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ABSTRACT 1 
Recurrent flooding is becoming more prevalent due to climate change, heavy rain, and sea level 2 
rise causing significant disruption to the surface transportation network. Detecting and monitoring 3 
the progression of road inundation due to flooding is important for effective management of 4 
transportation systems and informing the traveling public. Most of the current studies found in 5 
literature focus on more severe floodings and are suitable for larger scale analyses. In this paper 6 
we propose a 4-step methodology using a combination of deep learning and traditional computer 7 
vision techniques to estimate the extent of flooding on roadways from video data. The model 8 
estimates the progression of flooding across the travel lanes. We have collected data from a 9 
flooding event in Norfolk, VA using a camara installed on a street pole to test our methodology. 10 
The results indicate good agreement between the proposed automated method and ground truth.  11 
 12 
Keywords: Flood, Flood extent, Partial flooding, Recurrent floodings, Computer vision, Edge 13 
detection, CCTV  14 
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INTRODUCTION 1 
Floods are exceedingly disrupting public life and are among the most dangerous natural 2 

disasters in the United States [1]. Aside from major floodings, recurrent nuisance floodings are 3 
becoming more prevalent due to extreme rainfall and high tides that are exacerbated by climate 4 
changes. Such flooding events can occur frequently specially in coastal areas where rising sea 5 
levels are causing more tidal floodings than ever before [2]. Although partial floods can be 6 
relatively less dangerous, due their increased frequency, the disruption to infrastructures such as 7 
roadway blockings are becoming a major issue for many cities [3]. For example, nuisance flooding 8 
has increased 325% since 1960 in Norfolk, VA, and the city is projected to experience well over 9 
200 flood events in the year 2049 [4]. Since roadway closures are extremely costly to traffic 10 
operations, more research needs to be done to determine when and where these closures are 11 
absolutely necessary. 12 

On-site gauge measurement methods can be implemented to determine flood depth and 13 
alert drivers and city traffic managers about risky corridors [5]. However, installing such sensors 14 
on every street can be extremely costly [6]. Remote sensing methods are an alternative method 15 
that have been increasingly used for flood mapping and flood extent estimation over the years. 16 
Such methods use remotely captured data such as synthetic aperture radar (SAR) data from 17 
satellites to estimate the flood extent and depth. For instance, Tiampo et. al [7] developed a 18 
machine learning based model using SAR data to develop large-scale flood extent maps and 19 
provide information for a global flood alerting system called DisasterAware©. Although these 20 
novel methodologies can help mitigate the disastrous effects of major flooding events, most are 21 
focused on large-scale mappings as opposed to fine-grained street level analysis [5, 7-12]. 22 
Therefore, a huge gap still exists in the literature for studies of partial flooding events that can still 23 
affect traffic operations.  24 

With an increased number of surveillance cameras installed throughout cities' 25 
infrastructures, an opportunity exists to use this optical imagery data to develop remote sensing 26 
methods for flood extent and depth estimation. Furthermore, UAVs are becoming more commonly 27 
used and methods based on optical imageries can also be applied to their feeds for a detailed fine-28 
grade analysis at any chosen location.  This type of data makes it possible to estimate flood extent 29 
variations inside a specific region such as a street. For example, Hashemi-Beni et. al. [13] proposed 30 
an integrated method using a convolutional neural network (CNN) classifier combined with region 31 
growing techniques to develop flood extent maps from UAV optical imagery. In a similar study, 32 
Rahnemoonfar et. al. [14] created a high-resolution UAV imagery captured after hurricane Harvey 33 
and emphasize the benefits of using UAV imagery as compared to satellite imagery for a more 34 
accurate analysis of disaster affected areas. Kharazi et. al. [15] emphasized how using satellite and 35 
DEM data can yield large errors. They propose a deep learning method using stop signs as the 36 
object of interest for determining flood water depth using photos taken from flooded roads and 37 
intersections to bridge this research gap. After using an object detector to identify stop signs, they 38 
make use of canny edge detector and probabilistic Hough transformation to calculate the pole 39 
length and subsequently the floodwater depth. Cem et. al. [16] developed a deep learning method 40 
for flood depth prediction using vehicles as the object of interest. In their methodology they find 41 
the depth of the water after localizing the vehicle tires and estimating the water depth in relation 42 
to the tire. Since vehicles are abundantly found on inundated roads, this method has a higher 43 
potential to be applicable to a wider range of images compared to methods using other objects as 44 
reference. 45 
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Although deep learning models are the trendiest method of choice for many researches in 1 
flood extent detection in recent years, more traditional methods can also be used to determine flood 2 
extent with high reliability and lower computational costs. For instance, Ariawan et. al. [17] use a 3 
traditional grayscale and thresholding method with edge detection to automatically determine the 4 
water level on riverbed gauges. They first determine the region of interest, then adjust the 5 
brightness and contrast to make their inputs more uniform before finding water edge points. Zhang 6 
et. al. [18] argue that many methods in the literature cannot be used for real-time flood detection 7 
due to their high processing time. They suggest considering edge detection techniques for 8 
improving the monitoring of flooded areas. Akbar et. al. [19] designed a simulation environment 9 
to develop a four-step early flood detection and warning system using traditional computer vision 10 
methods found in OpenCV library such as thresholding and edge detection. They report an 11 
accuracy of almost 96% in the laboratory setting for their proposed method. More recently, Utomo 12 
et. al. [20] performed a similar experiment in the lab to prove the reliability and accuracy of using 13 
edge detection algorithms for detecting water levels in real-time. They emphasize that many 14 
models using deep learning methods are much more computationally expensive and are not well 15 
suited for early flood warnings. 16 

In this article we use a combination of deep learning models and traditional computer 17 
vision models to estimate the flood extent across lanes of streets. We use a static camera installed 18 
on a street pole to test our proposed methodology. We use an object detector to first find the frames 19 
in which no vehicles are present on the road. Then an edge gradient is calculated using several 20 
consecutive frames. Consequently, we use a thresholding criterion to determine the flooded 21 
sections of each lane. We compare these results with the ground truth data obtained from manually 22 
labeling the frames. Our results indicate that this methodology can effectively estimate the flood 23 
extent in real-time. 24 

 25 
DATA COLLECTION AND METHODOLOGY 26 

We have collected video footage of a flooding event in Norfolk, VA, on October 3rd, 2022. 27 
The video is collected using a rechargeable camera installed on a powerline pole on the northbound 28 
of Hampton Boulevard in a residential area with a speed limit of 35mph. The collected video 29 
consists of around 40K frames over approximately 22 minutes at the rate of 30fps. Figure 1 shows 30 
a sample frame of this video footage. 31 

 32 
Figure 1- Sample Frame from Video footage 33 
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The choice of methodology for flood extent estimation depends on multiple factors such 1 
as available computational power, accessible data types, and the rate at which warnings need to be 2 
issued. In this study our aim is to provide a pipeline for flood extent estimation at the street level 3 
which requires minimal computational power yet is reliable and robust using video data from 4 
CCTVs or UAVs. We aim to make the pipeline accessible to use for public agencies by only using 5 
open-sourced tools and software. To achieve this goal, we designed a 4-step pipeline as shown in 6 
Figure 2. 7 

 8 

 9 
Figure 2- Proposed methodology for flood extent estimation 10 

 11 
Step 1: First, we need to find the time periods where no cars are present on the road so that 12 

only water is visible on the roadway. This is possible for the selected corridor since there are breaks 13 
in traffic flow due to the upstream traffic signals. This step is crucial to ensure no false alarms are 14 
created. For this step, we use off the shelf YOLOv5 object detector trained on COCO dataset to 15 
find the bounding boxes of vehicles passing through the street. YOLO is a fast yet accurate object 16 
detector that can provide real-time predictions about objects seen in an image or video frame. 17 
There is no need to fine-tune this model as the accuracy for vehicle detection is already satisfactory 18 
for our application. This greatly reduces the time and effort needed by professionals for wide 19 
implementation. The input for YOLO is each frame in the video feed and the output is the bounding 20 
boxes of objects of interest which are vehicles in our case. We define a region of interest (ROI) in 21 
which our flood extent detection is designed to work. After finding the bounding boxes, we only 22 
use the frames in which no bounding boxes overlap with the ROI. To ensure that no cars are present 23 
in the ROI, we have also refrain from using a few frames after a vehicle has just passed the region. 24 
This is done since the object detector might fail to detect vehicles when they are partly present in 25 
the frame as they are leaving the scene. This extra safety measure also ensures that the effects of 26 
the vehicle on the water body on the roadway is not producing wrong readings in the next steps. 27 

Step 1
• Removing frames with vehicles using YOLO

Step 2
• Calculating absolute edge value from grayscale images 

using Sobel algorithm

Step 3
• Calculating average standard deviation of edge values 

accross the masked area for N frames

Step 4
• Averaging standard deviation values over a selected 

period of time and compare against a treshhold
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Step 2: After extracting frames in which only water is present on the street, we transform 1 
each frame to grayscale and feed each frame to an edge detector such as Sobel or Laplace to 2 
calculate the edge values or gradient in the region of interest. This step is performed using the 3 
open-source library OpenCV which provides many tools for computer vision analysis. We then 4 
extract the edge values in the specific masked area that is used to represent different street sections. 5 
Figure 3 shows the output of this step. The region of study is marked with a rectangle. 6 

Step 3: After calculating edge values for each frame, we then calculate the standard 7 
deviation of edge values in each pixel of the masked area to detect changes from frame to frame 8 
which represents water waves and ripples. This ensures that only any other edges present on the 9 
roadway such as lane markings are not mistaken for water edges since they are stationary, and 10 
their standard deviation would be zero. We then calculate the average or median value of edges 11 
along the direction of the masked crossed section area and can plot their values over each section 12 
of each lane. Figure 4 shows three of these calculated standard deviations for different times of the 13 
studied video. 14 

Step 4: After extracting the average standard deviation of edge values along the masked 15 
area, we use a predefined threshold to determine whether each particular section is flooded or not. 16 
If the standard deviation value meets this criterion, it means that movement of edges has been 17 
present over that section in the chosen period. Since other objects have been already removed, 18 
these movements are representative of waves and ripples produced by a water body. 19 

 20 

 21 
Figure 3- Edge output from Sobel algorithm with the region of interest marked by a rectangle. 22 

The average edge gradient explained in the methodology can be described mathematically as: 23 

𝜎𝜎�𝑥𝑥 =
∑ 𝜎𝜎𝑥𝑥,𝑦𝑦
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌
𝑦𝑦=0

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚
�     Equation 1 24 

Where 𝜎𝜎�𝑥𝑥is the average standard deviation over the height of the chosen rectangular section, 25 
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 is the height of the rectangle, and 𝜎𝜎𝑥𝑥,𝑦𝑦 is the standard deviation for each pixel in the 26 
rectangle calculated as: 27 
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𝜎𝜎𝑥𝑥,𝑦𝑦 = �∑ (𝐸𝐸𝑥𝑥,𝑦𝑦
𝑛𝑛 − 𝜇𝜇𝑥𝑥,𝑦𝑦)𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑛𝑛=1
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
�    Equation 2 1 

Where 𝐸𝐸𝑥𝑥,𝑦𝑦
𝑛𝑛  is the absolute edge value calculated from the edge detection model for nth frame, 2 

𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the total number of frames used to calculate the standard deviation, and 𝜇𝜇𝑥𝑥,𝑦𝑦is the 3 
average edge value for each pixel location x, y calculated by: 4 

𝜇𝜇𝑥𝑥,𝑦𝑦 = 1
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�∑ 𝐸𝐸𝑥𝑥,𝑦𝑦
𝑛𝑛𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑛𝑛=1     Equation 3 5 

 6 

 7 
Figure 4- Standard Deviation of Edge values in the selected region  8 

A) At the beginning of the video B) Half point of the video C) At the end of the video 9 

  10 

RESULTS AND DISCUSSION 11 
The proposed methodology was applied to a video capturing a flooding event for testing.  12 

Figure 5 shows the results for three different points of the video. As it can be seen in the graph, 13 
each section of the pixel locations on the graph corresponds to different parts of different lanes. 14 
Since lane 1 is the closest lane to the camera, more pixels represent this lane. The arrows on the 15 
bottom of the graph represent the ground truth location of the water body labeled manually. The 16 
green line shows the normalized average edge gradient at the beginning of the video. Since at the 17 
beginning of the video the water only exists on parts of lane 2 and lane 3, the plot peaks at around 18 
700 pixels, corresponding to two third of lane 2 being flooded. As the flood extends and covers 19 
more of lane 2, the gradient line shifts towards the beginning of lane 2, almost covering the whole 20 
lane at the middle of the video. Finally, the red line shows the edge gradient at the end of the video 21 
when all three lanes are completely flooded. However, since the water is still shallow and hence 22 
ripple and wave heights are less pronounced in lane 1, smaller peaks are noticed in the graph. Table 23 
1 shows the percentage error of the estimated flooded area compared to the ground truth for each 24 
lane across different sections of the video using 90 frames for each section. A threshold of 2% was 25 
used to determine the flooded regions. As it can be seen, the model is able to capture the percentage 26 
of the lane flooded with great accuracy except for lane 1 at the end of the video. As explained 27 
before, this is due to the shallow Figure 5water body which has just covered lane 1 and does not 28 
produce as many ripples and waves yet to be captured. 29 

A 

B 

C 
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Table 1- Percentage Error of Flooded area detection by lane using 90 frames. 1 

Time of Video 
Estimated Percentage of 

Lane Flooded 
(Lane 1/ Lane 2/ Lane 3) 

Ground Truth 
(Lane 1/ Lane 2/ Lane 

3) 

Difference 
Percentage 

Beginning 5 / 69 / 100 0 / 66 / 100 2 / 3 / 0 

Middle 0 / 88 / 100 0 / 85 / 100 0 / 3 / 0 

End 75 / 100 / 100 100 / 100 / 100 25 / 0 / 0 
 2 

 3 
Figure 5- Normalized averaged edge gradient statistics over the selected region of interest 4 

Effect of the Number of Frames 5 
The number of frames used for calculating the standard deviation of edge gradient is an 6 

important factor to be considered. When few numbers of frames are used, the gradient will only 7 
capture the few ripples and waves present in those frames, hence it might miss some flooded 8 
sections specially in lower depth regions. Figure 6 shows the effect of the number of frames used 9 
for calculating the standard deviation for the end of the video when all 3 lanes are flooded. As it 10 
can be seen, when the number of frames is increased, more flooded areas of lane 1 are captured. 11 
In other words, when the gradient is calculated over a larger period, more ripples and waves can 12 
be captured specially in lower depth regions such as lane 1 of our case study here. It is worth noting 13 
that while considering more frames can be beneficial in this way, this will add to the computational 14 
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cost and will slightly delay the calculations (5 seconds in our case for using 150 frames in a 30fps 1 
video). 2 

 3 
Figure 6- Effect of Number of Frames Used for Standard Deviation Calculations 4 

Effect of ROI Size 5 
 The height of the region of interest chosen for edge calculations can potentially be a factor 6 
to consider when using this model. Figure 7 shows the effect of the height of the rectangular 7 
masked region on the average edge gradient in the middle portion of the video. As shown in this 8 
figure, the size of the ROI does not greatly affect the average standard deviation values as long as 9 
the region is well representative of all lanes. Hence, instead of using a larger ROI, it is 10 
recommended to have several ROIs in different sections of the road if needed. 11 

Effect of Edge Detection Model 12 
 We have also explored the possible effects of the edge detection model on the results. We 13 
have chosen three famous models of Sobel, Laplace, and Prewitt for this purpose. Figure 8 shows 14 
the effect of choosing different models applied to the beginning section of the video. As it can be 15 
seen, the choice of edge detection model does not greatly affect the results. Sobel and Prewitt are 16 
almost identical while Laplace is less capable of detecting ripples on the farthest lane from the 17 
camera which has fewer representative pixels. 18 
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       1 
Figure 7- Effect of ROI Size 2 

 3 
Figure 8- Effect of Edge Detection Model 4 
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CONCLUSIONS 1 
In this paper we have proposed a 4-step methodology consisting of a deep learning model 2 

for object detection and edge detection for determining the extent of flood at street level. The 3 
standard computer vision techniques used for ripple and wave detection are efficient enough to be 4 
run in real-time and can be used for ordinary CCTV and UAV video footages. As shown, the 5 
proposed methodology can achieve good flood extent estimation despite its relative simplicity. 6 
Since the computational cost is relatively lower, this model can be combined with other flood 7 
detection models such as semantic segmentation models for verification purposes. 8 

Currently we are using a thresholding criterion for choosing the flooded areas. In future 9 
works we will explore the use of change point detection models for detecting flooded areas more 10 
robustly. A combination of this method with optical flow analysis can also be investigated.     11 
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