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ABSTRACT

Recurrent flooding is becoming more prevalent due to climate change, heavy rain, and sea level
rise causing significant disruption to the surface transportation network. Detecting and monitoring
the progression of road inundation due to flooding is important for effective management of
transportation systems and informing the traveling public. Most of the current studies found in
literature focus on more severe floodings and are suitable for larger scale analyses. In this paper
we propose a 4-step methodology using a combination of deep learning and traditional computer
vision techniques to estimate the extent of flooding on roadways from video data. The model
estimates the progression of flooding across the travel lanes. We have collected data from a
flooding event in Norfolk, VA using a camara installed on a street pole to test our methodology.
The results indicate good agreement between the proposed automated method and ground truth.

Keywords: Flood, Flood extent, Partial flooding, Recurrent floodings, Computer vision, Edge
detection, CCTV
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INTRODUCTION

Floods are exceedingly disrupting public life and are among the most dangerous natural
disasters in the United States [1]. Aside from major floodings, recurrent nuisance floodings are
becoming more prevalent due to extreme rainfall and high tides that are exacerbated by climate
changes. Such flooding events can occur frequently specially in coastal areas where rising sea
levels are causing more tidal floodings than ever before [2]. Although partial floods can be
relatively less dangerous, due their increased frequency, the disruption to infrastructures such as
roadway blockings are becoming a major issue for many cities [3]. For example, nuisance flooding
has increased 325% since 1960 in Norfolk, VA, and the city is projected to experience well over
200 flood events in the year 2049 [4]. Since roadway closures are extremely costly to traffic
operations, more research needs to be done to determine when and where these closures are
absolutely necessary.

On-site gauge measurement methods can be implemented to determine flood depth and
alert drivers and city traffic managers about risky corridors [5]. However, installing such sensors
on every street can be extremely costly [6]. Remote sensing methods are an alternative method
that have been increasingly used for flood mapping and flood extent estimation over the years.
Such methods use remotely captured data such as synthetic aperture radar (SAR) data from
satellites to estimate the flood extent and depth. For instance, Tiampo et. al [7] developed a
machine learning based model using SAR data to develop large-scale flood extent maps and
provide information for a global flood alerting system called DisasterAware©. Although these
novel methodologies can help mitigate the disastrous effects of major flooding events, most are
focused on large-scale mappings as opposed to fine-grained street level analysis [5, 7-12].
Therefore, a huge gap still exists in the literature for studies of partial flooding events that can still
affect traffic operations.

With an increased number of surveillance cameras installed throughout cities'
infrastructures, an opportunity exists to use this optical imagery data to develop remote sensing
methods for flood extent and depth estimation. Furthermore, UAVs are becoming more commonly
used and methods based on optical imageries can also be applied to their feeds for a detailed fine-
grade analysis at any chosen location. This type of data makes it possible to estimate flood extent
variations inside a specific region such as a street. For example, Hashemi-Beni et. al. [13] proposed
an integrated method using a convolutional neural network (CNN) classifier combined with region
growing techniques to develop flood extent maps from UAV optical imagery. In a similar study,
Rahnemoonfar et. al. [14] created a high-resolution UAV imagery captured after hurricane Harvey
and emphasize the benefits of using UAV imagery as compared to satellite imagery for a more
accurate analysis of disaster affected areas. Kharazi et. al. [15] emphasized how using satellite and
DEM data can yield large errors. They propose a deep learning method using stop signs as the
object of interest for determining flood water depth using photos taken from flooded roads and
intersections to bridge this research gap. After using an object detector to identify stop signs, they
make use of canny edge detector and probabilistic Hough transformation to calculate the pole
length and subsequently the floodwater depth. Cem et. al. [16] developed a deep learning method
for flood depth prediction using vehicles as the object of interest. In their methodology they find
the depth of the water after localizing the vehicle tires and estimating the water depth in relation
to the tire. Since vehicles are abundantly found on inundated roads, this method has a higher
potential to be applicable to a wider range of images compared to methods using other objects as
reference.
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Although deep learning models are the trendiest method of choice for many researches in
flood extent detection in recent years, more traditional methods can also be used to determine flood
extent with high reliability and lower computational costs. For instance, Ariawan et. al. [17] use a
traditional grayscale and thresholding method with edge detection to automatically determine the
water level on riverbed gauges. They first determine the region of interest, then adjust the
brightness and contrast to make their inputs more uniform before finding water edge points. Zhang
et. al. [18] argue that many methods in the literature cannot be used for real-time flood detection
due to their high processing time. They suggest considering edge detection techniques for
improving the monitoring of flooded areas. Akbar et. al. [19] designed a simulation environment
to develop a four-step early flood detection and warning system using traditional computer vision
methods found in OpenCV library such as thresholding and edge detection. They report an
accuracy of almost 96% in the laboratory setting for their proposed method. More recently, Utomo
et. al. [20] performed a similar experiment in the lab to prove the reliability and accuracy of using
edge detection algorithms for detecting water levels in real-time. They emphasize that many
models using deep learning methods are much more computationally expensive and are not well
suited for early flood warnings.

In this article we use a combination of deep learning models and traditional computer
vision models to estimate the flood extent across lanes of streets. We use a static camera installed
on a street pole to test our proposed methodology. We use an object detector to first find the frames
in which no vehicles are present on the road. Then an edge gradient is calculated using several
consecutive frames. Consequently, we use a thresholding criterion to determine the flooded
sections of each lane. We compare these results with the ground truth data obtained from manually
labeling the frames. Our results indicate that this methodology can effectively estimate the flood
extent in real-time.

DATA COLLECTION AND METHODOLOGY

We have collected video footage of a flooding event in Norfolk, VA, on October 3%, 2022.
The video is collected using a rechargeable camera installed on a powerline pole on the northbound
of Hampton Boulevard in a residential area with a speed limit of 35mph. The collected video
consists of around 40K frames over approximately 22 minutes at the rate of 30fps. Figure 1 shows
a sample frame of this video footage.

/

Figure 1- Sample Frame from Video footae
4
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The choice of methodology for flood extent estimation depends on multiple factors such
as available computational power, accessible data types, and the rate at which warnings need to be
issued. In this study our aim is to provide a pipeline for flood extent estimation at the street level
which requires minimal computational power yet is reliable and robust using video data from
CCTVs or UAVs. We aim to make the pipeline accessible to use for public agencies by only using
open-sourced tools and software. To achieve this goal, we designed a 4-step pipeline as shown in
Figure 2.

Removing frames with vehicles using YOLO

N
Calculating absolute edge value from grayscale images
using Sobel algorithm

Calculating average standard deviation of edge values
accross the masked area for N frames

Averaging standard deviation values over a selected
period of time and compare against a treshhold

Figure 2- Proposed methodology for flood extent estimation

Step 1: First, we need to find the time periods where no cars are present on the road so that
only water is visible on the roadway. This is possible for the selected corridor since there are breaks
in traffic flow due to the upstream traffic signals. This step is crucial to ensure no false alarms are
created. For this step, we use off the shelf YOLOVS5 object detector trained on COCO dataset to
find the bounding boxes of vehicles passing through the street. YOLO is a fast yet accurate object
detector that can provide real-time predictions about objects seen in an image or video frame.
There is no need to fine-tune this model as the accuracy for vehicle detection is already satisfactory
for our application. This greatly reduces the time and effort needed by professionals for wide
implementation. The input for YOLO is each frame in the video feed and the output is the bounding
boxes of objects of interest which are vehicles in our case. We define a region of interest (ROI) in
which our flood extent detection is designed to work. After finding the bounding boxes, we only
use the frames in which no bounding boxes overlap with the ROI. To ensure that no cars are present
in the ROI, we have also refrain from using a few frames after a vehicle has just passed the region.
This is done since the object detector might fail to detect vehicles when they are partly present in
the frame as they are leaving the scene. This extra safety measure also ensures that the effects of
the vehicle on the water body on the roadway is not producing wrong readings in the next steps.
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Step 2: After extracting frames in which only water is present on the street, we transform
each frame to grayscale and feed each frame to an edge detector such as Sobel or Laplace to
calculate the edge values or gradient in the region of interest. This step is performed using the
open-source library OpenCV which provides many tools for computer vision analysis. We then
extract the edge values in the specific masked area that is used to represent different street sections.
Figure 3 shows the output of this step. The region of study is marked with a rectangle.

Step 3: After calculating edge values for each frame, we then calculate the standard
deviation of edge values in each pixel of the masked area to detect changes from frame to frame
which represents water waves and ripples. This ensures that only any other edges present on the
roadway such as lane markings are not mistaken for water edges since they are stationary, and
their standard deviation would be zero. We then calculate the average or median value of edges
along the direction of the masked crossed section area and can plot their values over each section
of each lane. Figure 4 shows three of these calculated standard deviations for different times of the
studied video.

Step 4: After extracting the average standard deviation of edge values along the masked
area, we use a predefined threshold to determine whether each particular section is flooded or not.
If the standard deviation value meets this criterion, it means that movement of edges has been
present over that section in the chosen period. Since other objects have been already removed,
these movements are representative of waves and ripples produced by a water body.

Figure 3- Edge output from Sobel algorithm with the region of interest marked by a rectangle.

The average edge gradient explained in the methodology can be described mathematically as:
Y111ax o
G, = “¥=° x’y/ Equation 1
max

Where 0, 1s the average standard deviation over the height of the chosen rectangular section,
Yinax 1s the height of the rectangle, and gy ,, is the standard deviation for each pixel in the
rectangle calculated as:
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Equation 2

N rames
Go . = \/anl (E;cl,y - .ux,y)/
Xy

N frames

Where E},, is the absolute edge value calculated from the edge detection model for n™ frame,
Nframes 1s the total number of frames used to calculate the standard deviation, and p, , is the
average edge value for each pixel location x, y calculated by:

_ 1 Nframes n
n=1 Exy

Equation 3

Nframes

A) At the beginning of the video B) Half point of the video C) At the end of the video

RESULTS AND DISCUSSION

The proposed methodology was applied to a video capturing a flooding event for testing.
Figure 5 shows the results for three different points of the video. As it can be seen in the graph,
each section of the pixel locations on the graph corresponds to different parts of different lanes.
Since lane 1 is the closest lane to the camera, more pixels represent this lane. The arrows on the
bottom of the graph represent the ground truth location of the water body labeled manually. The
green line shows the normalized average edge gradient at the beginning of the video. Since at the
beginning of the video the water only exists on parts of lane 2 and lane 3, the plot peaks at around
700 pixels, corresponding to two third of lane 2 being flooded. As the flood extends and covers
more of lane 2, the gradient line shifts towards the beginning of lane 2, almost covering the whole
lane at the middle of the video. Finally, the red line shows the edge gradient at the end of the video
when all three lanes are completely flooded. However, since the water is still shallow and hence
ripple and wave heights are less pronounced in lane 1, smaller peaks are noticed in the graph. Table
1 shows the percentage error of the estimated flooded area compared to the ground truth for each
lane across different sections of the video using 90 frames for each section. A threshold of 2% was
used to determine the flooded regions. As it can be seen, the model is able to capture the percentage
of the lane flooded with great accuracy except for lane 1 at the end of the video. As explained
before, this is due to the shallow Figure Swater body which has just covered lane 1 and does not
produce as many ripples and waves yet to be captured.
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Table I- Percentage Error of Flooded area detection by lane using 90 frames.

Estimated Percentage of Ground Truth Difference

Time of Video Lane Flooded (Lane 1/ Lane 2/ Lane Percentage
(Lane 1/ Lane 2/ Lane 3) 3) &
Beginning 5/69/100 0/66/100 2/3/0
Middle 0/88/100 0/85/100 0/3/0
End 75/100/ 100 100/ 100/ 100 25/0/0

Average Cross Section Standard Deviation
Mask Height = 100, Method = Sobel, Frames Used = 90
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Figure 5- Normalized averaged edge gradient statistics over the selected region of interest

Effect of the Number of Frames

1000

1200

The number of frames used for calculating the standard deviation of edge gradient is an
important factor to be considered. When few numbers of frames are used, the gradient will only
capture the few ripples and waves present in those frames, hence it might miss some flooded
sections specially in lower depth regions. Figure 6 shows the effect of the number of frames used
for calculating the standard deviation for the end of the video when all 3 lanes are flooded. As it
can be seen, when the number of frames is increased, more flooded areas of lane 1 are captured.
In other words, when the gradient is calculated over a larger period, more ripples and waves can
be captured specially in lower depth regions such as lane 1 of our case study here. It is worth noting
that while considering more frames can be beneficial in this way, this will add to the computational
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cost and will slightly delay the calculations (5 seconds in our case for using 150 frames in a 30fps
video).
Average Cross Section Standard Deviation
Mask Height = 100, Method = Saobel
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Figure 6- Effect of Number of Frames Used for Standard Deviation Calculations

Effect of ROI Size

The height of the region of interest chosen for edge calculations can potentially be a factor
to consider when using this model. Figure 7 shows the effect of the height of the rectangular
masked region on the average edge gradient in the middle portion of the video. As shown in this
figure, the size of the ROI does not greatly affect the average standard deviation values as long as
the region is well representative of all lanes. Hence, instead of using a larger ROI, it is
recommended to have several ROIs in different sections of the road if needed.

Effect of Edge Detection Model

We have also explored the possible effects of the edge detection model on the results. We
have chosen three famous models of Sobel, Laplace, and Prewitt for this purpose. Figure 8 shows
the effect of choosing different models applied to the beginning section of the video. As it can be
seen, the choice of edge detection model does not greatly affect the results. Sobel and Prewitt are
almost identical while Laplace is less capable of detecting ripples on the farthest lane from the
camera which has fewer representative pixels.
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Figure 7- Effect of ROI Size
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CONCLUSIONS

In this paper we have proposed a 4-step methodology consisting of a deep learning model
for object detection and edge detection for determining the extent of flood at street level. The
standard computer vision techniques used for ripple and wave detection are efficient enough to be
run in real-time and can be used for ordinary CCTV and UAV video footages. As shown, the
proposed methodology can achieve good flood extent estimation despite its relative simplicity.
Since the computational cost is relatively lower, this model can be combined with other flood
detection models such as semantic segmentation models for verification purposes.

Currently we are using a thresholding criterion for choosing the flooded areas. In future
works we will explore the use of change point detection models for detecting flooded areas more
robustly. A combination of this method with optical flow analysis can also be investigated.
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