Journal of Machine Learning Research 25 (2024) 1-35 Submitted 4/23; Revised 12/23; Published 4/24

Bagging Provides Assumption-free Stability

Jake A. Soloff SOLOFFQUCHICAGO.EDU
Rina Foygel Barber RINAQUCHICAGO.EDU
Department of Statistics

University of Chicago

5747 S Ellis Ave

Chicago, IL 60637, USA

Rebecca Willett WILLETT@UCHICAGO.EDU
Departments of Statistics and Computer Science

University of Chicago

5785 S Ellis Ave

Chicago, IL 60637, USA

Editor: Samory Kpotufe

Abstract

Bagging is an important technique for stabilizing machine learning models. In this paper, we
derive a finite-sample guarantee on the stability of bagging for any model. Our result places
no assumptions on the distribution of the data, on the properties of the base algorithm, or
on the dimensionality of the covariates. Our guarantee applies to many variants of bagging
and is optimal up to a constant. Empirical results validate our findings, showing that
bagging successfully stabilizes even highly unstable base algorithms.

Keywords: stability, bagging, bootstrap methods, distribution-free

1. Introduction

Algorithmic stability—that is, how perturbing training data influences a learned model—is
fundamental to modern data analysis. In learning theory, certain forms of stability are
necessary and sufficient for generalization (Bousquet and Elisseeff, 2002; Poggio et al., 2004;
Shalev-Shwartz et al., 2010). In model selection, stability measures can reliably identify
important features (Meinshausen and Biithlmann, 2010; Shah and Samworth, 2013; Ren et al.,
2023). In scientific applications, stable methods promote reproducibility, a prerequisite for
meaningful inference (Yu, 2013). In distribution-free prediction, stability is a key assumption
for the validity of jackknife (that is, leave-one-out cross-validation) prediction intervals
(Barber et al., 2021; Steinberger and Leeb, 2023).

Anticipating various benefits of stability, Breiman (1996a,b) proposed bagging as an
ensemble meta-algorithm to stabilize any base learning algorithm. Bagging, short for
bootstrap aggregating, refits the base algorithm to many perturbations of the training data
and averages the resulting predictions. Breiman’s vision of bagging as off-the-shelf stabilizer
motivates our main question: How stable is bagging on an arbitrary base algorithm, placing
no assumptions on the data generating distribution? In this paper, we first answer this

(©2024 Jake A. Soloff, Rina Foygel Barber and Rebecca Willett.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0536.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0536.html

SOLOFF, BARBER AND WILLETT

400
I Logistic Regression
Logistic Regr. with Subbagging
200
0 . .
0.0 0.1 0.2 0.3

Leave-one-out perturbation |f(z) — fVi(x)|

Figure 1: Distribution of leave-one-out perturbations for logistic regression (red) and sub-
bagged logistic regression (blue), with n = 500 and d = 200. (See Section 6 for
details on this simulation.)

question for the case of base algorithms with bounded outputs and then show extensions to
the unbounded case.

1.1 Preview of Main Results

We study the following notion of algorithmic stability:

Definition 1 (Stability—informal version) An algorithm is (g,0)-stable if, for any
training data set D with n data points, and any test point x,

'S r{ffw - @) <o M
i=1

where f s the model trained on the entire data set D, while f\i is trained on the data set D
with the ith data point removed.

In other words, this definition requires that, for any data set, if we drop one training point
at random, then the resulting prediction produced by the algorithm is typically insensitive
to this perturbation of the training data.

It is well known that, empirically, bagging and other ensembling procedures tend to
improve the stability of an unstable base algorithm. For example, Figure 1 shows the

histograms of leave-one-out perturbations |f (z) — f\i (z)| for two different algorithms:
logistic regression and logistic regression with subbagging (given by fp (z) := % Zle 7O (),
where each f ®) is a model fitted on m = n/2 out of n training data points sampled at

random without replacement). We can clearly see that this perturbation is often far larger
for logistic regression than for its subbagged version.

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

In this paper, we prove that stability (in the sense of Definition 1) is automatically achieved
by the bagged version of any algorithm—with no assumptions on either the algorithm itself
or on the training and test data, aside from requiring that the output predictions lie in a
bounded range. A special case of our main result can be informally summarized as follows:

Theorem 2 (Main result—informal version) Fiz any algorithm with bounded output,
and consider its subbagged version with m samples drawn without replacement,

. 1 B
fo (@) =35>),
b=1

where B is sufficiently large. Then the subbagged algorithm satisfies Definition 1 for any
pair (e,9) satisfying

P (2)

62 >
1-p

S|

where p = .

(The formal version of Theorem 2, including many other forms of bagging, can be found
in Section 4 below. We extend our main result to the unbounded case in Section 5.)

In the existing literature, relatively little is known about bagging’s stabilization properties
without additional assumptions on the base algorithm.! In this work, our stability guarantees
(previewed in Theorem 2) will:

apply to general base algorithms which may be highly unstable,

hold for finite sample sizes,

provide bounds that are optimal (up to constants), and

hold deterministically, allowing for out-of-distribution test points and non-exchangeable
data.

2. Algorithmic Stability

Consider a supervised learning setting with real responses. Formally, a learning algorithm .4
is a function that inputs a data set D = (Z;)_; of pairs Z; = (X;,Y;) of covariates X; € X
and responses Y; €) and an auxiliary random variable £ ~ Unif([0, 1]) and produces a fitted
regression function f LX), given by f = A(D; §). While many results in the literature

consider only symmetric algorithms A (i.e., invariant to the ordering of the n training points
in D), here we do not constrain A to be symmetric.

The auxiliary random variable £ may be viewed as a random seed, allowing for ran-
domization in A, if desired. For example, in many applications, we may wish to optimize
an objective such as empirical risk, and then the resulting algorithm A consists of the
specific numerical operations applied to the training data—for example, T steps of stochastic
gradient descent (SGD) with a specific learning rate and batch size, with the random seed ¢

1. We defer a more extensive discussion of prior work in this area to Section 7.3.

SOLOFF, BARBER AND WILLETT

used for drawing the random batches in SGD. Our notation also allows for deterministic
algorithms, since A is free to ignore the input argument £ and depend only on the data.

There are many ways to define the stability of a learning algorithm. As noted by
Shalev-Shwartz et al. (2010), every definition of stability quantifies the sensitivity of the
output of A to small changes in the training set D, but they all define ‘sensitivity of the
output’ and ‘small changes in the training set’ differently. We present our main results for
two definitions of stability and extend our results to many related notions in Section 5.3.
One of the strongest possibilities is to require, for all data sets and all test points, that
every prediction be insensitive to dropping any single observation. The following definition
is closely related to uniform prediction stability (see, e.g., Dwork and Feldman, 2018).

Definition 3 An algorithm A is worst-case (e, 0)-stable if, for all data sets D = (Z;)1"_,
and test points x € X,

max P {’f _ fN (:c)‘ > s} <9, (3)

ZETL
where f = A(D;€), f\' = A(D\5€) and DV = (Z;) 4.

In many settings, however, this requirement is too stringent, since it forces A to be
stable even when the most influential observation is dropped. A relaxation of this definition
is the notion of average-case stability, where the perturbation comes from dropping one
observation at random. Since we are primarily interested in average-case stability in this
paper, we refer to it simply as ‘(e, §)-stable’.

Definition 4 An algorithm A is (e,)-stable if, for all data sets D = (Z;)?_, and test
points v € X,

*Zﬂ%{‘f - @) >e} < @

where f = A(D;¢), f\i = A(D\i;f) and D\t = (Z})j2i-

This is the formal version of Definition 1, stated informally earlier—the difference here (aside
from introducing notation) lies in the presence of the randomization term &.

The terminology ‘A is (g,0)-stable’ in Definition 4 (or ‘A is worst-case (g, d)-stable, in
Definition 3) suppresses the dependence on the sample size n. Since we are performing a
non-asymptotic stability analysis, we treat n as a fixed positive integer throughout.

Clearly, Definition 4 is implied by Definition 3, but not vice versa; average-case stability
thus relaxes worst-case stability to allow some small fraction of observations to have large
leave-one-out perturbation. Average-case stability is a more permissive condition, and yet it
is often sufficient for statistical inference. Indeed, if data points Z; are exchangeable and A
is symmetric, Condition (4) implies

Po,ve {1 (Xust) = P (Xup)] > €} <0

for all 7 and for a new test point X,,11, which is the condition of “out-of-sample stability” used
by papers on distribution-free prediction mentioned in Section 1 (when Z,+1 = (Xp41, Yn+1)

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

is a new test point that is exchangeable with the training data). Of course, our definition is
a stronger property, as it is required to hold uniformly over any training set and any test
point.

In fact, worst-case stability ensures an even stronger property—for a training sample
Z1, ..., 2y, it must hold that

Ppe {I7(X) - F(X)| > 2} <6

which is sometimes known as “in-sample stability”; informally, this bound implies that f is
not “overfitted” to the training data, since its prediction f (X;) at the ith training point is
only slightly influenced by Z;. On the other hand, average-case stability is not sufficient to
ensure this type of bound, even on average over i = 1,...,n.

In many lines of the literature, it is more standard to define stability with respect to a

loss function ¢(f (z),y). Define (g, §)-stability with respect to the loss ¢ as
1 A)
=3 P {10 (@) y) — U @)y > <) <6
i=1

If an algorithm A is (e, §)-stable in the sense of Definition 4, then it is (¢/L, §)-stable with
respect to any loss function £ that is L-Lipschitz in its first argument. Hence, our stability
guarantees immediately apply to any Lipschitz loss.?

Similarly, in the stability literature, it is more standard to control the expected value
of the leave-one-out perturbation ‘ f (z) — fi (l’)‘ rather than controlling a tail probability.

However, tail bounds can be easily converted to bounds in expectation using the standard
identity

E f@)—f\l’(x)\—/OOOP{)ﬂx)—f\i(x)\ > c)de

In Section 5.3, we define various related notions of stability more formally, and consider the
implications of our main result for these alternative definitions of stability.

3. Bagging and its Variants

Bagging has a rich history in the machine learning literature (Breiman, 1996a; Dietterich,
2000; Valentini and Masulli, 2002) and is widely used in a variety of practical algorithms;
random forests are a notable example (Breiman, 2001).

The theoretical properties of bagging have also been widely explored. For example,
the stabilization properties of bagging have been studied for some specific base algorithms,
such as trees (Basu et al., 2018) or k-means (Ben-David et al., 2007). Poggio et al. (2002)
compared the stabilizing properties of bagging to those of ridge regression; LeJeune et al.
(2020, 2024) recently established some deeper connections between the asymptotic risks of
bagging and ridge regression (see also Patil et al. (2023)). Larsen (2023) showed bagging
(where the base algorithm is empirical risk minimization) achieves optimal sample complexity
for PAC learning in the realizable setting. Additional prior works have addressed the stability

2. Assuming the loss ¢ is Lipschitz is standard in the literature—see, for example, Elisseeff et al. (2005);
Hardt et al. (2016).

SOLOFF, BARBER AND WILLETT

of bagging by proving that bagging, under certain conditions, increases the stability of an
already stable algorithm (Elisseeff et al., 2005). In contrast, our results establish stability
for bagging when applied to an arbitrary (and possibly highly unstable) base algorithm. We
defer a more detailed discussion of prior work in this area to Section 7.3, where we can more
fully compare to our own results.

Bagging applies resampling methods to reduce variance, smooth discontinuities, and
induce stability in a base algorithm A. The meta-algorithm repeatedly samples ‘bags’ from
the training data D, runs the base algorithm A on each bag, and averages the resulting
models. Different resampling methods lead to some common variants:

e Classical bagging (Breiman, 1996a,b) samples m indices with replacement from [n| =

{1,...,n}.

e Subbagging (Andonova et al., 2002) samples m indices without replacement from [n]
(where m < n).

We distinguish ‘classical bagging,” which employs sampling with replacement, from the
more general ‘bagging,” which we use to refer to any resampling method. For classical
bagging, Breiman (1996a.,b) originally proposed using the nonparametric bootstrap (Efron,
1979), that is, m = n, but m < n is often computationally advantageous.

In both of the above strategies, because there are exactly m observations in each bag,
there is a weak negative correlation between observations (that is, between the event that
data point 7 is in the bag, and that data point j is in the bag). Randomizing the size of
each bag is a standard trick that decorrelates these events:

e Poissonized bagging (Oza and Russell, 2001; Agarwal et al., 2014) samples M indices
with replacement from [n], where M ~ Poisson(m).

e Bernoulli subbagging (Harrington, 2003) samples M indices without replacement
from [n], where M ~ Binomial(n, 7*).

Our stability results are quite flexible to the choice of resampling method, and in
particular, apply to all four methods described above. In order to unify our results, we now
present a generic version of bagging that includes all four of these variants as special cases.

3.1 Generic Bagging

Bagging is a procedure that converts any base algorithm A into a new algorithm, its bagged
version Apg. Define

sedy = {(i1,..., i) 1k = 0,i1,... 4 € [n]},

which is the set of finite sequences (of any length) consisting of indices in [n]. We refer
to any r € seqp, as a “bag”. Let Q, denote a distribution on seqp,. For example,
subbagging m out of n points corresponds to the uniform distribution over the set of length-
m sequences (i1, ...,%n,) with distinct entries. Given a bag r = (i1,...,im) € seqp, and
a data set D = (Z1,...,2,), define a new data set D, = (Z;,,..., Z;,,) selecting the data
points according to the bag r.

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Algorithm 1 Generic Bagging Ap
input Base algorithm A; data set D with n training points; number of bags B > 1;
resampling distribution 9,
forb=1,...,B do
Sample bag () = ('gb), . i,(fb)) ~ Qpn
Sample seed £) ~ Unif([0 1])
Fit model f = A(D,q);)
end for
output Averaged model f defined by

fo(2) =530 FO ()

To construct the bagged algorithm Ap using A as a base algorithm, we first draw bags
A r®B) from the resampling distribution Q,,, then fit a model on each bag using A,
and average the resulting models for the final fitted function. Algorithm 1 summarizes this
procedure.

Generic bagging treats the base algorithm A as a ‘black-box,” in that it only accesses
the base algorithm by querying it on different training sets and different random seeds. We
write Ap to denote the resulting algorithm obtained by applying generic bagging with A as
the base algorithm.

Our theoretical analysis of bagging is simplified by considering an idealized version of
generic bagging as the number of bags B tends to infinity. Our tactic is to directly study
the stability of this large-B limit, and then derive analogous results for .ZB using simple
concentration inequalities. To facilitate our theoretical analysis, we define in Algorithm 2
the limiting version of generic bagging.

Algorithm 2 Derandomized Bagging ,ATOO

input Base algorithm 4; data set D with n training points; resampling distribution Q,,
output Averaged model f,, defined by

foo (z) = Erg [A(Dy;€) (2)]

where the expectation is taken with respect to r ~ Q,, and & ~ Unif([0, 1]).

Note that the algorithm A4 may be a randomized algorithm, but derandomized bagging
averages over any randomness in 4 (coming from the random seed &) as well as the
randomness of the bags drawn from 9,,.3 For instance, the derandomized form of classical
bagging averages uniformly over n™ possible subsets of the data; in practice, since we
generally cannot afford n™ many calls to A, we would instead run classical bagging with
some large B as the number of randomly sampled bags.

3. For Ao to be defined, we assume that the expectation E,. ¢ [A(D,; &) (x)] exists for all data sets D and
test points x.

SOLOFF, BARBER AND WILLETT

3.2 The Resampling Distribution 9,

To simplify the statement of the main results, we make a symmetry assumption on the resam-
pling method Q,,. All the variants we have described above (classical bagging, subbagging,
Poissonized bagging, Bernoulli subbagging) satisfy this assumption.

Assumption 5 The resampling method Q,, satisfies

Qn {(ilv s 7Zm)} =9 {(U (7’1))t 7U(im))})

for allm, iy,...,im € [n], and permutations o € S,,.

Intuitively, this symmetry assumption requires the bagging algorithm to treat the indices
(1,...,n) as exchangeable (for example, bags (1,2,2) and (3,4,4) are equally likely).

Different bagging methods attain different degrees of stability. For instance, consider a
degenerate case where Q,, returns a random permutation of (1,...,n) (that is, subbagging
with m = n). Then foo is simply the result of running the base algorithm on shuffled versions
of the data. In this case, the bagged algorithm is only as stable as the base algorithm.
Our bounds on the stability of bagging depend on specific parameters of the resampling
method 9,,.

Definition 6 For Q, satisfying Assumption 5, let

p =]P)T‘NQn {7’ G T}7
q = —Cov,ng, (Licr, Ljer),

for any i # j € [n].

Here for a sequence r = (i1,...,in) € seq[,], we write ¢ € 7 to denote the event that i =1
for some k. Assumption 5 ensures that the value of p (and of ¢) are shared across all 4
(respectively, across all i # j).

We make the following restrictions on these parameters:

Assumption 7 Q,, satisfies p € (0,1) and g > 0.

The constraint p € (0,1) is a nondegeneracy assumption that guarantees a nonzero
probability that any given observation Z; gets excluded from some bags and included in
others. The constraint ¢ > 0 forces non-positive correlation between observations, that
is, ¢ € r does not increase the probability of j € r for i # j.

In our work, the role of the parameter g on our stability guarantees is always relatively
insignificant. The symmetry condition imposed by Assumption 5 implies that the indi-
cator variables (1ie;);c[are exchangeable. Since the covariance matrix of the random
vector (1ier)iey) must be positive semidefinite, we always have the upper bound ¢ < %.

Table 1 provides values of p and ¢ for the four different sampling schemes discussed above,
which all satisfy Assumption 7. Classical bagging and subbagging both have a small positive
q due to weak negative correlation between the events ¢ € r and j € r, while Poissonized

bagging and Bernoulli subbagging decorrelate these events and so g = 0.

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Algorithm Resampling method 9, p=Pl{ier} q=-Covlierjer]
SUBBAGGING r = (i1,...,%m) DRAWN m mQ("im)
UNIFORMLY W/O REPLACEMENT n n?(n—1)

M ~ Binomial(n,)

BERNOULLI . . m

r = (i1,...,ip7) DRAWN m 0
SUBBAGGING n

UNIFORMLY W/O REPLACEMENT

CLASSICAL . m 1\m 1\ 2m y\m
BAGGING r ~ Unif {[n]™} 1-(1-3)" (0-3)"-0-3)
POISSONIZED M ~ Poisson(m g 0
BAGGING r| M~ Unif{[n]M}

Table 1: Parameters p and ¢ from Definition 6 for various sampling schemes Q,,.

Since algorithmic stability compares a model fit on n observations to a model fit on n —1
observations, we need to specify resampling distributions at both sample sizes, that is, Q,
and Q,_1; naturally, to guarantee stability, these two distributions must be similar to each
other. Specifically, we consider the setting where

Qy,—1 is given by the distribution of r ~ Q, conditional on the event r € seq,_qj, (6)

that is, we are conditioning on the event that the nth data point is not contained in the bag.
For example, if Q,, is chosen to be subbagging m out of n points (for some fixed m < n — 1),
then Q,,_1 is equal to the distribution obtained by subbagging m out of n — 1 points.

4. Stability Guarantees for Bagging

In this section, we first present our main stability guarantee when the prediction range Y is
a bounded interval. We then show that this guarantee cannot be improved in general, up to
a small multiplicative factor.

4.1 Main Result: Guarantee for Average-case Stability

We turn to our bound quantifying the average-case stability of derandomized bagging. In
this section, we restrict our attention to settings where the output regression function f is
bounded. We consider the unbounded case in Section 5.1.

To examine the stability of joo (obtained by applying derandomized bagging to a base
algorithm A) our stability results compare the models:

° foo, obtained by running derandomized bagging (Algorithm 2) with base algorithm A,
data set D, and sampling distribution Q,,; and

. féﬁ,, obtained by running derandomized bagging (Algorithm 2) with base algorithm A,
data set D\t, and sampling distribution Q,,_1, constructed as in (6).

SOLOFF, BARBER AND WILLETT

Theorem 8 Let Y = [0,1].* Fiz a distribution Q, on seqp, satisfying Assumptions 5
and 7, and let Q,—1 be defined as in (6). For any algorithm A, derandomized bagging Ase
is (g,0)-stable provided

1 p q

oe? > — . 7

) _4n(1—p+(1—p)2> ®

In particular, since q < %, the above bound implies that (g,9)-stability holds as long as
1 p

oe? > : . 8

S =4n-1) 1-p ®)

We prove Theorem 8, along with all subsequent results, in Appendix A.5
A simple application of Hoeffding’s inequality leads to a similar stability guarantee for
generic bagging. In this result, we compare the models:

e g, obtained by running generic bagging (Algorithm 1) with base algorithm 4, data
set D, and resampling distribution Q,,; and

° f]\;, obtained by running generic bagging (Algorithm 1) with base algorithm A, data
set D\, and resampling distribution Q,_1, constructed as in (6).

Theorem 9 Let) = [0,1]. Fiz a distribution Q, on seqqy satisfying Assumptions 5 and 7,
and let Q1 be defined as in (6). For any algorithm A and any B > 1, generic bagging .ZB

is (5 + \/% log (%),5 + 5’) -stable for any (,9) satisfying Condition (7) and any §' > 0.

If derandomized bagging is guaranteed to satisfy (g,0) stability via (7), then we may
take B > E%log (%) to guarantee (2g,24)-stability of generic bagging. For instance, if
p € (0,1) and § € (0,1) are regarded as constants, Theorem 8 guarantees stability of
derandomized bagging as long as ¢ 2 % In order to guarantee the same level of stability
for generic bagging, we need the number of bags B to be of the same order as the number of
observations n, which is typically unrealistic in practice. More generally, for any fixed B,
the result accounts for the Monte Carlo error in the generic bagging algorithm.

4.1.1 SAMPLING REGIMES FOR SUBBAGGING
Theorem 8 covers a wide range of regimes depending on the choices of €, § and p. In this

section, we give some concrete examples in the case of subbagging, to build intuition:

Proportional subsampling with m o~ n: Suppose we employ subbagging with m = n/2.
The stability condition (7) in the theorem simplifies to 62 > m. More generally, for

4. All theoretical results in this section are stated for Y = [0,1] for simplicity, but it is straightforward
to generalize to the case) = [a, b] by simply replacing (g, §)-stability with ((b — a), §)-stability in the
guarantee.

5. The proof shows a slightly stronger notion of stability, where P¢ {‘f (z) — f\ (ZE)‘ > E} in Equation (4)

is replaced with P {‘f(a:) —fN (x)‘ > e}.

10

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

m = O(n), stability holds with 62 > % Hence, our stability result applies in a variety
of regimes. For instance, if 6 > 0 does not depend on n, bagging satisfies average-case
(e,0)-stability with ¢ = O(n~1/2). We may also take ¢ > 0 fixed and § = O(n~!), or
even 0 = ¢ = O(n~/3) going to zero simultaneously.

Massive subsampling with m = o(n): For massive data sets, it may be computationally
advantageous to subsample a very small fraction of the data (Kleiner et al., 2014). Massive
subsampling, where we take bags of size m = O(n") for some k € (0,1), can be seen to
further enhance stability via our result above. In this case, condition (7) becomes de? > n21_ﬁ.
See Section 7.3 for a discussion of results in the literature in this regime.

Minimal subsampling with m = n — o(n): Massive subsampling, or even subsampling a
constant fraction of the data, often comes with some loss of statistical efficiency. To avoid
this, our result even allows for resampling schemes with m = n—o(n), that is, each subsample
contains nearly the entire data set. For example, taking m = n — n” for some « € (0, 1),
condition (7) becomes 62 > L

~ nk*

4.2 Tightness of Stability Guarantee

In the special case of subbagging, we show that Theorem 8 cannot be improved (beyond
a constant factor) without assuming more about the base algorithm. We only state this
result in the ideal, derandomized case, since this is typically more stable than its finite B
counterpart.

Theorem 10 Let Y = [0,1]. Fizn >m > 1 and § € (0,1/2). There is a base algorithm A

such that subbagging A with m out of n observations is not (g, 0)-stable for any

€<(1—5—n*1)pP{H:Lp(l%—[n(SJ)J}, (9)

where p = % and where the probability is taken with respect to H ~ HyperGeometric(n —
1, [n8],m).

To see how this result compares to the guarantee given in Theorem 8, consider a simple case
where nd and md = npd are integers, and take p < 1. Then

nd n(l1-9§)—1
(npa) ' (T(Lpa—)a)) N 1
n—1 ~)
("p) V2mné(1 = 8)p(1 — p)
where the last step holds by taking Stirling’s approximation to each factorial term in

each Binomial coefficient (and the approximation is accurate as long as n - min {§,1 — 0} -
min {p, 1 — p} is large). Thus the right-hand side of (9) is approximately

P{H = |p(1+[nd)) | } = P{H = npo} =

1 1-6 p

~ . .

2mn 0 1—p

Since we have assumed § < 1/2, we therefore see that stability fails for A* when (approxi-
mately)
1 p
b < — - .
c 4an 1 —p

11

SOLOFF, BARBER AND WILLETT

Derandomized bagging
is (e, 0)-stable for
any base algorithm.

0.15

Error probability &
()
=

0.05

Derandomized bagging
is not (e, 0)-stable
for some base algorithm.

0.0
8.0() 0.05 0.10 0.15 0.20
Error tolerance e

Figure 2: Phase diagram comparing Theorems 8 and 10, with n = 500,p = 0.5.

Up to a constant, this matches the leading term of the stability guarantee in Theorem 8,
demonstrating the tightness of our guarantee.

In Figure 2, we plot a phase diagram comparing the stability guarantee (7) with the
tightness condition (9) for finite n. We take n = 500,p =1/2, and ¢ =p(1 —p)/(n —1) =
1/1996, which are the values of p and ¢ for subbagging with m = n/2 (see Table 1). The
blue line shows, for each 4, the minimum ¢ satisfying (7), and the shaded blue region shows
additional (g,d) pairs satisfying the inequality. This means that, for any base algorithm
A with outputs in Y = [0, 1], its subbagged version is guaranteed to satisfy (e, d)-stability
for any pair (¢,9) in the blue shaded region. Similarly, the red line shows, for each §, the
maximum ¢ satisfying (9). This means that, for any (g,6) in the red shaded region, we can
construct an algorithm A%, again with outputs in Y= [0, 1], such that its subbagged version
fails to be (g, 0)-stable. The narrow white region between the two conditions illustrates the
small gap between the two results.

5. Extensions

In this section, we consider various extensions of our main result. We first discuss two
approaches to the case of unbounded outputs. Next, we show a hardness result explaining
why we cannot obtain a similar guarantee for worst-case stability. Finally, we consider the
implications of our main result for various alternative definitions of stability.

12

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

5.1 Unbounded Outputs

We next extend our main result to algorithms A with unbounded output Y = R. For
derandomized bagging A, to be well-defined, we assume that the expectation

B¢ [A(Dr;€) ()]

exists. For instance, for classical bagging, subbagging, and Bernoulli subbagging, the average
over r ~ Q,, constitutes a finite sum, so we are simply assuming that expectation over the
random seed

Ee [A(D;€) (2)]
exists for any fixed data set D.

In order to establish some control over the scale of the outputs of the fitted model, we
extend our definition of average-case stability to allow for a data-dependent component.
Consider for instance any algorithm A with) = [0,1], and define a new algorithm A’
scaling the outputs by R > 0, that is, A'(D;¢) = R - A(D;¢). If the original algorithm A is
(e, 6)-stable, then the scaled algorithm A’ is (¢R, §)-stable.

We might hope that we can take R to be the empirical range of the algorithm,

R =Range(D,z) = sup E¢[A(Dy;€) (x)]— inf E¢ [A(D;€) (2)].
r:Qn({r})>0 m:Qn({r})>0
However, since this quantity depends (in general) on D and on z, it would not be well-defined
to claim that A is (R, §)-stable universally across all D and all z.

Instead, to allow for a data-dependent range, we consider scaling € by a data-dependent

scale parameter R (D, x), where

R:[J@xY)" xx =Ry
n>0

We now define (g, §, R)-stability to account for data-dependent changes in scale.

Definition 11 Let £,6 > 0 and let R denote a data-dependent range (formally defined
above). An algorithm A is (e,9, R)-stable if, for all data sets D = (Z;)}_, of size n and all
test points x € X,

ii]?g{’f(l‘)—f\i(:r) >5R(D,:p)}§5, (10)
=1

where f = A(D;¢), V= A(DV;¢) and DV = (Zj)ji-

Inspecting the proof of Theorem 8, we only use boundedness to control the variance
of our model predictions E¢ [A(D,;§) ()] as a function of the random bag r ~ Q,,. This
observation leads to the following, more general result.

Theorem 12 Let Y = R. Fiz a distribution O, on seqy, satisfying Assumptions 5 and 7,
and let Q, 1 be defined as in (6). Let (¢,0) satisfy Equation (7). For any algorithm A,
derandomized bagging A is (g,0, R*)-stable, where

R*(D,x) := 2\/Varmgn (Eg [A(Dy;) (x)]) < Range(D, z). (11)

13

SOLOFF, BARBER AND WILLETT

As long as E¢ [A(Dy; €) (x)] is well-defined for every r, the range Range(D, x) is automat-
ically finite for any Q,, with finite support. Furthermore, Theorem 12 strictly generalizes the
stability guarantee of Theorem 8, since R*(D, z) < Range(D,x) < 1 in the case Y= [0, 1].
We present a weaker result for the finite- B regime in Appendix C.

5.1.1 ALTERNATIVE APPROACH: ADAPTIVE CLIPPING

In some settings, for example, with heavy tailed responses, the range in the previous display
or the standard deviation in Equation (11) may be prohibitively large. One way to reduce
the standard deviation R*(D, z) is to post-process the algorithm A. We next consider the
advantages of clipping the output of A to secure greater stability.

Given an interval I = [[,u] and a response § € R, the clipped response Clip; () is defined
as

Clip;(9) == max {{, min {g, u}}. (12)

In Algorithm 3, we define a variant of the derandomized bagging algorithm that allows the
individual bagged predictions fég) (z) to be clipped to some interval I = I(D) that depends
on the full data set. We write ,2(37 1 to denote the algorithm obtained by applying adaptively
clipped bagging with A as the base algorithm. Stability of Algorithm 3 does not follow
immediately from Theorem 12 because (D) may not be the same as I(D\?), so the algorithm
being bagged is itself changing when we perturb the training data. For simplicity, we state
our result for the derandomized limit .ZOQ 7 and give a finite B version in Appendix C.

Algorithm 3 Adaptively Clipped Bagging

input Base algorithm A; data set D with n training points; number of bags B > 1;
resampling distribution Q,,; data-dependent range I(-)
forb=1,...,B do
Sample bag r(®) = (igb), e ,z',(lbb)) ~ Qpn
Sample seed £0) ~ Unif([0, 1])
Fit model f®) = A(D,w);E®)
end for
output Averaged model fB7 7 defined by

oo (@) = £ 34 Clipgpy (/) (2))

Theorem 13 Let Y = R. Fiz a distribution O, on seqq,) satisfying Assumptions &5 and 7,
and let Q,—1 be defined as in (6). Suppose the mapping I(-) from data sets to intervals
satisfies

Lt en (o) < w
=1

Let R(D,x) = length(I(D)) and let (¢,0) satisfy Equation (7). For any algorithm A,
derandomized adaptively clipped bagging Ao 1 is (€,6 + 61, R)-stable.

14

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

As a special case, consider taking I(D) to be the observed range, that is,
I(D) = [mln K-,mang] :
(2 (2

When (Zi)?ill are exchangeable random variables, we can apply Theorem 13 with §' = %
Restricting to the empirical range of the Y;’s does not substantially limit the learned
regression function foo’ 7—it simply requires that predictions cannot lie outside the observed
range of the training data (which is already satisfied by many base algorithms, such as
nearest neighbors or regression trees, and typically would not substantially alter the output
of many other algorithms). More generally, we can take I(D) = [Y(4, Y(n11—k)] for some
fixed k < n/2, where Y(l) <. e < Y(n) denote the order statistics of Y7,...,Y,. In this case,
we have ¢’ = 2£ in (13), which allows for some fraction ¢’ of outliers to be removed when
constructing the data-dependent range, thus ensuring that R (D, z) is not too large.

Of course, there are many other potential strategies for defining the data-dependent range
I(D), and the benefits and drawbacks of these various choices depend on the specific data
distribution and base algorithm. Exploring these options, and designing practical versions
of this procedure to provide accurate fitted models with meaningful stability guarantees, is
an important question for future work.

5.2 Hardness of Worst-case Stability

Our results above establish that (e, d)-stability can be guaranteed for any (bounded) base
algorithm even for very small e—for instance, taking p € (0,1) to be a constant, we can
choose € = O(n~'/2). Next, we show that no analogous result exists for worst-case stability—
indeed, for this stricter definition, stability cannot be guaranteed for any € < p, and therefore
e = O(n~1/?) can only be guaranteed via massively subsampling the data with p = O(n~1/2).

Theorem 14 Fiz Q, and let Y = [0,1].
(i) For any algorithm A, derandomized bagging is worst-case (p,d)-stable for all §.

(i1) If|X| > 1, there is a base algorithm Al such that derandomized bagging is not worst-case
(€,9)-stable for any e < p and § < 1.

Part (i) of the theorem has repeatedly appeared in various forms (see, e.g., Poggio
et al. (2002, Theorem 3.1), Elisseeff et al. (2005, Proposition 4.3) and Chen et al. (2022,
Theorem 5)); in Section 7.3 we discuss how this observation has led some authors on
algorithmic stability to advocate for subsampling a decreasing fraction of the data m = o(n)
as n — oo. In contrast, by moving to average-case stability, our results allow m = O(n) and
even m = n — o(n), enabling far greater accuracy in the fitted models.

The base algorithm AT in the proof of part (i) of the theorem memorizes the training
data:

Al(D) (z):=1{3(&,9) €D : % =x}.

If x = x; for precisely one i € [n], then this training point (z;, y;) has maximal influence on the
value of fo (z)—every bag containing (z;, y;) predicts 1, and every bag not containing (x;, y;)
leads to a predicts 0. This counterexample can be used to show an even stronger hardness

15

SOLOFF, BARBER AND WILLETT

result, for average-case, “in-sample” stability (discussed earlier in Section 2): if x1,..., 2,
are all distinct,
Al 1 ife<p
E T x;) N ()] > E} = -
{‘f 1 foo(l)‘ 0 if6>p’

where fT = ALO(D). Note, however, that for a fixed x, at most one index i € [n] can change
the bagged prediction by p. This limitation of A" provides useful intuition for why we may
expect a stronger result for our main definition of (g, §)-stability, Definition 4, where the
test point x € X is fixed.

5.3 Alternative Frameworks for the Main Result

In this section, we discuss various implications of our main stability guarantee for related
criteria.

5.3.1 STABILITY IN EXPECTATION

In Definition 4, average-case algorithmic stability controls the tail of the distribution of
leave-one-out perturbations. Some authors (e.g., Bousquet and Elisseeff, 2002; Elisseeff et al.,
2005) prefer to work with the expected value of the leave-one-out perturbation. We can
consider a version of average-case stability that works with expected values rather than
probabilities, requiring that

—ZEgjf - M@l <s, (14)

for all data sets D of size n and test points z € X, where f = A(D;€) and fl = A(D\;€).

Corollary 15 In the setting of Theorem 8, for any B, generic bagging Ag satisfies stability
condition (14) at level 3 = By m B, where

_ 1 P q 27
6n,m,B—\/4n <1_p+(1_p)2>+ § (15)

Note that the scaling of 3 in this result is comparable to the scaling of € in Theorem 9 if
we take 4,0’ to be constant. The result holds for any B, including the case of derandomized
bagging by taking B — oo.

5.3.2 STABILITY IN THE LOSS

Building on earlier definitions of stability (Kearns and Ron, 1999; Bousquet and Elisseeff,
2002), Elisseeff et al. (2005, Definition 7) say that a randomized algorithm A satisfies random
hypothesis stability at level 8 with respect to the loss function £ and distribution P if the
following holds:

We{l,..., } E(th)nﬂud (f(n+1) n+1)_€(f\(n+1) n+1) <8, (16)

16

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

where f = A(D;¢), = A(D\:€), D = (X;, Yi)" ;. Our next result records the straight-
forward observation that Corollary 15 implies random hypothesis stability with respect to
any loss ¢ that is Lipschitz in its first argument.

Corollary 16 Let Yy = [0,1]. Fiz a distribution Q, on seqq, satisfying Assumptions 5
and 7, and let Q, 1 be defined as in (6). Let P denote any distribution on X x Y, and let
0:YxY— R denote any loss function that is L-Lipschitz in its first argument. For any
algorithm A and any B, generic bagging Ap satisfies random hypothesis stability (16) at
level B = LfBnm,B, where By m B is defined as in Equation (15).

In fact, our main result implies that the inequality in (16) holds (on average over i € [n])
even conditional on the training data D and the test point (Xy+1, Yn+1), eliminating the
assumption that the data are iid—in fact, in our result, the test point can be adversarially
chosen.

5.3.3 REPLACE-ONE STABILITY

The stability definitions in this paper concern the leave-one-out perturbation ‘ f (z) — fi (z)].

Alternative definitions, used for example py Shalgv—Shwartz et al. (2010), are obtained by
considering a ‘replace-one’ perturbation |f (z) — £ ()|, where

fO=ADD;e) and DO =DV U (Z).

We say that a randomized algorithm A satisfies random replace-one hypothesis stability (
with respect to the loss function ¢ and distribution P if the following holds:

Vie (Lo} By ’e) — 6D (@), 9)] < B. (17)

Stability to leave-one-out perturbations is typically stronger than stability to replace-one
perturbations. To see this, note that, by the triangle inequality, the replace-one perturbation
can be bounded as

|f (@) = f9 (2) | <

f @) = @)+ 19 @) - Y @)

where both terms on the right-hand-side are leave-one-out perturbations. A guarantee for
replace-one stability thus follows immediately from Corollary 15.

Corollary 17 In the setting of Corollary 16, generic bagging satisfies random replace- one

hypothesis stability at level B = 2Ly, m, B, where Bpm B is defined in Equation (15) and f
is obtained by running generic bagging (Algorithm 1) with base algorithm A, data set Dg)
and resampling distribution Q,,.

6. Experiments

In this section, we study the stability of subbagging in simulation experiments. We use scikit-
learn (Pedregosa et al., 2011) for all base algorithms. Code to reproduce all experiments is
available at https://github.com/jake-soloff/subbagging-experiments.

17

https://github.com/jake-soloff/subbagging-experiments

SOLOFF, BARBER AND WILLETT

6.1 Data and Methods

We consider four simulation settings:

e Setting 1: We simulate from the following data generating process:

x;,'d N(0,1y), Y; | X; 2 Bernoulli (

1
1+ exp (—X;&*)) 7

with sample size n = 500 and dimension d = 200, and where 0* = (.1,...,.1) € R%
The base algorithm A is the output of fs-regularized logistic regression, given by

A(D) (z) = fé (z) := <1 + e_xTé) 71, where
A . n . . 1
0= argmin {C; (—Yibg(fG(Xi)) — (1 -Y;)log(1 — fa(&))) + 2H‘9||3} :

We use sklearn.linear_model.LogisticRegression, setting options penalty=12",
C=1e3/n and fit_intercept=False, leaving all other parameters at their default
values.

e Setting 2: Same as Setting 1, changing only the sample size to n = 1000.

e Setting 3: Same as Setting 1, changing only the base algorithm 4 to a neural network
with a single hidden layer. We use sklearn.neural_network.MLPClassifier, setting
hidden_layer_sizes=(40,), solver="sgd", learning_rate_init=0.2, max_iter=8,
and alpha=1e-4, leaving all other parameters at their default values.

e Setting 4: We simulate from the following data generating process:

(X7, a4, v:) S Unif(]0, 1)%) x Unif([—.25, .25]) x Unif([0, 1]),

d
Xij , ,
Y; = Zsin(,J) +a;1{i=1 (mod 3)} + 71 {i = 1 (mod 4)},
: J
7j=1

with n = 500 and d = 40. Note that the algorithm has access to the observed
data D = (X;,Y;) ,, that is, a; and 7; are latent variables used only to generate the
data D. We apply sklearn.tree.DecisionTreeRegressor to train the regression
trees, setting max_depth=50 and leaving all other parameters at their default values.

6.2 Results

Our results are shown in Figure 3. In each setting, we apply the base algorithm A as well
as subbagging Ap with m = n/2 samples in each bag, using B = 10000 bags. The left
panels of Figure 3 show the histogram of leave-one-out perturbations) f (z) — f\i (x)| for

i € {1,...,n}. In the right panels of Figure 3, for a fixed data set and algorithm, we measure

18

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Setting 1: Logistic regression (n = 500, d = 200)

I Base algorithm A b; Base algorithm A
;,? 200 Subbagged algorithm /TB :; 04 = Subbagged algorithm .ATB
<] = Stability guarantee
C?_)_ % for subbagging
£ 100 2.0.2
=2 g8
I N
8.00 0.05 0.10 0.15 0.20 0.25 0.0 0.1 0.2 0.3 0.4
Leave-one-out perturbation |f(z) — fV(z)] Error tolerance &
Setting 2: Logistic regression (n = 1000, d = 200)
600 I Base algorithm A 2 : Base algorithm A
= Subbagged algorithm Ap % 0.4 Subbagged algorithm Ap
£ 400 3 * o ibbasging
g 202
200 =
g 0.0
8.00 0.05 0.10 0.15 0.20 0.25 0.0 0.1 0.2 0.3 0.4

Leave-one-out perturbation | f (x) — f\‘(ac)| Error tolerance €

Setting 3: Neural network (n = 500, d = 200)

Base algorithm

I Base algorithm A

=
e~

Subbagged algorithm _/TB Subbagging
Stability guarantee

for subbagging

Frequency
—
o
(e}
<
[N

Error probability 0

010 015 020 oo 00 0.1 0.2 0.3 0.4
Error tolerance e

8.00 0.05
Leave-one-out perturbation | f(z) — f\(x)|

Setting 4: Regression trees (n = 500, d = 40)

Base algorithm

400 I Base algorithm A
Subbagged algorithm Ap

=
~

= Subbagging
Stability guarantee
for subbagging

Frequency
N
<)

Error probability &

02
8 | 0‘0 \ IIIIIIIIIIIIIIIIIII
.00 0.05 0.10 0.15 0.20 0.25 0.0 0.1 0.2 0.3 0.4
|f (@)= V()] Error tolerance €

Leave-one-out perturbation Range(D.1)

Figure 3: Simulation results comparing the stability of subbagging Ap to that of the
corresponding base algorithm A. Left: Histogram of leave-one-out perturbations.
Right: for each e, the smallest ¢ such that the algorithm is (g, §)-stable in the sense
of Definition 4. Higher curves thus represent greater instability. In all settings,
m =mn/2 and B = 10000.

19

SOLOFF, BARBER AND WILLETT

stability by plotting, for each value of e, the smallest value of § such that the algorithm is
(e, 6)-stable:

1 n
= z_; L fa)- i) >e

In each case, the test point x = X,,41 is generated from the same distribution as X,..., X,.

For logistic regression (Settings 1 and 2), we see that the subbagged algorithm is highly
stable for both values of n—in particular, the blue curves lie below the black dotted line,
showing that subbagged logistic regression satisfies the theoretical guarantee of Theorem 8.
By contrast, for n = 500 and d = 200 (Setting 1), the red curve lies much higher in the
plot, showing greater instability; this reveals that the base algorithm, logistic regression
(with extremely small regularization), is highly unstable in this regime (see, e.g., Candes
and Sur, 2020). For n = 1000 and d = 200 (Setting 2), on the other hand, we see that the
base algorithm is quite stable—indeed, in this setting, each bag is highly unstable (since
m = n/2 = 500), but the stability of subbagging is still comparable to that of the base
algorithm. These first two settings illustrate our theory by showing that the subbagged
algorithm satisfies the stability guarantee regardless of whether the base algorithm is stable.

In Setting 3, we repeat the same experiment where the base algorithm is a neural network.
The neural network base algorithm slightly violates the stability guarantee, and in this case,
subbagging improves the stability.

In Setting 4, we simulate from a more complex data generating process. We again see
that the subbagged algorithm is highly stable—in particular, the blue curve lies below the
black dotted line, showing that subbagged regression trees satisfy the theoretical guarantee
of Theorem 8. By contrast, the red curve lies much higher in the plot, showing greater
instability; this reveals that the base algorithm, a regression tree with a maximum depth of
50, is highly unstable.

7. Discussion and Related Work

In this section, we first discuss some important practical implications of algorithmic stability.
Next, we compare our main question to a prior work attempting to certify stability using
hypothesis testing (Kim and Barber, 2023). Finally, we situate our work in the broader
literature on the stability of bagging, and give some concluding remarks on the implications
of this work.

7.1 The Importance of Stability

Stability guarantees are central in a variety of contexts, despite the fact that many widely-
used practical algorithms are not stable (Xu et al., 2011). For instance, Bousquet and Elisseeff
(2002) establish generalization bounds for stable learning algorithms, and Mukherjee et al.
(2006) show that stability is necessary and sufficient for empirical risk minimization to
be consistent; related works include (Poggio et al., 2004; Kutin and Niyogi, 2002; Freund
et al., 2004). Shalev-Shwartz et al. (2010) identify stability as a necessary and sufficient
condition for learnability. Stability is further relevant to differential privacy guarantees;
assuming worst-case stability (often called “sensitivity” in the privacy literature) is a standard
starting point for constructing differentially private algorithms (Dwork, 2008). In the field

20

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

of conformal prediction, distribution-free coverage guarantees rely upon the stability of the
underlying estimators (e.g., Steinberger and Leeb, 2016, 2023; Ndiaye, 2022; Barber et al.,
2021). We now discuss applications of algorithmic stability to generalization and conformal
inference in greater detail.

7.1.1 STABILITY AND GENERALIZATION

In a landmark work, Bousquet and Elisseeff (2002) greatly expand our understanding of
the connection between stability and generalization. In their telling, what distinguishes
algorithmic stability from the pervasive uniform convergence theory is the following: whereas
the latter aims to control the complexity of the space of learning rules an algorithm A
searches over, the former emphasizes how the algorithm explores that space. Algorithmic
stability notably first emerged as an invaluable tool to obtain generalization bounds for
k-nearest neighbors (Rogers and Wagner, 1978), for which the underlying function class
has unbounded complexity. For algorithms like bagging and nearest neighbors, where the
strongest (nontrivial) guarantees hold for out-of-sample stability, the empirical risk is not
necessarily reflective of test error and instead generalization holds with respect to the
leave-one-out error—that is, the average leave-one-out error is a provably accurate estimate
of the expected prediction error,

% ST UV (X), V) = E[U(f(X), V),
=1

where the expected value is taken with respect to a new draw of (X,Y’) while treating f as
fixed. For an example of how random hypothesis stability (covered in Corollary 16) leads to
polynomial bounds on the generalization error, see Elisseeff et al. (2005, Theorem 9).

7.1.2 PREDICTIVE UNCERTAINTY (QUANTIFICATION

Algorithmic stability also plays an important role in the problem of predictive uncertainty
quantification. Suppose (X, Yi)?;ll are iid draws from an unknown distribution P, and Y;, 1
is unobserved. We wish to construct a prediction interval CA’ma = An,a(XnH) (based on
the training data D = (X;,Y;)! , test covariate X, 1 and learning algorithm .A) that has

guaranteed predictive coverage, that is,
P{Yn—‘rl € én,oc(Xn—‘rl)} >1- Q, (18)

without any restrictions on A or P. If we wish to use an interval of the form C,, , (z) =
[f (z)—¢, f (x)+¢], centered at the learning algorithm’s prediction f (z), a natural approach to
calibrating the radius ¢ is to use the leave-one-out errors R; := |f\I(X;) —Y;| as representative
of the test error | f (Xn+1)—Yny1]. This leads naturally to the classical leave-one-out technique
known as the jackknife:

Coiek () = [f () = éa, f (@) + éal,

where ¢ := Q1-o ({R;};—) is the 1 — a quantile of the leave-one-out errors R;.

21

SOLOFF, BARBER AND WILLETT

If the base algorithm A is unstable, the leave-one-out errors need not be representative
of test error at all. In fact, Barber et al. (2021) construct a pathological example for which
that the jackknife has no coverage, that is,

P {Yn+1 c ég?;k(xn+1)} ~0.

Barber et al. (2021) go on to show that if the base algorithm A is (g, §)-stable, then coverage
can be restored by inflating the radius to ¢, := é, + € and running the procedure at level

o = a—2V/0.

7.2 Is Bagging Needed for Stability?

Various learning algorithms are known to possess stability guarantees, such as k-nearest
neighbors (Rogers and Wagner, 1978; Devroye and Wagner, 1979b), some regularized
regression methods such as ridge regression (Bousquet and Elisseeff, 2002; Wibisono et al.,
2009), and models trained with stochastic gradient descent under smoothness assumptions
(Hardt et al., 2016). Restricting to algorithms that are theoretically known to be stable can
be quite limiting and can sacrifice accuracy in many settings.

We might instead ask whether it is possible to validate empirically that an algorithm A
is stable with respect to a given data generating distribution. However, Kim and Barber
(2023) show that it is essentially impossible to construct powerful hypothesis tests certifying
(e, 9)-stability, without imposing assumptions on the algorithm or on distribution of the

data. In their framework, we observe iid random variables D = (Z;)¥; where Z; X P We
wish to construct a test 7' that returns an answer 1 if we are confident that A is (e, §)-stable,
or a 0 otherwise. Suppose we require that T obeys the following constraints:

(a) T satisfies a universal bound on falsely declaring stability, that is, P {T = 1} < « for
any A that is not (g,0)-stable (with respect to distribution P and sample size n), and

(b) T is a black-box test (see Kim and Barber, 2023, Definition 2), roughly meaning that
T is only constructed using zeroth order oracle access to the algorithm A. That is,
we may base our accept/reject decision on evaluating the model A on data D that is
simulated or resampled from the training data D, and compute predictions at test
points x that are generated similarly, an unlimited number of times.

If a test 7" satisfies both properties (a) and (b) with no further assumptions on the distribution
P or on the algorithm A, their results imply that the power of T" is upper bounded by

IP’{T - 1} < (1 - §)"Ning,

for any A that is (g,9)-stable (with respect to distribution P and sample size n). In
particular, any universally valid black-box test has low power, unless the available data set
size N is far larger than the sample size n for which we want to test stability.

In light of this impossibility result, a natural question is whether it is possible to convert
any algorithm A into an (g,0)-stable algorithm A. Our work establishes the possibility
of black-box stabilization, that is, guaranteeing some quantifiable level of stability with no
knowledge of the inner workings of the base algorithm. Our results support the use of
bagging in such settings by certifying a certain level of (e, §)-stability.

22

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

7.3 Prior Work on the Stability of Bagging

Biithlmann and Yu (2002) suggest (sub)bagging is most successful as a smoothing operation,
softening hard threshold rules. They measure the instability of a procedure by its asymptotic
variance: A is stable at = € X if f (z) & f (2) as n — oo, for some fixed f. For some hard
thresholding rules, they show bagging can reduce asymptotic variance. See also Buja and
Stuetzle (2000); Friedman and Hall (2007).

Grandvalet (2004, 2006) exposes some limitations of the variance-reduction perspective.
In particular, bagging need not reduce variance, and in simple examples its improvement
over the base procedure need not relate to the original procedure’s variance. Grandvalet
illustrates through experiments a robustness property of bagging: highly influential data
points are systematically de-emphasized. The role of p in our main result, Theorem 8§,
underscores Grandvalet’s observation that the main stabilizing effect of bagging comes from
the removal of high-leverage data points from a certain fraction of bags.

Elisseeff et al. (2005) generalize standard notions of algorithmic stability (Bousquet and
Elisseeff, 2002) to randomized algorithms and study (sub)bagging in this context. We can
directly compare Corollary 16 to the work of Elisseeff et al. (2005, Proposition 4.4), who
also study the random hypothesis stability of subbagging with respect to an L-Lipschitz
loss £. Their result shows subbagging satisfies condition (14) at the level

/8 = LpB.A,TrM (19)

where 54, denotes the random hypothesis stability of the base algorithm 4 on data sets of
size m with respect to ¢; loss. A similar result (under stronger assumptions) was obtained
earlier by Poggio et al. (2002).

We can interpret this result in two ways. First, if the base algorithm A is stable, the
guarantee (19) suggests that bagging maintains or improves upon stability (similar results
have been obtained for boosting; see, e.g., Kutin and Niyogi, 2001). Generally, we expect the
stability of the base algorithm to improve with the sample size (i.e., S4m > Ban for m < n),
so (19) does not necessarily imply subbagging improves upon the stability of running the
base algorithm 4 on the full data set. Second, the result of Elisseeff et al. (2005) shows
that we can achieve random hypothesis stability 3 = O(n~'/2) by taking p = O(n~1/2). By
contrast, Corollary 16 shows subbagging even half the data (p = 0.5) can achieve random
hypothesis stability 8 = O(n~1/2).

Chen et al. (2022, Theorem 5) consider subbagging when m = o(y/n) and with iid data.
Specializing their result to the case of learning algorithms with bounded outputs, they
guarantee worst-case stability at the level € = o(n_l/Q) as long as B > n. By contrast,
our result does not require iid data, and gives a faster rate ¢ = o(n=%/%) for fixed § and
m = o(y/n) (as well as results for larger m, e.g., for m = O(n)).

7.4 Conclusion

Distribution-free uncertainty quantification yields principled statistical tools which input
black-box machine learning models and produce predictions with statistical guarantees, such
as distribution-free prediction or calibration. Assumption-free stability is an important
addition to this list, with a number of practical implications. Our work establishes assumption-
free stability for bagging applied to any base algorithm with bounded outputs. These results

23

SOLOFF, BARBER AND WILLETT

suggest several avenues for future investigations, including formalizing lower bounds for
distribution-free, black-box stabilization and characterizing the (sub)optimality of bagging.

Acknowledgments

RFB was supported by the National Science Foundation via grants DMS-1654076 and
DMS-2023109, and by the Office of Naval Research via grant N00014-20-1-2337. JAS was
supported by NSF DMS-2023109. RW was supported by NSF DMS-2023109, AFOSR
FA9550-18-1-0166, NSF DMS-AWDO00000326 and Simons Foundation MP-TMPS-00005320.

Appendix A. Proofs

This section contains proofs of all theoretical results from the main paper.

A.1 Proof of Theorem 8
We abbreviate predicted values using ¢ = foo(:v) and ¢\ == ﬁ}oz (). Define

»el,

the set of data points with large leave-one-out perturbation, and let K = |K|. From
Definition 4, we want to show K < nd. Summing all the inequalities defining K gives

K= {ie[n]:)ﬂ—gj\i

Ke<) ’y - y\‘ = L (K).
1ERL

We now bound the error L;(K) on the right-hand side.
Step 1: Simplifying the leave-one-out perturbation. For any bag r € seq[,, denote the
value of our prediction using data D, by

5" = Ee[A(Dr; €)()].
The aggregate prediction ¢ can be expressed as
§=Erng, ¢ [AD:)(@)] = Erng, [0,
while §* can be expressed as
9V =Erng, £ [A(D):)(2)] =Erno, [§]i & 7],

where the last step holds by symmetry (Assumption 5). Using the definition of conditional
expectation, we have

=3V =Ereo, 1 -3 |i ¢7]
1

= o Breen [¢)]

24

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Step 2: Expressing L1(K) as an expectation. Define
si = sign(g — 9V) - Liex.

For each i € K, |§ — V| = s;(§) — §\%), so by Step 1,
1 ~ ~(r
L (K) = T pliron [(y —9") Zsi1i€r] : (20)

Step 3: Bounding Ly(K). Since (") has mean §j, we may rewrite the right-hand side of (20)

)|

1
Li(K) < ST Var (Z 51-1Z-QT>, (21)

i

1 ~ ~(r
Ly(K) = ﬂEan [(y -9 <Z $iligr —E

Applying Cauchy—Schwarz,

where we have used Var(j(") < %, known as Popoviciu’s inequality, which uses (") € [0, 1].
We calculate the other variance term as

Var (Z sili@) =p(1—p) Z 812 - QZ SiS;j

% i 1#]

—w-p+0 oY)

1 (2

<K (p(l-p)+4q),
since ¢ > 0 and >, s? = >, 1;cx = K. Combining everything,

Ke < 2(11_]9)\/K(p(1—p)+q}

Choosing (e,0) to satisfy (7) implies K < nd.

A.2 Proof of Theorem 9

Let fB denote the result of bagging A on D with B bags, and similarly fl\; is the result of
bagging A on DV with B bags. We want to show

1 « ; A\ /2 4
n;]}”&r{]fg(a:) — fg@)] >e+ BIOg(S/} <644,

25

SOLOFF, BARBER AND WILLETT

where £ = (€M), ... 6By andr = (rM), ... #(B)) capture the randomness in the algorithm A
and bagging, respectively. By the triangle inequality and union bound,

;ZFQ{U%@%—¥@N>E+ k%ﬁ}
Sing,r{‘fB(w)_foo(x) > % Og;}
;1 zjﬁn> ()| > <}

+HZ%{@W>¥M>¢m§}
=1

By Theorem 8 the middle term on the right-hand side is at most 6. By Hoeffding’s inequality,

2 A 4 5
Per {‘fB(x) — fool(@)| > 2lBlog5/} < 35

and similarly for | fl\;(x) — ()]

A.3 Proof of Theorem 10
Let K =1+ |0n] and n = % > §. For any positive integer m, define

Aﬁ((Xl,Yl), (Xm,Y) _1{ZX> }

Define D = {(z;,v;)}"; where 2; = 1 for i < K and z; = 0 for ¢ > K. For a bag r
consisting of m indices sampled Without replacement, the algorithm A* therefore returns the
prediction g(r) = 1{>_,, X; > & } Let y denote the average prediction, i.e., the result of
subbagging A?, and let §\: denote the average prediction over bags excluding ¢. It suffices to
show that | — §\!| > ¢ for each i with z; = 1, since we then have

1 : K
S {lg-gV el =S =g >
nl,zl n

verifying that A? fails to be (e,6)-stable. Let) denote the average over all bags containing i.
Then for any ¢ < K and j > K (i.e., X; =1 and X; =0), by symmetry we can calculate

§="Erno,[i(r)]

= B0, () |1 < K]+ "R B, [3() | 1 > K]
)

(]
= NErng, [9(r) [i1 =i + (1 = n)Erg, [4(r) | i1 = j]
—nEmgn[()llerH(l— MEr,[9(r) | j € 7]
=) +(1—n)

26

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Similarly, we have
= PErng, [§(r) | i € 7] + (1 = p)Erng, [9(r) | i & 7]
=pi' + (1 -3\

Combining these calculations,

-9 =) =y () @ =)

1-—p 1
Similarly, noting that P{j € r |i € r} = %_11, we have
n—1 n—1 ’

where %/ averages 7(r) over bags containing both i and j, and similarly "\ averages over
bags containing i and not j. Similarly, §7 = 2=1ji 4 %Qj\i, and therefore, ' — 7 =

n—m
n—1

(5N — §7\). We write §°V and §7\¢ as hypergeometric tail probabilities:

Y mK
yZ\J = IEDHNHyperGeometric(n72,K7l,mfl) {1 +H > n}

y mK
yJ\Z = IP)HNHyperGeometric(n—2,K—1,m—1) {H > n } .

Combining our findings,

AiA\i:p(l—n)n—m VYAV
g9 - T @Y =)

m(l—n mK
= 75_1)PH~HyperGeometric(n2,K1,m1) {H = \\J }

Now let h = Lmn—KJ Recalling n = %,

. i m(l—n)
Y- y\z - ﬁprHyperGeometric(n—Q,K—Lm—l) {H = h}

m(1—n) (50570
n—1 (”_2)

m—1
m(1—n) (5)G) 2

=l ()R
~m=h (5 ()

no (%)
i ——_
- H~HyperGeometric(n—1,K—1,m) -

n
> (1 —0— nil)p]P)HNHyperGeometric(nf1,K71,m) {H = p(l + LT’L(SJ)J}
> g,

where the last step holds by assumption on e. This verifies that (e, §)-stability fails to hold,
and thus completes the proof.

27

SOLOFF, BARBER AND WILLETT

A.4 Proof of Theorem 12

This result follows from the proof of Theorem 8 if we substitute Equation (21) with

Ll (IC) < }2321(1)_’;3) Var <XZ: Si1i€r>-

A.5 Proof of Theorem 13

By the triangle inequality,

% S 1 {1 faos(@) — £ ()] > clength(1(D))}
=1

n

Ly, | foo (z) = fY (2)]

=5 R(D, z)

- > e, 1(D) = I(DV)

i=1

+ = Z { #IDV)}

It suffices to show that the first term on the right-hand side is at most §.

Let Iy := I(D) denote the interval based on the full data set. Define a new algorithm A*
that clips the output to Iy regardless of the input data set. That is, for any data set D’ and
test point x € X,

Ee [Clipz, (A(D';€)(z))] — inf I

length(Ip) '
This modified base algorithm has bounded outputs—that is, A*(D')(z) € [0, 1]. Let f* =
A% (D) denote the result of derandomized bagging (Algorithm 2) on the modified base

algorithm A4*, and similarly let f*\l jZO(D\’) For any i € [n], on the event I(D) = I(D\?),
we have

A(D)(x) =

[fooa(z) = fY @)

Hence, applying Theorem 8 to the modified base algorithm A*,
n (@) = J (@) N .
fz R T el =10 <3 1 {|f@) - @) > ef <5
’ i=1

completing the proof.

A.6 Proof of Theorem 14
(i) Fix A, D,z, and let fi, = E,.q, ¢[f") | i € r]. Observe that f = pfi + (1 —p) A

| foo(@) = [()| = pl flo(z) = fai(a)| < p
for all 7. This proves (p,0)-stability, and therefore, (p, §)-stability holds for all 4.

28

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

(ii) Let AY(D)(x) = 1{3(&,§) € D : & = x}—i.e., the algorithm checks whether = belongs
to the training bag. Take D = (z;,y;);~, such that every z; is unique. Then, for each i,

i () = 0, whereas fuo (1) = p.

A.7 Proof of Corollary 15
Integrating Hoeffding’s inequality,

s

R R 1
Egolfo(2) — fol(@)| < /O 2exp (~2B1%) dt < || -

and similarly for |f]\31(x) — fu ()]
By Theorem 18 (given below),

;;’fm(x)—féé(w)‘ < \/4171 <1fp+ (1 —qp)Z)'

Combining these bounds via the triangle inequality completes the proof.

A.8 Proof of Corollary 16
Since the loss is L-Lipschitz,

(ZymHi pe (f5(Xni1), Yar1) = L(FY (Xnp), Yn-‘rl)‘

< LE(Zi),lenigP,&r ‘fB(Xn—H) - fl\si(Xn—i—l)‘

E

n

1
=LE, ip | 2 Ber
& P

fo(Xnt1) = £ (Xos)|
The result follows upon applying Corollary 15.

Appendix B. Stability Guarantee in /;

In the main text, we establish guarantees for both worst-case and average-case stability.
These two notions can be viewed as the /o, and ¢; norms (respectively) of the sequence of
leave-one-out perturbations (| f(z) — f\’(x)|)?:1 Our next result interpolates between these
two settings by providing a guarantee for the £, norm for any k > 0. We state the result in
the derandomized case for simplicity.

Theorem 18 In the setting of Theorem 8, define

C(Q) = min{\/;n <1€p+ @ _qp)2>,p}.

Suppose C(Qy,) < p. Then, for any k > 0, derandomized bagging A satisfies

=

=1

1/k
. N ik
Fool() — ;ﬁ(a:)‘) < C(Qn)Q/max{k,?}pl—Q/max{k,2}

29

SOLOFF, BARBER AND WILLETT

This result interpolates between some of our main stability guarantees. For instance, as
k — oo, Theorem 18 yields

(@) = ()| <

max
i=1,....n

recovering part (i) of Theorem 14. Corollary 15 covers the special case k = 1

fz\foo)| < 0(Qu).

in the derandomized setting (B — o0). Finally, setting k = 2, by Markov’s inequality,

—Z {[fset) = fli(a)] > }SCQ;Q"),

recovering Theorem 8.

Proof We first prove the result for k = 2. We use the same notation as in the proof of
Theorem 8, additionally defining L; = \g X = sign (¢ (y\l) Following the same
line of reasoning as in the proof of Theorem 8,

1213 =Y siLi- (5 -9V

i=1
= Zn:SzLi - E, {ZQ - y(r)"‘ ¢ r}
i=1
=E, [_pgsiLi : (Z/ — g) Z¢T]
—E, (y _ y(r)) llp inl siLi - (igr)]

1

< ——, | Var,
~2(1-p)

Expanding the variance term,

ar (Z siLili¢T> =p(l— ZSZLQ — qulL s; L
[i#]

—p)+Q)ZS?L?—Q<ZSiLi)2
—p)+Q)ZL?-

30

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

After some rearranging, we have /13" 2 < \/41n (% + ﬁ). By part (i) of Theo-
rem 14, we have /2> | L2 < C(Q,). Since (1Y, LK) ¥ is monotone in k, this also
implies the result for k < 2. For k > 2, we again use 1/~ Y% | L? < C(Q,) and max; L; < p:

& 1/k Lo 1/k
1 k <2 2, k—2 < 2/k, 1-2/k
(5) < (5] =aorm

completing the proof. |

Appendix C. Unbounded Outputs with Finite B
In this section, we present analogous results to Theorems 12 and 13 for the finite B case.

Theorem 19 Let Y = R. Fiz a distribution Q, on seqqy satisfying Assumptions § and 7,
and let Q,_1 be defined as in (6). Let (g,0) satisfy Equation (7) and fix &' > 0. For any

algorithm A, generic bagging Ap is (8 + \/% log (%), §d+4, ﬁ) -stable, where

ROD,2) = s ADué)x)— nf AD)(a). (22)
reseqy,),£€[0,1] reseqp,),¢€[0,1]

Theorem 19 is proved the same way as Theorem 9, where we apply Theorem 12 instead
of Theorem 8. Next, we present our result for adaptively clipped bagging in the finite-B
regime.

Theorem 20 Let Y = R. Fiz a distribution Q, on seqq,) satisfying Assumptions &5 and 7,
and let Q,—1 be defined as in (6). Suppose the mapping to intervals I satisfies

—Zl{]) # I(DV)} < 6;. (23)

Let R(D,x) = length(I(D)), let (¢,0) satisfy Equation (7) and fiz 6’ > 0. For any algo-
rithm A, adaptively clipped bagging ./IB,[18 (5 + 4 /% log (%), or+6+ 0, R) -stable.

Proof As in the proof of Theorem 13,
1 < A i
=3 P{Ifps@) - fi (@) > e R(D,2) |
=1

n A\i
<o+ — ZIP’ ’fBI >D;)”(x)‘>s,l(D):I(D\i)

From this point on, following the same arguments as in the proof of Theorem 13, completing
the proof via an application of Theorem 9. []

31

SOLOFF, BARBER AND WILLETT

References

Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan, Samuel
Madden, Barzan Mozafari, and Ion Stoica. Knowing when you’re wrong: building fast
and reliable approximate query processing systems. In International Conference on
Management of Data (SIGMOD), pages 481-492, 2014.

Savina Andonova, Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. A simple
algorithm for learning stable machines. In European Conference on Artificial Intelligence
(ECAI), pages 513-517, 2002.

Rina Foygel Barber, Emmanuel J. Candes, Aaditya Ramdas, and Ryan J. Tibshirani. Predic-
tive inference with the jackknife+. Ann. Statist., 49(1):486-507, 2021. ISSN 0090-5364,2168-
8966. doi: 10.1214/20-A0S1965. URL https://doi.org/10.1214/20-A0S1965.

Sumanta Basu, Karl Kumbier, James B. Brown, and Bin Yu. Iterative random forests to
discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. USA, 115
(8):1943-1948, 2018. ISSN 0027-8424,1091-6490. doi: 10.1073/pnas.1711236115. URL
https://doi.org/10.1073/pnas.1711236115.

Shai Ben-David, David Pal, and Hans Ulrich Simon. Stability of k-means clustering. In
International Conference on Computational Learning Theory (COLT), pages 20-34, 2007.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2

(3):499-526, 2002. ISSN 1532-4435,1533-7928. doi: 10.1162/153244302760200704. URL
https://doi.org/10.1162/153244302760200704.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996a.

Leo Breiman. Heuristics of instability and stabilization in model selection. Ann. Statist., 24
(6):2350-2383, 1996b. ISSN 0090-5364,2168-8966. doi: 10.1214/a0s/1032181158. URL
https://doi.org/10.1214/a0s/1032181158.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Peter Bithlmann and Bin Yu. Analyzing bagging. Ann. Statist., 30(4):927-961, 2002. ISSN
0090-5364,2168-8966. doi: 10.1214/a0s/1031689014. URL https://doi.org/10.1214/
a0s/1031689014.

Andreas Buja and Werner Stuetzle. Smoothing effects of bagging. Preprint. ATéT Labs-
Research, 2000.

Emmanuel J. Candeés and Pragya Sur. The phase transition for the existence of the
maximum likelihood estimate in high-dimensional logistic regression. Ann. Statist., 48
(1):27-42, 2020. ISSN 0090-5364,2168-8966. doi: 10.1214/18-A0S1789. URL https:
//doi.org/10.1214/18-A0S1789.

Qizhao Chen, Vasilis Syrgkanis, and Morgane Austern. Debiased machine learning without
sample-splitting for stable estimators. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

32

https://doi.org/10.1214/20-AOS1965
https://doi.org/10.1073/pnas.1711236115
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1214/aos/1032181158
https://doi.org/10.1214/aos/1031689014
https://doi.org/10.1214/aos/1031689014
https://doi.org/10.1214/18-AOS1789
https://doi.org/10.1214/18-AOS1789

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Luc P. Devroye and T. J. Wagner. Distribution-free performance bounds for potential function
rules. IEEE Trans. Inform. Theory, 25(5):601-604, 1979a. ISSN 0018-9448,1557-9654.
doi: 10.1109/TIT.1979.1056087. URL https://doi.org/10.1109/TIT.1979.1056087.

Luc P. Devroye and Terry J. Wagner. Distribution-free inequalities for the deleted and
holdout error estimates. IEEE Trans. Inform. Theory, 25(2):202-207, 1979b. ISSN
0018-9448,1557-9654. doi: 10.1109/TIT.1979.1056032. URL https://doi.org/10.1109/
TIT.1979.1056032.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop
on multiple classifier systems, pages 1-15. Springer, 2000.

Cynthia Dwork. Differential privacy: a survey of results. In Theory and applications of
models of computation, volume 4978 of Lecture Notes in Comput. Sci., pages 1-19. Springer,
Berlin, 2008. ISBN 978-3-540-79227-7; 3-540-79227-9. doi: 10.1007/978-3-540-79228-4\ _1.
URL https://doi.org/10.1007/978-3-540-79228-4_1.

Cynthia Dwork and Vitaly Feldman. Privacy-preserving prediction. In International
Conference on Computational Learning Theory (COLT), pages 1693-1702, 2018.

B. Efron. Bootstrap methods: another look at the jackknife. Ann. Statist., 7(1):1-
26, 1979. ISSN 0090-5364,2168-8966. URL http://links.jstor.org/sici?sici=
0090-5364(197901)7:1<1:BMALAT>2.0.C0;2-6&origin=MSN.

Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. Stability of randomized
learning algorithms. J. Mach. Learn. Res., 6:55-79, 2005. ISSN 1532-4435,1533-7928.

Yoav Freund, Yishay Mansour, and Robert E. Schapire. Generalization bounds for averaged
classifiers. Ann. Statist., 32(4):1698-1722, 2004. ISSN 0090-5364,2168-8966. doi: 10.1214/
009053604000000058. URL https://doi.org/10.1214/009053604000000058.

Jerome H. Friedman and Peter Hall. On bagging and nonlinear estimation. J. Statist. Plann.
Inference, 137(3):669-683, 2007. ISSN 0378-3758,1873-1171. doi: 10.1016/j.jspi.2006.06.002.
URL https://doi.org/10.1016/j.jspi.2006.06.002.

Yves Grandvalet. Bagging equalizes influence. Machine Learning, 55(3):251-270, 2004.

Yves Grandvalet. Stability of bagged decision trees. In Scientific Meeting of the Italian
Statistical Society (SIS), pages 221-230, 2006.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning (ICML),
pages 1225-1234. PMLR, 2016.

Edward F Harrington. Online ranking/collaborative filtering using the perceptron algorithm.
In International Conference on Machine Learning (ICML), pages 250257, 2003.

M Kearns and Dana Ron. Algorithmic stability and sanity-check bounds for leave-one-out
cross vaildation. Neural Computation, 11(6):1427-1453, 1999.

33

https://doi.org/10.1109/TIT.1979.1056087
https://doi.org/10.1109/TIT.1979.1056032
https://doi.org/10.1109/TIT.1979.1056032
https://doi.org/10.1007/978-3-540-79228-4_1
http://links.jstor.org/sici?sici=0090-5364(197901)7:1%3C1:BMALAT%3E2.0.CO;2-6&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(197901)7:1%3C1:BMALAT%3E2.0.CO;2-6&origin=MSN
https://doi.org/10.1214/009053604000000058
https://doi.org/10.1016/j.jspi.2006.06.002

SOLOFF, BARBER AND WILLETT

Byol Kim and Rina Foygel Barber. Black-box tests for algorithmic stability. Information
and Inference: A Journal of the IMA, 12(4):2690-2719, 10 2023. ISSN 2049-8772. doi:
10.1093/imaiai/iaad039. URL https://doi.org/10.1093/imaiai/iaad039.

Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael 1. Jordan. A scalable
bootstrap for massive data. J. R. Stat. Soc. Ser. B. Stat. Methodol., 76(4):795-816, 2014.
ISSN 1369-7412,1467-9868. doi: 10.1111/rssb.12050. URL https://doi.org/10.1111/
rssb.12050.

Samuel Kutin and Partha Niyogi. The interaction of stability and weakness in AdaBoost.
University of Chicago Department of Computer Science, 2001.

Samuel Kutin and Partha Niyogi. Almost-everywhere algorithmic stability and generalization
error. In Conference on Uncertainty in Artificial Intelligence (UAI), page 2757282, 2002.

Kasper Green Larsen. Bagging is an optimal PAC learner. In The Thirty Sizth Annual
Conference on Learning Theory, pages 450-468. PMLR, 2023.

Daniel LeJeune, Hamid Javadi, and Richard Baraniuk. The implicit regularization of
ordinary least squares ensembles. In International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 3525-3535. PMLR, 2020.

Daniel LeJeune, Pratik Patil, Hamid Javadi, Richard G. Baraniuk, and Ryan J. Tibshirani.
Asymptotics of the sketched pseudoinverse. SIAM Journal on Mathematics of Data
Science, 6(1):199-225, 2024. doi: 10.1137/22M1530264. URL https://doi.org/10.
1137/22M1530264.

Nicolai Meinshausen and Peter Bithlmann. Stability selection. J. R. Stat. Soc. Ser. B Stat.
Methodol., 72(4):417-473, 2010. ISSN 1369-7412,1467-9868. doi: 10.1111/j.1467-9868.2010.
00740.x. URL https://doi.org/10.1111/j.1467-9868.2010.00740.x.

Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. Learning theory: stability
is sufficient for generalization and necessary and sufficient for consistency of empirical risk
minimization. Adv. Comput. Math., 25(1-3):161-193, 2006. ISSN 1019-7168,1572-9044.
doi: 10.1007/s10444-004-7634-z. URL https://doi.org/10.1007/s10444-004-7634-z.

Fugene Ndiaye. Stable conformal prediction sets. In International Conference on Machine
Learning (ICML), pages 16462-16479. PMLR, 2022.

Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International Workshop
on Artificial Intelligence and Statistics, pages 229-236. PMLR, 2001.

Pratik Patil, Jin-Hong Du, and Arun Kumar Kuchibhotla. Bagging in overparameterized
learning: Risk characterization and risk monotonization. J. Mach. Learn. Res., 319:1-113,
2023.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

34

https://doi.org/10.1093/imaiai/iaad039
https://doi.org/10.1111/rssb.12050
https://doi.org/10.1111/rssb.12050
https://doi.org/10.1137/22M1530264
https://doi.org/10.1137/22M1530264
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1007/s10444-004-7634-z

BAGGING PROVIDES ASSUMPTION-FREE STABILITY

Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Alex Rakhlin. Bagging regularizes.
Technical report, MIT, 2002.

Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions for
predictivity in learning theory. Nature, 428(6981):419-422, 2004.

Zhimei Ren, Yuting Wei, and Emmanuel Candes. Derandomizing knockoffs. J. Amer. Statist.
Assoc., 118(542):948-958, 2023. ISSN 0162-1459,1537-274X. doi: 10.1080/01621459.2021.
1962720. URL https://doi.org/10.1080/01621459.2021.1962720.

W. H. Rogers and T. J. Wagner. A finite sample distribution-free performance bound for
local discrimination rules. Ann. Statist., 6(3):506-514, 1978. ISSN 0090-5364,2168-8966.
URL http://links.jstor.org/sici?sici=0090-5364(197805)6:3<506:AFSDPB>2.0.
CO0;2-M&origin=MSN.

Rajen D. Shah and Richard J. Samworth. Variable selection with error control: another
look at stability selection. J. R. Stat. Soc. Ser. B. Stat. Methodol., 75(1):55-80, 2013.
ISSN 1369-7412,1467-9868. doi: 10.1111/j.1467-9868.2011.01034.x. URL https://doi.
org/10.1111/35.1467-9868.2011.01034 .x.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,
stability and uniform convergence. J. Mach. Learn. Res., 11:2635-2670, 2010. ISSN
1532-4435,1533-7928.

Lukas Steinberger and Hannes Leeb. Leave-one-out prediction intervals in linear regression
models with many variables. arXiv preprint arXiw:1602.05801, 2016.

Lukas Steinberger and Hannes Leeb. Conditional predictive inference for stable algorithms.
Ann. Statist., 51(1):290-311, 2023. ISSN 0090-5364,2168-8966. doi: 10.1214/22-a0s2250.
URL https://doi.org/10.1214/22-a0s2250.

Giorgio Valentini and Francesco Masulli. Ensembles of learning machines. In Italian workshop
on neural nets (WIRN), pages 3-20, 2002.

Andre Wibisono, Lorenzo Rosasco, and Tomaso Poggio. Sufficient conditions for uniform sta-
bility of regularization algorithms. Computer Science and Artificial Intelligence Laboratory
Technical Report, MIT-CSAIL-TR-2009-060, 2009.

Huan Xu, Constantine Caramanis, and Shie Mannor. Sparse algorithms are not stable: A
no-free-lunch theorem. IEEFE transactions on pattern analysis and machine intelligence,
34(1):187-193, 2011.

Bin Yu. Stability. Bernoulli, 19(4):1484-1500, 2013. ISSN 1350-7265,1573-9759. doi:
10.3150/13-BEJSP14. URL https://doi.org/10.3150/13-BEJSP14.

35

https://doi.org/10.1080/01621459.2021.1962720
http://links.jstor.org/sici?sici=0090-5364(197805)6:3%3C506:AFSDPB%3E2.0.CO;2-M&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(197805)6:3%3C506:AFSDPB%3E2.0.CO;2-M&origin=MSN
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1214/22-aos2250
https://doi.org/10.3150/13-BEJSP14

	Introduction
	Preview of Main Results

	Algorithmic Stability
	Bagging and its Variants
	Generic Bagging
	The Resampling Distribution

	Stability Guarantees for Bagging
	Main Result: Guarantee for Average-case Stability
	Sampling Regimes for Subbagging

	Tightness of Stability Guarantee

	Extensions
	Unbounded Outputs
	Alternative Approach: Adaptive Clipping

	Hardness of Worst-case Stability
	Alternative Frameworks for the Main Result
	Stability in Expectation
	Stability in the Loss
	Replace-one Stability

	Experiments
	Data and Methods
	Results

	Discussion and Related Work
	The Importance of Stability
	Stability and Generalization
	Predictive Uncertainty Quantification

	Is Bagging Needed for Stability?
	Prior Work on the Stability of Bagging
	Conclusion

	Proofs
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Corollary 15
	Proof of Corollary 16

	Stability Guarantee in General Lk Norms
	Unbounded Outputs with Finite B

