW(X’L))? (8)

where £(-) is a convex, monotonically non-decreasing surrogate loss of the indicator function
I(hw(X;) > hw(X3)), Sl[l7 k1] is the set of positive examples with k; = |n4«| smallest scores,
and S* [1, k,] is the set of negative examples with ky = |n_ 3] largest scores. To tackle the challenge
of selecting examples from 81 [1, k1] and S* [1, ks, the above problem is cast into the following [44]:

1
mlral N ZX{ESJr fi (wl (W7 Si)’ S/), (9)

—s 1 L hw(X;) — hw(X;)) — s
where s = (s1,...,5,, ). We will consider two scenarios, namely regular learning scenario where
X; € R% is an instance, and multi-instance learning (MIL) scenario where X; = {xg7 X E
R%} contains multiple instances (e.g., one patient has hundreds of high-resolution CT images). A
challenge in MIL is that the number of instances m; for each data might be large such that it is
difficult to load all instances into the memory for mini-batch training. It becomes more nuanced
especially because MIL involves a pooling operation that aggregates the predicted information of
individual instances into a single prediction, which can be usually written as a compositional function
with the inner function being an average over instances from X. For simplicity of exposition, below
we consider the mean pooling h (X) = ‘71| > xex €(Weix) T we, where e(we, x) is the encoded
feature representation of instance x with a parameter w., and w,. is the parameter of the classifier.
We will map the regular learning problem as NSWC FCCO and the MIL problem as NSWC TCCO.

The problem (9) is slightly more complicated than (1) or (2) due to the presence of s, s. In order
to understand the applicability of our analysis and results to (9), we ignore s’, s for a moment. In
the regular learning setting when hy, (X) = e(w,, X) "w,. can be directly computed, we can map
the problem into NSWC FCCO, where f;(g, s") is non-smooth, convex, and non-decreasing in terms
of g, and g;(w, s;) = ¥;(w, s;) is non-smooth, and is proved to be weakly when £(-) is convex and
hw(X) is smooth in terms of w. In the MIL setting with mean pooling, we can map the problem
into NSWC TCCO by defining h;(w) = \Tll Y oex, €(We; x) "we, hij(w) = h;(w) — h;(w) and
gi(hij(w),s;) = s; + %, and f;(g;,8') = ¢ + @, where f; is non-smooth,
convex, and non-decreasing in terms of g;, and g;(h;;(w), s;) is non-smooth, convex, monotonic
in terms of h;;(w) when £(-) is convex and monotonically non-decreasing, and g;(h;;(w), s;) is
weakly convex in terms of w when h;;(w) is smooth and Lipchitz continuous in terms of w. Hence,
the problem (9) satisfies the conditions in Assumption 4.1 for the regular learning setting and that
in Assumption 4.3 for the MIL with mean pooling under mild regularity conditions of the neural
network. We present full details in Appendix C.1 for interested readers.

where fi(g,s") = s +

To compute the gradient estimator w.r.t w, u; ; will be maintained for tracking g;(w, s;) in the regular
setting or - 3° X,€5. gi(hi j(w), s;) in the MIL setting, v; ; will be maintained for tracking h;(w)
in the MIL setting, which are updated similar to that in SONX and SONT. One difference from
SONT is that v; ; ¢ is decoupled into v; ; and v;; due to that h; ; can be decoupled. In terms of the
extra variable s’, s, the objective function is convex w.r.t both s’ and s, which allows us to simply
update s’ by SGD using the stochastic gradient estimator B% Yic st Os fi (us ¢, s;) and we update

s; by SGD using the stochastic gradient estimator [B% ZjeB; 0s,9i(Vjt — Vi, Si,t)} Oufi(Uit, S3).
Detailed updates are presented in Algorithm 5 and Algorithm 6 in Appendix C.2. We can extend
the convergence analysis of SONX and SONT to the two learning settings of TPAUC maximization,
which is included in Appendix C.4. Finally, it is worth mentioning that we can also extend the results
to other pooling operations, including smoothed max pooling and attention-based pooling [45]. Due
to limit of space, we include discussions in Appendix C.3 as well.

6 Experimental Results

We justify the effectiveness of the proposed SONX and SONT algorithms for TPAUC Maximization
in the regular learning setting and MIL setting [14, 45].



Table 2: Testing TPAUC on molecule datasets (top) and on MIL datasets (bottom). The two numbers
in parentheses of the second line refers to the lower bound of TPR and the upper bound of FPR for

evaluating TPAUC. The two numbers of each method refers to the mean TPAUC and its std.

moltox21 (t0) molmuv (t1) molpcba (t0)

Method (0.6,0.4) (0.5,0.5) (0.6, 0.4) (0.5,0.5) (0.6, 0.4) (0.5,0.5)

CE 0.067 (0.001) 0.208 (0.001) | 0.161 (0.034) 0.469 (0.018) | 0.095 (0.001) 0.264 (0.001)
AUC-SH | 0.064 (0.008) 0.217 (0.014) | 0.260 (0.130) 0.444 (0.128) | 0.140 (0.003) 0.312 (0.003)
AUC-M | 0.066 (0.009) 0.209 (0.01) 0.114 (0.079)  0.433 (0.053) | 0.142 (0.009) 0.313 (0.003)
MB 0.067 (0.015) 0.215(0.023) | 0.173 (0.153) 0.426 (0.118) | 0.095 (0.002) 0.262 (0.003)
AW-poly | 0.064 (0.01)  0.206 (0.025) | 0.172 (0.144) 0.393 (0.123) | 0.110 (0.001) 0.281 (0.002)
SOTA-s 0.068 (0.018) 0.23 (0.021) 0.327 (0.164)  0.526 (0.122) | 0.143 (0.001) 0.314 (0.002)
SONX 0.07 (0.035)  0.252 (0.025) | 0.347 (0.175) 0.575 (0.122) | 0.158 (0.006) 0.335 (0.006)

MUSK?2 Fox

Method 05,0.5) 03,07 (0.1,09) 05,05) 03,0.7) (0.1,09)

AUC-M (att) 0.675 (0.1) 0.783 (0.067) 0.867 (0.036) | 0.032 (0.03)  0.253 (0.098) 0.444 (0.118)
MIDAM (smx) | 0.525(0.2)  0.667 (0.149) 0.8 (0.097) | 0.048 (0.059) 0.265 (0.119) 0.449 (0.113)
MIDAM (att) 0.6 (0.215) 0.717 (0.135)  0.819 (0.092) | 0.016 (0.032) 0.249 (0.125) 0.509 (0.065)
SOTAS (att) 0.6 (0.267) 0.683 (0.178) 0.819 (0.097) | 0.024 (0.032) 0.278 (0.059) 0.477 (0.046)
SONT (att) 0.7 (0.1) 0.8 (0.067) 0.867 (0.036) | 0.12 (0.131)  0.343 (0.176) 0.578 (0.119)

Colon Lung

Method (0.5,0.5) (0.3,0.7) (0.1, 0.9) (0.5,0.5) 0.3,0.7) (0.1, 0.9)

AUC-M (att) | 0.576 (0.1) __ 0.739 (0.061) 0.803 (0.038) | 0.32 (0.181) _ 0.609 (0.113) 0.744 (0.082)
MIDAM (smx) | 0.646 (0.083) 0.787 (0.04)  0.863 (0.026) | 0.43 (0.195)  0.68 (0.128)  0.824 (0.055)
MIDAM (att) 0.548 (0.253) 0.738 (0.149) 0.826 (0.102) | 0.544 (0.261) 0.716 (0.189) 0.815 (0.129)
SOTAs (att) 0.772 (0.124)  0.862 (0.073) 0.911 (0.045) | 0.539 (0.153) 0.745 (0.077)  0.841 (0.049)
SONT (att) 0.8 (0.166) 0.875 (0.099) 0.916 (0.065) | 0.639 (0.137) 0.779 (0.041) 0.865 (0.028)

Baselines. For regular TPAUC maximization, we compare SONX with the following competitive
methods: 1) Cross Entropy (CE) loss minimization; 2) AUC maximization with squared hinge
loss (AUC-SH); 3) AUC maximization with min-max margin loss (AUC-M) [37]; 4) Mini-Batch
based heuristic loss (MB) [16]; 5) Adhoc-Weighting based method with polynomial function (AW-
poly) [35]; 5) a single-loop algorithm (SOTAs) for optimizing a smooth surrogate for TPAUC [44].
For MIL TPAUC maximization, we consider the following baselines: 1) AUC-M with attention-based
pooling (AUC-M [att]); 2) SOTAs with attention-based pooling, which is a natural combination
between advanced TPAUC optimization and MIL pooling technique; 3) the recently proposed
provable multi-instance deep AUC maximization methods with stochastic smoothed-max pooling and
attention-based pooling (MIDAM [smx] and MIDAM [att]) [45]. The first two baselines use naive
mini-batch pooling for computing the loss function in AUC-M and SOTAs. We implement SONT for
MIL TPAUC maximization with attention-based pooling, which is referred to as SONT (att).

Datasets. For regular TPAUC maximization, we use three molecule datasets as in [44], namely
moltox21 (the No.O target), molmuyv (the No.1 target) and molpcba (the No.O target) [29]. For MIL
TPAUC maximization, we use four MIL datasets, including two tabular datasets MUSK?2 and Fox,
and two medical image datasets Colon and Lung. MUSK?2 and Fox are two tabular datasets that
have been widely adopted for MIL benchmark study [14]. Colon and Lung are two histopathology
(medical image) datasets that have large image size (512x512) but local interests for classification [2].
For Colon dataset, the adenocarcinoma is regarded as positive label and benign is negative; for Lung
dataset, we treat adenocarcinoma as positive and squamous cell carcinoma as negative . For both of
the histopathology datasets, we uniformly randomly sample 100 positive and 1000 negative data for
experiments. For all MIL datasets, we uniformly randomly split 10% as the testing and the remaining
as the training and validation. The statistics for all used datasets are summarized in Table 3and
Table 4 in Appendix F.

Experiment Settings. For regular TPAUC maximization, we use the same setting as in [44]. The
adopted backbone Graph Nueral Network (GNN) model is Graph Isomorphism Network (GIN),
which has 5 mean-pooling layers with 64 number of hidden units and dropout rate 0.5 [30]. We
utilize the sigmoid function for the final output layer to generate the prediction score, and set the
surrogate loss £(+) as squared hinge loss with a margin parameter. We follow the setups for model
training and tuning exactly the same as the prior work [44]. Essentially, the model is trained by 60
epochs and the learning rate is decreased by 10-fold after every 20 epochs. The model is initialized as
a pretrained model from CE loss on the training datasets. We fix the learning rate of SONX as le-2
and moving average parameter 7 as 0.9; tune the parameter v in {0, le-1,1e-2,1e-3}, the parameter
«, B in {0.1,0.3,0.5} and fix the margin parameter of the surrogate loss £ as 1.0, which cost the same

3Data available: https://www.kaggle.com/datasets/biplobdey/lung-and-colon-cancer
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Figure 1: Training Curves of SONX (left two) and SONT (right two) for TPAUC maximization with
different . The y-axis is the TPAUC (0.5, 0.5).

tuning effort as the other baselines. The weight decay is set as the same value (2e-4) with the other
baselines. For baselines, we directly use the results reported in [44] since we use the same setting.

For MIL TPAUC maximization, we train a simple Feed Forward Neural Network (FFNN) with
one hidden layer (the number of neurons equals to data dimension) for the two tabular datasets and
ResNet20 for the two medical image datasets. Sigmoid transformation is adopted for the output layer
to generate prediction score. The training epoch number is fixed as 100 epochs for all methods; the
bag batch size is fixed as 16 (resp. 8) and the number of sampled instances per bag is fixed as 4 (resp.
128) for tabular (resp. medical image) datasets; the learning rate is tuned in {1le-2, le-3, le-4} and
decreased by 10 folds at the end of 50-th and 75-th epoch for all baselines. For SONT (att), we set
moving average parameter 7; = 7o as 0.9; tune the parameter v; = o = 7y in {0, le-1,1e-2,1e-3}
and fix the margin parameter of the surrogate loss £ as 0.5, and the parameter «, 3 in {0.1,0.5,0.9}.
Similar parameters in baselines are set the same or tuned similarly. For all experiments, we utilize
5-fold-cross-validation to evaluate the testing performance based on the best validation performance
with possible early stopping choice.

Results. The testing results for the regular and MIL TPUAC maximization with different TPAUC
measures are summarized in the Table 2. From Table 2, we observe that our method SONX achieves
the best performance for regular TPAUC maximization. It is better than the state-of-the-art method
SOTAs for TPAUC maximization. We attribute the better performance of SONX to the fact that
the objective of SONX is an exact estimator of TPAUC while the smoothed objective of SOTAs is
an inexact estimator of TPAUC. We also observe that SONT (att) achieves the best performance
in all cases, which is not surprising since it is the only one that directly optimizes the TPAUC
surrogate. In contrast, other baselines either optimizes a different objective (MIDAM) or does not
ensure convergence due to the use of mini-batch pooling (AUC-M, SOTAsS).

Ablation Study. We conduct ablation studies to demonstrate the effect of the error correction term
on the training convergence by varying the v value for SONX and SONT, where y; = 72 = 7y is
set as the same value in SONT. The training convergence results are presented in Figure 1. We can
see that an appropriate value of v > 0 can yield a faster convergence than y = 0, which verifies the
faster convergence of using MSVR estimators than using moving average estimators. However, we
do observe a gap between theory and practice, as setting a large value of v > 1 as in the theory might
not yield convergence. This phenomenon is also observed in [12]. We conjecture that the gap could
be fixed by considering convex objectives [40], which is left as future work.

7 Conclusions

In this paper, we have considered non-smooth weakly-convex two-level and tri-level finite-sum
coupled compositional optimization problems. We presented novel convergence analysis of two
stochastic algorithms and established their complexity. Applications in deep learning for two-way
partial AUC maximization was considered and great performance of proposed algorithms were
demonstrated through experiments on multiple datasets. A future work is to prove the convergence of
both algorithms for convex objectives.
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A Proofs of Theorem 4.6 and Theorem 4.7

In this section, we provide the detailed proofs for Theorem 4.6 and Theorem 4.7. We first give a basic
property for weakly-convex functions.

Proposition A.1 (Proposition 2.1 in [7]). Suppose function g : R? — R U {co} is lower-
semicontinuous. Then g is p-weakly-convex if and only if

p
9(y) = g(@) + (v,y = 2) = S ly - 2| (10)
holds for all vectors v € dg(x) and =,y € RY.

A.1 Proof of Theorem 4.6

Note that the proof of Lemma 4.5 also implies the following squared-norm error bound,
1 2 Byt ;1 , 4ro?  16n°CIMZ1?

Proof of Theorem 4.6. Define W; := prox,;(w¢). For a given i € S, we have
fi(gi(We)) — fi(uwi)
(@) R P R
> afi(ui,t)T(gi(Wt) - ui,t) - ?f”gi(wt) - ui,tH2
> 0fiuie) " (9:(We) — uie) — prllgi(We) — gi(we)lI> = pyllgi(wWe) — wi ]

> 0fi(uir) " (9i(We) = uie) — prCo Wy — wil|* — prllga(we) — wiil?

®
> 0fi(us,) " | :(We) = i+ 0gi(we) T (Wi — we) = B2y — w

”2 2

= prCollwe = will* = prllgi(we) — uia®

(c)
> 6fi(ui,t)T(gi(Wt) — i) + afi(ui,t)Tagi(Wt)T(Wt —wy) — (

pqC .
92 L4 PfCS)HWt —wy?
— prllgi(we) — wi ]|
where (a) follows from the ps-weak-convexity of f;, (b) follows from that f;(-) is non-decreasing
and the weak convexity of g;, (¢) is due to 0 < Of;(u; ) < Cy. Then it follows

> 0fi) D) (e~ w)
€S

< %Z {fi(gi(wt)) — filuig) = 0fi(uis) " (gi(We) —uie) + (ngCf +pyCo)[Wy — we|®

i€S

T orllgs(we) u}

Y
Now we consider the change in the Moreau envelope:
Ed[Fa/p(wis1)] = Er [min F(W) + 2% = wipa ]
. Py 2
<Eq [F(we) + Sl = win ]
. 2R
= () + B B~ (we — 1G] (12)
R o B ) 27M2
< F () 4 B llve — w2 + P (W, —wi, G+ L

n*pM?

= I 5(we) + (Wi — wi, B¢ [Gy]) +

14



where

= % Z 0g;(wi)0fi(wi ),

i€S

and the second inequality uses the bound of E[||G}||?], which follows from the Lipschitz continuity
and bounded variance assumptions and is denoted by M.

Combining inequality (11) and (12) yields

Ei[F1)5(Wit1)]
2-072 &
n°pM=  pn -
< Fyyp(we) + 5 + o {fi(gi(wt)) — filuiyz)
i€S

C .
_ 8fz(ui,t)T(gi(Wt) —Ui) + (pg2 !4 prg2)||Wt —wy|* + prllgs(we) — uz‘,t||2] (13)

25M2 >
= Fyjp(we) + TE— + B1Y” {vavt) — Fu(we) + filgi(we)) — filuiy)
ies
— Ofi(uie) " (gi(wi) —wig) + (pg2Cf + prC) W — wil|* + prllgi(we) — Uz‘,t||2]

Due to the pp-weak convexity of F;(w), we have (p — pr)-strong convexity of w > Fi(w) +
£2||wy — w||?. Then it follows

Fi(¥,) — Filw) = [Fx\fm + Dl —wth] - [wat) + 2w, —wtn?} D, —

p
< (2 p)lw —
(14)
Plugging inequality (14) into inequality (13) yields
25772
n-pM=  pn P .
BalFya(wis)] < BIF jow)] + T + 205 (B = p)w, = e
i€S
+ filgi(wy)) = filuie) — 5fi(ui,t)T(gi(Wt) —Uj¢) (15)

pqCy

+(2

T Ol = wall? + pyllga(wi) — ui,th]

Setp = pr + pgCr + prng. We have

n’pM? L Z

Ei[Fyp(Wegr)] < Fryp(we) + —5— 5

[—nwt Will2 + (g (w2)) = filuin)

zGS
O us) (g (W) — i) + pyllgi (we) — ui,tn?}
(a) UQﬁMQ

< Fijp(we) + 5 gHVFI/ﬁ(Wt)H2 + %7 Z [fi(gi<wt)) — filuiz)
i€S

()T (gs(we) — i) + pyllgi(we) — ui,tn?}

where inequality (a) follows from Lemma 3.2.
Using the Lipschitz continuity of f;, we have
n”?pM?*

2

Ee[F1/p(Wer1)] < Fryjp(we) + ||VF1/p(Wt )? -+ 220]””91 (W) = wi ]

€S

on
+ 215 pilgn(we) — il

i€S

15



By Lemma 4.5, the error bound of the MSVR update gives

B[ 3 e~ il < (1= 0% 3 o = o)) + B

i€S

i€s
1 1
E[n Z lJwie — gi(wt)Hz] <(1- M)tﬁ Z luio — gi(wo)[|* + Ra,
ies i€s
where
Byt 27120 4nCy,Mn 4rg?  16n*C;M*n°
H= ) 1= 1/2 /2 Ry = + 2
2n B, BT By Byt
Then o 1o
npM=
E[F5(Wit1)] < Fiyp(we) + 5 §]E[||VF1/ﬁ(Wt)H2]
1
paY — ti . J— .
+2Cpn <(1 1) - Z llgi(wo) — wioll + R1> (16)
€S
_ 1
+Cpspn ((1 - M)tg > llgi(wo) — wiol® + R2>
i€8
Taking summation from ¢ = 0 to T' — 1 yields
E[Fy5(wr)]
PoMPT
< Fyyp(wo) + 5 3 E[|[VFy5(wy)|?]
t=0
T-1 )
+20fp77< (T=w)'— > llgi(wo) = wiol +R1T>
t=0 1ES
_ 1
+Cpypn ((1 =)' =D lgi(wo) — wiol* + R2T>
i€S
@ " pM2 A
< Fijp(wo) + ——— -5 Z IV Fyyp(we) 1]
=0
2C _ o _
LB llga(wo) = wioll + 2CronBaT + PLELN ™ g, (wo) — wioll® + 2p,7m R
ries i€s
a7
where (a) uses 3" (1 — p)t < .

Lower bounding the left-hand-side by miny, F'(w), we obtain

T Z ||VF1/p Wt)” ]
t=0

2 , 25M2T  2C;p _
<7 [Fl/p<wO> min F(w) + 2 4 LS g (wo) — i + 2T
v "es
PO -
* fT > llgi(wo) = wiol® T}
i€S
28 M2 4 fP 2psp
< — +upM* + Z lgi(wo) — il +4CrpR1 + Z lgi(wo) = wioll* +2p5p R
77T zES 'u zES
c1 1
< —)+C(n+ R+ Ry
ST )

where we assume I} /;5(Wo, S, 5y) — Miny s« F'(W,s,s’) < Aand

_ 16Cp 8p¢p _ _
C = max{84,125M2, =2 N gi(wo) — wioll, L2 S gi(wo) — wioll®, 16C1 .80}
n €S n €S

16



Thus

s
= > E[IVE (w7

t=0
SOl 220 AnCyMn | 470” 16nQC§M2n2)
ST B T gl TR TR, BZr

1.1 n /20 nn 702 n2n?
—0|l ==+ = e, m™m | T9
(T(n o) T 57 "B B 57
Setting
B, By/?ét
ot v-o(B8

To reach an e-stationary point, we need

n
T=0|————
<3135/266>

A.2 Proof of Theorem 4.7

A formal statement in given below.

Theorem A.2. Under Assumption 4.3, with y1 = E’ETF% 1-m), 72 = B’Il(%i;) +
1/2 1/2
(1 — TQ), T1 = (@) mln{B3, 1/2 }4 S 5, T2 = 0(3264) S %, n =

14, 1/4 BL/2,1/2
O (mm{Bl/2 5 o, 1n1/22 } 51 B, ) and p = pr + 4pr§ + 2p,CtCE + CCyLy,

nin
n; in2

Algorithm 2 converges to an e-stationary point of the Moreau envelope Fy;; in T =

O [ max<{ —L- ny/* n? mnz =6 ) jterations
B§/27 Bi/‘ln;/‘l’ Bi/2"é/2 B1 B> :

2~2 2 E 22 ~2
We first define constant M2 > max{ 5% C +dchC;Ch’ + 3cfc G ,C?+0?} so that E,[|| G¢||?] <

M? and ||v; j¢||*> < M?foralli € 81,3 € Sy and t. Then to prove Theorem A.2, we need the
following Lemmas.

Lemma A.3. Consider MSVR update for v. Assume h; ;(w; &) is C, Lipshitzfor all (i,7) € S1 x5y
and B||Gy|2] < M2 With 71 = 584 4 (1 71), and my < 3, we have

[nlz >l - u<wt+l>|@

1€S1 365'2

B1BaTy 2125 4n1noCrMn

S (1 2 )t+1 Z Z H’U%Jv 7J WO)” + 11/2 1/2
nanz 1ies, "2 jes, B; B1BaT,
B[ 3 o X lossen - 7]<wt+l>||2]
zGS j€S2

B1Bymy J201) o  A4rmo?  16n2n3CEM3n?
< (] = —/—/— - (t+1) i h
- ( 2n1n2 Z Z ||U 10,0 7.7 WO)H + 33 + B%B%Tl

z€$’ j€S2

17



Lemma A.4. Consider MSVR update for u. Assume g;(-) is Cy-Lipshitz for all i € Sy. With
Yo = ny—Bi (1 —=7)and 1o < %, we have

Bi(1—72)
1 1
E| - D i — - > givigaen)ll
Lies, 2 jes,

< (1 _ @)t-‘rli Z ||UO _ i Z g(’U O)” n 27’21/20- n ani/QB;/le 0277‘?/2”%/2’[7
= @ i\Vi,5, 1/2 1/2 _1/2_1/2 3/2 ,1/2_1/2

2 ™M s, "2 jes, Bz/ B1/ nz/ 7'2/ Bl/ Bz/ 7'2/
where Cy is a constant defined in the proof.

Proof of Theorem A.2. Consider the change in the Moreau envelope:

Ed[F/p(wi1)] = Er |min F(%) + 2% — w2

<E [F(Wt) + g\\wt - Wt+1||2]

= F(W) + E; BIIM — (Wi — nGt)IIQ] (18)
. = ) ) 2—M2
< F(we) + 5 (e = will?) + PEiln(ee — we, Go)] + 5
n*pM?

= Fi/5(wi) + pE¢[n(Wy — wy, Gi)] + >

Note that

1 ni 1 no
E:[Gy] = 771 Z {712 Z Vhi,j(wt)agi(vi,j,t) Ofi(uit),
i=1 j=1

and the second inequality uses the bound of E[||G}||?], which follows from the Lipschitz continuity
and bounded variance assumptions and is denoted by M.

18



Define w; := proxF/p(wt) Foragiveni € {1,...,m}, we have

72.](‘1 Zgz 0] _7Zfluzt

1631 jESz 1651
@ 1 1yl .
Z Ofi(uis)" Z Gi(hij (W) — uir) — - Z 7”77 Z gi(hij (W) —
ZESl ]GSQ 1 1€S1 2 JES2
> — Z 6fz uzt Z gl 7 Wt ui,t)
z€S1 j€Sz
—*prufzgz i ( _7292 Vit _*pr”*z:gz Vijit) — i g)?
’LESI j€S2 jESz z€S1 ]ESZ
Z Ofi(uie) " (— Z 9i(hij(We)) = uiy) — nf Z Z prCallhig (We) — vyl
zesl "2 jes, 1ies, ™ jes,
~ L3 ol 3 i) = el
zES ]ESQ
1 R
Z Ofi(uiz) { Z 9i(Vije) —uit + - Z 09i(vije) (hij(Wi) — v 1)
Lies, 2 jes, 2 jes,

P 1 1
-— j{: o iy (w U@j¢H2}‘— ;I'jiz gf’jiz 205 Cyllhij(we) = vijell?

2 jes, €Sy 2 jes,
= 2p;CF Wy —wil* — — Z pr— > gilvige) — uigl?
z€S1 JES2
Z afz Us, t |: Z gi Uz,], Uq,t :|
2651 JES2
+ ?7 Z =D (0filuin) 09 (viga) T (hi (§) — vi)
1 €S jESz o
1
peC 1 1
o Z Z g ! || m ) Vi, j, t”2 - Z T Z 2Pfcg2||hi,j(wt) - Ui,j,tHQ
n1 ni ng 1
1€ST JESs 1€S1 JES2
*2pfc Hwtfwt”z*i prHi Zgz Uz,]t ui,t||2
1651 ]ESQ
>7Zafzuzt |: Zgzvz,]t :|
ZES jES

+ - Z Z 8fz u1 t 891(1)” t) ( 1](Wt) - Ui,j,t)

1651 ]ESQ

Ay

- — Z 3" 201C2 + pyCo)llhi g (we) — vi gl

ZES 2 JES,

1 1
— (2p5C5 + pgCrCR) Wy — wi||* — o Z pf”ni Z 9i(vij.i) — il
Lies, JES:
(19)
where (a) follows from the convexity of f;, (b) uses the assumption that f;(-) is non-decreasing and
g; is weak convex, (¢) is due to 0 < 0f;(u; ) < Cy.
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The Lj-smoothness assumption of h; ;(w) (or weakly-convexity of h; ;(w), then only the second
inequality holds) for all ¢, w implies

. R Ly, .
hi(We) < hij(We) + Vhij(we) T (W = wi) + =2 Wy — wi|%,

. - Ly, .
i (We) 2 ha g (We) + Vhij(we) T (W = we) = ZE[[We = wa|*.

We first assume that g;(-) is non-increasing. Since 9f;(u; ) > 0 and dg;(v; j+) < 0, we bound A,
as following

Ay = 0fi(ui )0 gi(vije) " (hij(We) — vije)

(20)

(a)
> (0fi(uie) " 0gi(viga) " (hij(We) = vije) + Ofi(uie) T 0gi(vi ) T Vhij(we) T (We — wy)
Ly .
+ 0fi(uie) " 0gi(vi g 5 e = wil?)
(b)

> —CyCyllhij(We) — vijall + O fi(uie) T 0gi(vije) T Vhij(we) " (W — wy)
c:C,L
_ %Hwt — w2

21
where inequality (a) follows from the first inequality in (20), (b) follows from the Lipschitz continuity
and monotone assumptions on f;, g, h; j. On the other hand, if we assume gi(+) is non-decreasing,
we may use the second inequality in (20) and obtain the same result as (21). Now plugging the new
formulation of Al back to inequality (19) yields

72.}[‘1 Zgz szt _7Zf7,uzt

ZES ]ESQ 1651

> — Z 0fi(uiz) {2 D Gilvige) - Ui,t:| TR >, ni Y —CrCyllhii(we) = vijal

Lies, JESa €S 2 jeS,

C;C,L
— Z > 0fi(uin) T 0gi(vija) T Vhi j(wi) T (Wy —wy) — %Hwt — wy?
Z€S1 n2 ]682
- Z Z 20f02 "’pgcf)Hh ,J(Wt) Uz‘,j,t| 2
zES n2 JES2
1 2
— 20sC2 + 5y R —will = = pr S guvi0) — s
zES jES
> — Z CfH Z gi(vi,ﬁ) + 77/7 Z Z C’fC’ ||hzj(Wt) Vi
Lies, 2 jes, 1ies, ™ jes,

. 1 1
+ RG], Wy =) = > p— > (20105 + pCp)llhig(we) = vijell®

i€51 JESs

CyCyLy, 1
- s+ 005G+ L =l - LS o S o) -
lES JES2

2

It follows
(Ei[Gi], Wi — Wt>

<7Zf7, Zgz 1,7 Wt _72]81 uzt +ZCfHZgi(Ui,j,t)_ui,t

ZES ]ESQ zeS 1€S1 JES
77 Z Z CrCyllhij (W) = vi el + — Z Z 2pr + pgCy)llhij(We) = vij, t”
1 i€Sq n2 JES2 1651 JESs

CyCyLy ., . 1 2
+ (20505 + pgCrCii - =50 [V —wel* + — 37 py
1€S1

E gl Uz,], Uq ¢

J€S2

(22)
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Combining inequality (22) and (18) yields
E¢[F1)5(Weg1)]

< Fptow) + T 4 ool LS [ 3 aithas ) - s

€S, JES2

1
LSy ) vl
2 JES2

1
+ CanQ Z 9i(Vijit) — uig
JES2

1
T D (205C2 + pgCp)lhij(wi) = vija1?
JES2

CCyLy,

+ (2p5C2 + pyCsCi + 5

1

?pM? (1 ) 1
< Fijp(we) + 5 T - Y | Fi(Wy) — Fi(we) + Fi(wy) — fz'(TT2 > gi(viie))
€51 JESs

R 1
Ve — well? + pr S i) — i
ny
JES2

1 1
+ il D 9ivig)) = filuig) + Can? > 9ilvige) = uig

JES2 JESy
1 1
+ > CrCoyllhis(we) = vigall + — D (200C5 + pyCp)[hi s (we) = v
2 jess 2 jess
CrCyLy . . 1 2
201 C2 + 0,01 C+ L = wil? o 3 o) e ]}
2 JES,
(@) 2pM? (1 . 1
< Fyjplwy) + 2 p2 + m?{ > [Fi(wt) = Fi(wy) + QCfH > gilviga) — i
nyg ng !
i€S JESa
1 1
+ > 20 Cyllhi j(wi) = vigull + o > (205C2 + pgCo) i j(we) = vi el
jESs % jess
CrCyLy ., . 1 2
+ (2053 + pgCsCh + ng)HWt —wi|® + PanQ Z 9i (Vi) — Wiy ] }

JES2
(23)
where (a) follows from the Lipschitz continuity of f;, g;, h; ;.

Due to the pp-weak convexity of Fj(w), we have (p — pr)-strong convexity of w +— Fj(w) +
£||wy — w||?. Then it follows

Fils) = Fiowg) = [Fi(o) + Gllwe =l | = | Fwa) + Sl = wil?| = e =

(24)
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Plugging inequality (24) back into (23), we obtain

Ee[F1/p(Wei1)]
2072
nipM= [ 1 PF . 1
< Fuyp(we) + —5—+ P??{n ) {(2 — p)llwe — W[ + 2Can D 9ilvige) = i
Lies, 2 jes,
1 1
+ D 205 Cy|hij(we) = il + — > (205C5 + pyC)llhi g (We) = vi gl
J€S; % jess
CiCyln . . 1 ?
+ (20¢C2 + pyCsCi + ng)Hwt —w >+ ,Oan Z 9i(Vijt) — Wiz ] }
JES2
(a) M2 (1 ) )
< Fuyptw + T gl LS B, sl 40| LS i) — s
Lies, 2 jes,
1
+o Z Cullhij(we) = vi el + > Cullhij(wi) = vija])?
jESQ 2 jESQ
2
+ C(1 Z gi Uz,], Uj,t :| }
jGS
®) wpM? 1
= Fl/p(wt) + 9 - §||VF1/,3(Wt)H +01/)77f ‘ Z g; ’Ul,]7 Uj,t
zGS jES
+01P77*Z Z 17235 (w) th”"'OlP??*Z Z 1R g (we) = vijell?
zES ]652 lES j€S2
2
+Clp77*z Zgz Uzgt it
ZES JES

where in inequality (a) we use p = pp + 4p;C2 + 2p,C;Cy + C;CyLy and C) =
max{2CCy,2Cy, (2p;CZ 4 pyCy), py}. and equality (b) uses Lemma 3.2.

With general error bounds

771 Z Z E[|Ri,;(we) = vijell] < Z Z [hi,;(Wo) — vijoll + R,

ZES] ]ESQ zeSl ]652
1
o Z Z B[R 5 (W) = vi g lP] < (1= )" — Z Z [[hi,5(Wo) = vijoll* + Ra,
1 1651 ]ESQ zES ]GSQ
1
- Z H Z 9i 1)7.,] t u',t :| S (]- - ,u2 - H Z gi(vi,j,o) - ui,O + R3a
™ s, 2 jesS, +ies, JES,
2 2
1
T B OrCHnERTH | EYEVRITS B B S IUSHERH e 8
Lies, jESs *ies, 12 jes,
we have
E[F1/5(Wit1)]
2~ 2
n°pM= - /
< E[Fyp(wo)l + —5— ~ §]E[||VF1/ﬁ(Wt)||2] + Cipm(1 — Mmin)f|: ‘ > gi(vijo)
ZGS j€Sz
+ Z Z 9i(vij,0) — i + — Z Z (17,5 (wo) — vijoll
Lies, 172 jes, Lics, "2 jes,

Z Z A, (wo) Uz‘,j,0||2] + C1pn(Ry + Ry + R3 + Ry),
zESl jESz

where Mmin = mln{;ula H2}
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Taking summation from ¢ = 0 to 7" — 1 yields
E[F1/5(wr)]

2712 T-1 T-1
N pM=T _
5 E[||VFl/ﬁ(Wt)H2] + Clpﬁ Z(l - ﬂmin)tAO
t=0 t=0
+TCi1pn(R1+ Ry + R3 + Ry

T—-1
’?pMPT 1 CipnA
< E[Fyp(woll+ ——F——5 E[||VFy(wy)|?] + ———

5 + TClﬁn(Rl + Ry + R3 + R4)

=0 Hmin
where we use Z?__Ol (1 = pmin)t < m L and define constant A such that
2
{n ‘ Z gi Uz,go — U0 ‘ Z gi UL,_]O
1 i€S JES m 1€S, jesz
F S0 S g (w0) — ol + o 30 3 hsgwo) vm,onﬂ <A
zGS ]eSQ zGS ]GSz
Then it follows
=
T Z E[|VFy(wo)?]
t=0

2 25M2T CionA
s[Fl/p<wO>—E[F1/p<wT>}+”” 1 Gipnbo

TCipn(R R R R
T 5 = + TC1pm(R1 + Ry + Ry + 4)]
2A 2C1 pA
< 22 pppM? + 2220 4L 90 5(Ry + Ry + Rs)
77T M'rm'nT
1.1
ZO(*(*"F )+77+R1+R2+R3+R4)
T n min

where we define constant A such that Fy /5(wo, so, s5) — E[Fy /5(wr, s, s7)] < A.

With MSVR updates for v; ; ¢+ and u; ¢, following from Lemma A.3 and Lemma A.4, we have

B1Bymy B 27'11/20 4Aning/CrMn
U1 = FF—, M2 = ) R].: 1/2 1/2
27’L1’I7,2 QTLl B3 31327-1
R dri0? 16n3n3ChM>n? R 27'21/20 CQni/zB;/gﬁ n Cs n3/2n;/277
2 = ) 3 = )
B, | Bibin B B B
47’20’2 02277/1B2T12 02271:;’112772
R, = + 3 .
B2 Bln2T2 BlBQTQ
Then
1 T=1
T Z E[[[VEFy5( Wt)” J
t=0
7'11/2 T1 7'21/2 T2
<0 21 12
/~Lmzn +77+ g/g * Bd * B;/2 BZ
niNan n%n%rﬁ ni/gBQI/QTl n 3/271;/27] nlBng n‘i’ngnZ >
ByByry/?  BiBim - Bl/?pl/%7)/2  BY?BY2r/2 Bingma  BYBam
< O(l (1 N 1 N 7'11/2 N 721/2 nina” n}/2B§/2ﬁ N 3/271;/277 >
T8 B B gt BV R
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Algorithm 3 Stochastic Optimization algorithm for Non-smooth FCCO with coordinate moving
average

1: Initialization: wq, {u; : i € S}.
2: fort=0,...,T—1do
3:  Draw sample batches Bf ~ S, and Bj ; ~ D; for each i € Bi.
(1 —7)uit +719:(we; BS ), i€Bi
Ui t41 = .ot ’
Ui, t, ? ¢ Bl
5 Compute G; = B% ZieB§ 0gi(W; Bé’i)afi(ui,t)
6: Update wyy; = wy — nGy
7
8

e

: end for
: return w; with uniformly sampled ¢ € {0,7 — 1}.

Setting
BY/2,1/2
=0 (min{Bg, %}64 ) = O(Bae?),
ny
. ) BiB2 12 2 33/231/2
7):O<1n1n{n1n2 T ) 3/2 1/2 2
1/4 1/4 1/2 1/2
= O | min B1/2,B , BBy et
1/4 ning
then with
T=0 | ma ! ni/‘l n1n2 -
= X ; ’ ;
B§/2 Bi/4n§/4 1/2 1/2 3132
we have
=
= SEIVE (w) ] < ¢

t

Il
=)

O

B Solving Non-smooth FCCO and TCCO with Coordinate Moving Average

In this section we consider solving non-smooth weakly-convex FCCO and TCCO without variance
reduction method. To be specific, we use coordinate moving average updates for function values
estimations instead of MSVR. This allows us to weaken the assumption on the Lipschitz continuity,
i.e. the Lipschitz continuity of the stochastic function value estimation is not required, and can
be replaced by the Lipschitz continuity of the function value. Moreover, compared with MSVR,
coordinate moving average update does not need the stochastic evaluation from the previous iteration,
and thus has a simpler implementation. However, as a result of not using variance reduction technique,
the algorithms suffer from worse convergence rates in terms of e.

B.1 Solving Non-smooth FCCO with Coordinate Moving Average

We first assume the followings assumptions hold.

Assumption B.1. For all ; € S, we assume that

* fi(-) is py-weakly-convex, C';-Lipschitz continuous and non-decreasing;

* gi(+) is pg-weakly-convex and Cy-Lipschitz continuous;

» Stochastic gradient estimators g;(w; &) and dg; (w; &) have bounded variance 0.

With coordinate moving average update, we present the following lemma of error bound.
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Lemma B.2. Consider the coordinate moving average update for {u; : i € S1} in Algorithm 3,
assume g;(w) is Cy-Lipschitz continuous for all i € Sy and T < 1, then we have

BTt — gilwo)|| + 220 4V2mCy My
_ o Wi o — a: (W

4n1 ,0 9i 0 B;/2 BlT )
Byt 870 N 32n3Ce M?n?
4nq B, B27?2

ElfJuie+1 — gi(wegr)|]] < (1

Elllu 1 = gi(wes)I*] < (1= =) ugo — gi(wo) | +

Then we have a convergence analysis similar to Theorem 4.6.

Theorem B.3. Consider non-smooth weakly-convex FCCO problem, under Assumption B.1, setting
T=0(Be*) <1, n= (’)(B;L—IB?eﬁ), Algorithm 3 converges to an e-stationary point of the Moreau

envelope Fy 5 inT = O(g5'5; €~8) iterations.

Proof of Theorem B.3. Since the only difference between SONX and Algorithm 3 is the update for
{u; ¢ : i € S1}, the proof of Theorem 4.6 still holds with the error bound replaced by Lemma B.2,
ie.,

1 1
E {n D iy — gi(Wt+1)||] <(1- M)Hlﬁ > lluio — gi(wo)ll + Ru,
i€s icS

1 1
E {n > i — gi(wt+1)||2:| <(1- /l)tﬂﬁ > llwio = gi(wo)ll* + Ra,

i€S =
_Bir 2V27Y2%0  4y/2n,CyMn R 8702 . 32n2C2M*)?
M 4TL1 ) 1 B;‘/z BlT ) 2 32 B%’Tz
Then proof proceeds to
1« 111
= E[|VFy/5 <o =(-+-= R+ R
F 3 EIVE )11 S0 (04 ) b+ Rt B )
1.1 n1 /2q nin 702 n%nQ
:0 —_— — — — PR .
<T(77 )Tt e Yt R e
Setting
BB
7 = O(Bye?), T]:O(%EG),
1

then to reach a nearly e-stationary point, Algorithm 3 needs

ny _8
T =

iterations. O

B.2 Solving Non-smooth TCCO with Coordinate Moving Average

We first assume the following assumptions hold.

Assumption B.4. For all (i, j) € S; X So, we assume that

* fi(-) is pyp-weakly-convex, C'r-Lipschitz continuous and non-decreasing;

* g;(-) is pg-weakly-convex and Cy-Lipschitz continuous. h; ;(-) is differentiable and Cj,-Lipschitz
continuous.

* Either g; is monotone and h; ;(-) is Lj-smooth, or g; is non-decreasing and h; ;(-) is L-weakly-
convex.

2

* Stochastic estimators h; ;(w,§), Oh; ;(w,€&) and g;(v; ;) have bounded variance o*, and

1,5 (W) < Ch.

With coordinate moving average update, we present the following lemmas of error bounds.
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Algorithm 4 Stochastic Optimization algorithm for Non-smooth TCCO with coordinate moving
average
1: Initialization: wo, {u;0 : i € S1}, vij0 = hij(wo; B, ;) forall (i, 7) € S1 x .
2: fort=0,...,T—1do
3:  Sample batches B C 81, B5 C Sy, and B ; ; C D; j fori € Bf and j € Bj.
i = {(1 — 7’1)’()1"]‘)15 + Tlhi,j(WﬁBg,Z,]); (27]) S B{ X Bé
e Vi, (6,7) & BY x B
(1 —72)u;e + Bi Zjezgt T29i(vijt), 1€ B
S Uiyl = it 2
Ui t, ? € Bl
6: Gi = B1 ZieBi [(B% Ziesg Vhi,j(wt;Bé,i,j)agi(vi,j,t)) 3f1:(ui,t)]
7: Update Wip1 = Wi — ’f]Gt
8
9

4:

end for B
: return w; with uniformly sampled ¢ € {0,7 — 1}.

Lemma B.5. Consider the coordinate moving average update for {v; j+ : (i,j) € S1 x Sa} in
Algorithm 4, assume h;_j(w) is Cy,-Lipschitz continuous for all (i, j) € S1 x Sy and 11 < 1, then we
have

Z > vigers = hij(wisa)|

z681 JESS
B1BoT1 141 2V/21 1/20 4/2n1noCl, M
<(1- ) Z Z [[vij0 — hij(wWo)|l + T2 T )
4”1”2 2631]652 Bg/ BlBQTl
2
- Z > vigasr = hij(Weg)]|
172 i€S) jES?
B1BaT1\9041) o  8mo?  32niniCEM?n?
<(1————)%* [vi,j,0 = hij(Wo)||” + + -
Anins ngzl j%;z 30 I Bs B%BST%

Lemma B.6. Consider the coordinate moving average update for {u;, : i € S1} in Algorithm 4,
assume g;(+) is Cg-Lipschitz continuous for all i € Sy and 5 < 1, then we have

Z lJwi 41 — — Z 9i(vig 1)l

ZESl 3682
Bl7'2 2\/57'1/20 4V2C Mn1/231/27'1
<(1- )i — Z luio — — Z 9i(vi,j,0)| 7+ SYEMYE R
Lies, JES, B, By ny'
Z ||u2 t+1 — Z gi Um t+1 ||
1651 jGSg
2 2772 2
< (1= B LS gy = 3 (i)l 4 S L T
m 1681 J€52 2 127

Then we have a convergence analysis similar to Theorem A.2.

Theorem B.7. Consider non-smooth weakly-convex TCCO problem, under Assumption B.4,
1/2 1/2
setting 1 = O <min{B36 m3266}> < 1, m = OB < 1, n =

. Bl/2pl/? . . ;
O (mln {3364, 11/27;?/23266 %62 , Algorithm 4 converges to an e-stationary point of the
ny 2

1/2
Moreau envelope F'y;; inT = O (max {313, 31/2211/2n1/2 6_2} ;1%22 e_8> iterations.
1 2 2
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Proof of Theorem B.7. Since the only difference between SONT and Algorithm 4 is the update for
{u;r i€ S1}and {v; ;, : (4,7) € S1 X Sz}, the proof of Theorem A.2 still holds with the error
bound replaced by Lemma B.5 and Lemma B.6, i.e.,

— Z D Efllhig(we) = vigell] < (1= pa)* Z D B (wo) = vijoll + R,

165'1 JES, 1651 JES2
— Z D Ellhig(we) = vigel?] < (1= )’ Z > lhig(wo) = vijoll® + Re,
’LESl JES2 165'1 JES2
— Z |: Z gl UL,]t :| < (1 _NZ) ni ‘ Z i UZ,JO — U0 + Rs,
ZES jES + €S, j€S2
2 2
SOILI| S DPACAETH [ EYEYSETS B P DRI 9.
Lies, 2 jesSs + i€Sy 2 jes,
with
- B1B2T1 o B1T2 R 2\[’7’1/20 4ﬁn1n20}1M77
M1 = Aning M2 = iy’ 1= Bé/Q By Bs1,
P, 8To? | BASCRM 207 g N 4/2C,Mn)"* By * 7y
2 = ’ 3 = )
By | BiBi Bl B0y,
8702  320%2M?3ny Byt?
Ry = ToOo n g 12 2T}
B2 BanTQ
Then the proof proceeds to
=
= BV Epw) ]
t=0
1.1 1
<O =(=+ )+n+Ri+Ry+ R3+ Ry
T n Hmin
1/2 2 1/2 2 2,2, 2
<0 l(l_’_ 1 )+77+T1 0+7'10 7570 To n1na”n n;n22772
T 7] Hmin B§/2 Bg B;/Q BQ BlBQTl B B 1
+ 1/2 / 77,1327'12
1/2 1/2 Binyt2
<O l(l + ! + 711/20' 721/20' ninam ”1/235/271
~ \T'n  pmin’ BY?  BY? BiBam B/?pl%n,
Setting
. BL/2,1/2
mn=0 (mln {3364, ﬁBzeﬁ , Ty = O(Bget),
B,
B1/2 1/2 B.B
n= O | min B5€4 1/27?/2.3266 17262 s
nq B2 nin2
then to reach a nearly e-stationary point, Algorithm 4 need
1 1/2 2 mn2 __jo
T:(’)(max{B3 Bl/2B1/2 1/2 B1B26
iterations. O
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C Details for TPAUC Maximization

C.1 Assumption Verification

We first present two lemmas about the weak convexity of the objective in the regular learning setting
and in the multi-instance learning setting with mean pooling.

Lemma C.1. Consider the formulation in problem (9) in the regular learning setting and assume
that function ((-) is non-decreasing, Cy Lipschitz continuous and pg-weakly-convex, and function
hw(X;) is Cy Lipschitz continuous and py-weakly-convex. then the following statements are true:

* fi(g,s") is convex and C'¢-Lipschitz continuous w.rt. (g, s'), and non-decreasing w.rt. g.

* i(W, ;) is py-weakly-convex w.r.t. (W, s;), and the stochastic estimator of the finite sum
Sfunction value ;(w, s;) is Cy-Lipschitz continuous w.r.t. (W, s;).

. i Yics, Ji(bi(w,s;),s") is pp-weakly-convex wrt. (w,s, s').
Lemma C.2. Consider the formulation in problem (9) in the multi-instance learning setting with
mean pooling, and assume that function h;(w) = ﬁ > xex, €(We; x)"w, is Ly,-smooth and is

bounded by C', and hi(w; €) = e(we; &) Twy is C,-Lipschitz continuous and has bounded variance
o2, ¢ is non-decreasing and Ly-weakly-convex, then the followings are true:

* fi(g,s") is convex and C'¢-Lipschitz-continuous w.rt. (g, s'), and non-decreasing w.rt. g;

* gi(v,8;) = s8; + % is pg-weakly convex and non-decreasing w.r.t. v, convex w.r.t.
s;, and Cg-Lipschitz continuous w.r.t. (v, s;);

* h;;(w) = hj(w) — h;(w) is Ly,-weakly-convex, and h; ;(w; &, ¢) is Cp,-Lipschitz continu-
ous;

. i >oxies, Ji(9i(hij(W), si),8') is pp-weakly-convex w.rt. (w,s, s').

C.1.1 Proof of Lemma C.1

Proof of Lemma C.1. The convexity of f;(g,s’) with respect to (g, s’) follows from the convexity
definition. With subgradients O, f;(g,s') € [1 — ,1], 9, fi(g, s') € [0, 1], we can see that f;(g, s")
is é-Lipschitz continuous w.r.t. (g, s’), and non-decreasing w.r.t. u.

We first show that £(hw (X;) — hw(X;)) is weakly-convex w.r.t. w.
((hw(X;) — hw (X))
> U hw(X;) = hw(X3)) + (0 hw (X;) — hw(X5)), (hw(X;) — ha (X)) — (hw(X;) — hw(X3)))

p
+ 5 10 (X) = he(X0) = (haw(X;) = e (X))
(@) -
> U hw(Xj) = hw (X)) + (0 hw (X;) = hw(Xi)), (Vhw(X;) = Vhw(Xi), W — w))
+20Ci || W — w|®
where (a) uses the weak-convexity of hy, (X;) and hw (X)),
~ Ph |~
o (X;) = g (X7) 2 (Vhow(X;), W = w) = T2 [ = wl )%,
— (X)) + Iy (X0) 2 =(Vhoy (X), % = w) + 52 [ = w]%.
Thus £(hw(X;) — hw(X;)) is 4p,C7-weakly-convex w.r.t. w.
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By convexity of (£, s;) — s; + £ N i we have

Pi(W, 5;)

> Yi(w, 8) + (00i(W, 8:), £(h (X)) = ha (Xi)) = L(hw (X;) = haw (X3))) 4 (05,04 (W, 54), 8; —

S i, 55) + 0t (W, 50) |9 g () — hon(X2)) (Vg (X;) — Vhae (X2), 3 — ) — 2920 — w

+ <asl¢l(wv Si)v gl - Si>

D i, ) + 00t (3, 5008 (X;) — e (X)) (X;) — Thae (Xe), 0 — w))
. QPéCh -

(O, tbs(w, 500,51 — 55) — 2R — w?

where (a) follows from the monoton1c1ty of 1; w.r.t. £ and weak-convexity of £(hw (X;) — hw(Xi)),

and (b) is due to the Lipschitz continuity of (£, s;) > s; + =50 ) w.rt. £. Thus t; is 22 ZC’L -weakly-
convex w.r.t. (w, s;).

With a similar argument using the convexity and Lipschitz continuity of f;(g,s’) w.r.t. (g,s’) and

2
the weak-convexity of ¢;(w, s;), we can show that f;(1;(w, s;), s’) is 4”TC’L—weakly-convex w.r.t.

4p/C

(w, si,8"). Thus, F'(w,s;,s")is pp g -weakly-convex w.r.t. (w,s,s’).

Now we show the Lipschitz continuity of ¢;(w, s;; X;), i.e. an unbiased stochastic estimator of
;(w, s;). We have

|4 (w, SzaX) Vi(W, 8;; j)||2

~ 2
- H( L (%) — f;wm» —si)e) g, 4 (s () - e (X)) = 5i)+
< ollsi — &P 4+ 2 H (U (X)) = hw(X0)) = 8i) (L () = (X)) = ) ||
— K3 K3 /6 ﬂ
< 2llsi - &l + Bgsczchuw (| +2]5 - s°)
4 160202
< @4 g R — w45 = s,
Thus ; (w, s;; X;) is (2 + %)lm-hpschitz continuous w.r.t. (w, s;). O

C.1.2 Proof of Lemma C.2

Proof of Lemma C.2. First of all, the convexity of f;(u,s’) w.rt. (u,s’) and the convexity of
gi(vij,s:) wrt. (€,s;) directly follows from the convexity definition. Moreover, one can see
from the formulation that 9 f;(g, ') € [ — £,1], 0ufi(g,5') € [0, 1], Bpgi(vij,s:) € [1 — %, 1],
0s,9:(vij,8:) € [0, %] Thus f; is Cy = X-Lipschitz continuous w.r.t. (u,s’) and non-decreasing
w.r.t. u, g; is %—Lipschitz continuous w.r.t. (¢, s;) and non-decreasing w.r.t. £. Since ¢(-) is non-
decreasing, g;(vi;, ;) is non-decreasing w.r.t. v;;. As a result of Proposition 4.2, g;(vi;, s;) is
Pg = %Lg—weakly—convex w.r.t. v;;. Due to the composition structure and the Lipschitz continuity of
g; and £, one can see that g;(v;j, s;) is Cg = %C’Z-Lipschitz continuous w.r.t. (vsj, S;).

The Ly, = Qﬂh-weakly-convexity of h; j(w) and Cj, = QC'h—LipschitZ continuity of h; ;(w;§, ()
directly follows from the Lj-smoothness of h;(w) and C},-Lipschitz continuity of h;(w; ). Finally,
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we show the weakly-convexity of f;(g;(hi ;(w),s;),s’):

filgi(hi j(W),5:)8")

D Figi i (). 520, 7) + (B filga(ha g (W), 520, ), 8 — )
+(0ufi(gi(hij (W), 5:),8"), (0egi(hi (W), 81), (i (W) — £(hi 5 (W))))
+{(Oufi(gi(hi j (W), 5:)s"), (D5, 9i(hi (W), 5:), 8i — 5i))

D il s () 52),5) + (O gl s (), 520,55 — o)

+ (D fi(gi(hi j (W), 8i), 8" )0egi(hi j (W), 5:)0L(hi j(W)), hi j (W) — Ry j(W))

- Cf(;ng ([, (W) — hi,j(w)HQ + (Oufi(s' 9i(hi,j (W), 5:))0s, gi(hi j (W), 8i), 8; — i)
D F0ilhas (), 55),5") + (0w filgi (s s (w), 5, 8), & — )

+ (O fi(gi(hi j (W), 50), 8" )0egi(hi (W), 5:) 0L (hi (W) Vi j (W), W — W)

- CiC,C}Ly  CyCyLy,
(O i(gi (i g (W), 510), 8)Da, i (W), 50), 83 — s1) — (FI=A= 4 ==

where (a) uses the convexity of f;, (b) uses the monotonicity of f; w.r.t. u and convexity of g;(, s;)
w.r.t. (£,s;), (c) uses monotonicity of f; w.r.t. u, monotonicity of g; w.r.t. £ and L,-weak-convexity
of £, (d) uses the smoothness of h; ;. Thus f;(gi(h; ;(W), s;),s")is pr = (C;CyCE Ly + C¢CyLy,)-
weakly-convex w.r.t. (w, s;, s"). Therefore, i Y icss filgi(hi j(w), si),s") is pp-weakly-convex
wrt. (w,s,s’). O

)W — wlf?

C.2 Algorithms for TPAUC and Multi-instance TPAUC Maximization

Algorithm 5 SONX for TPAUC
1: Initialization: wo, {u; 0 :% € S1},{s:0:1 € St}, )
2. fort=0,...,T—1do
3:  Sample batches B! C Sy and B C S_.
. (U= T)ugg A T (Wi, 8503 BE) + (i (Wi, 81,03 B5) — YW1, 55015 BY)), i € B}
4 U = . ¢
l ui,tv 1 ¢ Bl
s, _ Sit — Ug%asilfi(wty Sit; Bé)auf(uz,ta 5;)7 i€ Bi
S s i€ B
6: S;H-l = S; - 773% ZieBi as’f(ui,tv 82)
7:  Compute Gy = B% ZieBg Owthi (W, Sits Bé)auf(ui,m sy)
8: Update Wiyl = Wi — ’f]Gt
9: end for ~
10: return wj with ¢ uniformly sampled from {0, ..., T — 1}.

5:
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Algorithm 6 SONT for Multi-instance TPAUC
1: Initialization: wo, {u;0:% € St},{si0:9€ S}, 80, {vijo: (4,7) € Sy xS_}
2. fort=0,...,T—1do
3:  Sample batches Bf C S, B5 C S_,and B ; C X fori € Bf U Bj.

Mg, [(1—m)vi s+ ihi(we; B ;) +vi(hi(we; Bs ;) — hi(we—13 B3 ;))], i€ By
4 v = (U, (1= m)vig + mohi(we; BS ;) + v (hi(wes B ;) — hi(we—1;B5 )], i € BS
vit, ¢ BYiandi¢ Bl

(1 —To)ui + B% Zjezs; [T29(vj¢ — Vi, Sie)

S5 Uiyl = +73(9(Uj,t — Viyt, Siyt) — g(vj,tfl — Vi1, 8i4-1))], 1€ Bf
ui,t7 [ ¢ B%
6 Sipis = {Sz‘,t — Mg [B% > jeny O0s:9(vje — vig, Si,t)} Ouf (s uie), i€Bj
: tt+1 = .
Si,tv 1 ¢ B{

7: S;_H = Si — nQBil ZiEBf as’f(ui,ta 5;)
8 Gi= g Yiep Ouf(uin,st)

9: [B% Zjezsg (th(wt§ B:ts,j) — Vhi(wy; B:t),,i)) 3v9(vj,t — Vjt, Si,t)}
10:  Update wy 1 = wy — Gy

11: end for

12: return w; with ¢ uniformly sampled from {0,...,7 — 1}.

C.3 TPAUC in MIL with smoothed-max pooling and attention-based pooling

We can extend our results to smoothed-max pooling and attention-based pooling.

Smoothed-max Pooling. The smoothed-max pooling can be written as [45]:

1

hw(X) = 7log (Xl > exp(sb(w;x)/T)) : (25)
xeX

where 7 > 0 is a hyperparameter and ¢(w; x) = e(w,, x) | w,. is the prediction score for instance x.

We can see that h, (X) itself is a compositional function. To map the problem into TCCO, we define

hi(w) = ﬁ > oxex, exp(¢(w;x)/7) 4+ C, where C > 0 is a constant. Then the objective function

becomes

min i Z fi(wi(wasi)asl)v

w,s’,s N

Xi63+
where f;(g,s') = s’ + @, (26)
i(w, 1) = 1 Z .t (¢(Tloghj(w) — Tloghi(w)) — si)Jr,
- X;eS_ p

In this case we define g;((v), s;) = s; + (ATle ”rTﬁlog v2)=si)% and by ;(w) = [hi(w), h;(w)].
We can still prove that g;(¢(v), s;) is monotone w.r.t to each component of v. It is not difficult to prove
that ¢(7 logv; — 7 logvy) is weakly convex w.r.t v because 7 logv; — 7 log vs is a smooth mapping
of v due to v > C and ¢ is a convex function [8]. As a result, since g;(, s;) is non-decreasing and
convex w.r.t to /, it is easy to prove that g;(£(v), s;) is weakly convex w.r.t v and is monotone (either
non-decreasing or non-increasing) w.r.t to each component of v. Hence, assuming h;(w) is a smooth
and Lipchitz continuous function, we can prove that g; (h; ;(w), s;) is weakly convex w.r.t. to w.

Attention-based Pooling. Attention-based pooling was recently introduced for deep MIL [14], which
aggregates the feature representations using attention, i.e.,

E(w; X) = Z 5 exp(g(w; X)) e(We;x) 27

wex exp(g(w;x'))

xeX
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where g(w;x) is a parametric function, e.g., g(w;x) = w/ tanh(Ve(w,;x)) + C, where V €
R™*do and w, € R™. Based on the aggregated feature representation, the bag level prediction can
be computed by

hw(w, X) = (w] E(w; X)) (28)

B exp(g(w;x))d(w; x)
- (,g( Ywex exp(g(W;X’))> ’

where §(w;x) = w/! e(w,;x).

We can see that hy, (X)) itself is a compositional function. To map the problem into TCCO, we define
1 1

BEW) = 5 S e, exp(g(wix))a(ws x), and h2(w) = 1 3 oc v, exp(g(wix')). Assume

|w /] tanh(Ve(we;x))| < Cj then h?(w) > exp(C — Cy). Then the objective function becomes

min i Z fi(wi(wasi)asl)a

w,s’,s Ny

X;e854+
Ri(w)  hl(w)
—s 1 (U(Rry — Fow)) — S0+
where f;(g,s") = s+ M7 Vi(w,s;) = — g si + ) ) )
«Q n_ ﬁ
XjES,

(29)
. B (-1 —s;), B
In this case we define g;(¢(v),s;) = s 4 —m = and hyj(w) =
[h}(w), h?(w), h}(w), h3(w)].  We can still prove that g;({(v),s;) is monotone W.rt to

each component of v. It is not difficult to prove that K(Z—Z — Z—;) is weakly convex w.r.t v because

% — f}—; is a smooth mapping of v when vs, v4 are lower bounded and ¢ is a convex function [8]. As

a result, since g;(¢, s;) is non-decreasing and convex w.r.t to £, it is easy to prove that g;(¢(v), s;)
is weakly convex w.r.t v and is monotone (either non-decreasing or non-increasing) w.r.t to each
component of v. Hence, assuming h}(w), h?(w) are smooth and Lipchitz continuous, we can prove
that g;(h; j(w), s;) is weakly convex w.r.t. to w.

C.4 Convergence Analysis of TPAUC Maximization
C.4.1 Convergence analysis for Algorithm 5

We first consider TPAUC maximization in the regular learning setting. Define F(w,s,s’) =
i > xies, Ji(ki(w, si), s'). Due to the weak-convexity of F'(w,s, s') w.rt. (w,s, s"), we consider
the following Moreau envelope and proximal map defined as

o 1 . - ~
Fy(w,s,s') = v~‘rlngiI;/F(w,s,s’) + o (HW —wl* + s — sH2 +|8" - S/HQ) ,

1
prox, g (w,s, s') = arg min F'(W, 8, 5+ 2 ([[W—w|*+ 8 —s|*+35 — 3'||2) .
w,§,5’

Following the same proof of Lemma 4.5, we have the following error bound

Lemma C.3. Consider the update for {u;; : X, € Sy} in Algorithm 5.  Assume
Vi(w,s;) is Cy-Lipshitz continuous for all X; € Si. Assume Ei[||G¢||?] < M? and
IE]‘[HBL1 ZXieBi Osthi(Wy, 8145 BE) Dy f (wi g, sy)eill?] < M?, where e; is the n-dimensional vector

ny—DB;
Bi(1—-71)

with 1 at the i-th entry and O everywhere else. With v =

1
E[ Z ||Ui,t+1_¢i(wt+175i,t+1)”:|

(1—7)and T < 1, we have

N+ X; e84+
Bir 1 2720 8n, Cy,Mn
<=5 = 37 o — vilwo, si0) | + 75 1z
2nq n Xies, B2/ Byrt/

Then we have following convergence guarantee.
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Theorem C.4. Under the assumptions given in Lemma C.1, with v = g:f(l_f;) +(1—-7) 7=

1/2 4
O(Bae) < i, n= O(Bﬂi%e), and p = pr + pyCy, Algorithm 5 converges to an e-stationary

point of the Moreau envelope Iy ;5 in T = O( 5 Tgl/z €~ 9) iterations.
153

Proof of Theorem C.4. Define (Wy,$;, §}) := proxF/ﬁ(wt, St, ;). For a given X; € S, we have
filhi(Wre, 80), 8) — filwi, st)

(a)
> 8s’fi(ui,tv 82)(% - Sg) + aufi(ui,ta 3;)(1/%‘(\’%, §i,t) - Ui,t)

(b) .
> Oy fi(wiy, sp)(8; — 83) + Oufi(wi, $4) | Vi(We, Sit) — wig + (Owi(Wy, Siyt), Wi — Wy)

= BN = Wil (D (Wi i), B = i) = B 800 = il
©
> Oy fiui, sp)(8; — 87) + O fi(wig, s3) [%‘(Wt, Sit) — ui,t] + (O fi(wie, 87)0uwti (Wi, Sit), Wi — Wy)

. Cr e 5
o (Ou (i 505 (W 51). Bur = i) = P57 (e = well” 4 1850 = s00l)

where (a) follows from the convexity of f;, (b) follows from the monotonicity of f;(-, s’) and weak
convexity of ¢, (¢) is due to 0 < 0y, fi(u; ¢, s;) < Cy. Then it follows
1 . N
ny Z l:as’fi(ui7t7 51)(87 = 5¢) + (Oufi(wi e, 1) 0uwthi (Wi, 8i¢), Wi — W)
+ Xi€S+

(O fi(uts s 8,0 05 (Wi 5.0), 50t — si,t>}

(30)
1 oA .
< . Z |:fi(wi(Wt, 8i0), 81) — filui, s3) — Oufi(wi, ) [W0i (Wi, sit) — wie]
+ X,€84
C . .
#2201 = el e = sualP)|
Now we consider the change in the Moreau envelope:
Et[Fl/ﬁ(Wt+17St+173;+1)}
— B i, P80 80) 4 5 (19— w15 st P+ 15 =51 )|
< By [F(r,80,87) + 5 (00 = Wt | + 118 = sea | + 1157 = 514
= F(W,8¢,8;) +Ey [g(||‘7Vt — (wy =G| + (I8¢ — (se — nG)|?
18t (= G017 @D
< F(We, 8¢, 8;) + g (e = will® + 118 — sell* + 1187 — s211%)
~ ) . . 3 2—M2
P (W: — Wi, G} + (8 — 51, GE) + (3} — s, GF)] + L
= Fy5(Wy,s0,87) + pEe[n(Wy — wy, Gy) +1(8¢ — sy, Gy) +n(3, — 51, G})]
3772ﬁM2
2
where for simplicity we denote G} = B% ZX,ieBi Oufi(uit, s)0sthi(Wy, 8,43 B5) and G =

B% > X, eBt Oy fi(us ¢, s}). The second inequality in the above derivation uses the bounds of
E[||G¢|I?], E[||G} %] and E[||GZ||?], which follow from the Lipschitz continuity and bounded variance
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assumptions and are denoted by M. Moreover, we have
Eiln(W; —wy, Gi) +1(8 — 50, Gp) +1(3; — 57,G7)]

= (W — Wi, B [Gy]) + n(8 — s, B [GL]) + n(8) — s, B4 [GF]),
and

1
E[G,] = — Z Oufi(iz, st)Ouwthi(Wy, 8i¢)

+ Xi€S+
1
E[Gy] = e D Oufilui, 5)0s0i(wi, s14)
X,‘ES+
1
Et[Gf] = H Z s fi(wit, 57)-
X, €Sy

Combining inequality (30) and (31) yields

Et[F1)5(Wit1,St41,5141)]

3n?pM> 0 N R
< Fryp(Weyse, sp) + % 2 > {fi(%(wt,si,t)’si) = filuiz, s1)
nJr Xi€S+
C . .
= Oufiluts e, ) [ (Wt 1) = ]+ PEL (w00 = Wil + 15 = i)

3n2pM?

2

(32)

S Fl/ﬁ(wt7sta S{‘,) + + ﬁ?’](F(VAVhét’gi) - F(Wt7sta8:f))

+ z—n [fi(?l)i(vvu Si)s se) — fi(uie, s4) — Oufi(wi, st) [W0i (Wi, si0) — wiy]
* Xiesy
C = ~
+ 201 (o = wil? + s sualP)|

Due to the pr-weak convexity of F'(w, s, s"), we have (p — pr)-strong convexity of (w,s, s")
F(w,s,s") + £||(wy, ¢, 8;) — (w,s,s')[|%. Then it follows

F(Whétu §£) - F(Wt7st7 S{t) = [F(Wtaétaég) + g”(whshs;) - (Wta§t7§2)||2:|

- [Fovesesy + Bitwesi - s

P A~ A A
- §||(thst>s1/€) - (Wt7st782>||2

< (B = Pll(we st.87) — (Wi, 82, 5|1

Plugging inequality (33) into inequality (32) yields
Et[F1/5(Wet1,St415 5141)]

3’ pM?  _ prp A A
< E[Fy)5(wi, 81, 51)] + —5  t ,077(7 — D) l(we,s1,87) — (We, 8¢, 87) |12
+ :Zl |:fi('l/1i(wta Sit)s S1) — filuie, s4) — Oufi(wi, sp) Wi (Wi, si0) — wiy] (34)
+ X;eS84
C . A
+ B (e = well? + 132 = i)

Set p = pr + pyCr. We have
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E¢[F1/5(Weg1,Se41, St11)]

< Fup(ve s o)+ 2P P s 50) — (0,8, D)1
+ % |:fi<1/}i(wt7 Sit)s 8y) — filtie, sp) — Oufiuig, sp) [hi(we, si) — Uu]}
X;e8y
© Ey(werses)) + @ S LV CRNII
RS {fz Vi(We, 500, 54) — Filtig, 50) — D fi (g, 0) [ths (Wt 1) — ul-,t]}

"t Xies,

where inequality (a) follows from Lemma 3.2.

Using the Lipschitz continuity of f, we have
Ee[F1/5(Wig1s St41sS141)]

3’ pM*
< Fl/iﬁ(wf/? St S:&) + T - §HVF1/;5(Wt7St7 5;)”2 (35)
+ 21N 20w, i) — el
Tt X,€S84
With the error bound from Lemma C.3, we have
1 1
E|— Y i(we,sie) —uidll| < (=)' — D [[¢i(wo,si0) — uioll + R
n4 n4
X,;ES+ Xi€S+
. -, /25 dnyChy ant’?cyM
with jp = BT R = QB;/Q + il g =0 Then
E[Fy/5(Wt1,St415 5141)]
3n2pM?
< Fayp(wesi,sp) + =0 = JE[IVE p(wesi, )]
(36)
_ 1
+2Cson | (1= p)'—— > |[wi(wo,5i0) = uioll + R
X, eS¢
Taking summation from ¢ = 0 to T' — 1 yields
E[Fy (W, s7, sT)]
T-1
3n?pM2T 1
< Fyp(Wo,50,8) + “-— = L ST E[|VEy p(wesi,1) )
t=0
T-1 1
+2Cm [ Y (- u)tnf > lbi(wo, si.0) — wiol + RT
t=0 * Xx,e8y (37
(@) 3°M3T 1 = >
!
< Fl/p(WO»SOa SO) + f - 5 ; E[HVFI//S(WtaStvSt)” ]
4Crp 1 _
+ PN gi(wo, si0) — wioll +2CRT
H Xq‘,ES+ N+
where (a) uses ZtT:_Ol(l —u)t < i

35



Lower bounding the left-hand-side by miny s o F} /5(W, s, s), we obtain

T-1
1
T Z E[||VF1/p(Wt7stvsg)H2]
t=0
2 2pM2T
< T |:F1/p(W0a S0,80) — min, Fyyp(w,s, ') + 37’%
4C’
SIS ais(wao, si0) — il + 2CppnRT
+ X €S+
2A
< 22 4 3npM2 + fp > li(wo, si0) — wioll +4CpR
nT’ pIng %
N
C 1 1
< +-)+Cn+R
FE+ ) +C+R)

where we assume [} /5(Wo, S, 5p) — Miny s F1/5(w,s,s") < Aand
C' = max{8A, 12/3M23 32C¢p Z l[1i(wo, 51‘70) - ui70||7 160fﬁ}
X;e84+

Plugging the expression of ; and R yields
T—1
1

= Z]E IVEyp(we,se,5) 1]
1l mey mPo nen
T 17 BlT 31/2 Byr1/2
Setting 7 = O(Bae*) and n = (B 15,/ €t), with T = O(=—" 31/2 ¢~ %) iterations, we have

[||VF1/p(WtaSt73t)|| ] <
t=0

T

C4.2 Convergence analysis for Algorithm 6

We now consider MIL TPAUC maximization with mean pooling. Define F(w,s,s’) :=
i > xies, fi(gi(hj(w)—hi(w),s;), s'). Due to the weak-convexity of F(w,s, s') w.rt. (w,s, s'),
we consider the following Moreau envelope and proximal map defined as

Fa(w,s,s') = min F(w,8,5) + o ([[W — w|> + |8 —s[|* + [ = 5'|]%)
w,S,5’

o

1
prox, (W, s,s) = argmin F(w,8,5') + o ([IW — wl|* + [|s — s||* + [|5" = s'[]*) .

w3, 21

Following the same proofs of Lemma A.3 and Lemma A.4, we have the following error bounds

Lemma C.5. Consider the update for {v;; : X; € S US_} in Algorithm 6. Assume h;(w;§)
is Cy-Lipshitz for all X; € Sy U S_, and E[|G|*] < M% With v = g5 + (1 — 71),
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_ ’I’L_—Bg
’72 - 32(1771)

+ (1 —71)and 7y < %, we have

]. BlTl 1/2 4n ChMﬂ
E Z lvi,er1 — hi(Wt+1)||] <(1- T)Hl Z lvio — hi(we)|| + 27 2o+ +71/2
L5 X €Sy n+ X,€54 17
[ 1 BlTl 1 1/2 4Tl_ChMT]
El-= > g - hj<wt+1>||} SU= G 37 g = hy(wo)ll +2m 0+ =
LT Xjess - T X ES- T
(1 Byt 1 16n2 C2 M?n?
E ST vieer — hi(wt+1)||2} <(1- #)2““)— > vio — hi(we)|? + 4m0® + +B+
L7+ X84 ny ny X.e84 1im
1 Bin 1 16n2 CZM?*n?
E > Mviapr = hi(wer)|?] < (1= =)D — N~ oo — hy(we)|® + dri0® + —————
- 2n_ n_ Byt
LT X es- X;es

Lemma C.6. Consider update for {u; ; : X; € S4} in Algorithm 6. Assume g;(v;;, s;) is C4-Lipshitz

w.rt. (vij,

1 1
E|— E i - —
n. (w141 n

si)forall X; € Sy and X; € S_. With s =

n+—B1
31(177‘2)

Z 9i(Vj 441 — Vi i1, Sijer1) ||

+(1—m)and p < %, we have

1/2

1

X, €S54 T X;es-
Bima 41 1 1 12,
<SA—=5—=)"— > Juio—— > gi(vjo—viosi0)l + 27
2ny "+ xies, "= xies_
1/2 1/2 1/2 1/2 1/2
ny By B, ny n_! nyn
+O2B1(ni/2 i n1_/2) 1/2 +CY2B1 (B;/Q i 35/2)721/2 e 31721/2
where Cy is a constant defined in the proof.
Then we have the following covnergence guarantee.
Theorem C.7. Under assumptions given in Lemma C.2, with Bfl(%ill)
1 = 7) 7 ey + (1 — 7)o o= gty (1 - m), 7
1/2 nl/?
O <m1n{Bg, fl Inm{ B 1/2}B1/2}e > < 1/2, o= O(Beet) < 1/2, 7n
2 /4 1 /2 1/2
O min{min{n By }mln{Bl/2, 1/2 mln{ BT 1/4 }Bl/4} mln{ i Bl/Q }31/2} ),
then after
1/2 1/4 1/4 1/2
1 B 1 n+
=0 <max {maX{B "B, aX{W7 BT/Q max{ 1/4 ’ 12/4} 1/4} max{
3 1 -

iterations, Algorithm 6 gives e-stationary point to the Moreau envelope, i.e.,

1 T-1

t=0

where p = pp + pgC¢ 4+ 8p4C¢Ch, + CyCyLy,.
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Proof of Theorem C.7. Consider the change in the Moreau envelope:
B¢ [F15(Weg1,Se41,5141)]

= ]Et |:m11’1 F(W,gt,gé) +

Gr & 5/

w,S,5

[N

(190 = wes |2 + 18 = sealP + 15 s;+1|2)}

< By [F(We,8080) + £ (I8 = Wt |+ 118 = s |2 + 18] = spa )
= F(Wi,8,8,) + By [g(HWt — (wi =G| + I8¢ — (st — nG)|1?

15~ (5= nGDIP)| 69)
< F(We,S,87) + 5 (I = wil 2 4 180 = 0|2 + 15, — )

. . . 3n%pM?

P (We = wi, Ga) (8 — s, G + (3] — 51, GE)] + —E—

= Fi/5(we,se, s1) + pEe[n(We — Wi, Gy) + (8 — 8¢, Gt) +1(8; — 51, G7)]
2

where for simplicity we denote G? = B% sent Os fi(uiy, ), and GY is a n -dimensional vector
1

whose i-th coordinate is defined as
{Bllaufz‘(ui,tvsi) B% Yox,eny 0s.9i(vie —vig,sia) |, Xi € Bi .
0, Xi ¢ B}
The second inequality in the above derivation uses the bounds of E[||G¢||?], E[|G}|/?] and E[||G?]|?],

which follow from the Lipschitz continuity and bounded variance assumptions and are denoted by
M.

Note that
E.[G/]
1 1
=— Oufiluig, sy) | — 009i (vt — Vi, 8ix) (Vhi(w) — Vhj(w))
n n
T x;es, T XjeS-

1 1
]Et[th]:* Z 6ufi(ui,ta3;) nf Z asgi(vj,t_vi,tasi,t)

n _
T x;es, X;€S_

E:[G7] = € Z O fi(uig, st)

n
+ X;€84+
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Define (Wy, 8¢, 8}) := proxp,;(we, s¢, s;). Fora giveni € {1,...,m}, we have

fil— D 9ilhy(We) = hi(We), 804),81) — filuig, s))

B X,;eS_

(a) R o1 . SN
> Oy fi(ui, 5¢)(8; — 51) 4 Oufi(wis, St)(F Z Gi(hj (W) — hi(Wy), 85¢) — i)

- X;eS_
(b) / ~l ! !/ 1
> O filuie, 51)(8; — s1) + Oufi(uie, s) o Z Gi(Vj,t — ity Sijt) — Uit
T Xjes-
1 . .
+ - D (009 = vigy 5i), (hy(We) = hi(W)) = (v7,6 = vie))
B X,;eS_
1 P R R
— LS Py ) — () — (g~ i)
T XjEeS-

(39)

1 A Pg 4
+ <n7 Z 05:9i (Vs — Vist)s Sisty Sijt — Sijt) —
N X;eS_

© ) 1
> O fi(uiy, sp) (8, — s4) + Oufi(uiy, st) {n Z 9i(Vj,e — Vi, Siyt) — u”]

- XjES,
i O Filwi .80, 0: (Vs 1 — Vi 1. 85 4). (i (W) — hs (W) — (Vs + — v;
+’I7, Z < ufz(uz7t75t) vgz(vj,t Uz,tasz,t);( j(wt) z(wt)) (Uj7t Uz,t)))
- X,;es_
P Al
1 A
+— Z (Ou filuiz, 5;)55i9i(vj,t — Uity Sit), Sit — Sit)
T Xj;eS-
1 pqC . . pCr .
- = 3 By () = ha) = (g = v = E L 00 = il
T XjeS-

where (a) follows from the convexity of f;, (b) follows from the monotonicity of f;(-, s’) and weak
convexity of g;, (¢) is due to 0 < 0y, f; (i, s7) < Cy.

The Lj,-smoothness assumption of h;(w) — h;(w) for all ¢, w implies
hi(Wi) = hj (W)

40
> o) — g (w0)  (Tha(wi) = Ty (w). %~ wi) = e~ @

Since Oy, fi (Wi t, 81)0ugi(Vje — Vi, Sit) > 0, we bound A, as following
Ay = (Ou fi(uit, $1)00gi (Ve — Vigy Sit)s (hj (W) — By (W) — (V0 — vit)))
(a)
> (Oufi(i, $4)00gi (Vi — Vi, i), (hi(We) — hj(wy)) — (v — vie)))
Ly, .
- <aufi(ui,ta Sg)augi(vj,t — Ui, si,t)v 7h||wt - Wt||2>

+ (Oufilui e, 5)00gi(vjt — ity 8it) (Vhi(Wi) — Vhj(wy)), Wi — wy)
® CyCyLy
> Oy Colllhi(we) = il + 1y (we) = v} = =5

+ (Oufi(wie, 51)0egi (Vi — Vit 5i0) (Vhi(wy) — Vhj(wy)), Wy — wy)
where inequality (a) follows from inequality (40), (b) follows from the Lipschitz continuity and mono-
tone assumptions on f;, g;, h;, h;. Then plugging the new formulation of A; back to inequality (39)

([ —Wt||2
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1 . Vs s
fil— Z 9i(hj(We) = hi(We), 8:),81) — filuie, 51)
T Xjes-
. 1
> Oy filwins 51) (37 — s7) + Oufi(ui, s¢) { > 9ijn = i, sie) — uiy
"= Xies.
1 C:C,Ly, . .
= 3 [=ORCyllhatwe) = il + g (we) = vy l[] = =222 o — wel
- X ;€S
1 ) .
+— Z (Oufi(uit, $3)00gi (Vs — Vit, $i,) (Vhi(we) — Vhj(wy)), Wy — wy)
- X;eS_
1 .
+ - > (Oufi(ti, $1)0s,9i (050 — Vigy $it)s Bi — Sin)
T X EeS_
1 pqC . R psCr .
== D EI () — ha)) = (e = vi)lF = B850 — sl
n_ 2 2
X;eS_
Taking average over ¢ € S, gives
1 1 . IR .
— > fl— Y ai(h(We) = hi(We),80.0),8,) — filuis, 1)
" xes, " Xes.
> (E[GF], 8, — st) + (Be[Giel, Wi — we) + (Ee[G1], 8¢ — s)
1 1
+ -~ Z Ou fiwi, s) {n Z 9i(Vjt — Vi, Siit) — Ui,t:|
XiES+ XjES,
1 1 C:C,Ly, .
- CrCy e Z [hi(we) —viell + n Z [hj(we) —vjell| — ngHWt - WtH2

X;€8, T X;ES_
1 1 pyC . . 1 PeCs .
- > = > B ) = k) = (g =) = — YT P s — sl
+ XiES+ B Xj637 + X¢ES+
It follows
(B [G7], 8 — s1) + (Be[Ge], Wy — wi) + (B [Gy], 8¢ — s¢)

S X [fi(nl > 9ilhs(We) = hi(Wi), $i), 51) = Filtwia: 1)

n _
* X;es, X;EeS_

1
— Ou filuiz, sy) [n > gi(vie = vigssie) — Ui,t]

- X,;es_

1 c R . Cr i
+— > Py () = ) = (w3 = vi) |2 4+ 2L it = s P}
XjES,
1 1 C:C,Ly . .
+ CrCy [n Z [hi(We) = v + o Z ([hj(we) — ’Uj,t|] + ngHWt —wi?
X, €84 T X;es-
(41)
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Combining inequality (38) and (41) yields

Ei[F1/5(Wev1,Se41,5111)]
= Fl/ﬁ(wt7sta S;) + ﬁn [<Wt - Wt7Et[Gt}> + <ét - St)Et[th]> + <§2 - S;’Et[G?]>]

3n2pM?
+ %
(a) 3n2pM? B 1 o A A
< Fyjp(we,se, sp) + AL 4 my — Z F; (8}, Wy, 8i.0) — Fi(sy, Wy, Sit)
2 et Xi€S+

1
+CrCy— > hitwe) = viell + 12 (we)) = vill]

- X;eS_
1 1
+ Can X; 9i(Vjt — Viyes Sit) — U]l + Can X; 9i(Vjt — Vits Sit) — Uit
J - J -

1 . . pgCly .
+— Z PgCr[I1(hs(We) — v l|* + 1B (1)) — v5.0]1?] + g?fﬂsi,t - Si,t||2}

T XjeS-
1 1 CyCyLy .
+cfcg[n+ S lhalwe) = vl +— 7 ||hj<wt>vj,t||}+f;wtwtn?}

Xi€5'+ - XJES,

3n?pM? N
= Fup(w1,5t,5}) + b 4 pn(F (Wi, 81, 5) = F(wi, s1,5,)

+,517{1 Z m@ S ha(we) = viall + 1y (we)) = vjell]

n
T x;es, X;eS_

2p,C .
+ LIL N [hawe) = vil + 11 (we)) = v34]17] + 4pgCCrllWe — wi?

- XJ'ES,
1 Cr, . CyC,Ly, , .
+ QCan Z 9i(Vjt — Vi, Sit) — Wil + p92 4 (1850 — 5i,t||2] + ngHWt - Wt|2}
- XjGS,
(42)

where (a) follows from the Lipschitz continuity of f;, g;, ks, h; and inequality (41).
Due to the p-weak convexity of I'(w,s;, ), we have (p — pr)-strong convexity of (w, s, s')
F(w,s,s) + §|l(wy,s¢,57) — (w,s,s')||%. Then it follows

S 8180) = iw1,50) = | 0,80, 80) + 511 we50,50) — (3,80, 01

[ty + Glwesio) - resl?]

p A
- §||(Wt,St~92) — (W, 8, 3,)|?

PF A A A
< (7 - P)”(Wt,St,SD - (Wtastasi)HQ
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Plugging inequality (43) back into (42), we obtain
Et[F1/5(Wet1,St415 5441)]
3n25M?2 1 o
SFI/ﬁ<wt,st,s;>+”§+pn{ S | Dl )~ (w150
?’L+ 2
Xi€S+
20+C
+ 20N (hi(we) = il + By (we) = vjell]
T X,ES_
2p,C
+ LN [hg(we) = vie? + 1y (i) — vl
T Xjes-

Cy, . C.C,L R
T\ +<4pgcf0h+f“>||wtwt2}

2 2

1
+ 2CfH ni X; gi(vj,t — Uit, Si,t) — U4t
JES_

3n?pM? 1 0 .
SFl/p(Wt,StaS§)+ng+ﬂ77{n Z [—gH(WnSnS;)—(Wt,St,ng)HQ
+ Xi€S+

Ch
+— > [hiwe) =il + 11y (we) = vl + 1Ba(we) = viell® + 7 (wi) = vj4]%]
- X;eS8-
1
- Z 9i(Vjt — Vit, Sit) — Uig

=2 }

() 3n?pM? 1
S Fl/ﬁ(wfmshs;) + T - §||vFl/ﬁ(Wt;St7S:§)||2

+C

+

pnc
nwi Do > [lha(we) = viell + g (we) = vgell + 1 (we) = vl + [y (we) = 0567

Xi€S+ Xjes,

1
— Z gi(vj,t _Ui,tvsi,t) — Uqt
n— X,;€S8_

= pr + psCr + 8p,CyCh + CyCyLy and C71 =

onC
L
Tt X,€84

where in inequality (a) we use p
max{2C;Cy,2p,C,2C}, and inequality (b) uses Lemma 3.2.

With general error bounds
1 .1
— Y Elf[hi(we) —vigl] < (1= ) — > lhi(wo) = violl + Ra,

™ Xies, T x;e8,
1 1
— Y E[hi(wi) —viell] < (1 - Mz)tnf > llhi(wo) = vsoll + Ra,
- X]’GS, - XjGS,
1 1
— > Elllhi(we) —vial?] < (1 - Ml)tnf > |lhi(wo) = violl* + Rs,
T x,e8y T x,es,
1 1
— > Elflhy(we) — vl < (1 - Mz)tnf > hji(wo) = vjoll* + Ra,
- XjGS_ - X;es_
=Y R Y )
— — i(Vj,0 = Vi, Sig) — Ui
"y n_ 9i\Vj ¢ Jty St )t
Xi€S+ XjGS,
1 1
<(1- Mz)ta Z o Z gi(vio — vj,0,8i0) — Uio|| + Rs,
XiES+ XjES,
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we have
E[Fy)5(Wit1,St41,5041)]

3n2pM?
< E[Fy/p(wes0, )] + b = JE[|[VFyp(wi,s1, )]
) 1 1
+ pnCy [(1 — ) — > lhi(wo) —violl + (1 - pa)'— > lhi(wo) = vjoll
T xes, T X,€eS_
1 1
+ (1 =) — > Mhilwo) = vl + (1 - Ha)'— > lhi(wo) = vyl
+ X, €84 T Xjes-
1 1
+(1- Mg)tnf H” Z 9i(vio — v5,0,8i,0) — Uio|| + R1+ R + R3 + Ry + Rs
+ X; e84+ - XjGS_
3n’pM?
< E[Fy/p(wes0, )] + 0 = JE[[VFyp(wi,s1, )]
_ 1 1
+ pnCy [(1 — fhmin)" (n Z |hi(wo) — violl + — Z 1hj(wo) — vj0ll
X;€5, - Xjes-
1 1
+ > llhi(wo) = violl* + — > lIhi(wo) = vjoll?
* x,e8, T Xjes-
1 1
+— Z — Z 9i(vi,0 — 5,0, 8i,0) — Ui, ) +R1+ Ry + R3+ Ry + Rs
" xies, M= xies_

where fini, = min{uy, o, g3}
Taking summation from ¢ = 0 to 7" — 1 yields
E[Fy (W, s, sT)]

31 pM2 N
SFl/ﬁ(Wo,So,SE))+ 75 E ||VF1/,O Wt,St,Sf)” }
t=0
T-1 1 1
+ pnCh { Z(l — Pmin)* (n hi(wo) — violl + - Z [[hj(wo) = vjioll
t=0 T X;es, T XjeS_
1 1
+— > lhi(wo) = viol® + — > llhy(wo) = violl?
* x,es, T X,eS
1
+ — H Z 9i(vi0 — V5,0, 54,0) — Ui,0 ) +T(R1 + Ry + R3 + Ry + Rs)
n4
X8, X,€8.
_ T-1
3*pMT 1
< Fu/p(Wo, 80, 50) + —5— — 5 ; IV Ey (Wi, st 84)]2
_ A
+ pnCy _ +T(R1+R2+R3+R4+R5)

where we use Zz:ol (1 — pimin)t < % and define constant A such that

(5 3 Iautwo) il + = 35 o) = ol

X;eS8 X;eS_
1 1
o > Nlhi(wo) = violl* + — > llhy(wo) = violl?
X, eS¢ X;ES_
1 1
+ o Z — Z 9i(Vi,0 — V4,0, 8i,0) — Ui0 ) < Ap.
X,€54 X,€5_
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Then it follows

T—
Z HvFl/p thstvst)||2
=0
2 3n2pM?3T
T Fyp(Wo,80,80) — E[F1 (W, s, 87)] + %
_ A
+ pnCh — +T(R1 + Ro + R3 + Ry + Rs)
2A 20C1 A
< 77—T+(2+§) npM? + /f 129 1 95C) (Ry + Ry + Ry + Ry + Rs)
1 min

11 1
=O<T(n+ )+77+R1+R2+R3+R4+R5>

min
where we define constant A such that F /5(wo, S0, 54) — E[Fy/5(wr,s7,57)] < A.

With MSVR updates for v; ; and u; ¢, following from Lemma C.5 and Lemma C.6, we have

- B o B - By
B1 = oy K2 = o M3 = o,
2711/20 dn, CpMn 27’1/20 dn_CrLMn
= B2 B2 Ry = 1/2 1/2
3 17 By By
R - 4102 N 16n2 C? M?n? R 4m0? 1602 CEM*np?
57 Bs B%ﬁ ’ 4T Bg B%ﬁ
R 27'21/20 CnJr(Bi/Q_’_le/z) Ti Cn+(ni/ +n1,/2) U n1+/277
5= ——71/5 2 2 2
B21/2 B 1/2 nl/2 7_21/2 B B11/2 B21/2 7_21/2 B, 7_1/2
Then we have
=
T D IVFEyp(wisst, sl
t=0
1/2 A1/
1.1 1 T
<
O<T<n T F (B§/2 - 1/2)
1/2 p1/2 1/2 1/2
nin n-n | ny By'" By"\ 1o, nyg n-toom
+ + + — max{ , } + = max{ , }
B B B Pl e B M g i
Setting

B nl/2 12 )

. 1. 5 Z 172 4 4
71 = O | min{ B3, — min{——, B €|, T2=0(Be),
( { e " } >

/4 1/4 /2 pl/2
. . B1 B 12 B ;/2 nl  n’ 1/4 By B;'"" B, 1/2
n:@(mln{mm{m,n} n{B;"", 1/2 min{ —+ 1/4,35/4 }s Tmln{ 1/2, 7 1B, ,

Then with

1/2 1/4 1/4 1/2 1/2
n_ 1 ny By B, 1 n 1 _6
rzo <max {maX{B " By }max{m’ B2 max{ 1/4 v }31/4} max{ B2’ 1/2}31/2 } €
3 — 2 2

1

iterations, we have

1 T-1

= S IVE (Wi s < €2
t=0
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D Proofs of Lemmas and Propositions

D.1 Additional Proposition

Proposition D.1. Consider a Lipschitz continuous function f : O — R where O C R is an open
set. Assume f to be non-increasing (resp. non-decreasing) with respect to each element in the input,
then all subgradients of f are element-wise non-positive (resp. non-negative).

Proof of Proposition D.1. Let D be the subset of O where f is differentiable. By Theorem 9.60 in
[24], a Lipschitz continuous function f : O — R, where O C R? is an open set, is differentiable
almost everywhere, i.e., D is dense in O. Then by Theorem 9.61 in [24], the subdifferential of f at =
is defined as

Of (z) = con{v|Izy, — x withzy, € D,V f(zx) — v},

where con denotes the convex hull. If we assume that f is non-increasing with respect to each
element in the input, then V f(x) < 0 (element-wise) for all differentiable points « € D. It implies
that the all vectors in {v|3zr — z withzy € D,V f(xy) — v} are element-wise non-positive.
Therefore, all subgradients of f are element-wise non-positive. On the other hand, if we assume that
f is non-decreasing, one may follow the same argument and conclude that all subgradients of f are

element-wise non-negative. [
For functions f : O — R™ where O C R? is an open set, one may write f = (f1,..., f,) and
apply the above proposition for each fi,k=1,...,m.

D.2 Proofs of Proposition 4.2 and Proposition 4.4

To prove Proposition 4.2 and Proposition 4.4, we first present the following proposition on the
weak-convexity of composition functions.

Proposition D.2. Assume f : RY — R is p;-weakly-convex and C-Lipschitz continuous, g : RY —
R? is Cy-Lipschitz continuous, and either of the followings holds:

1. f(-) is monotone and g(-) is Lo-smooth;

2. f(.) is non-decreasing and g(-) is Lo-weakly-convex,
then f o g is p-weakly-convex with p = \/dLyC1 + p1C3.

Proof of Proposition D.2. The weak convexity of f implies

Faw) > Flg@) + 27 (9(y) = g(2)) = Flllg(y) — 9(a)]”

> lgla)) + " (ol0) — 9(@) — 2%z 2

where v € 0f(g(x)). Moreover, due to the smoothness of g(-) (or weakly-convexity of g(-), then
only the second inequality holds), we have

o) = 9(0) < Vale) (=) + v (Lo -l

(44)
o) = 9(0) 2 V(@) (- 0) = (Zlle - yl?).

where v(e) denotes a d-dimensional vector with value e on each dimensions. We first assume that f
is non-increasing, then we may use the first inequality in (44) and the Lipschitz continuity of g to get

Flg(y) > flg(@)) +v7 | Vo) (y ) +v <L22||x - ym e

2
> [

lz—y

2
> flate) + 07V -0+ 07w (e = 1?) - 52 e -y

_ VdLyCy + p1C3

LS gy

> flg() + (0" Vg(z) " (y — x)
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On the other hand, if we assume f is non-decreasing, the same result follows from the second
inequality in (44). Thus f o g is p-weakly-convex with py, = VdL>Cy + pr C3. O

Proof of Proposition 4.2. Under Assumption 4.1, Proposition D.2 directly implies the pp-weak-
convexity of F(w) with pr = /d1p,Cy + psCZ. O

Proof of Proposition 4.4. Under Assumption 4.3, we first apply Proposition D.2 to the composite
function g;(h; ;(-)) and obtain its p; = /d>L,Cy + pyC3-weak-convexity. To show it Lipschitz
continuity, we use the Lipschitz continuity of g; and h; ; to obtain
lgi(hi (W) = gi(hi;(%))|* < CICRl|w — w]|*.

Thus g;(h;,j(w)) is C5 = CyCp-Lipschitz-continuous

Since we assume f;(-) is non-decreasing, ps-weakly-convex and C-Lipschitz continuous, and
gi(hi ;(+)) is pg-weakly-convex and Cjy-Lipschitz-continuous, we apply Proposition D.2 again to
conclude that F'(-) is pr = v/d1pCy + pr’g—weakly-convex. O

D.3 Proof of Lemma 4.5

Proof of Lemma 4.5. With v = E?ll(z B T (1-7),7< %, MSVR update gives recursive error bound
[15]

Ell|uie41 — gi(Wes1)]?]

Byt oy 272Byo?  8nyC2

< (1 — =)E[|luis — gi IE[||ws — 2

< (=5 Bl = gilw) T + — 5=+ —p—El[wi = wia ]
Bit 5, 272Bio?  8nyC2

< (1= Z2E[|luss — gs Ln2R[||Gy|?

< (= 2 Bl = gi(wo)llF) + ==+ —p = Rl
Byt 272Bio2?  8n1C2M*n?

< (1= 5 =) ’Ellluse — gi(wa)[I*] + + z

20, n1 B B,

Applying this inequality recursively, we obtain

Ellui, 41 — gi(Wes1)]?]

Byt :
= g P lui = gilwo) P+ 3_(1
j=0

4702 167’L%C§M2772

<

BlT)z(t_j) 272 B; 0?2 N 8n+C§M2172
2nq n1 By B

< (1 - BlT)Z(tJrl

)||Uz',o — gi(wo)||* +

- 2nq By + B%T

where we use 2320(1 - 1237117)2(#]’) < %.

It follows
B [[[ts, i1 — gi(werr)[])?
< Ef[Jwi g1 — gi(Wegr)|?]

2 2012772, 2

< (L= PP g = gt + T + T
<%—&WWMWWWM+%WJ4m%Mﬂ
- 21 ’ 321/2 B 11/2

Thus

ﬂwﬁlmmwm

BiT 1 27120 4n CyMn
- Tnl) [wi,o — gi(wo)ll + B Byl

<(1
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Taking summation over ¢ € S, we obtain the desired result

1
B2 X i = aitwenn)|

€S

< BiT 1 V25 4nC,Mn

27
Tnl) ﬁZHUi,(]_gi(WO)”—’— Bl Byir!/?

i€S

D.4 Proof of Lemma C.6

Proof of Lemma C.6. With v3 = % +(1—72) and 72 < £, MSVR update gives the following
recursive error bound [15]

1
Efllui,er1 — —— > 9iwier1 = vigr, sien) ]

T jEeS-
BI@ 1 2T§B102
<(- s VE[[uie — o Z 9i(vje = viey sia) 7] + By
JES_
8n+Cﬂ
B LR (vje — vy sie) = (Vo1 — Vi1, Siag1) )] 43)
1
BI@ 1 2T§B102
<(@1- -~ VE[[uie — o Z 9i(vje = vi, sia) 7] + EN
JES_
16n,C? 8C2M?n?
+ —2E[[|vie — vi g1 + lvjie — vje4a]?] + ———
B, B,

It remains to bound E[||v; ¢ — v; ¢41?] and E[||v; ¢ — v;.141]|?]. We bound the former, and the latter’s
bound naturally follows. Consider the update of v; ;1 and we have
Ef|fvie — vie+1]

[ B . . )
< B | 2o = i B, (1 (v B ) 0O w13 B, )P
+

[2B;72 . 2B1~2 . ,
<E L vie — hO (w; By )II” + 71%”}1(2)(%; BL,) —h® (Wt—l;Bé,i)||2:|
L T+ Ny
[2B;72 . 2B1~3C
<E|=vis — hD(wy; BS)II* + TN |y, — Wt1||2]
L T+ S
(%) 8B M? n 8n Cin> M?
ny B1

where inequality (a) uses 71 < 1/2 and v = Bﬁff_fill) +(1-m) < 2;—:. Plugging the above
inequality back into inequality (45) gives

1
Eflfuie41 — —— > 9iwier1 = vigr, sian)|’]

T jeES-
<Blﬁg 1 2 27§Eh02
<(1- Elfluis — — i(Vj,¢ — Viyt, Sit —
<( . JE[lluie — — Z 9i (v — i, si) 7] + B,
jES_
16n,C2 (, . By B, n_ 8C2 M?n?
T g M2 e 2 2M2 ot = gt
+ B (871 ( + _)+80 ( +Bg) + B
Bimy o, 273Bi0?
<(1- Elfluis — — i(Vjt — Vi, Si —
<( . JE[lluie — — Z 9i (Vi — Ve, Sie) [I7] + 1B
JES_
B, B, ny n_ 8C2 M2p?
128C2M° 25 22 128C2C M> 25 Ll e S Tl
+ B1(n+ + _) + h (31 B, n°+ B
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Applying this inequality recursively, we obtain

272 B1o?

’I’L+B2

1
Effuierr — — > 9iwiert = vigr, sien)|]
T jES-
B 1 ¢ B .
< (1= S22 g — — 37 givi0 = vy si0) |2+ D (1= 5o ”(
+ T jes. =0 +
ny By Bs ny  n_ 8C2M?n?
128C2M*—F = 128C2C7 M2 2 )+ =L
+ Bl(n+ +’I’L_) + h Bl(Bl Bg)n + Bl
BlTQ 2(t+1) 1 2 47’20’2
<(1- m) llwio — — Z gi(vio — vj0,8:0) 1" + B,
JjES_
ni By By 7f ny N 16n, C?M?
256C7 M*>—E L 4+ 256C2CFM? n —
+ BQ( +n_)7'2 * h BQ(Bl +Bg T2 B%Tg
BlTQ 9 1 47’20’ n2 B]_
ca- By, L NS o2l (B
— ( 2n+ ) ||u ,0 n_ JGZS_ g (U ,0 U‘]’O,S aO)H + B2 + 2 B% (n+
Lot oy e
*B}'Bi ' By'my | ’Bim
where we use Z; o(1 %)2@—]') < 2% and  denotes

;=

2max{256C% M?,256C7CE M?,16C2 M?}. Taking average over ¢ € S, gives the squared-

norm error bound

To derive the norm error bound, we derive

1
Efluier1 — — D 91 = viern, siapn)|]
T jEeS-

1
Effuierr — — > 9iwiert = vigr, sien) ]
T jES-

By 2 1 47—20' 7’L B, By 2
< (11— =)0y 0 — — i (V0 — V5,0, 8i,0) | 5 =)L
< (- PP g - L 5 s~ viar sl + o + R+ 2T

+ JES_

,n2n n? nyn?

C + vt =N 02 +
+ 2B2(B1+BQ>7'2 B27'2

BlTQ 1 1 27’1/2 n4 Bl/2 B21/2 T1

<= 5=) Mo — — 9i(vi0 = vi0, 8i0)| + 27 + +C2 5 )
{ 2n n_ ]EZS e e B> B 1/2 nt/?’ 12
1/2 1/2 1/2 42
ny ,ny n’’ n nyn
+ Cy—=( + Cs }

B g7 T T g

Thus
1

Eflwipr1 — — D iUt = Vet sier)ll]
T jes-

Bl’TQ 1 2’7’1/2 n4 .Bl/2 Bl/2 T1
< A=) Mo — — Y gi(vio — v, si0)ll + =25 + + 25 s 2 )17

2ny n- &5 BQ/ B +/ nl/ 7_2/

ne M2 12 . /2

+ Ny - +

+ CQBil(Bi/Q + 1/2) 1/2 + 02B 7_1/2
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Taking average over ¢ € Sy, we obtain the norm error bound

Z w41 — — Z 9i(Vj,041 = V41, Sir1) |

1€S+ JES_
BlTQ 27'1/2
<@1- ) — Z [ Z 9i(vi,o — vj0,8i0)[ + T
Z€S+ T jES- 2
n Bl/2 BY? o IRVERN V% . n1/277
+ Ot (A 2 ) o (K — =)~ + Ca—F
B G T O i T ) G
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D.5 Proof of Lemma A.3

Proof of Lemma A.3. With vy, = %ﬁ% +(1—7)and 71 < 1, MSVR update has the following
recursive error bound [15][15]

E[||vi 41 — hij(Wegr)[1?]

By Bamy 9, 2TEB1B20?®  8ninoC} 5
< (1= Mmn Ry (w Elllw, —
<= BBl g2+ 2T S g
B1By7i 5 o 27EB1B20?®  8ninaCEM?n?
<1 —Z2Tomn b (w
< (- DBy o)+ LD Srana !

Applying this inequality recursively, we obtain

Ell|vije41 — hij(Weg)[|’]

BB BB 272B1 B 8 C32M?n?

< (1= 22T |y o by (W ”2+Z LO2T1 ya(e—j) (2710 20”2 | 8manaCRMn )
2’17/1”2 2711712 n1n233 BlBg
B1BaT1\9(141) 5 47'10 16n2n3C? M?n?

< (-2 o — hi

< ( My ) [lvi,5.0 i.i(Wo)[|” + Bs B2B27,

where we use Z;:o(l — 132175?;1) (t=J) < %. Taking average over (4, j) € S1 x S gives the

squared-norm error bound.
To derive the norm error bound, we derive
E[[vij0+1 = hij (Wi
< ElfJoije+1 — hiyj(wern)[?]

B1Bati \5(141) o Amo?  16n3niCEM3n?
<(1- — Ry
< (= ) oo = hig(wo) I+ —5- BB,
BB 2726 dnynyCLMn 1>
< (= 2 o — b (wo) | + 71/20 i hl/Qn
2niny B, By By,

Thus
Eflvi,jt+1 — hij(Wes1)]]]

B1Bomy
277,1’/12

27’1/20' 4n1ngCth
) vi g0 — haj(wo)ll +
! ! B2 By Byrl/?

<(1-

Taking average over (z j) € 81 x S, we obtain the norm error bound

{nl Z o D i = 7J(Wt+1)||:|

1€S1 JES,

B1ByT 2r1 26 dnin Cp,M
< (1= SR ST 5 s = hu(wo)| + 2 + AT
nine Lies, 2 jes, By B1Bymy

D.6 Proof of Lemma A.4

Proof of Lemma A.4. With vy, = ”1(1 BTIQ) +(1—m)and 7o < %, MSVR update has the following
recursive error bound [15]

1
E[flwit+1 — - > givigar)l?]

JES2

(46)

8’010
+

BlT2 27’2 BlU
S (1 - Z i ’UL] t || Bl

£ LB i 041~ el
! ]€52
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It remains to bound E[||v; j ¢+1 — v; j+]|*], which is done

as following

E[l[oi,j,041 = vi gt ]l’]
[ B1B> .3t .t .t 2
<E nins ||7'1'Ui,j,t - Tlhi,j(wtvlg&i,j) - 'Yl(hi,j(wty 83,,‘73‘) - hi,j(wt—h 6371»’]-))”
_231327'2 2B1B2’7
<E _W;Ilvi,j,t — hij(we; B )II° + Tlﬂh i (Wi BS  5) — hag(wio1; BS ;)12
_231327'12 2 2BlBQ’)/l Ch 2
<E _anm‘,t — hij(wi; B )12+ WH‘W — w1l
(2) 8BlBQT12M2 87117120}21772]\42
- ning BlBQ
where inequality (a) uses 773 < 1/2and y; = %ﬁl% +(1-7m) < ?1175;. Plugging the above
inequality back into inequality (46) gives
1
Ell|uwierr — — Y gi(viger1)]?]
ny !
JES2
2
<(1- Bm Z 9i(vij.0)|I”] 27223102 n 8n1Cy (8B BaeriM?  8ninoCin’ M?
ny Jit n1B2 B1 ning BlBQ
J€'52
< (1 BlTQ Z H 27'22310'2 64327—12]\/[203 6471%7’7;2027’]2]\4203
- T vl7 )
- ny JGSQ 9i 4k n132 U») B%BQ
Applying this inequality recursively, we obtain
Elllwi 41 — Z 9i (Vi je+1)[I°]
1652
t 207212
B2\ Bimo ., .(212B10% 64BatiM-C
< (1= (t+1) = 5 (v; 1— t—J 2 g
< (U= 2P gy — 3 gilwngo)|P o+ Y01 - Gy (T -
JE$2 7=0
64nineCin® M C?
B?Bs
BT 1 Aro02 128711327'2M202 128n3n202172M202
<(1- J)%Hl)uui’o _ Z gi(viio) 2 + 2 1 g 1 a h g
2711 no jes BQ Bl’ﬂQTQ B1B2T2
2

t
where we use (1
error bound.

To derive the norm error bound, we derive

_ Bim Q(t—j) 2n1 : ; 1 _
i) < 5.2 Taking average over i € S gives the squared-norm

Huz t+1 — Z gi Uw t+1 H
JGSQ
< EffJui 41 — nf > givigas)l?]
JES2
Bi1o 1 47'20'2 128711327'12M202 12871?7120}%7]2]\4202

< (1= D ug = — 7 gilvio)l + ! 3 :

iy n €5, BQ 317127'2 BlBQTQ
= {ﬂ DTy LS givio)ll + 2% | 8V2n}*By*riMC, | 8vEnd *ny/*CinMC, |
= - Uio = —— 9i\Vi 5,0 1/2 1/2 1/2 _1/2 3/2 51/2_1/2

2n "2 Jes, 2/ Bl/ ”2/ 7'2/ B1/ B2/ 7'2/
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Taking squared root on both sides and taking average over ¢ € .S;, we obtain the norm error bound

1 1
Bl D i — - > giviga)ll

1€EST JES2
< (1 B )t+1 1 Z || 1 Z ( )” + 27'21/20' an}/QB;/le an?/zn%ﬂn
=\ e Ui0 — =~ 9i\Vi,5,0 1/2 /2 1/2 _1/2 3/2 51/2_1/2
2 ™M jcs, "2 jes, B2/ B1/ "2/ 7'2/ Bl/ Bz/ 7'2/
where Cy = max{8\@MC’g, SﬂChMCg}. O

D.7 Proof of Lemma B.2

Proof of Lemma B.2. Define
Uiy = (1 — T)uiy + 79i(Wy; Bél)
Then we have
Eg; [l|aie — gi(wy)||’]
=Ep; [I(1 = 7)(uie — gi(we)) + 7(gi(we: By) — gi(we))[1%]
=Ep; [(1—7)*[luie — gi(Wo)|* + 72 gi(wes By ;) — gi(wo)|1?
+2(1 = 7)7(uie — gi(we), 9 (We; By ;) — gi(we))]

2 2
T°0O
< (1 =72 uie — gi(we)|> +

By

It follows
EBé,i]EBi (2,41 — gi(wt)”2]

B B
= nflllEB;i[llﬂi,t —gi(wo)|?]+ (1 - ;j)llui,t — gi(w)|?
Bl 2 2 B1T20'2 B1 2
<=l . 210 ° 124 =
< CHU =g = i)+ T (1= ) g — i)
BT 4 9 By1%0?
<= -—)"uwir— 9
< (1= Pl — )P+ =
where we use
B B B B
la-m?+00-H=ZLa-2r+7)+1- =2
ny nq ny ny
B B
=1-27r2t 4221
i n1
<1-7=2%
ny
1B B B
ni 2n1 2n4
Then
Eilllui s — gi(weg)|1?]
<E (1+7BlT)|| ( )H2+(1+74n1)|| (wi) = gi(wii1)?
Ujg — §; (W i\W¢ ) — g; | W
S IRy In, t+1— g t Bir g t g t+1
Byt BT 4 9 Bi7 . Bi7%0?
<14+ —)(1—-—7 it — i 1+ —
< (D)1 = s = gw)P o (14 o) =
4n
+(1+ B—li)Cg?Etllwt —wip |’
BlT 2 2 2B17’20'2 8711 2 2
<(1—-— it — Ui —— + —C“E —
<( 4n1) llwie — gi(we)l|” + By Bl tlwe — Wi ||]
BlT 2 2 2B17’20'2 871103M2772
<(1l—-— it — G;
< (1= P g — )P =T 4
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lelT < 1. Applying this inequality recursively, we obtain

where we use
Elluie41 — gi(Weg1)]?]

BlT

2B 71202 n 8n1 CQZMQUZ

1= —)°El|lui,t — gi ?
<( I, )?E[||ui — gi(we)||?] + n132 Bir
Bi7 s Blr . [2B17202  8n C2M3n?
<(1— (t+1) — g 2 2(t—3) g
< 4n1) ||u 0 = gi(wo)l| +;) Ty n1 By + BT
BiT 8702 32n202M2n2
< (1= =)D s — gi(wo) |2 + —

4’[7,1 B2 + B%T2

where we use 2320(1 — %)Q(tﬁ) < %.
To obtain the absolute bound, we derive
Ellluiis1 — gi(wes) > < E[lluissr — gi(wegr)[]

BT, 8702 32n3C2M>3n?
< (1= =220 D )y 0 — g; 2 g
< (= e Pl = giwo)l* + 7~ + g
2
< |- BTy (wo | + Y220 4 CyM
- Ui, 0 — GilW
>~ 4n1 ,0 g 0 B;/Q B]T
The desired result follows by taking squared root on both sides.
D.8 Proof of Lemma B.5
Proof of Lemma B.5. The proof of Lemma B.5 is the same as Lemma B.2.
D.9 Proof of Lemma B.6
Proof of Lemma B.6. Define
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It follows
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Applying this inequality recursively, we obtain
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To obtain the absolute bound, we derive
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The desired result follows by taking squared root on both sides. O

E Group Distributionally Robust Optimization

NSWC FCCO finds an important application in group distributionally robust optimization (group
DRO), particularly valuable in addressing distributional shift [25] Consider N groups with different
distributions. Each group k has an averaged loss Ly (w) = n—k S l(fu(2F), yF), where w is the

2
the model parameter and (x¥,y%) is a data point. For robust optimization, we assign different weights
to different groups and form the following robust loss minimization problem:
N

rrtl)n max Z]%Lk w),

where 2 C A and A denotes a simplex. A common choice for Qis Q = {p € A,p; < 1/K}
where K is an integer, resulting in the so-called CVaR losses, i.e., average of top-K group losses.
Consequently, the above problem can be equivalently reformulated as [23]:
N
S 1
ngnmsmF(w, s) = 1 ;[Lk(w) — 8]y +s.

This formulation can be mapped into non-smooth weakly-convex FCCO when the loss function ¢(-, -)
is weakly convex in terms of w. In comparison to directly solving the min-max problem, solving
the above FCCO problem avoids the need of dealing with the projection onto the constraint €2 and
expensive sampling as in existing works [4].

F More Information for Experiments
F.1 Dataset Statistics

Table 3: Datasets Statistics. The percentage in parenthesis represents the proportion of positive
samples.

Dataset Train Validation Test
moltox21(t0) 5834 (4.25%) 722 (4.01%) 709 (4.51%)
molmuv(tl) 11466 (0.18%) 1559 (0.13%) 1709 (0.35%)
molpcba(t0) 120762 (9.32%) 19865 (11.74%) 20397 (11.61%)

Table 4: Data statistics for the MIL datasets. D /D_ is the positive/negative bag number.

average

Data Format Dataset D, D_ bag si #features
ag size

Tabular MUSK2 39 63 64.69 166

Fox 100 100 6.6 230

Histopathological Lung 100 1000 256  32x32x3

Image Lung 100 1000 256 32x32x3
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F.2 Illustration for Histopathology Dataset on MIL Task

Colon Ade. ' Colon SCC

Figure 2: Illustration for Histopathology Dataset on MIL Task. Ade. is abbreviated for adenocarci-
noma and SCC is short for squamous cell carcinoma. In this work, each RGB image is separated by
32 %32 non-overlapped patches, which constitute the bag.
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