
Deep Stochastic Mechanics

Elena Orlova 1 Aleksei Ustimenko 2 Ruoxi Jiang 1 Peter Y. Lu 3 Rebecca Willett 1 4

Abstract
This paper introduces a novel deep-learning-
based approach for numerical simulation of a
time-evolving Schrödinger equation inspired by
stochastic mechanics and generative diffusion
models. Unlike existing approaches, which ex-
hibit computational complexity that scales expo-
nentially in the problem dimension, our method
allows us to adapt to the latent low-dimensional
structure of the wave function by sampling from
the Markovian diffusion. Depending on the
latent dimension, our method may have far
lower computational complexity in higher dimen-
sions. Moreover, we propose novel equations
for stochastic quantum mechanics, resulting in
quadratic computational complexity with respect
to the number of dimensions. Numerical simu-
lations verify our theoretical findings and show
a significant advantage of our method compared
to other deep-learning-based approaches used for
quantum mechanics.

1. Introduction
Mathematical models for many problems in nature appear
in the form of partial differential equations (PDEs) in high
dimensions. Given access to precise solutions of the many-
electron time-dependent Schrödinger equation (TDSE), a
vast body of scientific problems could be addressed, in-
cluding in quantum chemistry (Cances et al., 2003; Nakat-
suji, 2012), drug discovery (Ganesan et al., 2017; Heifetz,
2020), condensed matter physics (Boghosian & Taylor IV,
1998; Liu et al., 2013), and quantum computing (Grover,
2001; Papageorgiou & Traub, 2013). However, solving
high-dimensional PDEs and the Schrödinger equation, in
particular, are notoriously difficult problems in scientific

1Department of Computer Science, University of Chicago,
Chicago, USA 2ShareChat, London, UK 3Department of Physics,
University of Chicago, Chicago, USA 4Department of Statistics,
University of Chicago, Chicago, USA. Correspondence to: Aleksei
Ustimenko <research@aleksei.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

computing due to the well-known curse of dimensionality:
the computational complexity grows exponentially as a func-
tion of the dimensionality of the problem (Bellman, 2010).
Traditional numerical solvers have been limited to dealing
with problems in rather low dimensions since they rely on a
grid.

Deep learning is a promising way to avoid the curse of
dimensionality (Poggio et al., 2017; Madala et al., 2023).
However, no known deep learning approach avoids it in the
context of the TDSE (Manzhos, 2020). Although generic
deep learning approaches have been applied to solving the
TDSE (E & Yu, 2017; Han et al., 2018; Raissi et al., 2019;
Weinan et al., 2021), this paper shows that it is possible to
get performance improvements by developing an approach
specific to the TDSE by incorporating quantum physical
structure into the deep learning algorithm itself.

We propose a method that relies on a stochastic interpreta-
tion of quantum mechanics (Nelson, 1966; Guerra, 1995;
Nelson, 2005) and is inspired by the success of deep dif-
fusion models that can model complex multi-dimensional
distributions effectively (Yang et al., 2022); we call it Deep
Stochastic Mechanics (DSM). Our approach is not limited
to only the linear Schrödinger equation but can be adapted
to Klein-Gordon, Dirac equations (Serva, 1988; Lindgren &
Liukkonen, 2019), and to the non-linear Schrödinger equa-
tions of condensed matter physics, e.g., by using mean-field
stochastic differential equations (SDEs) (Eriksen, 2020), or
McKean-Vlasov SDEs (dos Reis et al., 2022).

1.1. Problem formulation

The Schrödinger equation, a governing equation in quantum
mechanics, predicts the future behavior of a dynamic system
for 0  t  T and 8x 2 M:

i~@t (x, t) = H (x, t), (1)
 (x, 0) = 0(x), (2)

where : M⇥ [0, T] ! C is a wave function defined over
a manifold M, and H is a self-adjoint operator acting on
a Hilbert space of wave functions. For simplicity of future
derivations, we consider a case of a spinless particle1 in

1A multi-particle case is covered by considering d = 3n, where
n – the number of particles.

1

Deep Stochastic Mechanics

M = Rd moving in a smooth potential V : Rd ⇥ [0, T] !
R+. In this case, H = �~2

2 Tr(m�1r2) + V, where m 2
Rd ⌦Rd is a mass tensor. The probability density of finding
a particle at position x is | (x, t)|2. A notation list is given
in Appendix A.

Given initial conditions in the form of samples drawn from
density 0(x), we wish to draw samples from | (x, t)|2
for t 2 (0, T] using a neural-network-based approach that
can adapt to latent low-dimensional structures in the sys-
tem and sidestep the curse of dimensionality. Rather than
explicitly estimating (x, t) and sampling from the corre-
sponding density, we devise a strategy that directly samples
from an approximation of | (x, t)|2, concentrating com-
putation in high-density regions. When regions where the
density | (x, t)|2 lie in a latent low-dimensional space, our
sampling strategy concentrates computation in that space,
leading to the favorable scaling properties of our approach.

2. Related Work
Physics-Informed Neural Networks (PINNs) (Raissi et al.,
2019) are general-purpose tools that are widely studied for
their ability to solve PDEs and can be applied to solve Equa-
tion (1). However, this method is prone to the same issues as
classical numerical algorithms since it relies on a collection
of collocation points uniformly sampled over the domain
M ✓ Rd. In the remainder of the paper, we refer to this as
a ‘grid’ for simplicity of exposition. Another recent paper
by Bruna et al. (2022) introduces Neural Galerkin schemes
based on deep learning, which leverage active learning to
generate training data samples for numerically solving real-
valued PDEs. Unlike collocation-points-based methods,
this approach allows theoretically adaptive data collection
guided by the dynamics of the equations if we could sample
from the wave function effectively.

Another family of approaches including DeepWF (Han et al.,
2019), FermiNet (Pfau et al., 2020), and PauliNet (Hermann
et al., 2020) reformulates the problem (1) as maximization
of an energy functional that depends on the solution of the
stationary Schrödinger equation. This approach sidesteps
the curse of dimensionality but cannot be applied to the
time-dependent wave function setting considered in this
paper.

The only thing that one can experimentally obtain is samples
from the quantum mechanics density. So, it makes sense
to focus on obtaining samples from the density rather than
attempting to solve the Schrödinger equation; these samples
can be used to predict the system’s behavior without con-
ducting real-world experiments. Based on this observation,
there are a variety of quantum Monte Carlo (MC) methods
(Barker, 1979; Corney & Drummond, 2004; Austin et al.,
2012), which rely on estimating expectations of observables

rather than the wave function itself, resulting in improved
computational efficiency. However, these methods still en-
counter the curse of dimensionality due to recovering the
full-density operator. The density operator in atomic sim-
ulations is concentrated on a lower dimensional manifold
of such operators (Eriksen, 2020), suggesting that methods
that adapt to this manifold can be more effective than high-
dimensional grid-based methods. Deep learning has the abil-
ity to adapt to this structure. Numerous works explore the
time-dependent Variational Monte Carlo (t-VMC) schemes
(Carleo et al., 2017; Carleo & Troyer, 2017; Schmitt & Heyl,
2020; Yao et al., 2021) for simulating many-body quantum
systems. Their applicability is often tailored to a specific
problem setting as these methods require significant prior
knowledge to choose a good variational ansatz function. As
highlighted by Sinibaldi et al. (2023), t-VMC methods may
encounter challenges related to systematic statistical bias or
exponential sample complexity, particularly when the wave
function contains zeros.

As noted in Schlick (2010), knowledge of the density is
unnecessary for sampling. We need a score function r log ⇢
to be able to sample from it. The fast-growing field of
generative modeling with diffusion processes demonstrates
that for high-dimensional densities with low-dimensional
manifold structure, it is incomparably more effective to learn
a score function than the density itself (Ho et al., 2020; Yang
et al., 2022).

For high-dimensional real-valued PDEs, there exist a variety
of classic and deep learning-based approaches that rely on
sampling from diffusion processes, e.g., Cliffe et al. (2011);
Warin (2018); Han et al. (2018); Weinan et al. (2021). Those
works rely on the Feynman-Kac formula (Del Moral, 2004)
to obtain an estimator for the solution to the PDE. However,
for the Schrödinger equation, we need an analytical contin-
uation of the Feynman-Kac formula on an imaginary time
axis (Yan, 1994) as it is a complex-valued equation. This re-
quirement limits the applicability of this approach to our set-
ting. BSDE methods studied by Nüsken & Richter (2021b;a)
are closely related to our approach, but they are developed
for the elliptic version of the Hamilton–Jacobi–Bellman
(HJB) equation. We consider the hyperbolic HJB setting,
for which the existing method cannot be applied.

3. Contributions
We are inspired by works of Nelson (1966; 2005), who has
developed a stochastic interpretation of quantum mechanics,
so-called stochastic mechanics, based on a Markovian dif-
fusion. Instead of solving the Schrödinger equation(1), our
method aims to learn the stochastic mechanical process’s os-
motic and current velocities equivalent to classical quantum
mechanics. Our formulation differs from the original one
(Nelson, 1966; Guerra, 1995; Nelson, 2005), as we derive

2

Deep Stochastic Mechanics

equivalent differential equations describing the velocities
that do not require the computation of the Laplacian opera-
tor. Another difference is that our formulation interpolates
anywhere between stochastic mechanics and deterministic
Pilot-wave theory (Bohm, 1952). More details are given in
Appendix E.4.

We highlight the main contributions of this work as follows:

• We propose to use a stochastic formulation of quantum
mechanics (Nelson, 1966; Guerra, 1995; Nelson, 2005)
to create an efficient and theoretically sound computa-
tional framework for quantum mechanics simulation.
We accomplish our result by using stochastic mechan-
ics equations stemming from Nelson’s formulation.
In contrast to Nelson’s original expressions, which
rely on second-order derivatives like the Lagrangian,
our expressions rely solely on first-order derivatives
– specifically, the gradient of the divergence operator.
This formulation, which is more amenable to neural
network-based solvers, results in a reduction in the
computational complexity of the loss evaluation from
cubic to quadratic in dimension.

• We prove theoretically in Section 4.3 that the proposed
loss function upper bounds the L2 distance between
the approximate process and the ‘true’ process that
samples from the quantum density, which implies that
if loss converges to zero, then the approximate process
strongly converges to the ‘true’ process. Our theoreti-
cal finding offers a simple mechanism for guaranteeing
the accuracy of our predicted solution, even in set-
tings in which no baseline methods are computationally
tractable.

• We empirically estimate the performance of our
method in various settings. Our approach shows a
superior advantage to PINNs and t-VMC in terms of
accuracy. We also conduct an experiment for non-
interacting bosons where our method reveals linear con-
vergence time in the dimension, operating easily in a
higher-dimensional setting. Another interacting bosons
experiment highlights the favorable scaling properties
of our approach in terms of memory and computing
time compared to a grid-based numerical solver. While
our theoretical analysis establishes an O(d2) bound on
the algorithmic complexity, we observe an empirical
scaling closer to O(d) for the memory and compute
requirements as the problem dimension d increases due
to parallelization in modern machine learning frame-
works.

Table 1 compares properties of methods for solving Equa-
tion (1). For numerical solvers, the number of grid points
scales as O(N

d
2+1) as N is the number of discretization

points in time, and
p
N is the number of discretization

points in each spatial dimension. We assume a numerical
solver aims for a precision " = O(1p

N
). In the context of

neural networks, the iteration complexity is dominated by
loss evaluation. For PINNs, Nf denotes the number of col-
location points used to enforce physics-informed constraints
in the spatio-temporal domain for d = 1. The original PINN
formulation faces an exponential growth in the number of
collocation points with respect to the problem dimension,
O(Nd

f), posing a significant challenge in higher dimensions.
Subsampling O(d) collocation points in a non-adaptive way
leads to poor performance for high-dimensional problems.

For both t-VMC and FermiNet, Hd denotes the number of
MC iterations required to draw a single sample. The t-VMC
approach requires calculating a matrix inverse, which gener-
ally exhibits a cubic computational complexity of O(d3)
and may suffer from numerical instabilities. Similarly,
the FermiNet method, which is used for solving the time-
independent Schrödinger equation to find ground states,
necessitates estimating matrix determinants, an operation
that also scales as O(d3). We note that for our DSM ap-
proach, N is independent of d. We focus on lower bounds
on iteration complexity and known bounds for the conver-
gence of non-convex stochastic gradient descent (Fehrman
et al., 2019) that scales polynomial with "�1.

4. Deep Stochastic Mechanics
There is a family of diffusion processes that are equivalent
to Equation (1) in a sense that all time-marginals of any
such process coincide with | (x, t)|2; we refer to Appendix
E for derivation. Assuming (x, t) =

p
⇢(x, t)eiS(x,t), we

define:

v(x, t) =
~
m
rS(x, t),

u(x, t) =
~
2m

r log ⇢(x, t).
(3)

Our method relies on the following stochastic process
with ⌫ � 0 2, which corresponds to sampling from ⇢ =�� (x, t)

��2 (Nelson, 1966):

dY (t) = (v(Y (t), t) + ⌫u(Y (t), t))dt+

r
⌫~
m

d
!
W,

Y (0) ⇠
�� 0

��2,
(4)

where u is an osmotic velocity, v is a current velocity and
!
W is a standard (forward) Wiener process. Process Y (t) is
called the Nelsonian process. Since we don’t know the true
u, v, we instead aim at approximating them with the process

2
⌫ = 0 is allowed if and only if 0 is sufficiently regular, e.g.,

| 0|
2
> 0 everywhere.

3

Deep Stochastic Mechanics

Table 1. Comparison of different approaches for simulating quantum mechanics.

METHOD DOMAIN
TIME

EVOLVING
ADAPTIVE

ITERATION
COMPLEXITY

OVERALL
COMPLEXITY

PINN (RAISSI ET AL., 2019) COMPACT 3 7 O(N
d
f) � O(N

d
f poly("

�1
))

FERMINET (PFAU ET AL., 2020) Rd 7 3 O(Hdd
3
) � O(Hdd

3
poly("

�1
))

T-VMC Rd 3 3 O(Hdd
3
) � O(Hdd

3
poly("

�1
))

NUM. SOLVER COMPACT 3 7 N/A O(d"
�d�2

)

DSM (OURS) Rd 3 3 O(Nd
2
) � O(Nd

2
poly("

�1
))

defined using neural network approximations v✓, u✓:

dX(t) = (v✓(X(t), t) + ⌫u✓(X(t), t))dt+

r
⌫~
m

d
!
W,

X(0) ⇠
�� 0

��2.
(5)

Any numerical integrator can be used to obtain samples
from the diffusion process. The simplest one is the Euler–
Maruyama integrator (Kloeden & Platen, 1992):

Xi+1 = Xi + (v✓(Xi, ti) + ⌫u✓(Xi, ti))✏+N
�
0,
⌫~
m
✏Id

�
,

(6)

where ✏ > 0 denotes a step size, 0  i <
T
✏ , and N (0, Id)

is a Gaussian distribution. We consider this integrator in our
work. Switching to higher-order integrators, e.g., the Runge-
Kutta family of integrators (Kloeden & Platen, 1992), can
potentially enhance efficiency and stability when ✏ is larger.

The diffusion process from Equation (4) achieves sampling
from ⇢ =

�� (x, t)
��2 for each t 2 [0, T] for known u and v.

Assume that 0(x) =
p
⇢0(x)eiS0(x). Our approach relies

on the following equations for the velocities:

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
rhr, ui,

(7a)

@tu = �rhv, ui � ~
2m

rhr, vi, (7b)

v0(x) =
~
m
rS0(x), u0(x) =

~
2m

r log ⇢0(x). (7c)

These equations are derived in Appendix E.1 and are equiv-
alent to the Schrödinger equation. As mentioned, our equa-
tions differ from the canonical ones developed in Nelson
(1966); Guerra (1995). In particular, the original formu-
lation from Equation (26), which we call the Nelsonian
version, includes the Laplacian of u; in contrast, our version
in (7a) uses the gradient of the divergence operator. These
versions are equivalent in our setting, but our version has
significant computational advantages, as we describe later
in Remark 4.1.

4.1. Learning Drifts

This section describes how we learn the velocities u✓(X, t)
and v✓(X, t), parameterized by neural networks with param-
eters ✓. We propose to use a combination of three losses:
two of them come from the Navier-Stokes-like equations
(7a), (7b), and the third one enforces the initial conditions
(7c). We define non-linear differential operators that appear
in Equation (7a), (7b):

Du[v, u, x, t] = �rhv(x, t), u(x, t)i � ~
2m

rhr, v(x, t)i,
(8)

Dv[v, u, x, t] =� 1

m
rV (x, t) +

1

2
rku(x, t)k2

� 1

2
rkv(x, t)k2 + ~

2m
rhr, u(x, t)i.

(9)

We aim to minimize the following losses:

L1(v✓, u✓) =

Z T

0
EX

��@tu✓(X(t), t)

�Du[v✓, u✓, X(t), t]
��2dt,

(10)

L2(v✓, u✓) =

Z T

0
EX

��@tv✓(X(t), t)

�Dv[v✓, u✓, X(t), t]
��2dt,

(11)

L3(v✓, u✓) = EXku✓(X(0), 0)� u0(X(0))k2, (12)

L4(v✓, u✓) = EXkv✓(X(0), 0)� v0(X(0))k2, (13)

where u0, v0 are defined in Equation (7c). Finally, we define
a combined loss using a weighted sum with wi > 0:

L(✓) =
4X

i=1

wiLi(v✓, u✓). (14)

The basic idea of our approach is to sample new trajectories
using Equation (6) with ⌫ = 1 for each iteration ⌧ . These
trajectories are then used to compute stochastic estimates
of the loss from Equation (14), and then we back-propagate

4

Deep Stochastic Mechanics

gradients of the loss to update ✓. We re-use recently gener-
ated trajectories to reduce computational overhead as SDE
integration cannot be paralleled. The training procedure is
summarized in Algorithm 1 and Figure 1; a more detailed
version is given in Appendix B.

Algorithm 1 Training algorithm pseudocode

Input 0 – initial wave-function, M – epoch number, B – batch
size, other parameters (optimizer parameters, physical constants,
Euler–Maruyama parameters; see Appendix B)
Initialize NNs u✓0 , v✓0
for each iteration 0  ⌧ < M do

Sample B trajectories using u✓⌧ , v✓⌧ via Equation (6) with
⌫ = 1

Estimate loss L(v✓⌧ , u✓⌧) from Equation (14) over the sam-
pled trajectories
Back-propagate gradients to get r✓L(v✓⌧ , u✓⌧)

An optimizer step to get ✓⌧+1

end for
output u✓M , v✓M

We use trained u✓M , v✓M to simulate the forward diffusion
for ⌫ � 0 given X0 ⇠ N (0, Id):

Xi+1 = Xi + (v✓M (Xi, ti) + ⌫u✓M (Xi, ti))✏

+N
�
0,

~
m
⌫✏Id

�
. (15)

Appendix G describes a wide variety of possible ways to
apply our approach for estimating an arbitrary quantum ob-
servable, singular initial conditions like 0 = �x0 , singular
potentials, correct estimations of observable that involve
measurement process, and recovering the wave function
from u, v.

Although PINNs can be used to solve Equations (7a), (7b),
that approach would suffer from having fixed sampled den-
sity (see Section 5). Our method, much like PINNs, seeks to
minimize the residuals of the PDEs from Equations (7a) and
(7b). However, we do so on the distribution generated by
sampled trajectories X(t), which in turn depends on current
neural approximations v✓, u✓. This allows our method to fo-
cus only on high-density regions and alleviates the inherent
curse of dimensionality that comes from reliance on a grid.

4.2. Algorithmic Complexity

Our formulation of stochastic mechanics with novel Equa-
tions (7) is much more amenable to automatic differentiation
tools than if we developed a neural diffusion approach based
on the Nelsonian version. In particular, the original formu-
lation uses the Laplacian operator �u that naively requires
O(d3) operations, which might become a major bottleneck
for scaling them to many-particle systems. While a stochas-
tic trace estimator (Hutchinson, 1989) may seem an option

to reduce the computational complexity of Laplacian cal-
culation to O(d2), it introduces a noise of an amplitude
O(

p
d). Consequently, a larger batch size (as O(d)) is nec-

essary to offset this noise resulting in still a cubic complexity.

Remark 4.1. The algorithmic complexity w.r.t. d of com-
puting differential operators from Equations (8), (9) for
velocities u, v is O(d2). 3

This remark is proved in Appendix E.5. This trick with the
gradient of divergence can be used as we rely on the fact
that the velocities u, v are full gradients, which is not the
case for the wave function (x, t) itself.

We expect that one of the factors of d associated with eval-
uating a d-dimensional function gets parallelized over in
modern machine learning frameworks, so we can see a lin-
ear scaling even though we are using an O(d2) method. We
will see such behavior in our experiments.

4.3. Theoretical Guarantees

To further justify the effectiveness of our loss function, we
prove the following theorem in Appendix F:
Theorem 4.2. (Strong Convergence Bound) We have the fol-
lowing bound between processes Y (the Nelsonian process
that samples from | |2) and X (the neural approximation
with v✓, u✓):

sup
tT

EkX(t)� Y (t)k2  CTL(v✓, u✓), (16)

where constant CT is defined explicitly in F.13.

This theorem means optimizing the loss leads to a strong
convergence of the neural process X to the Nelsonian pro-
cess Y , and that the loss value directly translates into an
improvement of L2 error between the processes. The con-
stant C depends on a horizon T and Lipshitz constants of
u, v, u✓, v✓. It also hints that we have a ‘low-dimensional’
structure when Lipshitz constants of u, v, u✓, v✓ are ⌧ d,
which is the case of low-energy regimes (as large Lipshitz
smoothness constant implies large value of the Laplacian
and, hence, energy) and with the proper selection of a neural
architecture (Aziznejad et al., 2020).

5. Experiments
Experimental setup As a baseline, we use an analytical
or numerical solution. We compare our method’s (DSM)
performance with PINNs and t-VMC. In the case of non-
interacting particles, the models are feed-forward neural
networks with one hidden layer and a hyperbolic tangent

3Estimation of a term rV (x, t) might have different compu-
tational complexity from O(d), O(d

2
), or even higher depending

on a particle interaction type.

5

Deep Stochastic Mechanics

u�1

v�1 �(0,�2)

� = 1

i = 1
. . . {X(�1)

ij }ij

� = M

i = 0

u�1
v�1 �(0,�2)

X(�1)0j

i = N

i = N

. . .

X(�1)1j X(�1)
Nj

X(�M)
0j X(�M)

1j X(�M)
Nj

{X(�M)
ij }ij

b) Sample paths, an early epoch d) Uniform collocation points  
used by a grid-based solver

a) DSM training

...

i = 0 i = 1

c) Sample paths, a final epoch

u�M

v�M �(0,�2)

u�M

v�M �(0,�2)

u�1

v�1 �(0,�2)

� = 1

i = 1
. . . {X(�1)

ij }ij

� = M

i = 0

u�1
v�1 �(0,�2)

X(�1)0j

i = N

i = N

. . .

X(�1)1j X(�1)
Nj

X(�M)
0j X(�M)

1j X(�M)
Nj

{X(�M)
ij }ij

b) Sample paths, an early epoch d) Uniform collocation points  
used by a grid-based solver

a) DSM training

...
i = 0 i = 1

c) Sample paths, a final epoch

u�M

v�M �(0,�2)

u�M

v�M �(0,�2)

u�1

v�1 �(0,�2)

� = 1

i = 1
. . . {X(�1)

ij }ij

� = M

i = 0

u�1
v�1 �(0,�2)

X(�1)0j

i = N

i = N

. . .

X(�1)1j X(�1)
Nj

X(�M)
0j X(�M)

1j X(�M)
Nj

{X(�M)
ij }ij

b) Sample paths, an early epoch d) Uniform collocation points  
used by a grid-based solver

a) DSM training

...

i = 0 i = 1

c) Sample paths, a final epoch

u�M

v�M �(0,�2)

u�M

v�M �(0,�2)

u�1

v�1 �(0,�2)

� = 1

i = 1
. . . {X(�1)

ij }ij

� = M

i = 0

u�1
v�1 �(0,�2)

X(�1)0j

i = N

i = N

. . .

X(�1)1j X(�1)
Nj

X(�M)
0j X(�M)

1j X(�M)
Nj

{X(�M)
ij }ij

b) Sample paths, an early epoch d) Uniform collocation points  
used by a grid-based solver

a) DSM training

...

i = 0 i = 1

c) Sample paths, a final epoch

u�M

v�M �(0,�2)

u�M

v�M �(0,�2)

Figure 1. An illustration of our approach. Blue regions in the plots correspond to higher-density regions. (a) DSM training scheme: at
every epoch ⌧ , we generate B full trajectories {Xij}ij , i = 0, ..., N , j = 1, ..., B. Then, we update the weights of our NNs. (b) An
illustration of sampled trajectories at the early epoch. (c) An illustration of sampled trajectories at the final epoch. (d) Collocation points
for a grid-based solver where it should predict values of (x, t).

(tanh) activation function. We use a similar architecture
with residual connection blocks and a tanh activation func-
tion when studying interacting particles. Further details
on numerical solvers, architecture, training procedures, hy-
perparameters of our approach, PINNs, and t-VMC can be
found in Appendix C. Additional experiment results are
given in Appendix D. The code of our experiments can be
found on GitHub 4. We only consider bosonic systems,
leaving fermionic systems for further research.

Evaluation metrics We estimate errors between true and
predicted values of the mean and the variance of a coordinate
Xi at time i = 1, . . . , T as the relative L2-norm, namely
Em(Xi) and Ev(Xi). The standard deviation (confidence
intervals) of the observables are indicated in the results. True
v and u values are estimated numerically with the finite
difference method. Our trained u✓ and v✓ should output
these values. We measure errors E(u) and E(v) as the L2-
norm between the true and predicted values in L2(Rd ⇥
[0, T], µ) with µ(dx, dt) = | (x, t)|2dxdt.

5.1. Non-interacting Case: Harmonic Oscillator

We consider a harmonic oscillator model with x 2 R1,
V (x) = 1

2m!
2(x� 0.1)2, t 2 [0, 1] and where m = 1 and

! = 1. The initial wave function is given as (x, 0) /
e
�x2/(4�2). Then u0(x) = � ~x

2m�2 , v0(x) ⌘ 0. X(0)
comes from X(0) ⇠ N (0,�2), where �2 = 0.1.

We use the numerical solution as the ground truth. Our ap-
proach is compared with a PINN. The PINN input data con-
sists of N0 = 1000 points sampled for estimating (x, 0),
Nb = 300 points for enforcing the boundary conditions

4
https://github.com/elena-orlova/

deep-stochastic-mechanics

(we assume zero boundary conditions), and Nf = 60000
collocation points to enforce the corresponding equation
inside the solution domain, all points sampled uniformly for
x 2 [�2, 2] and t 2 [0, 1].

Figure 2(a) summarizes the results of our experiment. The
left panel of the figure illustrates the evolution of the den-
sity | (x, t)|2 over time for different methods. It is evident
that our approach accurately captures the density evolution,
while the PINN model initially aligns with the ground truth
but deviates from it over time. Sampling collocation points
uniformly when density is concentrated in a small region
explains why PINN struggles to learn the dynamics of Equa-
tion (1); we illustrate this effect in Figure 1 (d). The right
panel demonstrates observables of the system, the averaged
mean of Xi, and the averaged variance of Xi. Our approach
consistently follows the corresponding distribution of Xi.
On the contrary, the predictions of the PINN model only
match the distribution at the initial time steps but fail to
accurately represent it as time elapses. Table 2 shows the
error rates for our method and PINNs. In particular, our
method performs better in terms of all error rates than the
PINN. These findings emphasize the better performance
of the proposed method in capturing the dynamics of the
Schrödinger equation compared to the PINN model.

We also consider a non-zero initial phase S0(x) = �5x.
It corresponds to the initial impulse of a particle. Then
v0(x) ⌘ � 5~

m . The PINN inputs are N0 = 3000, Nb = 300
points, and Nf = 80000 collocation points. Figure 2 (b) and
Table 2 present the results of our experiment. Our method
consistently follows the corresponding ground truth, while
the PINN model fails to do so. It indicates the ability of our
method to accurately model the behavior of the quantum
system.

6

https://github.com/elena-orlova/deep-stochastic-mechanics
https://github.com/elena-orlova/deep-stochastic-mechanics

Deep Stochastic Mechanics

Xi Xi

ti ti

ti ti

Xi Xi

a) The harmonic oscillator with .S0(x) � 0

b) The harmonic oscillator with .S0(x) = � 5x c) Two interacting bosons in the harmonic oscillator.

Figure 2. Simulation results of PINN and our DSM method: (a) and (b) correspond to a particle in the harmonic oscillator with different
initial phases; (c) corresponds to two interacting bosons in the harmonic oscillator. The left panel of these figures corresponds to the
density | (x, t)|

2 of the ground truth solution, our approach (DSM), PINN, and t-VMC. The right panel presents statistics, including the
particle’s mean position and variance.

In addition, we consider an oscillator model with three non-
interacting particles, which can be seen as a 3d system. The
results are given in Table 2 and Appendix D.2.

5.2. Naive Sampling

To further evaluate our approach, we consider the following
sampling scheme: it is possible to replace all measures
in the expectations from Equation (14) with a Gaussian
noise N (0, 1). Minimizing this loss perfectly would imply
that the PDE is satisfied for all values x, t. Table 2 shows
worse quantitative results compared to our approach in the
setting from Section 5.1. More detailed results, including
the singular initial condition and 3d harmonic oscillator
setting, are given in Appendix D.3.

5.3. Interacting System

Next, we consider a system of two interacting bosons in
a harmonic trap with a soft contact term V (x1, x2) =
1
2m!

2(x2
1+x

2
2)+

g
2

1p
2⇡�2

e
�(x1�x2)

2/(2�2) and initial con-

dition 0 / e
�m!2x2/(2~). We use ! = 1, T = 1,

�
2 = 0.1, and N = 1000. The term g controls interac-

tion strength. When g = 0, there is no interaction, and 0 is
the ground state of the corresponding Hamiltonian H. We
use g = 1 in our simulations.

Figure 2 (c) shows simulation results: our method follows
the corresponding ground truth while PINN fails over time.
As t increases, the variance of Xi for PINN either decreases
or remains relatively constant, contrasting with the dynamics
that exhibit more divergent behavior. We hypothesize that

such discrepancy in the performance of PINN, particularly
in matching statistics, is due to the design choice. Specifi-
cally, the output predictions, (xi, t), made by PINNs are
not constrained to adhere to physical meaningfulness, mean-
ing

R
Rd

�� (x, t)
��2dx does not always equal 1, making un-

controlled statistics.

As for the t-VMC baseline, the results are a good qualitative
approximation to the ground truth. The t-VMC ansatz rep-
resentation comprises Hermite polynomials with two-body
interaction terms (Carleo et al., 2017), scaling quadratically
with the number of basis functions. This representation
inherently incorporates knowledge about the ground truth
solution. However, even when using the same number of
samples and time steps as our DSM approach, t-VMC does
not achieve the same level of accuracy, and the t-VMC ap-
proach does not perform well beyond d = 3 (see Appendix
D.5). We anticipate the performance of t-VMC will further
deteriorate for larger systems due to the absence of higher-
order interactions in the chosen ansatz. We opted for this
polynomial representation for scalability and because our
experiments with neural network ansatzes (Schmitt & Heyl,
2020) did not yield satisfactory results for any d. Additional
details are provided in Appendix C.2.

5.3.1. DSM IN HIGHER DIMENSIONS

To verify that our method can yield reasonable outputs for
large many-body systems, we perform experiments on a
100 particle version of the interacting boson system. While
ground truth is unavailable for a system of such a large scale,
we perform a partial validation of our results by analyzing

7

Deep Stochastic Mechanics

Table 2. Results for different harmonic oscillator settings. In the 3d setting, the reported errors are averaged across all dimensions. The
best results are in bold. 5

SETTING MODEL Em(Xi) # Ev(Xi) # E(v) # E(u) #
d = 1,

S0(x) ⌘ 0
PINN 0.877 ± 0.263 0.766 ± 0.110 24.153 ± 3.082 4.432 ± 1.000
DSM 0.079± 0.007 0.019± 0.005 1.7⇥ 10�4 ± 4.9⇥ 10�5 2.7⇥ 10�5 ± 4.9⇥ 10�6

GAUSSIAN SAMPLING 0.355 ± 0.038 0.460 ± 0.039 8.478 ± 4.651 2.431 ± 0.792

d = 1,
S0(x) = �5x

PINN 2.626 ± 0.250 0.626 ± 0.100 234.926 ± 57.666 65.526 ± 8.273
DSM 0.268± 0.036 0.013± 0.008 1.4⇥ 10�5 ± 5.5⇥ 10�6 2.5⇥ 10�5 ± 3.8⇥ 10�6

GAUSSIAN SAMPLING 0.886 ± 0.137 0.078 ± 0.013 73.588 ± 6.675 16.298 ± 6.311

d = 3,
S0(x) ⌘ 0

DSM (NELSONIAN) 0.080± 0.015 0.016± 0.007 8.1⇥ 10�5 ± 2.8⇥ 10�5 4.0⇥ 10�5 ± 2.2⇥ 10�5

DSM (GRAD DIV) 0.075± 0.004 0.015± 0.004 6.2⇥ 10�5 ± 2.2⇥ 10�5 3.9⇥ 10�5 ± 2.9⇥ 10�5

GAUSSIAN SAMPLING 0.423 ± 0.090 4.743 ± 0.337 6.505 ± 3.179 3.207 ± 0.911

d = 2,
INTERACTING

SYSTEM

PINN 0.258 ± 0.079 1.937 ± 0.654 20.903 ± 7.676 10.210 ± 3.303
DSM 0.092± 0.004 0.055± 0.015 7.6⇥ 10�5 ± 1.0⇥ 10�5 6.6⇥ 10�5 ± 2.8⇥ 10�5

T-VMC 0.103 ± 0.007 0.109 ± 0.023 2.9⇥ 10�3 ± 2.4⇥ 10�4 3.5⇥ 10�4 ± 0.8⇥ 10�4

how the estimated densities change at x = 0 as a function
of the interaction strength g. Scaling our method to many
particles is straightforward, as we only need to adjust the
neural network input size and possibly other parameters,
such as a hidden dimension size. The obtained results in
Figure 3 suggest that the time evolution is at least qualita-
tively reasonable since the one-particle density decays more
quickly with increasing interaction strength g. In particu-
lar, this value should be higher for overlapping particles (a
stable system with a low g value) and lower for moving
apart particles (a system with a stronger interaction g). Fur-
thermore, the low training loss of 10�2 order achieved by
our model suggests that it is indeed representing a process
consistent with Schrödinger equation, even for these large-
scale systems. This experiment demonstrates our ability to
scale the DSM approach to large interacting systems eas-
ily while providing partial validation of the results through
the qualitative analysis of the one-particle density and its
dependence on the interaction strength.

5.4. Computational and Memory Complexity

5.4.1. NON-INTERACTING SYSTEM

We measure training time per epoch and total train time for
two versions of the DSM algorithm for d = 1, 3, 5, 7, 9: the
Nelsonian one and our version. The experiments are con-
ducted using the harmonic oscillator model with S0(x) ⌘ 0
from Section 5.1. The results are averaged across 30 runs.
In this setting, the Hamiltonian is separable in the dimen-
sions, and the problem has a linear scaling in d. However,
given no prior knowledge about that, traditional numerical
solvers and PINNs would suffer from exponential growth in
data when tackling this task. Our method does not rely on
a grid in x, and avoids computing the Laplacian in the loss
function. That establishes lower bounds on the computa-
tional complexity of our method, and this bound is sharp for
this particular problem. The advantageous behavior of our

Figure 3. The one-particle density of a system of 100 interacting
bosons for varying interaction strength g. For a weaker interaction,
the one-particle density is higher, indicating a more stable particle
configuration. Conversely, for a stronger interaction, this value
decreases, suggesting a more dispersed particle behavior.

method is observed without any reliance on prior knowledge
about the problem’s nature.

Time per epoch The left panel of Figure 4 illustrates the
scaling of time per iteration for both the Nelsonian formu-
lation and our proposed approach. The time complexity
exhibits a quadratic scaling trend for the Nelsonian version,
while our method achieves a more favorable linear scaling
behavior with respect to the problem dimension. These em-
pirical observations substantiate our analytical complexity
analysis.

Total training time The right panel of Figure 4 demon-
strates the total training time of our version versus the prob-

5The difference between the mean errors of the DSM approach
and other methods is statistically significant with a p-value < 0.001

measured by the one-sided Welsh t-test. Each model is trained and
evaluated 10 times independently.

8

Deep Stochastic Mechanics

lem dimension. We train our models until the training loss
reaches a threshold of 2.5⇥ 10�5. We observe that the total
training time exhibits a linear scaling trend as the dimen-
sionality d increases. The performance errors are presented
in Appendix D.4.

Figure 4. Empirical complexity evaluation of our method for the
non-interacting system.

5.4.2. INTERACTING SYSTEM

We study the scaling capabilities of our DSM approach in
the setting from Section 5.3, comparing the performance
of our algorithm with a numerical solver based on the
Crank–Nicolson method. Table 4 shows training time, time
per epoch, and memory usage for our method. Table 3
reports time and memory usage of the Crank–Nicolson
method solver. More details and illustrations of obtained
solutions are given in Appendix D.5.

Memory DSM memory usage and time per epoch grow
linearly in d (according to our theory and evident in our
numerical results) in contrast to the Crank-Nikolson solver,
whose memory usage grows exponentially since discretiza-
tion matrices are of Nd⇥N

d size. As a consequence, we are
unable to execute the Crank-Nicolson method for d > 4 on
our computational system due to memory constraints. The
results show that our method is far more memory efficient
for larger d.

Compute time While the total compute times of our DSM
method, including training, are longer than those of the
Crank-Nicolson solver for smaller values of d, the scaling
trends suggest a computational advantage as d increases. In
general, DSM is expected to scale quadratically with the
problem dimension as there are pairwise interactions in our
potential function.

Table 3. Time (s) to get a solution and memory usage (Gb) of the
Crank-Nicolson method for different problem dimensions (inter-
acting bosons).

d = 2 d = 3 d = 4

TIME 0.75 35.61 2363
MEMORY USAGE 7.4 10.6 214

Table 4. Training time (s), time per epoch (s/epoch), and memory
usage (Gb) of our DSM method for different problem dimensions
(interacting bosons).

d = 2 d = 3 d = 4 d = 5

TRAINING TIME 1770 3618 5850 9240
TIME PER EPOCH 0.52 1.09 1.16 1.24
MEMORY USAGE 17.0 22.5 28.0 33.5

6. Discussion and Limitations
This paper considers the simplest case of the linear spinless
Schrödinger equation on a flat manifold Rd with a smooth
potential. For many practical setups, such as quantum chem-
istry, quantum computing, or condensed matter physics, our
approach should be modified, e.g., by adding a spin compo-
nent or by considering some approximation and, therefore,
requires additional validations that are beyond the scope of
this work. We have shown evidence of adaptation of our
method to one kind of low-dimensional structure, but this
paper does not explore a broader range of systems with low
latent dimension.

7. Conclusion
We develop a new algorithm for simulating quantum me-
chanics that addresses the curse of dimensionality by lever-
aging the latent low-dimensional structure of the system.
This approach is based on a modification of the stochastic
mechanics theory that establishes a correspondence between
the Schrödinger equation and a diffusion process. We learn
the drifts of this diffusion process using deep learning to
sample from the corresponding quantum density. We be-
lieve that our approach has the potential to bring to quantum
mechanics simulation the same progress that deep learning
has enabled in artificial intelligence. We provide future
work discussion in Appendix I.

Acknowledgements
The authors gratefully acknowledge the support of DOE
DE-SC0022232, NSF DMS-2023109, NSF PHY2317138,
NSF 2209892, and the University of Chicago Data Science
Institute. Peter Y. Lu gratefully acknowledges the support
of the Eric and Wendy Schmidt AI in Science Postdoctoral
Fellowship, a Schmidt Futures program.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9

Deep Stochastic Mechanics

References
Alvarez, O. String theory and holomorphic line bundles.

In 7th Workshop on Grand Unification: ICOBAN 86, 9
1986.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Austin, B. M., Zubarev, D. Y., and Lester Jr, W. A. Quantum
Monte Carlo and related approaches. Chemical reviews,
112(1):263–288, 2012.

Aziznejad, S., Gupta, H., Campos, J., and Unser, M. Deep
neural networks with trainable activations and controlled
Lipschitz constant. IEEE Transactions on Signal Process-
ing, 68:4688–4699, 2020.

Baldi, P. and Baldi, P. Stochastic calculus. Springer, 2017.

Barker, J. A. A quantum-statistical Monte Carlo method;
path integrals with boundary conditions. The Journal of
Chemical Physics, 70(6):2914–2918, 1979.

Bellman, R. E. Dynamic programming. Princeton university
press, 2010.

Blanchard, P., Combe, P., Sirugue, M., and Sirugue-Collin,
M. Stochastic jump processes associated with Dirac equa-
tion. In Stochastic Processes in Classical and Quantum
Systems: Proceedings of the 1st Ascona-Como Interna-
tional Conference, Held in Ascona, Ticino (Switzerland),
June 24–29, 1985, pp. 65–86. Springer, 2005.

Boffi, N. M. and Vanden-Eijnden, E. Probability flow solu-
tion of the Fokker-Planck equation, 2023.

Boghosian, B. M. and Taylor IV, W. Quantum lattice-gas
model for the many-particle Schrödinger equation in d
dimensions. Physical Review E, 57(1):54, 1998.

Bohm, D. A suggested interpretation of the quan-
tum theory in terms of ”hidden” variables. I. Phys.
Rev., 85:166–179, Jan 1952. doi: 10.1103/PhysRev.
85.166. URL https://link.aps.org/doi/10.

1103/PhysRev.85.166.

Bruna, J., Peherstorfer, B., and Vanden-Eijnden, E. Neu-
ral Galerkin scheme with active learning for high-
dimensional evolution equations. arXiv preprint
arXiv:2203.01360, 2022.

Buckdahn, R., Li, J., Peng, S., and Rainer, C. Mean-field
stochastic differential equations and associated PDEs.
The Annals of Probability, 45(2):824 – 878, 2017. doi:
10.1214/15-AOP1076. URL https://doi.org/10.

1214/15-AOP1076.

Cances, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C.,
and Maday, Y. Computational quantum chemistry: a
primer. Handbook of numerical analysis, 10:3–270, 2003.

Carleo, G. and Troyer, M. Solving the quantum many-body
problem with artificial neural networks. Science, 355
(6325):602–606, 2017.

Carleo, G., Cevolani, L., Sanchez-Palencia, L., and Holz-
mann, M. Unitary dynamics of strongly interacting Bose
gases with the time-dependent variational Monte Carlo
method in continuous space. Physical Review X, 7(3):
031026, 2017.

Cliffe, K. A., Giles, M. B., Scheichl, R., and Teckentrup,
A. L. Multilevel Monte Carlo methods and applications
to elliptic PDEs with random coefficients. Computing
and Visualization in Science, 14:3–15, 2011.

Colin, S. and Struyve, W. Quantum non-equilibrium and
relaxation to equilibrium for a class of de Broglie–Bohm-
type theories. New Journal of Physics, 12(4):043008,
2010.

Corney, J. F. and Drummond, P. D. Gaussian quantum
Monte Carlo methods for fermions and bosons. Phys-
ical Review Letters, 93(26), dec 2004. doi: 10.1103/
physrevlett.93.260401. URL https://doi.org/10.

1103%2Fphysrevlett.93.260401.

Dankel, T. G. Mechanics on manifolds and the incorporation
of spin into Nelson’s stochastic mechanics. Archive for
Rational Mechanics and Analysis, 37:192–221, 1970.

De Angelis, G., Rinaldi, A., and Serva, M. Imaginary-
time path integral for a relativistic spin-(1/2) particle in a
magnetic field. Europhysics Letters, 14(2):95, 1991.

Del Moral, P. Feynman-Kac formulae. Springer, 2004.

Derakhshani, M. and Bacciagaluppi, G. On multi-time
correlations in stochastic mechanics, 2022.

dos Reis, G., Engelhardt, S., and Smith, G. Simulation of
McKean–Vlasov SDEs with super-linear growth. IMA
Journal of Numerical Analysis, 42(1):874–922, 2022.

E, W. and Yu, B. The Deep Ritz method: A deep learning-
based numerical algorithm for solving variational prob-
lems, 2017.

Eriksen, J. J. Mean-field density matrix decompositions.
The Journal of Chemical Physics, 153(21):214109, 2020.

Fehrman, B., Gess, B., and Jentzen, A. Convergence rates
for the stochastic gradient descent method for non-convex
objective functions, 2019.

10

https://link.aps.org/doi/10.1103/PhysRev.85.166
https://link.aps.org/doi/10.1103/PhysRev.85.166
https://doi.org/10.1214/15-AOP1076
https://doi.org/10.1214/15-AOP1076
https://doi.org/10.1103%2Fphysrevlett.93.260401
https://doi.org/10.1103%2Fphysrevlett.93.260401

Deep Stochastic Mechanics

Ganesan, A., Coote, M. L., and Barakat, K. Molecular
dynamics-driven drug discovery: leaping forward with
confidence. Drug discovery today, 22(2):249–269, 2017.

Griewank, A. and Walther, A. Evaluating Derivatives.
Society for Industrial and Applied Mathematics, sec-
ond edition, 2008. doi: 10.1137/1.9780898717761.
URL https://epubs.siam.org/doi/abs/10.

1137/1.9780898717761.

Gronwall, T. H. Note on the derivatives with respect to
a parameter of the solutions of a system of differential
equations. Annals of Mathematics, 20(4):292–296, 1919.
ISSN 0003486X. URL http://www.jstor.org/

stable/1967124.

Grover, L. K. From Schrödinger’s equation to the quantum
search algorithm. Pramana, 56:333–348, 2001.

Guerra, F. Introduction to Nelson stochastic mechanics
as a model for quantum mechanics. The Foundations
of Quantum Mechanics—Historical Analysis and Open
Questions: Lecce, 1993, pp. 339–355, 1995.

Gyöngy, I. Mimicking the one-dimensional marginal distri-
butions of processes having an Itô differential. Probability
theory and related fields, 71(4):501–516, 1986.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Han, J., Zhang, L., and Weinan, E. Solving many-electron
Schrödinger equation using deep neural networks. Jour-
nal of Computational Physics, 399:108929, 2019.

Heifetz, A. Quantum mechanics in drug discovery. Springer,
2020.

Hermann, J., Schätzle, Z., and Noé, F. Deep-neural-network
solution of the electronic Schrödinger equation. Nature
Chemistry, 12(10):891–897, 2020.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines. Com-
munication in Statistics- Simulation and Computation, 18:
1059–1076, 01 1989. doi: 10.1080/03610919008812866.

Ilie, S., Jackson, K. R., and Enright, W. H. Adaptive time-
stepping for the strong numerical solution of stochastic
differential equations. Numerical Algorithms, 68(4):791–
812, 2015.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Jiang, R. and Willett, R. Embed and Emulate: Learning
to estimate parameters of dynamical systems with uncer-
tainty quantification. Advances in Neural Information
Processing Systems, 35:11918–11933, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kloeden, P. E. and Platen, E. Stochastic differential equa-
tions. Springer, 1992.

Lindgren, J. and Liukkonen, J. Quantum mechanics can
be understood through stochastic optimization on space-
times. Scientific reports, 9(1):19984, 2019.

Liu, R.-X., Tian, B., Liu, L.-C., Qin, B., and Lü, X. Bilinear
forms, N-soliton solutions and soliton interactions for a
fourth-order dispersive nonlinear Schrödinger equation
in condensed-matter physics and biophysics. Physica B:
Condensed Matter, 413:120–125, 2013.

Madala, V. C., Chandrasekaran, S., and Bunk, J. CNNs
avoid curse of dimensionality by learning on patches.
IEEE Open Journal of Signal Processing, 2023.

Manzhos, S. Machine learning for the solution of the
Schrödinger equation. Machine Learning: Science and
Technology, 1(1):013002, 2020.

May, J. P. A concise course in algebraic topology. University
of Chicago press, 1999.

Muzellec, B., Sato, K., Massias, M., and Suzuki, T.
Dimension-free convergence rates for gradient Langevin
dynamics in RKHS, 2020.

Nakatsuji, H. Discovery of a general method of solving
the Schrödinger and Dirac equations that opens a way
to accurately predictive quantum chemistry. Accounts of
Chemical Research, 45(9):1480–1490, 2012.

Neklyudov, K., Nys, J., Thiede, L., Carrasquilla, J., Liu,
Q., Welling, M., and Makhzani, A. Wasserstein quantum
Monte Carlo: a novel approach for solving the quantum
many-body Schrödinger equation. Advances in Neural
Information Processing Systems, 36, 2024.

Nelson, E. Derivation of the Schrödinger equa-
tion from Newtonian mechanics. Phys. Rev., 150:
1079–1085, Oct 1966. doi: 10.1103/PhysRev.150.
1079. URL https://link.aps.org/doi/10.

1103/PhysRev.150.1079.

11

https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
http://www.jstor.org/stable/1967124
http://www.jstor.org/stable/1967124
https://link.aps.org/doi/10.1103/PhysRev.150.1079
https://link.aps.org/doi/10.1103/PhysRev.150.1079

Deep Stochastic Mechanics

Nelson, E. The mystery of stochastic mechanics. Unpub-
lished manuscript, 2005. URL https://web.math.

princeton.edu/˜nelson/papers/talk.pdf.

Nelson, E. Dynamical theories of Brownian motion, volume
106. Princeton university press, 2020.

Nüsken, N. and Richter, L. Interpolating between
BSDEs and PINNs: deep learning for elliptic and
parabolic boundary value problems. arXiv preprint
arXiv:2112.03749, 2021a.

Nüsken, N. and Richter, L. Solving high-dimensional
Hamilton–Jacobi–Bellman PDEs using neural networks:
perspectives from the theory of controlled diffusions and
measures on path space. Partial differential equations
and applications, 2:1–48, 2021b.

Papageorgiou, A. and Traub, J. F. Measures of quantum
computing speedup. Physical Review A, 88(2):022316,
2013.

Pfau, D., Spencer, J., de G. Matthews, A., and Foulkes,
W. Ab-initio solution of the many-electron Schrödinger
equation with deep neural networks. Phys. Rev. Re-
search, 2:033429, 2020. doi: 10.1103/PhysRevResearch.
2.033429. URL https://link.aps.org/doi/

10.1103/PhysRevResearch.2.033429.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao,
Q. Why and when can deep-but not shallow-networks
avoid the curse of dimensionality: a review. International
Journal of Automation and Computing, 14(5):503–519,
2017.

Prieto, C. T. and Vitolo, R. On the geometry of
the energy operator in quantum mechanics. Inter-
national Journal of Geometric Methods in Modern
Physics, 11(07):1460027, aug 2014. doi: 10.1142/
s0219887814600275. URL https://doi.org/10.

1142%2Fs0219887814600275.

Raginsky, M., Rakhlin, A., and Telgarsky, M. Non-convex
learning via stochastic gradient Langevin dynamics: a
nonasymptotic analysis, 2017.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Schlick, T. Molecular modeling and simulation: an inter-
disciplinary guide, volume 2. Springer, 2010.

Schmitt, M. and Heyl, M. Quantum many-body dynamics in
two dimensions with artificial neural networks. Physical
Review Letters, 125(10):100503, 2020.

Serkin, V. N. and Hasegawa, A. Novel soliton solutions
of the nonlinear Schrödinger equation model. Physical
Review Letters, 85(21):4502, 2000.

Serva, M. Relativistic stochastic processes associated to
Klein-Gordon equation. Annales de l’IHP Physique
théorique, 49(4):415–432, 1988.

Sinibaldi, A., Giuliani, C., Carleo, G., and Vicen-
tini, F. Unbiasing time-dependent Variational Monte
Carlo by projected quantum evolution. arXiv preprint
arXiv:2305.14294, 2023.

Smith, G. D. and Smith, G. D. Numerical solution of partial
differential equations: finite difference methods. Oxford
university press, 1985.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vicentini, F., Hofmann, D., Szabó, A., Wu, D., Roth, C.,
Giuliani, C., Pescia, G., Nys, J., Vargas-Calderón, V.,
Astrakhantsev, N., et al. NetKet 3: Machine learning
toolbox for many-body quantum systems. SciPost Physics
Codebases, pp. 007, 2022.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature
methods, 17(3):261–272, 2020.

Wallstrom, T. On the derivation of the Schrödinger equa-
tion from stochastic mechanics. Foundations of Physics
Letters, 2:113–126, 03 1989. doi: 10.1007/BF00696108.

Wang, S., Yu, X., and Perdikaris, P. When and why PINNs
fail to train: a neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022.

Warin, X. Nesting Monte Carlo for high-dimensional non-
linear PDEs. Monte Carlo Methods and Applications, 24
(4):225–247, 2018.

Weinan, E., Han, J., and Jentzen, A. Algorithms for solving
high dimensional PDEs: from nonlinear Monte Carlo to
machine learning. Nonlinearity, 35(1):278, 2021.

Woolley, R. and Sutcliffe, B. Molecular structure and the
Born—Oppenheimer approximation. Chemical Physics
Letters, 45(2):393–398, 1977.

Yan, J.-A. From Feynman-Kac formula to Feynman inte-
grals via analytic continuation. Stochastic processes and
their applications, 54(2):215–232, 1994.

12

https://web.math.princeton.edu/~nelson/papers/talk.pdf
https://web.math.princeton.edu/~nelson/papers/talk.pdf
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1142%2Fs0219887814600275
https://doi.org/10.1142%2Fs0219887814600275

Deep Stochastic Mechanics

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Shao, Y., Zhang, W., Cui, B., and Yang, M.-H. Diffu-
sion models: A comprehensive survey of methods and
applications. arXiv preprint arXiv:2209.00796, 2022.

Yao, Y.-X., Gomes, N., Zhang, F., Wang, C.-Z., Ho, K.-
M., Iadecola, T., and Orth, P. P. Adaptive variational
quantum dynamics simulations. PRX Quantum, 2(3):
030307, 2021.

13

Deep Stochastic Mechanics

A. Notation
• ha, bi =

Pd
i=1 aibi for a, b 2 Rd – a scalar product.

• kak =
p
ha, ai for a 2 Rd – a norm.

• Tr(A) =
Pd

i=1 aii for a matrix A =
⇥
aij

⇤d,d
i=1,j=1

.

• A(t), B(t), C(t), . . . – stochastic processes indexed by time t � 0.

• Ai, Bi, Ci, . . . – approximations to those processes at a discrete time step i, i = 1, . . . , N , where N is the number of
discritization time points.

• a, b, c – other variables.

• A,B,C, . . . – quantum observables, e.g., X(t) – result of quantum measurement of the coordinate of the particle at
moment t.

• ⇢A(x, t) – a density probability of a process A(t) at time t.

• (x, t) – a wave function.

• 0 = (x, 0) – an initial wave function.

• ⇢(x, t) =
�� (x, t)

��2 – a quantum density.

• ⇢0(x) = ⇢(x, 0) – an initial probability distribution.

• (x, t) =
p
⇢(x, t)eiS(x,t), where S(x, t) – a single-valued representative of the phase of the wave function.

• r =
⇣

@
@x1

·, . . . , @
@xd

·
⌘

– the gradient operator. If f : Rd ! Rm, then rf(x) 2 Rd⇥m is the Jacobian of f , in the
case of m = 1 we call it a gradient of f .

• r2 =
h

@2

@xi@xj

id,d
i=1,j=1

– the Hessian operator.

• r2 ·A =
h

@2

@xi@xj
aij

id,d
i=1,j=1

for A =
⇥
aij(x)

⇤d,d
i=1,j=1

.

• hr, ·i – the divergence operator, e.g., for f : Rd ! Rd, we have hr, f(x)i =
Pd

i=1
@

@xi
fi(x).

• � = Tr(r2) – the Laplace operator.

• m – a mass tensor (or a scalar mass).

• ~ – the reduced Planck’s constant.

• @y = @
@y – a short-hand notation for a partial derivative operator.

•
⇥
A,B

⇤
= AB � BA – a commutator of two operators. If one of the arguments is a scalar function, we consider a

scalar function as a point-wise multiplication operator.

• |z| =
p

x2 + y2 for a complex number z = x+ iy 2 C, x, y 2 R.

• N (µ,C) – a Gaussian distribution with mean µ 2 Rd and covariance C 2 Rd⇥d.

• A ⇠ ⇢ means that A is a random variable with distribution ⇢. We do not differentiate between ”sample from” and
”distributed as”, but it is evident from context when we consider samples from distribution versus when we say that
something has such distribution.

• �x – delta-distribution concentrated at x. It is a generalized function corresponding to the ”density” of a distribution
with a singular support {x}.

14

Deep Stochastic Mechanics

B. DSM Algorithm
We present detailed algorithmic descriptions of our method: Algorithm 2 for batch generation and Algorithm 3 for model
training. During inference, distributions of Xi converge to ⇢ = | |2, thereby yielding the desired outcome. Furthermore, by
solving Equation (7a) on points generated by the current best approximations of u, v, the method exhibits self-adaptation
behavior. Specifically, it obtains its current belief where X(t) is concentrated, updates its belief, and iterates accordingly.
With each iteration, the method progressively focuses on the high-density regions of ⇢, effectively exploiting the low-
dimensional structure of the underlying solution.

Algorithm 2 GenerateBatch(u, v, ⇢0, ⌫, T, B,N) – sample trajectories
Physical hyperparams: T – time horizon, 0 – initial wave-function.
Hyperparams: ⌫ � 0 – diffusion constant, B � 1 – batch size, N � 1 – time grid size.
ti = iT/N for 0  i  N

sample X0j ⇠
�� 0

��2 for 1  jB

for 1  i  N do
sample ⇠j ⇠ N (0, Id) for 1  j  B

Xij = X(i�1)j +
T
N

�
v✓(X(i�1)j , ti�1) + ⌫u✓(X(i�1)j , ti�1)

�
+

q
⌫~T
mN ⇠j for 1  j  B

end for
output

n�
Xij

 B

j=1

oN

i=0

Algorithm 3 A training algorithm
Physical hyperparams: m – mass, ~ – reduced Planck constant, T – a time horizon, 0 : Rd

! C – an initial wave function,
V : Rd

⇥ [0, T] ! R – potential.
Hyperparams: ⌘ > 0 – learning rate for backprop, ⌫ > 0 – diffusion constant, B � 1 – batch size, M � 1 – number of optimization
steps, N � 1 – time grid size, wu, wv, w0 > 0 – weights of losses.
Instructions:
ti = iT/N for 0  i  N

for 1  ⌧  M do
X = GenerateBatch(u✓⌧�1 , v✓⌧�1 , 0, ⌫, T, B,N)

define L
u
⌧ (✓) =

1
(N+1)B

PN
i=0

PB
j=1

��@tu✓(Xij , ti)�Du[u✓, v✓, Xij , ti]
��2

define L
v
⌧ (✓) =

1
(N+1)B

PN
i=0

PB
j=1

��@tv✓(Xij , ti)�Dv[u✓, v✓, Xij , ti]
��2

define L
0
⌧ (✓) =

1
B

PB
j=1

⇣��u✓(X0j , t0)� u0(X0j)
��2

+
��v✓(X0j , t0)� v0(X0j , t0)

��2
⌘

define L⌧ (✓) = wuL
u
⌧ (✓) + wvL

v
⌧ (✓) + w0L

0
⌧ (✓)

✓⌧ = OptimizationStep(✓⌧�1,r✓L⌧ (✓⌧�1), ⌘)

end for
output u✓M , v✓M

C. Experiment Setup Details
C.1. Non-Interacting System

In our experiments, we set m = 1, ~ = 10�26, �2 = 10�1. For the harmonic oscillator model, N = 1000 and the batch size
B = 100; for the singular initial condition problem, N = 100 and B = 100. For evaluation, our method samples 10000
points per time step, and the observables are estimated from these samples; we run the model this way ten times.

C.1.1. A NUMERICAL SOLUTION

1d harmonic oscillator with S0(x) ⌘ 0: To evaluate our method’s performance, we use a numerical solver that integrates
the corresponding differential equation given the initial condition. We use SCIPY library (Virtanen et al., 2020). The
solution domain is x 2 [�2, 2] and t 2 [0, 1], where x is split into 566 points and t into 1001 time steps. This solution can
be repeated d times for the d-dimensional harmonic oscillator problem.

6The value of the reduced Plank constant depends on the metric system that we use and, thus, for our evaluations we are free to choose
any value.

15

Deep Stochastic Mechanics

1d harmonic oscillator with S0(x) = �5x: We use the same numerical solver as for the S0(x) ⌘ 0 case. The solution
domain is x 2 [�2, 2] and t 2 [0, 1], where x is split into 2829 points and t is split into 1001 time steps.

C.1.2. ARCHITECTURE AND TRAINING DETAILS

A basic NN architecture for our approach and the PINN is a feed-forward NN with one hidden layer with tanh activation
functions. We represent the velocities u and v using this NN architecture with 200 neurons in the case of the singular initial
condition. The training process takes about 7 mins. For d = 1, a harmonic oscillator with zero initial phase problem, there
are 200 neurons for our method and 400 for the PINN; for d = 3 and more dimensions, we use 400 neurons. This rule holds
for the experiments measuring total training time in Section 5.4. In a 1d harmonic oscillator with a non-zero initial phase
problem, we use 300 hidden neurons in our models. In the experiments devoted to measuring time per epoch (from Section
5.4), the number of hidden neurons is fixed to 200 for all dimensions. We use the Adam optimizer (Kingma & Ba, 2014)
with a learning rate 10�4. In our experiments, we set wu = 1, wv = 1, w0 = 1. For PINN evaluation, the test sets are the
same as the grid for the numerical solver. In our experiments, we usually use a single NVIDIA A40 GPU. For the results
reported in Section 5.4, we use an NVIDIA A100 GPU.

C.1.3. ON OPTIMIZATION

We use Adam optimizer (Kingma & Ba, 2014) in our experiments. Since the operators in Equation (8) are not linear, we may
not be able to claim convergence to the global optima of such methods as SGD or Adam in the Neural Tangent Kernel (NTK)
(Jacot et al., 2018) limit. Such proof exists for PINNs in Wang et al. (2022) due to the linearity of the Schrödinger equation
(1). It is possible that non-linearity in the loss from Equation (14) requires non-convex methods to achieve theoretical
guarantees on convergence to the global optima (Raginsky et al., 2017; Muzellec et al., 2020). Further research into NTK
and non-linear PDEs is needed (Wang et al., 2022).

The only noise source in our loss Equation (14) comes from trajectory sampling. This fact contrasts sharply with generative
diffusion models relying on score matching (Yang et al., 2022). In these models, the loss has O(✏�1) variance as it implicitly
attempts to numerically estimate the stochastic differential X(t+✏)�X(t)

✏ which leads to 1p
✏

contribution from increments
of the Wiener process. In our loss, the stochastic differentials are evaluated analytically in Equation (8) avoiding such
contributions; for details, see Nelson (1966; 2005). This leads to O(1) variance of the gradient and, thus, allows us to
achieve fast convergence with smaller batches.

C.2. Interacting System

In our experiments, we set m = 1, ~ = 10�1, �2 = 10�1. The number of time steps is N = 1000, and the batch size
B = 100.

Numerical solution As a numerical solver, we use the QMSOLVE library 7. The solution domain is x 2 [�1.5, 1.5] and
t 2 [0, 1], where x is split into 100 points and t into 1001 time steps.

C.2.1. ARCHITECTURE AND TRAINING DETAILS

Instead of a multi-layer perceptron, we follow the design choice of Jiang & Willett (2022) to use residual connection
blocks. In our experiments, we used the tanh as the activation function, set the hidden dimension to 300, and used the
same architecture for both DSM and PINN. Empirically, we find out that this design choice leads to faster convergence
in terms of training time. The PINN inputs are N0 = 10000, Nb = 1000 data points, and Nf = 1000000 collocation
points. We use Adam optimizer (Kingma & Ba, 2014) with a learning rate 10�4 in our experiments. We use loss weights
wu = 1, wv = 1, w0 = 1.

Permutation invariance Since our system comprises two identical bosons, we enforce symmetry for both the DSM
and PINN models. Specifically, we sort the neural network inputs x to ensure the permutation invariance of the models.
While this approach guarantees adherence to the physical symmetry property, it comes with a computational overhead from
the sorting operation. For higher dimensional systems, avoiding such sorting may be preferable to reduce computational
costs. However, for the two interacting particle system considered here, the performance difference between regular and

7https://github.com/quantum-visualizations/qmsolve

16

Deep Stochastic Mechanics

permutation-invariant architectures is not significant.

t-VMC ansatz To enable a fair comparison between our DSM approach and t-VMC, we initialize the t-VMC trial
wave function with a complex-valued multi-layer perceptron architecture identical to the one employed in our DSM
method. However, even after increasing the number of samples and reducing the time step, the t-VMC method exhibits
poor performance with this neural network ansatz. This result suggests that, unlike our diffusion-based DSM approach,
t-VMC struggles to achieve accurate results when utilizing simple off-the-shelf neural network architectures as the ansatz
representation.

As an alternative ansatz, we employ a harmonic oscillator basis expansion, expressing the wave function as a linear
combination of products of basis functions. This representation scales quadratically with the number of basis functions
but forms a complete basis set for the two-particle problem. Using the same number of samples and time steps, this basis
expansion approach achieves significantly better performance than our initial t-VMC baseline. However, it still does not
match the accuracy levels attained by our proposed DSM method. This approach does not scale well naively to larger
systems but can be adapted to form a 2-body Jastrow factor (Carleo et al., 2017). We expect this to perform worse for larger
systems due to the lack of higher-order interactions in the ansatz. In our t-VMC experiments, we use the NETKET library
(Vicentini et al., 2022) for many-body quantum systems simulation.

D. Experimental Results
D.1. Singular Initial Conditions

As a proof of concept, we consider a case of one particle x 2 R1 with V (x) ⌘ 0 and 0 = �0, t 2 [0, 1]. Since
�-function is a generalized function, we must take a �-sequence for training. The most straightforward approach is to take
f 0 = 1

(2⇡↵)
1
4
e
� x2

4↵ with ↵! 0+. In our experiments we take ↵ = ~2

m2 , yielding v0(x) ⌘ 0 and u0(x) = � ~x
2m↵ . Since 0

is singular, we must set ⌫ = 1 during sampling. The analytical solution is known as (x, t) = 1

(2⇡t)
1
4
e
� x2

4t . So, we expect

the standard deviation of X(t) to grow as
p
t, and the mean value of X(t) to be zero.

We do not compare our approach with PINNs since it is a simple proof of concept, and the analytical solution is known.
Figure 5 summarizes the results of our experiment. Specifically, the left panel of the figure shows the magnitude of the
density obtained with our approach alongside the true density. The right panel of Figure 5 shows statistics of Xt, such as
mean and variance, and the corresponding error bars. The resulting prediction errors are calculated against the truth data for
this problem and are measured at 0.008± 0.007 in the L2-norm for the averaged mean and 0.011± 0.007 in the relative
L2-norm for the averaged variance of Xt. Our approach can accurately capture the behavior of the Schrödinger equation in
the singular initial condition case.

Xi Xi

ti ti

Figure 5. Results for the singular initial condition problem. DSM corresponds to our method.

D.2. 3D Harmonic Oscillator

We further explore our approach by considering the harmonic oscillator model with S0(x) ⌘ 0 with three non-interacting
particles. This setting can be viewed as a 3d problem, where the solution is a 1d solution repeated three times. Due to
computational resource limitations, we are unable to execute the PINN model. The number of collocation points should

17

Deep Stochastic Mechanics

grow exponentially with the problem dimension so that the PINN model converges. We have about 512 GB of memory but
cannot store 600003 points. We conduct experiments comparing two versions of the proposed algorithm: the Nelsonian
one and our version. Table 2 provides the quantitative results of these experiments. Our version demonstrates slightly
better performance compared to the Nelsonian version, although the difference is not statistically significant. Empirically,
our version requires more steps to converge compared to the Nelsonian version: 7000 vs. 9000 epochs correspondingly.
However, the training time of the Nelsonian approach is about 20 mins longer than our approach’s time.

Figure 6 demonstrates the obtained statistics with the proposed algorithm’s two versions (Nelsonian and Gradient Divergence)
for every dimension. Figure 7 compares the density function for every dimension for these two versions. Table 5 summarizes
the error rates per dimension. The results suggest no significant difference in the performance of these two versions of our
algorithm. The Gradient Divergence version tends to require more steps to converge, but it has quadratic time complexity in
contrast to the cubic complexity of the Nelsonian version.

XiXi

titi

(a) The Nelsonian version.

Xi Xi

ti ti

(b) The Gradient Divergence version.

Figure 6. The obtained statistics for 3d harmonic oscillator using two versions of the proposed approach.

Table 5. The results for 3d harmonic oscillator with S0(x) ⌘ 0 using two versions of the proposed approach: the Nelsonian one uses
the Laplacian operator in the training loss, the Gradient Divergence version is our modification that replaces Laplacian with gradient of
divergence.

MODEL Em(X
(1)
i) # Em(X

(2)
i) # Em(X

(3)
i) # Em(Xi) #

DSM (NELSONIAN) 0.170 ± 0.081 0.056 ± 0.030 0.073 ± 0.072 0.100 ± 0.061
DSM (GRADIENT DIVERGENCE) 0.038 ± 0.023 0.100 ± 0.060 0.082 ± 0.060 0.073 ± 0.048

MODEL Ev(X
(1)
i) # Ev(X

(2)
i) # Ev(X

(3)
i) # Ev(Xi) #

DSM (NELSONIAN) 0.012 ± 0.009 0.012 ± 0.009 0.011 ± 0.008 0.012 ± 0.009
DSM (GRADIENT DIVERGENCE) 0.012 ± 0.010 0.009 ± 0.005 0.011 ± 0.010 0.011 ± 0.008

MODEL E(v
(1)

) # E(v
(2)

) # E(v
(3)

) # E(v)) #

DSM (NELSONIAN) 0.00013 0.00012 0.00012 0.00012
DSM (GRADIENT DIVERGENCE) 4.346⇥ 10�5 4.401⇥ 10�5 4.700⇥ 10�5 4.482⇥ 10�5

MODEL E(u
(1)

) # E(v
(2)

) # E(v
(3)

) # E(v) #

DSM (NELSONIAN) 4.441⇥ 10�5 2.721⇥ 10�5
2.810⇥ 10

�5 3.324⇥ 10�5

DSM (GRADIENT DIVERGENCE) 6.648⇥ 10
�5

4.405⇥ 10
�5 1.915⇥ 10�5

4.333⇥ 10
�5

18

Deep Stochastic Mechanics

(a) The Nelsonian version. (b) The Gradient Divergence version.

Figure 7. The density function for 3d harmonic oscillator using two versions of the proposed approach.

D.3. Naive Sampling

Figure 8 shows the performance of the Gaussian sampling approach applied to the harmonic oscillator and the singular
initial condition setting. Table 6 compares results of all methods. Our approach converges to the ground truth while naive
sampling does not.

Table 6. Error rates for different problem settings using two sampling schemes: our (DSM) and Gaussian sampling. Gaussian sampling
replaces all measures in the expectations with Gaussian noise in Equation (14). The best result is in bold. These results demonstrate that
our approach work better than the naı̈ve sampling scheme.

PROBLEM MODEL Em(Xi) # Ev(Xi) # E(v) # E(u) #

SINGULAR IC GAUSSIAN SAMPLING 0.043 ± 0.042 0.146 ± 0.013 1.262 0.035
DSM 0.008 ± 0.007 0.011 ± 0.007 0.524 0.008

HARM OSC 1D,
S0(x) ⌘ 0

GAUSSIAN SAMPLING 0.294 ± 0.152 0.488 ± 0.018 3.19762 1.18540
DSM 0.077 ± 0.052 0.011 ± 0.006 0.00011 2.811⇥ 10�5

HARM OSC 1D,
S0(x) = �5x

GAUSSIAN SAMPLING 0.836 ± 0.296 0.086 ± 0.007 77.57819 24.15156
DSM 0.223 ± 0.207 0.009 ± 0.008 1.645⇥ 10�5 2.168⇥ 10�5

HARM OSC 3D,
S0(x) ⌘ 0

GAUSSIAN SAMPLING 0.459 ± 0.126 5.101 ± 0.201 13.453 5.063
DSM 0.073 ± 0.048 0.011 ± 0.008 4.482⇥ 10�5 4.333⇥ 10�5

D.4. Scaling Experiments for Non-Interacting System

We empirically estimate memory allocation on a GPU (NVIDIA A100) when training two versions of the proposed
algorithm. In addition, we estimate the number of epochs until the training loss function is less than 10�2 for different
problem dimensions. Figure 9(a) shows that the memory usage of the Gradient Divergence version grows linearly with the
dimension while it grows quadratically in the Nelsonian version. We also empirically access the convergence speed of two
versions of our approach. Figure 9(b) shows how many epochs are needed to make the training loss less than 1 ⇥ 10�2.
Usually, the Gradient Divergence version requires slightly more epochs to converge to this threshold than the Nelsonian one.
The number of epochs is averaged across five runs. In both experiments, we consider the non-interacting harmonic oscillator
setting from Section 5.4.1.

19

Deep Stochastic Mechanics

(b) The harmonic oscillator with S(x) � 0

(c) The harmonic oscillator with S(x) = � 5x

(d) The harmonic oscillator with in 3d S(x) = 0

co
or

di
na

te
 1

 va
lue

co
or

di
na

te
 2

 va
lue

co
or

di
na

te
 3

 va
lue

(a) Singular IC

(a) The harmonic oscillator with S(x) � 0 (b) The harmonic oscillator with S(x) = � 5x

Xi Xi

(a) Harmonic oscillator with S(x) = 0 (b) Harmonic oscillator with S(x) = � 5x(a) Harmonic oscillator with S(x) = 0 (b) Harmonic oscillator with S(x) = � 5x

Figure 8. An illustration of produced trajectories using the naı̈ve Gaussian sampling scheme as a comparison with the proposed approach.
The obtained trajectories do not match the solution, while the results in our paper suggest that the proposed DSM approach converges
better. Compare with Figures 2, 5, 6.

Also, we provide more details on the experiment measuring the total training time per dimensions d = 1, 3, 5, 7, 9. This
experiment is described in Section 5.4.1, and the training time grows linearly with the problem dimension. Table 7 presents
the error rates and train time. The results show that the proposed approach can perform well for every dimension while the
train time scales linearly with the problem dimension.

Table 7. Training time and test errors for the harmonic oscillator model for different d.

d Em(Xi) # Ev(Xi) # E(v) # E(u) # TRAIN TIME

1 0.074 ± 0.052 0.009 ± 0.007 0.00012 2.809E-05 46M 20S
3 0.073 ± 0.048 0.010 ± 0.008 4.479 ⇥10�5 3.946⇥10�5 2H 18M
5 0.081 ± 0.057 0.009 ± 0.008 4.956⇥10�5 4.000⇥10�5 3H 10M
7 0.085 ± 0.060 0.011 ± 0.009 5.877⇥10�5 4.971⇥10�5 3H 40M
9 0.096 ± 0.081 0.011 ± 0.009 7.011⇥10�5 6.123⇥10�5 4H 46M

D.5. Scaling Experiments for the Interacting System

This section provides more details on experiments from Section 5.4.2, where we investigate the scaling of the DSM approach
for the interacting bosons system. We compare the performance of our algorithm with a numerical solver based on the
Crank–Nicolson method (we modified the QMSOLVE library to work for d > 2) and t-VMC method. Our method reveals
favorable scaling capabilities in the problem dimension compared to the Crank–Nicolson method as shown in Table 3 and

20

Deep Stochastic Mechanics

(a) GPU memory usage. (b) Number of epochs until the training loss < 10
�2.

Figure 9. Empirical complexity evaluation of two versions of the proposed method: memory usage and the number of epochs until the
loss is less than the threshold.

Table 4.

Figure 10 shows generated density functions for our DSM method and t-VMC approach. The proposed DSM approach
demonstrates robust performance, accurately following the ground truth and providing reasonable predictions for d = 3, 4, 5
interacting bosons. In contrast, when utilizing the t-VMC in higher dimensions, we observe a deterioration in the quality of
the results. This limitation is likely attributed to the inherent difficulty in accurately representing higher-order interactions
with the ansatz employed in the t-VMC approach, as discussed in Section 5.3. Consequently, as the problem dimension
grows, the lack of sufficient interaction terms in the ansatz and numerical instabilities in the solver become increasingly
problematic, leading to artifacts in the density plots as time evolves. The relative error between the ground truth and
predicted densities is 0.023 and 0.028 for the DSM and t-VMC approaches, respectively, in the 3d case. This trend persists
in the 4d case, where the DSM’s relative error is 0.073, compared to the t-VMC’s higher relative error of 0.089 (when
compared with a grid-based Crank-Nikolson solver with N = 60 grid points in each dimension). While we do not have
the baseline for d = 5, we believe DSM predictions are still reasonable. Our findings indicate that the t-VMC method
can perform reasonably for low-dimensional systems, but its performance degrades as the number of interacting particles
increases. This highlights the need for a scalable and carefully designed ansatz representation capable of capturing the
complex behavior of particles in high-dimensional quantum systems.

As for the DSM implementation details, we fix hyperparameters and only change d: for example, the neural network size is
500, and the batch size is 100. We train our method until the average training loss becomes lower than a particular threshold
(0.007). These numbers are reported for a GPU A40. The Crank-Nikolson method is run on the CPU.

D.6. Sensitivity Analysis

We investigate the impact of hyperparameters on the performance of our method for two systems: the 1d harmonic oscillator
with S0(x) ⌘ 0 and two interacting bosons. Specifically, we explore different learning rates (10�2, 10�3, 10�4, 10�5) and
hidden layer sizes (200, 300, 400, 500) for the neural network architectures detailed in Section C. All models are trained
for an equal number of epochs across every hyper-parameter setting, and the results are presented in Figure 11. For the
two interacting bosons system, increasing the hidden layer size leads to lower error, although the difference between 300
and 500 neurons is marginal. In contrast, for the 1d harmonic oscillator, larger hidden dimensions result in slightly worse
performance (which might be a sign of overfitting for this simple problem), but the degradation is not substantial. As for the
learning rate, a higher value consistently yields poorer performance for both systems. A large learning rate can cause the
weight updates to overshoot the optimal values, leading to instability and failure to converge to a good solution. Nevertheless,
all models achieve reasonable performance, even with the highest learning rate of 10�2. Overall, according to the Em(Xi)
metric, our experiments demonstrate that our method exhibits robustness to varying hyper-parameter choices.

21

Deep Stochastic Mechanics

a) Three particles

b) Four particles

c) Five particles

Figure 10. Probability density plots for different numbers of interacting particles d. For five particles, our computer system does not allow
running the Crank-Nicolson solver.

E. Stochastic Mechanics
We show a derivation of the equations stochastic mechanics from the Schrödinger one. For full derivation and proof of
equivalence, we refer the reader to the work of Nelson (1966).

E.1. Stochastic Mechanics Equations

Let’s consider a polar decomposition of a wave function =
p
⇢e

iS . Observe that for @ 2 {@t, @xi}, we have

@ = (@
p
⇢)eiS + (i@S) =

@⇢

2
p
⇢
e
iS + (i@S) =

1

2

@⇢

⇢

p
⇢e

iS + (i@S) =
�1
2
@ log ⇢+ i@S

�
 ,

@
2
 = @

⇣�1
2
@ log ⇢+ i@S

�

⌘
=
⇣1
2
@
2 log ⇢+ i@

2
S +

�1
2
@ log ⇢+ i@S

�2⌘
 .

Substituting it into the Schrödinger equation, we obtain the following:

i~
�1
2
@t log ⇢+ i@tS

�
 = � ~2

2m

⇣1
2
� log ⇢+ i�S +

��1
2
r log ⇢+ irS

��2
⌘
 + V . (17)

Dividing by 8, and separating real and imaginary parts, we obtain

�~@tS = � ~2
2m

⇣1
2
� log ⇢+

1

4
k log ⇢k2 � krSk2

⌘
+ V, (18)

~
2
@t log ⇢ = � ~2

2m

�
�S + hlog ⇢,rSi

�
. (19)

8We assume 6= 0. Even though it may seem a restriction, we will solve the equations only for X(t), which satisfy P
�
 (X(t), t) =

0
�
= 0. So, we are allowed to assume this without loss of generality. The same cannot be said if we considered the PINN over a grid to

solve our equations.

22

Deep Stochastic Mechanics

a) 1d harmonic oscillator

b) Two interacting bosons

Figure 11. Sensitivity analysis of the neural network hyperparameters for the proposed method on two systems: (a) a 1D harmonic
oscillator with S0(x) ⌘ 0, and (b) a system of two interacting bosons. The plots illustrate the impact of varying the hidden layer size and
the learning rate on the model’s performance, quantified by the Em(Xi) error metric.

Noting that � = hr,r·i and substituting v = ~
mrS, u = ~

2m log ⇢ to simplify, we obtain

m
~
m
@tS =

~
2m

hr, ui+ 1

2
kuk2 � 1

2
kvk2 � V, (20)

~
2m

@t log ⇢ = � ~
2m

hr, vi � hu, vi. (21)

Finally, by taking r from both parts, noting that
⇥
r, @t

⇤
= 0 for scalar functions, and substituting u, v again, we arrive at

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
rhr, ui, (22)

@tu = �rhv, ui � ~
2m

rhr, vi. (23)

To get the initial conditions on the velocities of the process v0 = v(x, 0) and u0 = u(x, 0), we can refer to the equations
that we used in the derivation

v(x, t) =
~
m
rS(x, t), (24)

u(x, t) =
~
2m

r log ⇢(x, t) (25)

So, we can get our initial conditions at t = 0 on v0(x) =
~
mrS(x, 0), u0(x) = ⌫r log ⇢0(x), where ⇢0(x) = ⇢(x, 0).

For more detailed derivation and proof of equivalence of those two equations to the Schrödinger one, see Nelson (1966;
2005); Guerra (1995). Moreover, this equivalence holds for manifolds M with trivial second cohomology group as noted in
Alvarez (1986); Wallstrom (1989); Prieto & Vitolo (2014).

23

Deep Stochastic Mechanics

E.2. Novel Equations of Stochastic Mechanics

We note that our equations differ from Guerra (1995); Nelson (1966). In Nelson (1966), we see

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
�u, (26a)

@tu = �rhv, ui � ~
2m

rhr, vi; (26b)

and in Guerra (1995), we see

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
�u, (27a)

@tu = �rhv, ui � ~
2m

�v. (27b)

Note that our equations (7a), (7b) do not directly use the second-order Laplacian operator �, as it appears for u in
Equation (26a) and v in Equation (27b). The discrepancy between Nelson’s and Guerra’s equations seems to occur because
the work by Nelson (2005) covers the case of the multi-valued S, and thus does not assume that

⇥
�,r

⇤
= 0 to transform

rhr, vi = rhr,rSi into �(rS) to make the equations work for the case of a non-trivial cohomology group of M.
However, Guerra (1995) does employ �(rS) in their formulation. Naively computing the Laplacian � of u or v with
autograd tools requires O(d3) operations as it requires computing the full Hessian r2. To reduce the computational
complexity, we treat log ⇢ as a potentially multi-valued function, aiming to achieve a lower computational time of O(d2) in
the dimension d. Generally, we cannot swap � with rhr, ·i unless the solutions of the equation can be represented as full
gradients of some function. This condition holds for stochastic mechanical equations but not for the Shrödinger one.

We derive equations different from both works and provide insights into why there are four different equivalent sets of
equations (by changing � with rhr, ·i in both equations independently). From a numerical perspective, it is more beneficial
to avoid Laplacian calculations. However, we notice that inference using equations from Nelson (1966) converges faster by
iterations to the true u, v compared to our version. It comes at the cost of a severe slowdown in each iteration for d � 1,
which diminishes the benefit since the overall training time to get comparable results decreases significantly.

E.3. Diffusion Processes of Stochastic Mechanics

Let’s consider an arbitrary Ito diffusion process

dX(t) = b(X(t), t)dt+ �(X(t), t)d
!
W, (28)

X(0) ⇠ ⇢0, (29)

where W (t) 2 Rd is the standard Wiener process, b : Rd ⇥ [0, T] ! Rd is the drift function, and � : Rd ⇥ [0, T] ! Rd⇥d

is a symmetric positive definite matrix-valued function called a diffusion coefficient. Essentially, X(t) samples from
⇢X = Law(X(t)) for each t 2 [0, T]. Thus, we may wonder how to define b and � to ensure ⇢X = | |2.

There is the forward Kolmogorov equation for the density ⇢X associated with this diffusion process:

@t⇢X = hr, b⇢Xi+ 1

2
Tr
�
r2 · (��T

⇢X)
�
. (30)

Moreover, the diffusion process is time-reversible. This leads to the backward Kolmogorov equation:

@t⇢X = hr, b
⇤
⇢Xi � 1

2
Tr
�
r2 · (��T

⇢X)
�
, (31)

where b
⇤
i = bi � ⇢

�1
X hr,��

T
ei⇢Xi with eij = �ij for j 2 {1, . . . , d}. Summing up those two equations, we obtain the

following:
@t⇢X = hr, v⇢Xi, (32)

24

Deep Stochastic Mechanics

where v =
b+ b

⇤

2
is so called probability current. This is the continuity equation for the Ito diffusion process from

Equation (28). We refer to Anderson (1982) for details. We note that the same Equation (32) can be obtained with an
arbitrary non-singular �(x, t) as long as v = v(x, t) remains fixed.
Proposition E.1. Consider arbitrary ⌫ > 0, denote ⇢ = | |2 and consider decomposition =

p
⇢e

iS . Then the following
process X(t):

dX(t) =
�
rS(X(t), t) +

⌫~
2m

r log ⇢(X(t), t)
�
dt+

r
⌫~
m

d
!
W, (33)

X(0) ⇠ | 0|2, (34)

satisfies Law(X(t)) = | |2 for any t > 0.

Proof. We want to show that by choosing appropriately b, b⇤, we can ensure that ⇢X = | |2. Let’s consider the Schrödinger
equation once again:

i~@t = (� ~2
2m

�+ V) , (35)

 (·, 0) = 0 (36)

where � = Tr(r2) =
Pd

i=1
@2

@x2
i

is the Laplace operator. The second cohomology is trivial in this case. So, we can assume
that =

p
⇢e

iS with S(x, t) is a single-valued function.

By defining the drift v =
~
m
rS, we can derive quantum mechanics continuity equation on density ⇢:

@t⇢ = hr, v⇢i, (37)

⇢(·, 0) =
�� 0

��2. (38)

This immediately tells us what should be initial distribution ⇢0 and b+b⇤

2 for the Ito diffusion process from Equation (28).

For now, the only missing parts for obtaining the diffusion process from the quantum mechanics continuity equation are
to identify the term b�b⇤

2 and the diffusion coefficient �. Both of them should be related as (b� b
⇤)i = ⇢

�1hr,��
T
ei⇢i.

Thus, we can pick � / Id to simplify the equations. Nevertheless, our results can be extended to any non-trivial diffusion

coefficient. Therefore, by defining u(x, t) =
~
2m

r log ⇢(x, t) and using arbitrary ⌫ > 0 we derive

@t⇢ = hr, (v + ⌫u)⇢i+ ⌫~
2m

�⇢. (39)

Thus, we can sample from ⇢X(x, t) ⌘ ⇢(x, t) using the diffusion process with b(x, t) = v(x, t) + ⌫u(x, t) and �(x, t) ⌘
⌫~
m Id:

dX(t) = (v(X(t), t) + ⌫u(X(t), t))dt+

r
⌫~
m

d
!
W, (40)

X(0) ⇠
�� 0

��2. (41)

To obtain numerical samples from the diffusion, one can use any numerical integrator, for example, the Euler-Maruyama
integrator (Kloeden & Platen, 1992):

Xi+1 = Xi + (v(Xi, ti) + ⌫u(Xi, ti))✏+

r
⌫~
m
✏N (0, Id), (42)

X0 ⇠
�� 0

��2, (43)

where ✏ > 0 is a step size, 0  i <
T
✏ . We consider this type of integrator in our work. However, integrators of higher order,

e.g., Runge-Kutta family of integrators (Kloeden & Platen, 1992), can achieve the same integration error with larger ✏ > 0;
this approach is out of the scope of our work.

25

Deep Stochastic Mechanics

E.4. Interpolation between Bohmian and Nelsonian Pictures

We also differ from Nelson (1966) since we define u without ⌫. We bring it into the picture separately as a multiplicative
factor:

dX(t) = (v(X(t), t) + ⌫u(X(t), t))dt+

r
⌫~
m

d
!
W, (44)

X(0) ⇠
�� 0

��2 (45)

This trick allows us to recover Nelson’s diffusion when ⌫ = 1:

dX(t) = (v(X(t), t) + u(X(t), t))dt+

r
~
m
d
!
W, (46)

X(0) ⇠
�� 0

��2 (47)

For cases of | 0|2 > 0 everywhere, e.g., if the initial conditions are Gaussian but not singular like �x0 , we can actually set
⌫ = 0 to obtain a deterministic flow:

dX(t) = v(X(t), t)dt, (48)

X(0) ⇠
�� 0

��2. (49)

This is the guiding equation in Bohr’s pilot-wave theory (Bohm, 1952). The major drawback of using Bohr’s interpretation
is that ⇢X may not equal ⇢ = | |2, a phenomenon known as quantum non-equilibrium (Colin & Struyve, 2010). Though,
under certain mild conditions (Boffi & Vanden-Eijnden, 2023) (one of which is | 0|2 > 0 everywhere) time marginals of
such deterministic process X(t) satisfy Law(X(t)) = ⇢ for each t 2 [0, T]. As with the SDE case, it is unlikely that those
trajectories are “true” trajectories. It only matters that their time marginals coincide with true quantum mechanical densities.

E.5. Computational Complexity

Proposition E.2 (Remark 4.1). The algorithmic complexity w.r.t. d of computing differential operators from Equations (8),
(9) for velocities u, v is O(d2).

Proof. Computing a forward pass of u✓, v✓ scales as O(d) by their design. What we need is to prove that Equations (8), (9)
can be computed in O(d2). We have two kinds of operators there: hr·, ·i and rhr, ·i.

The first operator, hr·, ·i, is a Jacobian-vector product. There exists an algorithm to estimate it with linear complexity,
assuming the forward pass has linear complexity, as shown by Griewank & Walther (2008).

For the second operator, the gradient operator r scales linearly with the problem dimension d. To estimate the divergence
operator hr, ·i, we need to run automatic differentiation d times to obtain the full Jacobian and take its trace. This leads
to a quadratic computational complexity of O(d2) in the problem dimension. It is better than the naive computation of
the Laplace operator �, which has a complexity of O(d3) due to computing the full Hessian for each component of u✓ or
v✓.

We assume that one of the dimensions when evaluating the d-dimensional functions involved in our method is parallelized
by modern deep learning libraries. It means that empirically, we can see a linear O(d) scaling instead of the theoretical
O(d2) complexity.

F. On Strong Convergence

Let’s consider a standard Wiener processes
!

W
X
,

!
W

Y in Rd and define
!
Ft as a filtration generated by

n� !
W

X(t0),
!
W

Y (t)
�
:

t
0  t

o
. Let

Ft be a filtration generated by all events

n� !
W

X(t0),
!
W

Y (t)
�
: t0 � t

o
.

Assume that u, v, eu, ev 2 C
2,1(Rd ⇥ [0, T];Rd)\C

1,0
b (Rd ⇥ [0, T];Rd), where Cp,k

b is a class of continuously differentiable
functions with a uniformly bounded p-th derivative in a coordinate x and k-th continuously differentiable in t, Cp,k analo-
gously but without requiring bounded derivative. For f : Rd⇥ [0, T] ! Rk, we define kfk1 = ess supt2[0,T],x2Rdkf(x, t)k

26

Deep Stochastic Mechanics

and krfk1 = ess supt2[0,T],x2Rdkrf(x, t)kop, where k · kop denotes an operator norm. Then we have the following
equations:

dX(t) = (ev(X(t), t) + eu(X(t), t)
�
dt+

r
~
m
d
!

W
X(t), (50)

dY (t) = (v(Y (t), t) + u(Y (t), t)
�
dt+

r
~
m
d
!
W

Y (t), (51)

X(0) ⇠ | 0|2, (52)
Y (0) = X(0), (53)

where u, v are true solutions to Equation (26). We have that pY (·, t) =
�� (·, t)

��2 8t where pY is density of

the process Y (t). We have not specified yet a quadratic covariation of those two processes
d
⇥ !
WX ,

!
WY

⇤
t

dt =

limdt!0+ E
⇣� !

WX(t+dt)�
!

WX(t)
�� !

WY (t+dt)�
!

WY (t)
�

dt

���
!
Ft

⌘
. We specify it as d

⇥ !
W

X
,

!
W

Y
⇤
t
= Iddt, and it allows to cancel

some terms appearing in the equations. As for now, we will derive all results in the most general setting.

Let’s define our loss functions:

L1(ev, eu) =
Z T

0
EX

��@teu(X(t), t)�Du[ev, eu, x, t]
��2dt, (54)

L2(ev, eu) =
Z T

0
EX

��@tev(X(t), t)�Dv[ev, eu,X(t), t]
��2dt, (55)

L3(eu, ev) = EXkeu(X(0), 0)� u(X(0), 0)k2, (56)

L4(eu, ev) = EXkev(X(0), 0)� v(X(0), 0)k2. (57)

Our goal is to show that for some constants wi > 0, there is a natural bound sup0tT EkX(t)� Y (t)k2 
P

wiLi(ev, eu).

F.1. Stochastic Processes

Consider a general Itô SDE defined using a drift process F (t) and a covariance process G(t), both predictable with respect

to forward and backward flirtations

Ft and

!
Ft:

dZ(t) = F (t)dt+G(t)d
!
W, (58)

Z(0) ⇠ ⇢0.

Moreover, assume
⇥
Z(t), Z(t)

⇤
t
= E

Z t

0
G

T
G(t)dt < 1 , E

Z t

0
kF (t)k2dt < 1. We denote by PZ

t = P(Z(t) 2 ·) a law

of the process Z(t). Let’s define a (extended) forward generate of the process as the linear operator satisfying

!
M

f (t) = f(Z(t), t)� f(Z(0), 0)�
Z t

0

!
LX

f(Z(t), t) is
!
Ft-martingale. (59)

Such an operator is uniquely defined and is called a forward generator associated with the process Zt. Similarly, we define a

(extended) backward generator

LX as linear operator satisfying:

M

f (t) = f(Z(t), t)� f(Z(0), 0)�
Z t

0

LX

f(Z(t), t) is

Ft-martingale (60)

For more information on the properties of generators, we refer to Baldi & Baldi (2017).
Lemma F.1. (Itô Lemma, (Baldi & Baldi, 2017, Theorem 8.1 and Remark 9.1))

!
LZ

f(x, t) = @tf(x, t) + hrf(x, t), F (t)i+ ~
2m

Tr
�
G

T (t)r2
f(x, s)G(t)

�
. (61)

27

Deep Stochastic Mechanics

Lemma F.2. Let pZ(x, t) =
dPZ

t
dx be the density of the process with respect to standard Lebesgue measure on Rd. Then

LZ

f(x, t) = @tf(x, t) + hrf(x, t), F (t)� ~
m
r log pZ(x, t)i �

1

2
Tr
�
G

T (t)r2
f(x, s)G(t)

�
. (62)

Proof. We have the following operator identities:

LZ =

� !
LZ

�⇤
= p
�1
Z

� !
LX

�†
pZ

where A⇤ is adjoint operator in L2(Rd ⇥ [0, T],PZ ⌦ dt) and A† is adjoint in L2(Rd ⇥ [0, T], dx⌦ dt). Using Itô lemma
F.1 and grouping all terms yields the statement.

Lemma F.3. The following identity holds for any process Z(t):

!
LZ

LZ

x =

LZ

!
LZ

x. (63)

Proof. One needs to recognize that Equation (32) is the difference between two types of generators, we automatically have
the following identity that holds for any process Z.

Lemma F.4. (Nelson Lemma, (Nelson, 2020))

EZ
⇣
f(Z(t), t)g(Z(t), t)� f(Z(0), t)g(Z(0), t)

⌘
(64)

= EZ

Z t

0

⇣ !
LZ

f(Z(s), t)g(Z(s), t) + f(Z(s), t)

LZ

g(Z(s), s)
⌘
ds (65)

Lemma F.5. It holds that:

EZ
⇣
kZ(t)k2 � kZ(0)k2

⌘
(66)

=

Z t

0
EZ

⇣
2h

LZ

Z(0), Z(s)i+ 2

Z s

0
h

LZ

!
LZ

Z(z), Z(s)idz
⌘
ds+

⇥
Z(t), Z(t)

⇤
t

(67)

Proof. By using Itô Lemma F.1 for f(x) = kxk2 and noting that
!
LZ

Z(t) = F (t) we immediately obtain:

EZ(kZ(t)k2 � kZ(0)k2) =
Z t

0
E
⇣
2h
!
LZ

Z(s), Z(s)i+Tr
�
G

T
G(t)

�⌘
ds

Let’s deal with the term
R t
0 h
!
LZ

Z(s), Z(s)ids. We have the following observation:
!
M

F (z) =

LZ

Z(s) �

LZ

Z(0) �
R s
0

LZ

!
LZ

Z(z)dz is

Fs-martingale, thus
Z t

0
h
!
LZ

Z(s), Z(s)ids =
Z t

0
h

LZ

Z(0) +

Z s

0

�
LZ

!
LZ

Z(z) +

M

F (z)
�
dz, Z(s)ids,

The process
!
A(s0, s) =

R s
s0h

M

F (z), Z(s)idz is again F s0 -martingale for s0  s, which implies that EZ
!
A(0, s) = 0.

Noting that EZ
R t
0 Tr

�
G

T (t)G(t)
�
dt =

⇥
Z(t), Z(t)

⇤
t

yields the lemma.

F.2. Adjoint Processes

Consider a process X 0(t) defined through time-reversed SDE:

dX 0(t) = (ev(X 0(t), t) + eu(X 0(t), t)
�
dt+

r
~
2m

d

W
X(t). (68)

We call such process as adjoint to the process X . Lemma F.3 can be generalized to the pair of adjoint processes (X,X
0) in

the following way and will be instrumental in proving our results.

28

Deep Stochastic Mechanics

Lemma F.6. For any pair of processes X(t), X 0(t) such that the forward drift of X is of form ev + eu and backward drift of
X
0 is ev � eu:

!
LX

LX0

x�

LX0

!
LX

x =

LX0

LX0

x�
!
LX

!
LX

x. (69)

with both sides being equal to 0 if and only if X 0 is time reversal of X .

Proof. Manual substitution of explicit forms of generators and drifts yields Equation (7b) for both cases. This equation is
zero only if eu = ~

2mr log pX

Lemma F.7. The following bound holds:

���
� !
LX +

LX

�
(eu� ~

2m
r log pX)k 

���
!
LX

LX0

x�

LX0

!
LX

x

���+ 2krevk1
��eu� ~

2m
r log pX

��. (70)

Proof. First, using Lemma F.6 we obtain:

!
LX

LX

x�

LX

!
LX

x = 0 (71)

()
!
LX

�
ev + eu� ~

m
r log pX

�
�

LX

�
ev + eu

�
= 0 (72)

()
!
LX

�
(ev � eu) + (2eu� ~

m
r log pX)

�
�

LX

�
ev + eu

�
= 0 (73)

()
!
LX

�
(ev � eu) + (2eu� ~

m
r log pX)

�
�

LX0�

ev + eu
�
+
⇣
LX0�

ev + eu
�
�

LX

�
ev + eu

�⌘
= 0 (74)

()
!
LX

�
2eu� ~

m
r log pX

�
+
!
LX(ev � eu)�

LX0�

ev + eu
�
+
⇣
LX0�

ev + eu
�
�

LX

�
ev + eu

�⌘
= 0. (75)

Then, we note that:

LX0�

ev + eu
�
�

LX

�
ev + eu

�
= h ~

m
r log pX � 2eu,r(ev + eu)i. (76)

This leads us to the following identity:

!
LX

�
2eu� ~

m
r log pX

�
+
!
LX(ev � eu)�

LX0�

ev + eu
�
+ h ~

m
r log pX � 2eu,r(ev + eu)i = 0

()
!
LX

�
2eu� ~

m
r log pX

�
+
!
LX

LX0

x�

LX0

!
LX

x+ h ~
m
r log pX � 2eu,r(ev + eu)i = 0.

Again by using Lemma F.6 to time-reversal X 0 we obtain:

LX

LX

x�
!
LX

!
LX

x = 0 (77)

()

LX

�
ev + eu� ~

m
r log pX

�
�
!
LX

�
ev + eu

�
= 0 (78)

()

LX

�
(ev � eu) + (2eu� ~

m
r log pX)

�
�
!
LX

�
ev + eu

�
= 0 (79)

()

LX0�

ev � eu
�
+

LX

�
2eu� ~

m
r log pX

�
�
!
LX

�
ev + eu

�
+
⇣
LX

�
ev � eu

�
�

LX0�

ev � eu
�⌘

= 0 (80)

()

LX

�
2eu� ~

m
r log pX

�
+

LX0�

ev � eu
�
�
!
LX

�
ev + eu

�
� h ~

m
r log pX � 2eu,r(ev � eu)i = 0 (81)

()

LX

�
2eu� ~

m
r log pX

�
+

LX0

LX0

x�
!
LX

!
LX

x� h ~
m
r log pX � 2eu,r(ev � eu)i = 0. (82)

29

Deep Stochastic Mechanics

By using Lemma F.6 we thus derive:

LX

�
2eu� ~

m
r log pX

�
+
!
LX

LX0

x�

LX0

!
LX

x� h ~
m
r log pX � 2eu,r(ev � eu)i = 0. (83)

Summing up both identities, therefore, yields:

⇣
LX +

!
LX

⌘�
eu� ~

2m
r log pX

�
+
!
LX

LX0

x�

LX0

!
LX

x+ 2heu� ~
2m

r log pX ,revi = 0. (84)

Theorem F.8. The following bound holds:

sup
0tT

EX
��eu(X(t), t)� ~

2m
r log pX(X(t), t)

��2  e

�
1
2+4krevk1

�
T �

L3(ev, eu) + L2(ev, eu)
�
. (85)

Proof. We consider process Z(t) = euu(X(t), t)� ~
2mr log pX(X(t), t). From Nelson’s lemma F.4, we have the following

identity:

EXkeu(X(t), t)� ~
2m

r log pX(X(t), t)k2 � EXkeu(X(0), 0)� ~
2m

r log pX(X(0), 0)k2 (86)

=EX

Z t

0
hu(X(s), s)� ~

2m
r log pX(X(s), s), (87)

� !
LX +

LX

��
u(X(s), s)� ~

2m
r log pX(X(s), s)

�
ids. (88)

Note that u ⌘ ~
2mr log pX(X(t), t). Thus, EXkeu(X(0), 0) � ~

2mr log pX(X(0), 0)k2 = L3(ev, eu). Using inequality
ha, bi  1

2

�
kak2 + kbk2

�
we obtain:

EXku(X(t), t)� ~
2m

r log pX(X(t), t)k2 � L3(ev, eu) (89)


Z t

0

⇣1
2

EXku(X(s), s)� ~
2m

r log pX(X(s), s)k2 (90)

+
1

2
EX

���
� !
LX +

LX

��
u(X(s), s)� ~

2m
r log pX(X(s), s)

����
2⌘

ds (91)

Using Lemma F.7, we obtain:

EXku(X(t), t)� ~
2m

r log pX(X(t), t)k2 � L3(ev, eu) (92)


Z t

0

⇣1
2

EXku(X(s), s)� ~
2m

r log pX(X(s), s)k2 (93)

+
���
!
LX

LX0

x�

LX0

!
LX

x

���
2
+ 4krevk21

��eu� ~
2m

r log pX
��2
⌘
ds (94)

Observe that
R t
0 EX

���
!
LX

LX0

x �

LX0

!
LX

x

���
2
dt  L2(ev, eu), in fact, at t = T it is equality as this is the definition of the

loss L2. Thus, we have:

EXku(X(t), t)� ~
2m

r log pX(X(t), t)k2 (95)

 L3(ev, eu) + L2(ev, eu) +
Z t

0

�1
2
+ 4krevk1

�
EXku(X(s), s)� ~

2m
r log pX(X(s), s)k2ds. (96)

Using integral Grönwall’s inequality (Gronwall, 1919) yields the bound: EXku(X(t), t) � ~
2mr log pX(X(t), t)k2 

e

�
1
2+4krevk1

�
t�
L3(ev, eu) + L2(ev, eu)

�
.

30

Deep Stochastic Mechanics

F.3. Nelsonian Processes

Considering those two operators, we can rewrite the equations (26) alternatively as:

1

2

⇣ !
LY

LY

x+

LY

!
LY

x

⌘
= � 1

m
rV (x), (97)

1

2

⇣ !
LY

LY

x�

LY

!
LY

x

⌘
= 0. (98)

This leads us to the identity:
!
LY

LY

x = � 1

m
rV (x). (99)

Lemma F.9. We have the following bound:
Z t

0
EX

���
!
LX0

LX

X(t) +
1

m
rV (X(t))

���
2
dt  2L1(ev, eu) + 2L2(ev, eu).

Proof. Consider rewriting losses as:

L1(ev, eu) =
Z t

0
Et⇠U [0,T]E

X
���
1

2

� !
LX

LX0

X(t) +
!
LX

LX0

X(t)
�
+

1

m
rV (X(t))

���
2
dt, (100)

L2(ev, eu) =
1

4

Z t

0
Et⇠U [0,T]E

X
���
!
LX

LX0

X(t)�
!
LX0

LX

X(t)
���
2
dt. (101)

Using the triangle inequality yields the statement.

Lemma F.10. We have the following bound:
Z t

0
EX

���

LX

!
LX

X(t) +
1

m
rV (X(t))

���
2
dt

 2T
�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T �

L3(ev, eu) + L2(ev, eu)
�
+ 4L1(ev, eu) + 4L2(ev, eu).

Proof. From (76) we have:

LX

!
LX

X(t) =

LX0

!
LX

X(t) + h ~
m
r log pX � 2eu,r(ev + eu)i. (102)

Noting that h ~
mr log pX � 2eu,r(ev + eu)i 

�
kreuk1 + krevk1

���� ~
mr log pX � 2eu

��� and using triangle inequality we
obtain the bound:

Z t

0
EX

���

LX

!
LX

X(t) +
1

m
rV (X(t))

���
2
dt (103)

 2
�
keuk1 + kevk1

�2
Z t

0
EX

���u(X(t), t)� ~
2m

log pX(X(t), t)
���
2
dt+ 4L1(ev, eu) + 4L2(ev, eu). (104)

Using Theorem F.8 concludes the proof.

Lemma F.11. Denote Z(t) = (X(t), Y (t)) as compound process. For functions h(x, y, t) = f(x, t) + g(y, t) we have the
following identity:

!
LZ

h =
!
LX

f +
!
LY

g (105)

Proof. A generator is a linear operator by very definition. Thus, it remains to prove only
!
LZ

f =
!
LX

f (106)

Since the definition of
!
Ft already contains all past events for both processes X(t), Y (t), we see that this is a tautology.

31

Deep Stochastic Mechanics

As a direct application of this Lemma, we obtain the following Corollary (by applying it twice):
Corollary F.12. We have the following identity:

LZ

!
LZ

�
X(t)� Y (t)

�
=

LX

!
LX

X(t)�

LY

!
LY

Y (t).

Theorem F.13. (Strong Convergence) Let the loss be defined as L(ev, eu) =
P4

i=1 wiLi(ev, eu) for some arbitrary constants
wi > 0. Then we have the following bound between processes X and Y :

sup
tT

EkX(t)� Y (t)k2  CTL(ev, eu) (107)

where CT = maxi
w0

i
wi

, w
0
1 = 4eT (T+1), w

0
2 = e

T (T+1)
⇣
2T

�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T + 4

⌘
, w
0
3 =

2TeT (T+1)
⇣
1 +

�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T
⌘

, w04 = 2TeT (T+1).

Proof. We are going to prove the bound:

sup
tT

EkX(t)� Y (t)k2 
4X

i=1

w
0
iLi(ev, eu) (108)

for constants that we obtain from the Lemmas above. Then we will use the following trick to get the bound with arbitrary
weights:

4X

i=1

w
0
iLi(ev, eu) 

4X

i=1

w
0
i

wi
wiLi(ev, eu) 

�
max

i

w
0
i

wi

� 4X

i=1

wiLi(ev, eu) = CTL(ev, eu) (109)

First, we apply Lemma F.5 to Z = X � Y by noting that
⇥
X(t) � Y (t), X(t) � Y (t)

⇤
t
⌘ 0 and kX(0) � Y (0)k2 = 0

almost surely:

EZkX(t)� Y (t)k2 (110)

=

Z t

0
EZ

⇣
2h

LZ(X(0)� Y (0)), X(s)� Y (s)i (111)

+ 2

Z s

0
h

LZ

!
LZ(X(z)� Y (z)), X(s)� Y (s)idz

⌘
ds (112)


Z t

0
EZ

⇣��

LZ(X(0)� Y (0))

��2 + kX(s)� Y (s)k2 (113)

+

Z s

0

⇣��

LZ

!
LZ(X(z)� Y (z))

��2 + kX(s)� Y (s)k2dz
⌘⌘

ds (114)


Z t

0
EZ

⇣��

LZ(X(0)� Y (0))

��2 + (1 + T)kX(s)� Y (s)k2 (115)

+

Z s

0

��

LZ

!
LZ(X(z)� Y (z))

��2dz
⌘
ds. (116)

Then, using Corollary F.12, (99) and then Lemma F.10 we obtain that
Z s

0

��

LZ

!
LZ(X(z)� Y (z))

��2dz =

Z s

0

��

LZ

!
LZ

X(z) +
1

m
rV (X(z))

��2dz (117)

 2T
�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T �

L3(ev, eu) + L2(ev, eu)
�
+ 4L1(ev, eu) + 4L2(ev, eu). (118)

To deal with the remaining term involving X(0)� Y (0) we observe that:
Z t

0
EZ

⇣��

LZ(X(0)� Y (0))

��2  2TL3(ev, eu) + 2TL4(ev, eu), (119)

32

Deep Stochastic Mechanics

where we used triangle inequality. Combining obtained bounds yields:

EZkX(t)� Y (t)k2 (120)


Z t

0
(1 + T)kX(s)� Y (s)k2ds (121)

+ 2TL3(ev, eu) + 2TL4(ev, eu) (122)

+ 2T
�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T �

L3(ev, eu) + L2(ev, eu)
�

(123)
+ 4L1(ev, eu) + 4L2(ev, eu) (124)

=

Z t

0
(1 + T)kX(s)� Y (s)k2ds (125)

+ 4L1(ev, eu) +
⇣
2T

�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T + 4

⌘
L2(ev, eu) (126)

+ 2T
⇣
1 +

�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T
⌘
L3(ev, eu) + 2TL4(ev, eu). (127)

Finally, using integral Grönwall’s inequality Gronwall (1919), we have:

EZkX(t)� Y (t)k2 (128)

 4eT (T+1)
L1(ev, eu) + e

T (T+1)
⇣
2T

�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T + 4

⌘
L2(ev, eu) (129)

+ 2TeT (T+1)
⇣
1 +

�
kreuk1 + krevk1

�2
e

�
1
2+4krevk1

�
T
⌘
L3(ev, eu) + 2TeT (T+1)

L4(ev, eu) (130)

G. Applications
G.1. Bounded Domain M

Our approach assumes that the manifold M is flat or curved. For bounded domains M, e.g., like it is assumed in PINN
or any other grid-based methods, our approach can be applied if we embed M ⇢ Rd and define a new family of smooth
non-singular potentials V↵ on entire Rd such that V↵ ! V when restricted to M and V↵ ! +1 on @(M,Rd) (boundary
of the manifold in embedded space) as ↵! 0+.

G.2. Singular Initial Conditions

It is possible to apply Algorithm 1 to 0 = �x0e
iS0(x) for some x0 2 M. We need to augment the initial conditions with

a parameter ↵ > 0 as 0 =

r
1p

2⇡↵2
e
� (x�x0)2

2↵2 for small enough ↵ > 0. In that case, u0(x) = � ~
2m

(x�x0)
↵ . We must be

careful with choosing ↵ to avoid numerical instability. It makes sense to try ↵ / ~2

m2 as X(0)�x0

↵ = O(
p
↵). We evaluated

such a setup in Appendix D.1.

G.3. Singular Potential

We should augment the potential to apply our method for simulations of the atomic nucleus with Bohr-Oppenheimer
approximation (Woolley & Sutcliffe, 1977). A potential arising in this case has components of form aij

kxi�xjk . Basically, it
has singularities when xi = xj . In case when xj is fixed, our manifold is M\{xj}, which has a non-trivial cohomology
group.

When such potential arises, we suggest to augment the potential V↵ (e.g., replace all aij

kxi�xjk with aijp
kxi�xjk2+↵

) so that V↵

is smooth and non-singular everywhere on M. In that case we have that V↵ ! V as ↵! 0. With the augmented potential
V↵, we can apply stochastic mechanics to obtain an equivalent to quantum mechanics theory. Of course, augmentation will
produce bias, but it will be asymptotically negligent as ↵! 0.

33

Deep Stochastic Mechanics

G.4. Measurement

Even though we have full trajectories and know positions for each moment, we should carefully interpret them. This is
because they are not the result of the measurement process. Instead, they represent hidden variables (and u, v represent
global hidden variables – what saves us from the Bells inequalities as stochastic mechanics is non-local (Nelson, 1966)).

For a fixed t 2 [0, T], the distribution of X(t) coincides with the distribution X(t) for X being position operator in
quantum mechanics. Unfortunately, a compound distribution (X(t), X(t0)) for t 6= t

0 may not correspond to the compound
distribution of (X(t),X(t0)); for details see Nelson (2005). This is because each X(t) is a result of the measurement
process, which causes the wave function to collapse (Derakhshani & Bacciagaluppi, 2022).

Trajectories Xi are as if we could measure X(t) without causing the collapse of the wave function. To use this approach
for predicting some experimental results involving multiple measurements, we need to re-run our method after each
measurement process with the measured state as the new initial condition. This issue is not novel for stochastic mechanics.
There is the same problem in classical quantum mechanics.

This “contradiction” is resolved once we realize that X(t) involves measurement, and thus, if we want to calculate
correlations of (X(t),X(t0)) for t < t

0 we need to do the following:

• Run Algorithm 1 with 0, V (x, t) and T = t to get eu, ev.

• Run Algorithm 2 with eu, ev, 0 to get {XNj}Bj=1 – B last steps from trajectories Xi of length N .

• For each XNj in the batch we need to run Algorithm 1 with 0 = �XNj , V
0(x, t0) = V (x, t0 + t) (assuming that

u0 = 0, v0 = 0) and T = t
0 � t to get euj , evj .

• For each XNj run Algorithm 2 with batch size B = 1, 0 = �XNj , euj , evj to get X 0Nj .

• Output pairs
�
(XN,j , X

0
N,j)

 B

j=1
.

Then the distribution of (XN,j , X
0
N,j) will correspond to the distribution of (X(t),X(t0)). This is well described and

proven in Derakhshani & Bacciagaluppi (2022). Therefore, it is possible to simulate the right correlations in time using our
approach, though it may require learning 2(B + 1) models. The promising direction of future research is to consider X0 as
a feature for the third step here and, thus, learn only 2 + 2 models.

G.5. Observables

To estimate any scalar observable of form Y(t) = y(X(t)) in classic quantum mechanics one needs to calculate:

hYit =
Z

M
 (x, t)y(x) (x, t)dx.

In our setup, we can calculate this using the samples X⇥Nt
T

⇤ ⇡ X(t) ⇠
�� (·, t)

��2:

hYit ⇡
1

B

BX

j

y(X⇥Nt
T

⇤
j
),

where B � 1 is the batch size, N is the time discretization size. The estimation error has magnitude O(1p
B
+ ✏+ "), where

✏ = T
N and " is the L2 error of recovering true u, v. In our paper, we have not bounded " but provide estimates for it in our

experiments against the finite difference solution.9

G.6. Wave Function

Recovering the wave function from u, v is possible using a relatively slow procedure. Our experiments do not cover this
because our approach’s main idea is to avoid calculating the wave function. But for the record, it is possible. Assume we

9If we are able to reach L(✓) = 0 then essentially " = 0. We leave bounding " by L(✓⌧) for future work.

34

Deep Stochastic Mechanics

solved equations for u, v. We can get the phase and density by integrating Equation (20):

S(x, t) = S(x, 0) +

Z t

0

⇣ 1

2m
hr, u(x, t)i+ 1

2~
��u(x, t)

��2 � 1

2~
��v(x, t)

��2 � 1

~V (x, t)
⌘
dt, (131)

⇢(x, t) = ⇢0(x) exp
⇣Z t

0

�
� hr, v(x, t)i � 2m

~ hu(x, t), v(x, t)i
�⌘

dt (132)

This allows us to define =
p
⇢(x, t)eiS(x,t), which satisfies the Schrödinger equation (1). Suppose we want to estimate it

over a grid with N time intervals and
⇥p

N
⇤

intervals for each coordinate (a typical recommendation for Equation (1) is
to have a grid satisfying dx2 ⇡ dt). It leads to a sample complexity of O(N

d
2+1), which is as slow as other grid-based

methods for quantum mechanics. The error in that case will also be O(
p
✏+ ") (Smith & Smith, 1985).

H. On Criticism of Stochastic Mechanics
Three major concerns arise regarding stochastic mechanics developed by Nelson (1966); Guerra (1995):

• The proof of the equivalence of stochastic mechanics to classic quantum mechanics relies on an implicit assumption of
the phase S(x, t) being single-valued (Wallstrom, 1989).

• If there is an underlying stochastic process of quantum mechanics, it should be non-Markovian (Nelson, 2005).

• For a quantum observable, e.g., a position operator X(t), a compound distribution of positions at two different
timestamps t, t0 does not match the distribution of (X(t),X(t0)) (Nelson, 2005).

Appendix G.4 discusses why a mismatch of the distributions is not a problem and how we can adopt stochastic mechanics
with our approach to get correct compound distributions by incorporating the measurement process into the stochastic
mechanical picture.

H.1. On “Inequivalence” to Schrödinger Equation

This problem is explored in the paper by Wallstrom (1989). Firstly, the authors argue that proofs of the equivalency in
Nelson (1966); Guerra (1995) are based on the assumption that the wave function phase S is single-valued. In the general
case of a multi-valued phase, the wave functions are identified with sections of complex line bundles over M. In the case of
a trivial line bundle, the space of sections can be formed from single-valued functions, see Alvarez (1986). The equivalence
class of line bundles over a manifold M is called Picard group, and for smooth manifolds, M is isomorphic to H

2(M,Z),
so-called second cohomology group over Z, see Prieto & Vitolo (2014) for details. Elements in this group give rise to
non-equivalent quantizations with irremovable gauge symmetry phase factor.

Therefore, in this paper, we assume that H2(M,Z) = 0, which allows us to eliminate all criticism about non-equivalence.
Under this assumption, stochastic mechanics is equivalent indeed. This condition holds when M = Rd. Though, if a
potential V has singularities, e.g., a

kx�x⇤k , then we should exclude x⇤ from Rd which leads to M = Rd\{x⇤} and this
manifold satisfies H2(M,Z) ⇠= Z (May, 1999), which essentially leads to ”counterexample” provided in Wallstrom (1989).
We suggest a solution to this issue in Appendix G.2.

H.2. On “Superluminal” Propagation of Signals

We want to clarify why this work should not be judged from perspectives of physical realism, correspondence to reality and
interpretations of quantum mechanics. This tool gives the exact predictions as classical quantum mechanics at a moment of
measurement. Thus, we do not care about a superluminal change in the drifts of entangled particles and other problems of
the Markovian version of stochastic mechanics.

H.3. Non-Markovianity

Nelson believes that an underlying stochastic process of reality should be non-Markovian to avoid issues with the Markovian
processes like superluminal propagation of signals (Nelson, 2005). Even if such a process were proposed in the future, it
would not affect our approach. In stochastic calculus, there is a beautiful theorem from Gyöngy (1986):

35

Deep Stochastic Mechanics

Theorem H.1. Assume X(t), F (t), G(t) are adapted to Wiener process W (t) and satisfy:

dX(t) = F (t)dt+G(t)d
!
W.

Then there exist a Markovian process Y (t) satisfying

dY (t) = f(Y (t), t)dt+ g(Y (t), t)d
!
W

where f(x, t) = E(F (t)kX(t) = x),g(x, t) =
p

E(G(t)G(t)T kX(t) = x) and such that 8t holds Law(X(t)) =
Law(Y (t)).

This theorem tells us that we already know how to build a process Y (t) without knowing X(t); it is stochastic mechanics by
Nelson (Guerra, 1995; Nelson, 1966) that we know. From a numerical perspective, we better stick with Y (t) as it is easier to
simulate, and as we explained, we do not care about correspondence to reality as long as it gives the same final results.

H.4. Ground State

Unfortunately, our approach is unsuited for the ground state estimation or any other stationary state. FermiNet (Pfau et al.,
2020) does a fantastic job already. The main focus of our work is time evolution. It is possible to estimate some observable
Y for the ground state if its energy level is unique and significantly lower than others. In that case, the following value
approximately equals the group state observable for T � 1:

hYiground ⇡ 1

T

Z T

0
hYitdt ⇡

1

NB

NX

i=1

BX

j=1

y(Xij)

This works only if the ground state is unique, and the initial conditions satisfy
R
M 0 grounddx 6= 0, and its energy is well

separated from other energy levels. In that scenario, oscillations will cancel each other out.

I. Future Work
This section discusses possible directions for future research. Our method is a promising direction for fast quantum
mechanics simulations, but we consider the most straightforward setup in our work. Possible future advances include:

• In our work, we consider the simplest integrator of SDE (Euler-Maruyama), which may require setting N � 1 to
achieve the desired accuracy. However, a higher-order integrator (Smith & Smith, 1985) or an adaptive integrator (Ilie
et al., 2015) should achieve the desired accuracy with much lower N .

• Exploring the applicability of our method to fermionic systems is a promising avenue for future investigation. Successful
extensions in this direction would not only broaden the scope of our approach but also have implications for designing
novel materials, optimizing catalytic processes, and advancing quantum computing technologies.

• It should be possible to extend our approach to a wide variety of other quantum mechanical equations, including Dirac
and Klein-Gordon equations used to account for special relativity (Serva, 1988; Blanchard et al., 2005), a non-linear
Schrödinger equation (1) used in condensed matter physics (Serkin & Hasegawa, 2000) by using McKean-Vlasov
SDEs and the mean-field limit (Buckdahn et al., 2017; dos Reis et al., 2022), and the Shrödinger equation with a spin
component (Dankel, 1970; De Angelis et al., 1991).

• We consider a rather simple, fully connected architecture of neural networks with tanh activation and three layers. It
might be more beneficial to consider specialized architectures for quantum mechanical simulations, e.g., Pfau et al.
(2020). Permutation invariance can be ensured using a self-attention mechanism (Vaswani et al., 2017), which could
potentially offer significant enhancements to model performance. Additionally, incorporating gradient flow techniques
as suggested by Neklyudov et al. (2024) can help to accelerate our algorithm.

• Many practical tasks require knowledge of the error magnitude. Thus, providing explicit bounds on " in terms of
L(✓M) is critical.

36

