2312.02277v4 [math.OC] 18 Jun 2024

.
.

arxiv

ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum
Coupled Compositional Stochastic Optimization

Bokun Wang* Tianbao Yang*

Abstract

This paper revisits a class of convex Finite-Sum Coupled Compositional Stochastic Opti-
mization (cFCCO) problems with many applications, including group distributionally robust
optimization (GDRO), learning with imbalanced data, reinforcement learning, and learning to
rank. To better solve these problems, we introduce an efficient single-loop primal-dual block-
coordinate proximal algorithm, dubbed ALEXR. This algorithm leverages block-coordinate
stochastic mirror ascent updates for the dual variable and stochastic proximal gradient
descent updates for the primal variable. We establish the convergence rates of ALEXR in both
convex and strongly convex cases under smoothness and non-smoothness conditions of involved
functions, which not only improve the best rates in previous works on smooth cFCCO problems
but also expand the realm of cFCCO for solving more challenging non-smooth problems such as
the dual form of GDRO. Finally, we present lower complexity bounds to demonstrate that the
convergence rates of ALEXR are optimal among first-order block-coordinate stochastic algorithms
for the considered class of cFCCO problems.

1 Introduction

In this paper, we focus on the following class of convex finite-sum coupled compositional optimization
(cFCCO) problems:

iy F(2) =+ zl Fi(gi()) + (), where gi(x) = Be,op,[g:(3: G, (1.1)

where X c R? is a convex closed set, g; : R? = R™ is convex while f; : R - R and r: R¢ - Ru {+0c0}
are closed proper convex. The problem (1.1) is more challenging than empirical risk minimization in
machine learning and conventional two-level stochastic compositional optimization (SCO) [1, 2] due
to some unique challenges. Firstly, computing the gradient of each term f;(g;(x)) poses difficulties
because the inner function g; is in an expectation form. Therefore, existing algorithms based on
stochastic gradient descent do not apply to (1.1). Second, the FCCO problems involve a substantial
number of inner functions g; coupled with the outer summation index ¢, making FCCO distinct
from previous SCO problems with a single inner function [1, 2].

The problem (1.1) is closely related to the empirical X-risk minimization introduced in [3] to
formulate many objectives in machine learning [4, 5, 6, 7, 8]. Several existing algorithms have
been proposed to solve FCCO problems with provable convergence guarantees [4, 5, 9, 10, 11, 12].
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However, most existing results are devoted to non-convex FCCO where the functions f; and g;
are non-convex, yielding slow convergence to stationary points. Despite the global convergence
guarantees established for convex problems in [5, 10], these results do not simultaneously achieve
three crucial desiderata: (i) optimal rate in terms of the accuracy level € of the objective gap or
the distance to optimal solution; (ii) parallel speed-up through both inner and outer mini-batches;
(iii) single-loop algorithmic design. In particular, the analysis of the SOX algorithm in [5] either
lacks parallel speed-up in terms of the inner batch size or only achieves a sub-optimal rate in terms
of € for convex problems. The double-loop algorithm MSVR [10], while achieving the optimal rate in
terms of € for the objective gap of a convex objective, exhibits only partial parallel speed-up with
the inner mini-batch size (see Table 1). Furthermore, their convergence results do not hold when
either f; or g; is a non-smooth function, limiting their applicability to broader problems.

The overarching goal of this paper is to design an algorithm to attain the three nice properties
mentioned above. Under the non-decreasing monotonicity and Lipschitz continuity of f; (see
Section 4.2), we can reformulate (1.1) into a convex-concave min-max problem:

n

mipmac L) = 3 [0, 00} - 5 0O (@), (12)

where f; the convex conjugate of f;, y(i) € V; € R is the i-th block of y, V; is convex and compact,
and Y =Y x...x )Y, €R?™. To solve the above problem, we propose a primal-dual block-coordinate
proximal algorithm named ALEXR® to efficiently solve (1.2). This is motivated by state-of-the-art
primal-dual algorithms for empirical risk minimization with linear models [13, 14] and for convex-
concave min-max optimization problems [15]. However, (1.2) possesses unique characteristics that
make it non-trivial to extend existing algorithms and analysis to solving (1.2): (i) the objective in
(1.2) is not necessarily bilinear as in [13, 14]; (ii) it is prohibitive to access the stochastic gradient
for all dual variables {y1,...,yn}, which is different from [15] assuming the stochastic gradient for
y is given at each iteration. The key steps of ALEXR are the following block-coordinate stochastic
mirror ascent update for the dual variable and stochastic proximal gradient descent update for the
primal variable:

3 = gi(xe: BDY + 0(gi(x; BY) = gi(z1;B7)),  Vies, (1.3)
g0 = | AEmax, ey, {vO57 - ;7 (D) = 70U, (v, i)}, ifiesS
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where 0 € (0,1], S c {1,2,...,n} refers to the outer mini-batch, Bi and B are two independent
inner mini-batches sampled from P; for each i € S, 1; is a convex distance-generating function, the
prox-function associated with a distance-generating function 1; is defined as Uy, (u,v) = 9;(u) -
Yi(v) = Yl (v)(u—v) for u,v € R™, ¥l(v) € OY;(v). ALEXR has some interesting connections with
existing algorithms for FCCO and convex-concave problems, including SOX [5], MSVR [10] and
SAPD [15], which will be discussed in subsection 5.1. Let S = |S¢| be the outer mini-batch size and
B =|Bi| = |Bi| be the inner mini-batch size.

Our contributions can be summarized as follows:

nstead of naming our algorithm based on the techniques used, we name it based on what problems it can address.
In particular, ALEXR means Algorithms for Learning with Empirical X-Risks.



e We introduce a single-loop primal-dual block-coordinate algorithm called ALEXR to tackle (1.1),
which requires only O(1) oracles and O(d) computational cost per iteration.
e For cFCCO problems with p-strongly convex r and smooth f;, g;, our ALEXR requires T =

2 2 2 . . . .
0 (% + /lt + % + }ZBIE + % + %) iterations to achieve the € level of distance gap?, where 08, 02,6

are variances. For non-strongly convex cFCCO problems with smooth g; and possibly non-smooth

2 2
Ji» ALEXR requires T' = O (Lg + % + 22 + 19 ) iterations to achieve the ¢ level of objective gap.

V/Se Se BSe?
In both convex and strongly convex cases, the convergence rates of our ALEXR improve upon the
rates in previous works [5, 10] on cFCCO problems with smooth f;, g; (see Table 1 for a detailed
comparison). Besides, we also provide the convergence rates of ALEXR for cFCCO problems with
non-smooth g; in both convex and strongly convex cases.
e For cFCCO problems with the non-smooth outer function f;, we present a lower complexity
bound to show that an abstract first-order update scheme with S oracles per iteration (covering our
ALEXR and previous algorithms SOX [5], MSVR [10] with B =1 as special cases) requires at least

2
T=Q (%) iterations to achieve the € level of objective gap. For cFCCO problems with the smooth
outer function f; and strongly convex r(z), we also that any algorithm in the abstract first-order

2
update scheme requires at least T' = Q2 (i v nSLGO) iterations to achieve the € level of the distance

gap to the optimum. Thus, the convergence rate of ALEXR is optimal among first-order stochastic
algorithms for cFCCO problems, in terms of n and e.

2 Applications

In this section, we present several motivating examples of the cFCCO problem in (1.1) and its
special case, where the distribution P; is independent of i, denoted as P; = P for all ¢ in the set [n].

2.1 Group Distributionally Robust Optimization

Machine learning models are typically trained through the process of empirical risk minimization
(ERM), which often results in high average accuracy on similarly distributed test data. However,
models with high average accuracy may perform poorly on some rare sub-populations. The Group
Distributionally Robust Optimization (GDRO) framework was proposed to tackle this problem [16].
Suppose that there are n predefined groups and the data distribution of the i-th group is P;. The
¢-divergence (Csiszar divergence) penalized GDRO problem can be formulated as

min £ () = max {2 (4B - %anqi))} rw), Bi(w) = Boe (i), (21)

q€2n =1

where w is the model parameter, R;(w) is the expected loss of the i-th group, domain W c R? is
convex compact, penalty A > 0, generator ¢ : R, > Ru{+o0}, ¢(1) =0, and A,, is the probability
simplex in R™. Several prior works [16, 17] discarded the ¢-divergence penalty (A =0 in (2.1)) and
consider the problem miney max;e[,) R;(w), which minimizes the risk of the worst group. However,
the model trained through worst-group risk minimization may be vacuous if the worst group is an
outlier. Moreover, the sizes of groups may follow a long-tailed distribution such that multiple rare
groups exist. To resolve these issues, we choose A > (0 and consider the penalized GDRO problem
with CVaR divergence ¢ =l o-1] or x2-divergence ¢(t) = %(t —1)2. The challenges of directly

2See Table 1 for the definition of distance gap.



solving (2.1) using stochastic min-max algorithms lie in estimating the stochastic gradient of ¢ and
controlling its variance when n > 1 is large [17]. To address these issues, we transfer the above
problem into the following dual form by the duality relationship [18]:

min  F(w,c), F(w,c) == Zqﬁ (R(w) )+c+r(w), (2.2)
weW,ce[c,c)
where R;(w) is convex and ¢* is monotonlcally non-decreasing, e.g., ¢*(u) = + ~(u)y for CVaR
divergence and ¢*(u) = 4(u +2)2 — 1 for y2-divergence, (-); = max(-,0). Indeed, for any (Wout, Cout)
that satisfies E[F'(wout, Cout) — miny,, . F'(w, c)] < € and an optimal solution w, € argmin, ¢y, £(w)
0 (2.1), we have L(wout) — L(w«) = min, F'(wout, ¢) —ming F(wx, ¢) < F(Wout, Cout) —Miny, . F'(w, ¢)
(see Section A.1.2 in Levy et al. [18]). Thus, an approximate solution to the dual formulation
(2.2) also leads to an approximate solution to the original problem (2.1). The dual formulation in
(2.2) is recognized as a difficult open problem in Sagawa et al. [16] due to the biased stochastic
estimator (refer to footnote 4 in their paper). In this work, we can solve the problem in (2.2)
by viewing it as a cFCCO problem with a convex outer function f;(-) = A¢*(-) and an inner
function g;(x) = (R;(w) — ¢)/A that is jointly convex to x = (w,c). In Section 7, we provide the
convergence rates and per-iteration computational costs of our new algorithm ALEXR for solving
(2.2), in comparison to existing algorithms specifically designed for addressing the GDRO problem.
Our algorithm only requires sampling O(1) groups and O(1) samples and does not involve handling
expensive dual projection onto (constrained) (n — 1)-dimensional simplex, yet enjoy competitive
performance compared with stochastic min-max algorithms for solving (2.1) directly.

2.2 Partial AUC Maximization with Restricted True Positive Rate

The Area Under the ROC Curve (AUC) is acknowledged as a more informative metric than accuracy
for assessing the performance of binary classifiers in the context of imbalanced data [19]. In scenarios
influenced by diagnostic or monetary considerations, the primary objective may be to maximize the
partial AUC (pAUC) with a specified lower bound « for the true positive rate (TPR). As shown in
[6, 3], a surrogate objective for maximizing pAUC with restricted TPR is formulated as

min ! > > L(w;ai,aj), (2.3)

dnin_
weRe Ty a;€S1[1,ny (1-0)] 45€S-

Here S, S- are the sets of positive/negative data, w refers to the model and L(w;a;,a;) = £(hy(aj) -
hw(a;)) represents a continuous pairwise surrogate loss, where hy,(a;) denotes the prediction score
for data a;. Additionally, S1[1, %] the bottom-k positive data based on the prediction scores. In
particular, ¢ is a convex and monotonically non-decreasing function, ensuring the consistency of the
surrogate objective [20]. Following Lemma 7 of Zhu et al. [6], pAUC maximization with restricted
TPR> « is equivalent to

) 1
max  max Z y(l)L(w;ai,S_), L(w;a;,S8-) = — Z L(w;a;,a5), (2.4)
weR? G )yEAm a;eSt ~ ajeS-
L gy

which can be transformed into its dual form:

1

min ———— ) (i > L(w;ai,aj)—s) + 5, (2.5)

weR?, seR n+(1 a) a;€Sy ~ ajeS-

where (-), = max(+,0) is monotonically non-decreasing and convex and — Za es. L(w;a;,a;) - s is
jointly convex to (w,s). Thus, the problem in (2.5) is a cFCCO problem



2.3 Other Applications

In addition to GDRO and pAUC, there are many other intriguing applications of the cFCCO
problem.

e Robust Logistic Regression: Consider a collection of data-label pairs, denoted as (a;,b;);.,. We
formulate the robust logistic regression problem as mingcy % i log(l+exp b E[A(a;) x| a;])+r(z).
In this formulation, A(a;) represents the perturbed data generated from an underlying distribution
P;. This problem aligns with the structure of (1.1), where the functions f;(-) are convex and
monotonically non-decreasing given by fi(-) = log(1 +exp(b;-)), and g;(x) = Ea(q,)~p, [A(a;) " x].

e Bellman Residual Minimization: The task of approximating the value function, denoted as V™ (s),
for each state s under policy 7 using a linear mapping can be expressed as mingcy Zle(qblx -
Yo Pl lrss +7- ¢l,2])?. In this formulation, ¢s and ¢ are feature vectors representing states s
and s, respectively. Additionally, rs ¢ represents the random reward obtained during the transition
from state s to s’, v < 1 is the discount factor, = denotes the policy, and Pf ., represents the
probability of transitioning from state s to s’ under policy w. This problem can be formulated
as (1.1), where the functions fs(-) are convex and given by fs(-) = %(-)2, and the affine function

gs(x) =dla -y PQS, (75,50 +7 - L]

e Bipartite Ranking for Classification or Retrieval: Imbalanced data classification is usually tackled
in the context of the bipartite ranking problem. There is often a desire to penalize those positive
examples with lower scores. One approach is the p-norm push, introduced by Rudin et al. [21]. It

formulates the problem as mingey % Y a;eD, (nl_ Ya;ep_ t(sz(aj) - sx(ai)))p +7(x), p>1. Here, D,
and D_ represent positive and negative data sets. The function s, (a) denotes the ranking score
of data point a, which is determined by a linear model parameterized by z. The loss function £ is
non-negative, convex, and monotonically non-decreasing, for instance, ¢(-) = exp(-). The p-norm
push method is in the structure of (1.1), where the functions f;(-) are convex and monotonically
non-decreasing and given by f;(-) = (-)?, and the convex function g;(x) = n—1+ Ya;ep, L(sz(aj)—sz(ai)).
One popular approach for retrieval problems is maximizing the precision or recall at top k positions
(prec/rec@k). Yang [3] has formulated the problem as mingey n_1+ Ya;ep, (1(Zajep,up- l2(52(aj) -
sz(a;) = k)) +r(x), where ¢1, {5 are monotonically non-decreasing convex surrogate losses of the
zero-one loss. Hence, maximizing precision or recall at top k positions with a convex model s, (a) is
covered by (1.1).

e Multi-Task GDRO: The Group Distributionally Robust Optimization (GDRO) problem can
be extended to the multi-task setting. Consider a scenario with n tasks and m groups. We
represent the data distribution for the i-th task and the j-th group as P;;. Additionally, let
¢(x; z) be the loss function associated with parameter x on data point z. The Multi-Task GDRO,
with a regularization term r, is formulated as mingex % iz Max e B[(z; 2i5)] + r(x). In this
formulation, the functions f;(-) are defined as f;(g;) = maxe;,1(9i5), and g;j(x) = E[£(z; 2;;)], where
9i(x) = [gi1(x),..., gim(x)]. Alternatively, we may consider the smooth f;(g;) =1og ¥ je[m] €xp(9i5)-
This problem fits within the structure of (1.1) and is particularly relevant when dealing with a
scenario featuring a substantial number n of tasks, such as identity prediction in human faces, with

a limited number m of groups (e.g. lightning conditions).

3 Related Work

Problem (1.1) or its min-max reformulation (1.2) is closely related to several widely studied problems.



Table 1: Comparison of iteration complexities and per-iteration #oracles for achieving e-
optimal solution of (1.1) with smooth g; in terms of some optimality gap, where “Dist.” de-
notes the distance gap E& |zou —x*Hg < € in the strongly convex case, “Obj.” denotes the ob-
jective gap E[F(zou) — F(z+)] < ¢, and “Gap” denotes the duality gap E[Gap(Xout, Yout)] =
Emax, o {L(Zout,¥) — L(%,Your) } <€, “W-Gap” denotes a weak duality gap max, , E{L(Zout,y) -
L(x,Yout)} < €. Here xoy (probably also yout) is the output of each algorithm. We hide other
constant quantities except for n, variances 0’(2), 02,62, modulus of strong convexity p, and batch sizes

B,S. “-” means that the result is missing. Besides, O hides polylog(1/e) factors.

Strongly Convex r Convex r Singl
Algorithm #OraclesV) Smooth f; Ll:)lfpe?_
‘ Complexity Metric ‘ Complexity Metric
ASC-PG P[2] | O(n)/O(1) 10) (ﬁ) Dist. 0(2)® Obj. v
SAPD [15] | O(n)/O(1) %) (i TS ”f;éz) Dist. oL+ e Gap
SSD [22] 0(n)/O(1) o(ﬁﬁ?&,#)m Dist. o(ﬁ+@)s3>o(§+ﬁ) Obj. v
BSGD 23] | O(L)/0(L)® o(%) Obj.(") 0(%) Obj. v
() n (7) n_\(3) :
MSVR (D[10] | O(1)/0(1) 0 (NESC) Obj. O(2) Obj. X
(€ ’Vl02 . ’7102 - .
s0x-Boost 2)[5] | O(1)/0(1) O(WHTS) Ob;j. o(m+wg§)<ﬁ> obj. | x
SOX [5] 0(1)/0(1) O(ﬁ Dist. 0(2%) W-Gap v
ALEXR A n no? o? 52 . NG nol o? 52 \(s .
(This Work) | ¢(1/0) O(i* o+ BsiJfréﬁm) Dist. O(ﬁg ped, +ﬁ+@)<*) Obj. v

(1) Representing the number of zeroth-order oracles for gi(z) / the number of first-order oracles for Vg;(z) in each iteration.

2) Under the assumption that F'(z) is convex, which is slightly weaker than the layerwise convexity assumption stated in Section 4.2.
®) Requiring smoothness of f;.

) For general convex-concave L(z,y). It does not need that L(xz,y) is linear in y or Y is block-separable over i € [n].

®) The O (1/#) term can be improved to O(l/ﬁ) by the restarting technique, which makes SSD a double-loop algorithm.

©) Requiring smoothness of f;. If f; is non-smooth, the number of oracles per iteration increases to O (6%)

() 1n strongly convex stochastic optimization problem, converting the O(1/(u€)) convergence rate in terms of “Obj.” can be converted to the
optimal O(1/(ue)) rate [24, 25, 26] for first-order methods in terms of “Dist.” by the strong convexity of F.
(%) This result requires the distance-generating function 1; to be smooth.

3.1 History of FCCO

The FCCO problem was first introduced in [4] for optimizing average precision (AP) to address
the large batch size issue of previous stochastic algorithms for AP maximization. Later, it was
used for solving a wide range of problems in the field of machine learning, including optimizing
listwise losses for learning to rank [7], optimizing surrogate losses of partial areas under the curves
for imbalanced data classification [6], and optimizing global contrastive losses for contrastive
self-supervised learning [8, 27].

Qi et al. [4] proposed an algorithm SOAP and analyzed its convergence for solving a non-convex
surrogate loss of AP in the form of FCCO. Wang et al. [9] adopted the momentum update to
accelerate the convergence rate of SOAP for AP maximization, improving the iteration complexity
from O (6%) to O (%) for finding an e-stationary point. The work by Wang and Yang [5] was
the first to study the general form of FCCO and proposed SOX to further improve the rate by
enjoying the parallel speed-up of using inner and outer mini-batches. For non-convex and smooth
problems, SOX has a convergence rate of O (#{) for finding an e-stationary solution. Jiang et
al. [10] proposed a new variance reduction technique (MSVR) for tracking and estimating multiple
inner functions g; by accessing only a constant number of samples per iteration. For non-convex



Table 2: Comparison of iteration complexities and per-iteration #oracles for achieving e-optimal
solution of (1.1) with non-smooth g; in terms of some optimality gap, where Dist. denotes
the distance gap E% | Zout — x*||§ < € in the strongly convex case, Obj. denotes the objective gap
E[F(2out)—F(24+)] < €. Here oyt is the output of each algorithm. We hide other constant quantities
except for n, variances ag, 0?,6%, modulus of strong convexity u, and batch sizes B, S. “-” means

that the result is missing. Besides, O hides polylog(1/e) factors.

Strongly Convex r Convex r Singl
Algorithm #Oracles'!) Smooth f; Ll(l)lfpc‘;
‘ Complexity Metric ‘ Complexity Metric ‘
scGD @[1] | O(n)/O(1) O (rrs) Dist. 0(%) Obj. v
nSSD [22] | O(n)/0(1) - - 0(1*“5{%) Obj. | v
ALEXR ~( /n , no? 2 52 1 s NG nog ? 52 1\ ;
. 0(1)/O(1) | O F=+ B?L+uaée+m+u7 Dist. | O gEJng‘;z + 55+ 25+ 5| Obj. v/
(This Work) VSu VS

O Representing the number of zeroth-order oracles for g;(z) / the number of first-order oracles for Vg;(z) in each iteration.
) Under the assumption that F(z) is convex, which is slightly weaker than the layerwise convexity assumption stated in Section 4.2.
(3) This result requires the distance-generating function ; to be smooth.

n
VBSed
To establish the convergence for convex FCCO problems, the two studies [5, 10] have used the

restarting trick to boost the convergence rate for finding an e-optimal solution of strongly convex

problems, they improve the complexity to O( ) for finding an e-stationary point.

_n__
BSpu?e

) for convex problems, and restarted MSVR suffers rates

and convex problems. In particular, restarted SOX (named SOX-boost) suffers rates of O(

_n
BSe3

of O( S\/%ME) for strongly convex problems and O (S\/%e2

the strong convexity parameter. It is notable that SOX-boost achieves full mini-batch speedup but
non-optimal rates, while MSVR enjoys the optimal rates in terms of p and € but has only partial
speedup with B. Both algorithms only require O(1) oracles per iteration. Under the slightly
stronger assumption (f is convex and monotonically non-decreasing while g is convex), Wang and
Yang [5] follow the technique in [22] to reformulate the FCCO as the saddle point problem in (1.2).
Subsequently, they propose a randomized block-coordinate variant of SCGD [1]. This variant, similar
to SOX-boost, demands merely O(1) oracles per iteration and T = O (%) iterations to find a (Z,y)
satisfying max, , E[L(Z,y) — L(x,y)] < € for the convex FCCO problem. However, it is important
to note that achieving max, , E[L(Z,y) — L(x,y)] < € does not guarantee E[F'(Z) - F(z4)] <€, as
demonstrated in Section 3.1.1 of Alacaoglu et al. [14]. Consequently, the convergence criterion
in terms of max, , E[L(Z,y) — L(x,y)] is considered to be relatively weak and is not of primary
interest. It is worth mentioning that the previous results [4, 9, 5, 10] restrict to those problems in
which both f; and g; are smooth. In this work, we also consider non-smooth f; and non-smooth g;.

for strongly convex problems and O(

) for convex problems, where u > 0 is

Advantage of Single-Loop Algorithms: It is worth noting that some algorithms such as MSVR
and SOX-boost contain nested inner loops to solve some subproblems inexactly with high accuracy.
However, the termination criterion of each inner loop depends on problem-specific unknown constants.
Thus, single-loop algorithms are easier to implement than multi-loop counterparts.



3.2 Convex Stochastic Compositional Problem

The stochastic compositional optimization (SCO) problem takes the form of min s F'(x), with
F(z) =E¢ [f(Eg [9(x;0)] ;5)], where ¢ and £ are mutually independent. In this context, when F is
p-convex (p > 0) and f is smooth, Wang et al. [1] have introduced a stochastic method named SCGD,

which achieves a convergence rate of O (6%) for convex problems, ensuring that E[F(Z) - F(z.)] <e.

1
nZels

For strongly convex problems, it requires O( ) iterations to reach SB[z - |5 < e. Further

exploiting the smoothness of function g, Wang et al. [2] proposed ASC-PG, which improves the

1

convergence rate to O(1/e3®) for convex problems and O (m) for strongly convex problems.

Lian et al. [28] consider the finite-sum SCO problem F(z) = 1 ¥, f;( Y21 9j(x)) and utilizes
the technique from SVRG [29] to obtain linear convergence for strongly convex F. Similar to SVRG,
the algorithm presented in [28] follows a double-loop structure and requires full gradient evaluations
at the start of each outer-loop iteration. Notably, the algorithms designed for the SCO problem
can also be applied to tackle the FCCO problem, as discussed in Appendix G.1. However, it is
important to underscore that all these algorithms require O(n) oracles per iteration, which can
become computationally demanding when n takes on large values.

Building upon a slightly stronger assumption than that composition F' is convex, specifically that
f is convex and monotonically non-decreasing while g is convex, Zhang and Lan [22] reformulate
SCO problem as a convex-concave min-max-max problem and propose the stochastic sequential

dual (SSD) algorithm to obtain the optimal O (ﬁ + ‘6’—22) rate in terms of E[F(Z) - F(z.)] in the

convex case and O (% + Z—z) rate in terms of £E ||z - |5 in the strongly convex case. Moreover,
the primal-dual algorithm in [22] has a primal-only implementation when f is smooth similar to
SCGD by properly choosing the distance-generating function for its dual mirror step.

Hu et al. [23] consider the conditional stochastic optimization (CSO) problem min, F'(z), F'(x) =
E¢ [f(Edg [gg(:c; C)] ;5)]. Compared to the SCO problem, the inner function g and the distribution
of the inner random vector ¢ depend on the outer random vector £. For convex and smooth F'; SGD
with biased oracles (BSGD) in [23] requires O(e 2) iterations and B = O(e™!) large inner batch size
per iteration to find an z s.t. E[F (&) - F(x.)] < € for convex problems, and O (i) iterations and
B = 0(e!) large inner batch size per iteration to find an z s.t. E[F(z) - F(z.)] < € for strongly
convex problems.

3.3 Convex-Concave Saddle Point (SP) Problem

The saddle point (SP) problem mingex maxyey L(x,y) that is p,-convex in « and p,-concave in y
(fzs phy > 0) has been thoroughly studied. We refer to the SP problem with (i, 11y > 0 as a strongly-
convex-strongly-concave (SCSC) problem while those with p,,u, = 0 as a convex-concave (CC)
problem. A saddle point (z.,y.), if it exists, satisfies the condition L(x.,y) < L(2«,yx) < L(x,yx),
V(z,y) € X x ). Besides, the saddle point (z.,¥.) is unique in an SCSC problem. To assess the
optimality of any point (Z,y) € X x ), we can employ the concept of the duality gap, defined
as Gap(z,y) = max, ,{L(Z,y) — L(x,y)}, and for SCSC problems, we can also use the Euclidean
distance to the saddle point, given by D(z,y) = & [z - 3:*||g S e ||g The SP problem is
closely related to the more general monotone variational inequalities (VI), which involve finding
a point z. = (Z«,y«) such that (®(2.), z2-2+) 2 0, ®(2) = (0. L(z,y),-0yL(x,y)), Yz € X x ).
The convergence rate is quantified by measuring the number of iterations required to find an
e-approximate saddle point (Z,y) or an e-approximate solution to the VI, satisfying one of the



following conditions:

Gap(z,y)<e, or D(Z,y)<e, or max (P(2),z-2)<e.
zeXx)
Notably, extragradient methods (EG), initially introduced in [30], have proven to achieve the optimal
convergence O(1/e) rate among first-order approaches for solving deterministic monotone Lipschitz
Variational Inequalities (VIs) in both Euclidean and non-Euclidean spaces [31, 32, 33]. Moreover,
EG can be viewed as approximations of the implicit proximal point (PP) method [34]. All of these

methods share a convergence rate of O( v #—y):, where O() hides a poly log( ) term when
applied to problems with smooth and SCSC obJectlve functions [35 36]. For deterministic problems

that are both smooth and SCSC, the convergence rate of O ( N/ \/L_y + \/W) presented in [37]
is known to be optimal for first-order algorithms, as demonstrated by lower bounds established
n [38]. Regarding CC problems, a lower bound result [39] indicates that the O (%) convergence
rate achieved by extragradient methods [31, 32, 40] is indeed optimal. Furthermore, the primal-
dual hybrid gradient (PDHG) method [41, 42] and some more recent works [43, 44, 45, 46] have
concentrated on the bilinear problem with L(x,y) = " Ay. Hamedani and Aybat [47] have extended

this focus to problems where L(z,y) is convex in z and linear in y.

Accessing exact oracles such as V,L and V,L may not be feasible in many real-world scenarios.
Instead, the available resources provide only unbiased stochastic estimators, denoted as V, L and VL,
with variances bounded by o2. This limitation has prompted the development of numerous algorithms
tailored for addressing the stochastic saddle point problem (SPP) and the more general stochastic
variational inequalities (SVIs). For instance, the stochastic mirror descent (SMD) method [48]
achieves the optimal convergence rate of O (}2) for non-Lipschitz SVIs. For Lipschitz monotone

SVIs, the stochastic mirror-prox (SMP) method [49] attains the optimal rate of O (% + Z—;) For SCSC

and non-smooth SP problems, Yan et al. [50] establish the O (% + ﬁ v %ye) rate with probability

1 —p. Hsieh et al. [51] propose a single-call stochastic extragradient (SSEG) method that achieves a
rate of O ( <t 26 \Y :—;) for Lipschitz and strongly monotone SVIs. More recently, several works
have devised stochastic algorithms for both the SSP and SVI problems, achieving (near-)optimal
deterministic and stochastic convergence rates simultaneously. Zhang et al. [15] introduce the

: : A (1 1 1 a2, o?
SAPD algorithm, which reaches a convergence rate of O (sz Vgt Tt e Vv u_ye) for the SCSC
2
problem and O (l + "—) for the CC problem. Du et al. [52] further close the gap for the SCSC

2 2
1 1+o'_va')

+ .
Vi \/ Ky /HzPy  Hz€  Hy€

problem by improving the rate to O(

3.4 Coordinate Methods for the Block-Separable Deterministic SP Problem

A special class of bilinearly-coupled SP problem is in the form min, max, L(z,y) = % Yl ((y(i), Ax)—
qbi(y(i))) +7(x), where L(z,y) is block-separable w.r.t. the dual variable y. One illustrative example
is the primal-dual reformulation of the (regularized) empirical risk minimization (ERM) problem,
denoted as min, F'(x), where F(x) is defined as F(x) = %Z?:I {(az) +r(x). This reformulation
applies to data-label pairs (a;,b;);-; in the context of a linear model. Particularly in scenarios
with a significantly large value of n, the computational overhead of computing V,L(z,y) and
updating y can become prohibitively expensive. In such cases, randomized coordinate methods
offer a viable solution by reducing the per-iteration oracle cost from O(n) to O(1). The SPDC

3a A b denotes min{a,b} and a v b denotes max{a, b}.



method [13] leads to O (n + /ﬁ) convergence rate to make E[D(x,y)] < e for the SCSC problem

and O (n + \/Tﬁ) rate to make E[F(Z) - F(z.)] < € for the CC problem. Recently, Alacaoglu et
al. [14] extended the PURE-CD originally proposed in [53] to incorporate importance sampling and
exploit the potential sparsity in A. For the CC problem with dense A, PURE-CD not only achieves
an improved rate of O (n + 4) to guarantee E[F(Z) - F(z.)] < € but also attains a rate of O (%)
to ensure E[Gap(z,y)] < e. It is worth noting that E[Gap(Z,y)] < € serves as a sufficient but not
necessary condition for E[F(Z) - F(z.)] <e.

In addition to addressing the bilinearly-coupled block-separable saddle point (SP) problem, Hamedani
et al. [54] have extended their focus to the more general Convex-Concave (CC) problem, defined as
L(z,y) = ®(z,y) - ¢(y) + ¥, hi(™). Their work establishes a convergence rate of O (%) for a
randomized block-coordinate primal-dual method, ensuring that E[Gap(z,y)] < €. Furthermore,
Jalilzadeh et al. [55] have delved into scenarios where L(x,y) exhibits block-separability to both
and y. In this context, L(x,y) is defined as L(z,y) = ®(z,y) - X7, ¢i(y™) + Xt hj(z()). They
introduce a doubly-randomized block-coordinate method to address such problems. It is worth
emphasizing that all the works mentioned in this section [13, 53, 14, 55] rely on the assumption
of having access to the exact V,®(z,y) and V,P(x,y). In contrast, our work addresses the more
challenging problem where only stochastic oracles are available.

4 Preliminaries

In this section, we present the necessary notations, definitions, and assumptions.

4.1 Notations and Definitions

The following notations are used throughout this paper.

- For a vector y € R", we use y(i) € R™ to represent the i-th coordinate (block) of y, i.e.,
y=W,. .yt

- f; denotes the convex conjugate of f;.

- The prox-function associated with a distance-generating function (d.-g.f.) ¥; : R™ — R is defined as
Uy, (u,v) =1 (u) = ;i (v) = (¢i(v), u—v) for u,v € R™, where ¢;(v) € 91);(v) is a subgradient of ;.
Besides, we define Uy (y1,y2) = 2ity Uwi(yy),yéi)) for y1, 1o € R™™.

- For a function g(z) = Ec.p[g(z; ()], we define the stochastic estimator based on the mini-batch B
as g:(2:B) =t Ten 9(w30).

- For a,b € R, we define a v b= max(a,b) and a A b:=min(a,b).

- a X b means that there exists ¢, C > 0 such that cb < a < Cb.

- For a set X, we define its diameter w.r.t. a d.-g.f. ¢ as Dy x = [maxzex ¥(x) — mingex ¥ (z)
If () = % ||||g, we simply denote Dy, x as Dy.

- Let X be a normed vector space with | -||2. For each i € [n], let }; ¢ R™ be a normed vector space
with a general norm |-|. The norm of the dual space Y ¢ R™ is defined as [-[, = supy, < (-, v)-

]1/2

- For any linear operator 7; : X — Y/, we define the operator norm of T; as | T3], = Supgex { ”ﬁﬁ”*}
2

T* (2)
and the operator norm of its adjoint operator T;" : J; - X is defined as | T}"[ ,, = supy ).y, {%}
- We say g; : X - R™ is Lg-smooth if it is differentiable on X and there exists L, > 0 such that

L
lgi() = gi(x") = Vgi(a')(x = "), < 5 |& =[5, for any @2’ € X.
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- We say that f; : R" - R is Lg-smooth if it is differentiable on its domain and there exists Ly >0
L *
such that |fi(u) - fi(u") = (V fi(u'), u-u')| < =L |lu -2, for any u,u’ € V.

4.2 Assumptions
Throughout the paper, we make the following assumptions that are standard in the literature [1, 22].
Assumption 1. X ¢ R? is a convex and closed set. Besides, r is pu-convex on X, p > 0.

Assumption 2. f; : R™ — R is proper convex and lower-semicontinuous. Besides, there exists
Cy >0 such that |f;(u) - fi(u")| < Cf |lu—'||, for any u,u’ € Y.

Assumption 2 implies that Hy(i)H < Oy Yy e domf;, Vi€ [n]. Thus, (1.1) is equivalent to (1.2)
with a closed and proper f; and a convex and compact YV =Y x ... x V.

Assumption 3. If g; is not affine, we assume that f; is monotonically non-decreasing for each
coordinate of its input.

The assumption above ensures that the dual domain Y in (1.2) satisfies }; ¢ RT* for each i € [n]
such that the min-max problem in (1.2) is convex-concave. Note that the outer functions f; of all
examples in Section 2 satisfy Assumption 3.

Assumption 4. g; is convex and Lipschitz continuous, i.e., |gi(z) — gi(z")|, < Cy |z — 2’|, for some
Cy>0and any z,z’ € X.

While the smoothness conditions of f; and g; are not obligatory in this work, incorporating them
leads to better convergence bounds. Lastly, we assume that the variances of stochastic estimators
are bounded.
. 2
Assumption 5. Assume that Ec, [ g:(x) - g:(w; G| < 0§ < o0, Ec, [[g/(2)]" = [g/(x;¢)] ], < o1 <
. 312

oo for any g/(z) € 0g;(z), x € X, and (; ~ P;. Besides, E, |[g/(2)]"y" - L T [g/(2)]y D, < 6% <
C’?Cg for any g/(x) € 9gi(z), v € X, and y e ).

5 A Primal-Dual Block-Coordinate Stochastic Algorithm for cFCCO

First, we describe the proposed algorithm, which is named ALEXR (refer to Algorithm 1), designed
for solving (1.1). We also establish connections between our algorithm and several existing methods.
Subsequently, we delve into the main technical challenges in our convergence analysis, emphasizing
the differences from previous works.

Each iteration of ALEXR consists of two main steps. The first step involves a block-coordinate
stochastic proximal mirror ascent update of the selected dual variables from a random block S;
out of {1,2,...,n}, which occurs between Line 3 and Line 9 in Algorithm 1. It is notable that
we use proximal mapping to tackle f;* (y(i)) and we use an extrapolated stochastic gradient gt(")
of the linear term y(*) gi(x) in terms of y(D. The second step, involving a stochastic proximal
gradient descent update of the primal variable, occurs between Line 10 and Line 11 in Algorithm 1

to compute the next z, where Gy is a (sub)gradient estimator of the coupling term % > yg)l gi(xt)
using an independent mini-batch Bt(l)

It is crucial to carefully select the distance-generating function v; for the proximal mirror ascent step
to satisfy the following necessary condition and the proximal mapping can be efficiently computed
without requiring inner loops for an inexact solution.

11



Algorithm 1 ALEXR
1: Initialize zg e X, yg e Y
2: fort=0,1,...,7-1do
3 Sample a batch S; c {1,...,n}, |Si| =S

4 for each ¢ € §; do o

5 Sample independent size-B mini-batches Bt(l), Bgz) from P;

6 Compute g, = gi(w; B) + 0(gi(we; B) - gi (w1 B1))

7: Update yg)l = argmax, .y, {y(l)ggl) — @)y - TUwi(y(’),yt(Z))}
8 end for ‘ ‘

9 For each 7 ¢ S, yfi)l = yt(z)

10: Compute gé(xt;ggl)) € 8gi(a:t;l§’y)) and Gy = % Yics, [g;(xt;gt(z))]Tyt(?l
11: Update 441 = arg min,, y {(Gt, z)+r(z)+ 3|z - xt”g}

12: end for

Assumption 6. Distance-generating function v; is py-strongly convex on Y; w.r.t. |-|.

Next, we give some general recipes and specific examples of 1; for applications of (1.1) considered
in subsection 2.

e When f; is smooth on its domain, we can select v; = f. By the first-order optimality condition,
it is not difficult to show that (see Lemma 11 in Appendix A):
§§i) (2)

+7"LLt

VieS 5.1
1+71 7 ¢ ( )

yzfﬁ = Vfi(ugz , U§i)1 =
Then, ALEXR has a primal-only implementation similar to SOX and MSVR. This applies to the
Bellman residual minimization/p-norm push problem with f;(-) = (-)2, pre/rec@k maximization
with a smooth surrogate loss ¢, the GDRO problem with y?-divergence, as well as the multi-task
GDRO problem with smooth f;(g;) =10g ¥ je[m] exp(gij)-
e When f; is non-smooth, we need to choose a strongly convex function for ; depending on
the problems. For example, for multi-task GDRO, we can use the entropy function wi(y(i)) =
it y7) log(y(*1)), which is 1-strongly convex to | - ;.
e When r is non-strongly convex, to derive a better rate in Section 6.2, we also require that ; is
smooth. If f;(-) is strongly convex, we can set 1; = f;"; Otherwise, we need a smooth and strongly
convex 1);. For example, we can choose 9;(-) = % ||H§ for the multi-task group DRO problems, where
the proximal mapping can be solved by efficient projection onto the probability simplex [56]. For
p-norm push with f;(-) = (-)3, we can also choose 1;(-) = % HH%, where the proximal mapping of both
cases has a closed-form solution (see Section 6.9 of Beck [57]). Moreover, we can choose v;(-) = % ||||§
for any structured non-smooth® functions f;. For example, the outer function f;(-) = é()Jr in
GDRO with CVaR divergence is structured non-smooth, where the proximal mapping of f; with
Yi() =3 || can be efficiently computed by the projection onto a closed interval.

“The definition of structured non-smooth functions is from Zhang and Lan [22]: We call a function g structured
non-smooth if there is some convex closed set II and convex closed and proper function g* such that g(y) =
maxqe(m,y) — g*(7),Vy € Y. Additionally, the proximal mapping of g* with % ||H§ as the prox-function can be
efficiently computable.
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5.1 Relations with Existing Algorithms

Our algorithm ALEXR exhibits certain similarities to SOX [5], MSVR [10] and SAPD [15] with
remarkable differences for adressing their limitations for solving (1.1) or (1.2).

Relationship with SOX. By setting 6 = 0, 9; = f;* in ALEXR, the dual update and the gradient
(2) (5.

estimator become similar to that used in SOX [5]. In particular, the update of u, ) in (5.1) becomes

the moving average estimator, i.e., ut+1 (1- ’y)u +7gi(zy; Bt(l)), where v =1/(1+ 7). Hence, the
updates of ALEXR with 6 = 0, 1; = f;" reduces to SOX without a momentum update’. SOX without
the momentum update is analyzed in [5] for solving convex FCCO, but only achieves an iteration
complexity of O (%) for the weak duality gap. However, a convergence guarantee in terms of the
objective gap for SOX on non-strongly convex problems remains absent.

Relationship with MSVR. ALEXR with v; = f is closely related to MSVR [10] but has a subtle
difference that gives ALEXR an advantage over MSVR. In particular, the update of ug +)1 in (5.1) can
be written as

uD = (1= + 76 (2B +70(gs(2; BD) - g1 B7)), Vi € S,

where v =1/(1+ 7) < 1. This estimator is similar to the one used in MSVR except that the scaling

factor before the correction term (gl(xt,B( )) gi(wy— 1,3( ))) is 8 = S(l 7) +1 -7, which could be
much larger than 1 when S < n and v «< 1. In contrast, the scaling factor in ALEXR is 76 < 1.
Notably, several existing works have reported better empirical performance using a scaling factor
less than one [11, 58], which is consistent with our setting and theory. Another difference between
ALEXR and MSVR is that ALEXR does not use the variance-reduction technique (e.g., STORM [59])
for computing the gradient estimator of the primal variable. For FCCO problems under the PL
condition, MSVR employs the STORM gradient estimator of the primal variable to accelerate the
convergence. Then, the convergence rate of MSVR on convex FCCO problems is derived by adding a
small quadratic regularization term and using the restarting trick. In our work, we find that the
STORM gradient estimator is unnecessary for convex FCCO problems: It demands more memory
and computational costs, albeit resulting in a worse convergence rate compared to that of ALEXR.

Relationship with SAPD. Both SAPD [15] and ALEXR employ the extrapolated estimator in (6)
for the dual step. The difference is that SAPD [15] updates all coordinates i € [n] while ALEXR
only updating those sampled coordinates i € S;, S; c [n]. This design characterizes ALEXR as a
randomized block-coordinate variant of SAPD. However, it introduces several novel challenges in the
convergence analysis, not present in the analysis of SAPD:
e Firstly, one might initially intend to follow the proof of SAPD in the convex case to bound
the gap BE(L(z141,y) = L(z,901)) = B[y gi(ze1) - v 9i(x)) = LT (7 (6 D) = f7 () +
r(z4+1) — r(x)] for the t-th iteration. However the single-iteration analy51s of ALEXR only yields
a bound containing %Zigst f;(y(i)) instead of % e (y(i)) due to the coordinate update of y.
Unfortunately, we cannot easily get around this by taking conditional expectation, as the desired
E[Y s, f;’(y(i))] = % iy E[fi*(y(i))] is valid only when the chosen y(? does not depend on S;.
To achieve convergence results in terms of E[F(zou) — F'(2+)] < Emaxy[L(2out,y) — L(Z«, Yout) ]
for the output zoyt = %Zz;f]l ¢, the optimal y involved is y(*) € argmax, {v7gi(Tou) — f7(v)} for
each i € [n], which actually depends on S; such that the proof does not directly go through. To
address this challenge, we need to introduce a virtual sequence {y;} where each y; is obtained by
updating all coordinates of y;. Nevertheless, this will make the analysis much more involved.

®Another difference is that SOX computes the gradient estimator by G = v, )Vgl(xt,B( )) instead of G; =
yéi)l Vgi(xe, l’;’iz)). However, this is not the fundamental difference as SOX can also use the latter one.
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e Furthermore, ALEXR offers more options for distance-generating functions v; other than v;(-) =
5 L. HQ in SAPD for the dual step, enhancing its flexibility to a broader range of problems. In addition,
we also provide convergence results for non-smooth problems, which are lacking in [15].

6 Convergence Analysis

In this section, we first present the convergence analysis of ALEXR for a class of strongly convex
problems, where r is p-strongly convex and f; is smooth (i.e. f; is strongly convex). Following that,
we shift our focus to the case that r is only convex (p =0 in Assumption 1) and f; can be smooth
or non-smooth.

Proposition 1. There exists p > 0 such that Ufz_*(u, v) 2 pUy, (u,v). Yu,v e ;. When p>0 and Y

is puy-strongly convex w.r.t. |||, we have f; is Lg-smooth w.r.t. |-||,, where Ly = %p

* 7

For instance, when choosing v; = f;°, we have p = 1, and when setting ¢;(-) = 5 L%, p becomes
Llf—the inverse of the smoothness constant of f;. Besides, we have Ugx (u,v) >0 regardless of the
smoothness of f;.

For the convenience of analysis, we define the virtual sequence {y;}>0 as follows.
TR arg max {v57 - 1) =106, Oy}, =@ 5™ vieln),
yed;

The reason for introducing this virtual sequence is to decouple the dependence between y:,1 and
S;. Note that only those coordinates i € S; of §; are computed in the ¢-th iteration of Algorithm 1.
Lemma 2 describes the progress made in the ¢-th iteration of ALEXR.

Lemma 2. Under Assumptions 1 and 6, the following holds for any x € X,y € Y after the t-th
iteration of Algorithm 1.

L(zt,y) - L(@, Y1) (6.1)
T T+p _ T _ 1& _(3) @\ "N 2
< ﬁUw(%yt) - TUw(y,ytu) - EUw(ytHayt) + n ; (gz‘(iﬁtﬂ) —gtz ) y( - yt+1> + 9 |z =25
n+p 1&
~ I e = wealy = 3 e — w3+ 3 {gi(we) = 0i(@). 54 ) ~ (G wear — ).
i=1

6.1 Strongly Convex and Smooth Case

We first consider the scenario u > 0, p > 0, where r is u-strongly convex and f; is ﬁp—smooth. In this

case, L(x,y) in (1.2) is strongly-convex-strongly-concave and a unique saddle point (x.,y.) exists
where z, = argmin,.y F'(x). Note that both z, and y. are independent of the randomness in the
algorithm’s execution. We define that G; is the o-algebra generated by {By,So, ..., Bi-1,Si-1, Bt}
and F; is the o-algebra generated by {By,So, ..., Bi-1,Si-1,Bt, St }. Note that G; ¢ F; and y441 is
Fi-measurable. For any i € [n], we have

E[U,, ",y | 6] = Uwz(yg),ﬂfﬂﬂ Sy D, g,

Thus, the expectation of the >Uy(y,y:) — —n£U¢(y,gjt+1) terms in (6.1) with y = y. can form a
contraction as
T+p (1 - —)

E[Up (4o 91)] - —<LE[Uy(ye,9e01)]. (6.2)

T T+p _
E|-Uy(y., - ——Uy(ys,
[n w(y yt) n zp(y yt+1)] g
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Based on Lemma 2, (6.2), and other intermediate results in Appendix C, we can derive the following
results for the strongly convex case.

Theorem 3. Suppose that Assumptions 1, 2, 3, 4, 5, 6 hold. Moveover, r is p-strongly convex with
p> 0 while p in Proposition 1 satisfies that p >0, i.e., f; is Ly-smooth, Ly = ——

o If g; is Lg-smooth, Algorithm 1 with n = 1“7'99, T = ﬁ, and a specific 6 < 1 can make

~ Co\/nLy | LyC; . nL AW .
%EHxT—x*HgSe aﬁferT:O(%+ ov/nly | LoCp  nkyog | G501 82 ) Giorations.

VSu °w BSe pBe uSe
e If g; is non-smooth, Algom'thm Z under the same settings of n,7 and 0 < 1 can make 5E |1 — 2, ||§ <
~ c ﬁ nLio? Clol . .
-0z + = 199 , 5% 8%
€ after T =0 (S ue + Bse T hBe T uge | iterations.

Remark 4. We would like to highlight several observations:
(1) When n =1, Problem (1.2) with smooth f;, g; becomes a standard p-strongly-convex-p-strongly-
concave and smooth stochastic min-max optimization problem. Our ALEXR algorithm reverts to

SAPD [15] and achieves the same O (;% T i

UO+0'

N e
(2) When f; is the identity mapping and n =1 (i.e., o9 = 0° and § = 0), Problem (1.1) with a smooth
g; degenerates into the classical strongly convex and smooth stochastic optimization problem and
our ALEXR with 7 = 0 reverts to (proximal) stochastic gradient descent (SGD) and nearly matches

L ) convergence rate;

its O( ) lower iteration complexity bound [25];

2
(3) When g; is smooth, ALEXR needs T = O (ggoe + O;B + ‘SS ) iterations to find an e-accurate solution
nBe

z (le, Ef |z - |5 < €), which improves upon the T = O( \/_S ) iterations needed by MSVR [10].

(4) When g; is non-smooth, the complexity has a worse term O(Me) compared to that O(i) for the
smooth g; highlighted in blue in the theorem. It persists even when the variances are zero, and
hence offers no parallel speedup in this term for mini-batches B. Such a result is similar to those of
(stochastic) subgradient methods.

6.2 Convex Case

Directly converting the result in the strongly convex case to that in the non-strongly case leads to

o2 2 5
5o+ B+ 5
we provide a better result matching the optimal rate by restricting the distance-generating function
i to be Ly-smooth and p,-strongly convex w.r.t. |-||.

an unsatisfactory O( convergence rate (See Appendix C.3). To address this issue,

To derive a bound of the objective gap E[F'(Z7)~ F(7.)] for the time-average iterate z7 = % LT bay,
we will plug = = z, and y)(zr) € arg max,y {v' gi(Zr) - f (v)} € 0fi(gi(2r)) for all i € [n] into
Lemma 2. It is important to note that the sum th:;]l (%U¢(y, yt) — %U¢(y,gt+1)) in Lemma 2 does
not form a telescoping sum. Additionally, the technique outlined in (6.2) does not address this issue
because y also depends on §;. Instead, we handle this by employing the lemma below, which draws
inspiration from Lemma A.2 in Alacaoglu et al. [14] but extends it to mini-batch sampling and a
general smooth and strongly convex distance-generating function ;.

SHere oo = 0 because we have f; = 1 for the identity mapping f;(g:(z)) = gi(x) such that there is no need to
compute the stochastic estimator of g;(x) because Vf;(g:(x)) = Vgi(z).
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Lemma 5. Under Assumption 6, the following holds for Algorithm 1 with Ly-smooth distance-
generating function ; and any A1 > 0 satisfies that

E [% (U (v yt) = Uy (y, 1)) - %Uw@tu,yt)] (6.3)
T T T L2
<E [g(Uw(y,yt) —Up(y,y1+1)) + %(Uw(y,ﬁt) - U¢(y,§t+1))] - (1 - M—ﬁs) E [Uy(Fes1,90)]
P

where the sequence {G;}¢,Gr € Y is virtual.

Based on Lemma 2, Lemma 5 and other intermediate results in Appendix D, we are ready to present
the main theorem for the convergence of ALEXR in the convex case. To facilitate the discussion, we
introduce the following quantity:

2} = B[, Uy, (v (1), 95”7)] < 22 Dy, = O(n).

Theorem 6. Suppose Assumptions 1, 2, 3, 4, 5, 6 hold. Besides, Algorithm 1 selects a smooth
distance-generating function ;. We denote that T = % Z;‘Ff)l Xt.

20_2 o
e If g; is Ly-smooth, Algorithm 1 with=1,7n=0 (L Crv \/\;gg v gi v Cgel ), =0 (;/;53 v %gBE)
can make E[F(Zr) - F(x.)] < € after

T-0 (Lgchi L VG Dy Co(1+L7[(Spz )05, D262 CjoiD% . op (1+L7, /(Sp2,))9%, )
; .

V/Se fyp\/nSe 52 T T Be oy BS€?

» . . A fvmc, 52 Cioi  C3C; PN Vel o2
e If g; is non-smooth, Algorithm 1 withf=1,n=0 (Wg Ve Vv —L2) r=0 #w—\/% v W?Bf
can make E[F(z7) - F(x.)] < € after

T-0 VnCyD2, N Cg(1+L7 /(Sp2))9%, N C7C; D% N D252 N C}oiD% N o (1+L7,/(Sp2,))9%,
VSe pp/nSe €2 Se? Be? /J/wBSE .

Remark: We discuss the results in the worst case where Qy = nmax; Dii y,» where Dy, y, =

[maxyey, ¥i(v) - mlnveyz ¥i(v)]Y2. When g; is smooth, the leading term in the iteration complexity

of ALEXR is O( nog + 2 —) This result outperforms the O(

2
nol 52 1
02 + @ + ﬁ) I'a.te derlved

from the strongly convex result, as well as the O ( \/Ense2) rate of MSVR [10]. Nevertheless, the

requirement for ¢; to be smooth prevents us from selecting 1; = f; except when f; is strongly convex.
However, it is worth noting that Theorem 6 remains applicable to our motivating examples, which
include GDRO with CVaR divergence, pAUC maximization with restricted TPR, Bellman residual
minimization, p-norm push, and multi-task GDRO. In these problems, the dual mirror step of our
proposed ALEXR can be efficiently solved with a smooth 1, e.g. ¥;() = 3 ||2, as indicated in the
paragraph below Assumption 6. Moreover, when the optimal dual variable y(zr) at Zp has some
sparsity structure, then Qoy could be much smaller than nmax; Dy, y,, the results above indicate
much better complexity of ALEXR when n is large. An example is considered in the next section.
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7 Application to GDRO with ¢-divergence

We discuss two examples of the GDRO problem with ¢-divergence: CVaR, divergence with a hyper-
parameter o € (0,1) and x2-divergence with a hyper-parameter A > 0. We compare ALEXR to the
following baselines:

e SMD [48, 17]: It can be applied to the GDRO problem in (2.1) with CVaR divergence, where
the dual mirror step with the entropy d.-g.f. can be efficiently solved by projection onto the
permutahedron [60]. Moreover, SMD can also be applied to the worst-group DRO problem [16]
(i.e., A=01in (2.1) or a = L in CVaR). The iteration complexity of SMD is T = O (106%”), which
is independent of a (Theorem 1 in [17]). Besides, it requires O(nlogn) computational cost for
performing the dual projection and O(n) oracles in each iteration. Note that SMD cannot be applied
to the GDRO problem in (2.1) with x2-divergence due to the non-linear penalty term.

e OOA [16]: This algorithm can be viewed as a variant of the SMD algorithm with the dual gradient
(

estimator [0, ... ,né(wt;ztit)), ...,0]" such that it only requires O(1) oracles per iteration. But
the dual projection cost in each iteration is still O(nlogn). The iteration complexity of SMD is

T=0 (”2 lggn)’ which is also independent of . OOA is not applicable to the GDRO problem in
(2.1) with x2-divergence either.

It comes to our attention that the NOL algorithm [17] designed for the worst-group DRO problem
(A=0in (2.1) or o = % in CVaR) can achieve T' = O(”ls#) iteration complexity in high probability
with per-iteration O(1) oracles. However, this result cannot be extended to the GDRO problem
with CVaR or y2-divergence, since their proof technique relies on powerful tools for multi-armed
bandits. Besides, Soma et al. [61] also consider the GDRO problem with CVaR divergence but their
convergence analysis suffers from dependency issues, as pointed out in Zhang et al. [17]. Recently,
Hu et al. [62] studied non-smooth weakly convex FCCO problems and proposed an algorithm SONX,
which can be applied to solving GDRO with CVaR divergence. However, their algorithm does not

leverage the convexity of the inner function and hence suffers from a worse complexity of O ( L )

Sv/Beb

7.1 GDRO with CVaR divergence

GDRO with CVaR divergence can be formulated as (1.1) with f;(-) = a™1(-)4, a € (0,1) and
gi(w,c) = R;i(w) — ¢ such that Cy = é and Cy; = Cr + 1, where Cg is the Lipschitz constant

of R;. The dual update (7) of ALEXR with v;(-) = %()2 has the closed-form expression yt(i)l =
{PrOj[o,a—l] [yt(l) + (1/7)9,5(1)] , 1€

) _ . According to Theorem 6, we can derive the following result.
yt ) ? ¢ St
Corollary 7. Suppose that R; is convex and Lipschitz continuous. For the GDRO problem (2.1) with
. 2 QQO
CVaR divergence, the ALEXR algorithm with y(()l) =0 requires T = O (% + ﬁ + g—; + % + 3;0562
iterations to return an e-approximate solution wey that satisfies BE[L(wou) — L(wy)] < €, where

Ql())] = E[ ?:1 le(ﬂ(l)ao)] and g(l) € 8fi(gi(w0ut7 Cout))'

) 2
Remark 8. The worst-case estimate of the Qg, term is Qg, = E[Y,; Uwi(g}(’),())] < n2—f = 542
when ; = %()2 However, it could be much smaller than 577 in practice since gj(l) = 0 for those

coordinates ¢ that satisfy R;(wout) < Cout, i-€., the ALEXR algorithm can benefit from the “sparsity” of
7D ed fi(gi(Wout, cout ) ). In particular, when (wout, Cout ) is close to the optimal solution, then roughly
about an number of groups such that [ R;(wout) — Cout ]+ > 0. As a result, Qg, =E[Y, Uwi(gj(z), 0)] ~
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Table 3: Comparison of iteration complexities, dual projection cost, and per-iteration #oracles for
achieving e-optimal solution of the GDRO problem in (2.1) in terms of E[L(wout) — L(ws)] < €.
Here 4y is the output of each algorithm. We hide other constant quantities except for n, variances
03,0%,6%, and batch sizes B, S. Besides, O hides polylog(1/e) factors.

¢-Divergence ‘ Algorithm ‘ #Oracles'") Dual Proj. Iteration Complexity
SMD [17] | O(n)/0(1) | O(nlogn) o('")
CVaR 00A [16] | O(1)/O(1) | O(nlogn) O ()
5 0
MEXR | O(1/0() | O() (0 + dha+ o+ P + B

Strongly Convex 7

A Vn 1 nog ”1 02 \(4)
0 ()\\/ S BSe + pBe + nSe

X2 ‘ALEXR ‘0(1)/0(1)‘ o(1) ‘ Convex r

Jn 1 52 gl UOQ"!
‘ ‘ ‘ O(Aﬁf e tset g2t s

O] Representing #zeroth-order oracles for g;(x)/#first-order oracles for Vg;(z) in each iteration.

() The worst-case estimate of Q% is 2—2, but it could be much smaller than % in practice, as explained in Remark 8.

C2 ,C'I
() The worst-case estimate of ng is L but it could be much smaller than "—f in practice.

() I terms of the distance gap.

naC?

2 2 2
3 £ = 2 Then, the complexity may become T = O (% 16 + % + a2 B€2 + aj;o;e 2)

7.2 GDRO with x?- divergence

GDRO with x?- divergence can be formulated as (1.1) with f;(-) = A(3(- +2)% = 1) and g;(w,c) =
(Ri(w) = ¢)/X such that Cf = w "and O, = CTI, where Bpr = maxyqy |R;(w)].
In this case, the proximal mapping of f(y(") = %(y(i)/)\ ~1)? with ¥;() = %()2 can also be
efficiently solved. We can also consider the GDRO problem with a convex regularization term
r(x). With a strongly convex regularizer, we can choose either ¢; = f* or wz( ) = %( )2 When

Y = f7, the dual update (7) of ALEXR has the closed-form expression yt+1 = (ut+1) ut+1 =

(1) + 1 g(l) i€ St
1U) Tardt o 0 ‘s, When ;(-) = %(-)2, the dual update (7) of ALEXR has the closed-form
U, i

. Theorem 3 and Theorem 6 imply the following

)

(i) _ {1+A(y F(Yn)g + 1), ies

expression .5 =1 () .
t 1 ¢ St
convergence result.

Corollary 9. Suppose that R;(w) is uniformly bounded and Lipschitz continuous. For the
GDRO problem (2.1) with x*-divergence and a convex regularization term r(x), the ALEXR al-

QQO 2
gorithm with y( Q- requires T = O (A\\;__ H;ﬁ + U]_%Sg’ + ;Z%’e + lf—;e) iterations to return an e-

approzimate solution weyt, that satisfies B[ L(wou) —L(ws)] < €, where QO =E[YX", U%(g(i) 0)] and

j € 0 fi(gi(Wout, cout)). If 7 s p-strongl it takes T = O f CS L S S
7 i(9i (Wout, Cout))- If 7 is p-strongly conver, it takes T = »won T e T Bse “Be 7S¢

iterations to find an wou such that § |wout — wi H§ <e.

A valid choice of ¢,¢is ¢ = -\, €= Br (see Appendix A.3 in Levy et al. [18]).
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7.3 Comparison with Baselines

In Table 3, we compare our ALEXR to the baseline algorithms OOA and SMD. It is notable that
although SMD has a better iteration complexity for CVaR divergence, it requires O(n) oracles at
each iteration. In contrast, ALEXR and OOA only require O(1) oracles in each iteration. On the
GDRO problem with CVaR divergence, the iteration complexity of ALEXR is better than OOA when
Qg, = o(n%logn) or the variance o7 is small. In the worst case, we have Qg, = O(n/a?), then ALEXR
has a better complexity than OOA when é =o(y/nlogn). In practice, we have Qg, =O0(n/a), then
ALEXR has a better complexity than OOA when é =o(nlogn). In addition, OOA cannot enjoy the
parallel speedup with respect to the inner batch size B due to its scaled dual gradient estimator.
Moreover, we also provide the iteration complexity of ALEXR on this the GDRO problem with

x2-divergence, with or without a regularization term.

8 Lower Complexity Bounds

The proposed ALEXR and previous algorithms SOX [5], MSVR [10] are all special instantiations of an
abstract first-order block-coordinate stochastic update scheme (Algorithm 2) with O(1) oracles and
O(d) computation cost per iteration. For an affine subspace & c RY, we denote the linear span of
{s) | se&} as 6@ for each i € [d]. The “+” in Algorithm 2 refers to the Minkowski addition.

Algorithm 2 Abstract First-Order Block-Coordinate Stochastic Update Scheme
1: Initialize affine subspaces Xo, Do, g0, Go
2: fort=0,1,...,7-1do
3: Sample a batch S c {1,...,n}, [Si| =S

4 for each i ¢ S; do

5 Sample independent size-B mini-batches Bt(i),lgt(i) from P;

6 o) = 0 +span{gi(#: ") | & € X}

7 ) = 9 +span fargmax ) (¥ - 7 (yD) - U, (4D, 5D)} | 4D € g2y, 5D e (|
8 end for

9 For each 7 ¢ S, 915?1 = ggi), Ei)l = thi)

10: 41 = & + span {% Yies, §Dvgi(a; Bt(i)) |2 eXy, g€ QJHI}

11: X441 = X + span {arg min, {(G, z)+r(z)+1|x- ﬁ;Hg} |2 eX,Ge Gri1}
12: end for

To obtain the best possible iteration complexity of this abstract scheme on cFCCO problems, we
consider a special instance of problem (1.1) that is separable over the coordinates i and P; = P.

mi F@. @)= 2 (5 a@) s § 1ok 51)

xe[-D,D
9i(x) = Beopgi(2:0)], gi(2:¢) = 2@ + ¢,

where the additive noise ¢ follows

- p.1- 2
=17 WP p,’ WheI’ep:V—QE(O,l).
v(l-p)/p w.p.p. o

Based on the abstract scheme (Algorithm 2) and the “hard” problems in Appendix E, we can derive
the following lower complexity bounds.
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Theorem 10. Consider the abstract scheme (Algorithm 2) with inner mini-batch size B =1 and
initialization :f((]i) ={0}, ED(()i) = {0}, g(()i) =g, 05(@ =g.

e There exists a cFCCO problem (1.1) with smooth f; and p-strongly convex r such that any
algorithm in the abstract scheme requires at least T = () (i) iterations to find an T that satisfies

E[ Hi—x*Hg] < €. Moreover, there exists another ¢cFCCO problem (1.1) with smooth f; and
u-strongly convex r such that any algorithm in the abstract scheme requires at least T =€) (%)

iterations to find an T that satisfies B[4 |Z - x.]5] < e or E[F(Z) - F(z.)] <e.
e There exists a cFCCO problem (1.1) with non-smooth f; such that any algorithm in the abstract

2
scheme requires at least T = (%) iterations to find an T that satisfies E[F(z) - F(z.)] <e.

Compared with the upper bound results in Section 6, this theorem demonstrates that ALEXR is
optimal among first-order block-coordinate stochastic algorithms for cFCCO problems.

9 Numerical Experiments

In this section, we show experimental results on the Group Distributionally Robust Optimization
(GDRO) and Partial AUC Maximization with restricted TPR. More details of the experiments and
additional results can be found in Appendix F.

9.1 Experiments on GDRO with the CVaR divergence

First, we numerically compare our proposed ALEXR and baseline methods on the GDRO problem in
(2.1) with the CVaR divergence for the binary classification task, where the objective function £(w)

is the average risk on the top-an worst groups, i.e., L(w) = ﬁ leflnj Ry (w) and [[4]] refers to the
i-th worst group in descending order. We consider the linear model w and the logistic loss £(w; z).
Baselines. We compare our ALEXR with previous algorithms on the FCCO problem and, more
specifically, the GDRO problem: BSGD [23], SOX [5], SONX [11], OOA [16], and SGD with up-weighting
(SGD-UW) [63, 64]. Note that the MSVR algorithm [10] is not applicable since the outer function f;
in this problem is non-smooth. Instead, we consider the non-smooth variant SONX of the MSVR
algorithm. To show the benefit of GDRO, we also include SGD which is based on empirical risk
minimization (ERM) and neglects the group information. Besides, OOA needs a projection onto an
(n - 1)-dimensional capped simplex {y e R* | ¥, y® = 1,0 < y® < ﬁ} in each iteration.
Datasets. We perform experiments on two datasets: a tabular dataset Adult [65] and an image
dataset CelebA [66]. The Adult dataset contains 48,842 data points, where we use 22,792 data
points for training, 9,769 points for validation, and 16,281 points for testing [67]. We construct 83
groups for the Adult dataset according to some categorical features such as race and gender. The
original CelebA dataset is composed of 162,770 celebrity images for training, 198,670 images for
validation, and 199,620 images for testing. We construct 160 groups for the CelebA dataset. On
the Adult dataset, the task is to predict the income, whereas on the CelebA dataset, the goal is to
determine whether the individual in the image possesses blonde hair. More details of the datasets
and the preprocessing steps can be found in Appendix F.1.1.

Results. We report the loss curves on the validation dataset for FCCO algorithms that share the
same objective function (2.1) in Figure 1. Then, we report test accuracy for all algorithms in Table 4
on the worst-(an) groups under 4 different values of .. First, we notice that the vanilla SGD performs
poorly on the worst-(an) groups’ data. While the up-weighting trick offers some improvement for
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Figure 1: Losses evaluated on the validation dataset during training with different o €
{0.1,0.15,0.2,0.25}.

Table 4: Comparison of test accuracy (%) on the worst-(an) groups with « € {0.1,0.15,0.2,0.25}.
The best accuracy is highlighted in black while the second-best one is highlighted in gray.

\ Adult \ CelebA
Methods |, _ o a=0.15 a=02 @=025 | a=01 a=0.15 a=02 =025
SGD | 0.71x0.20 187025  4.1420.26  7.35:0.27 | 275:0.08  4890.10  6.61£0.07  8.02:0.08

SGD-UW | 23.70+1.01 26.26£1.06  31.84+0.71 36.77+0.65 73.70£0.13 74.18+0.13  74.79+0.12  75.28+0.11
O0A 51.46+2.21 54.12£2.04  56.08+£1.98  57.45£1.73 66.40+6.37  73.43+ 0.79  75.62+0.01 74.90+0.02
BSGD 55.81+0.70  58.58+0.61  59.48+0.47  60.48+0.45 75.30£0.27  76.16+£0.12 77.00+0.09 77.53+0.07
SOX 56.34 £1.15  58.36+0.44 60.39+0.36 61.45+0.25 | 75.04+0.20 76.10£0.30  76.85+£0.11  77.59+0.25
SONX 47.78+1.06  49.49+0.95  51.78+0.66  54.42+0.65 | 75.34+0.28 76.17+0.09 76.99+0.06  77.47+0.09

ALEXR | 56.58+0.69 58.52+0.71 60.23+0.50 61.76+0.36 | 75.79+0.05 76.29+0.07 76.80+0.12  77.28+0.10

SGD, its effectiveness still falls short of Group DRO algorithms. Among GDRO algorithms, our
proposed ALEXR, exhibits faster convergence compared to baseline methods. Additionally, ALEXR
also achieves superior testing performance in most cases.

9.2 Partial AUC Maximization with Restricted TPR

Next, we compare the proposed ALEXR and existing baselines on the pAUC maximization problem
with restricted TPR in (2.3) and its equivalent forms (2.4), (2.5). In our experiments, we consider
linear prediction model w and two different lower bounds a of TPR: 0.5 and 0.75.

Baselines. Previous FCCO algorithms BSGD, SOX and SONX can be applied to (2.5) and OOA can
be applied to (2.4). We also include SGD with over-sampling to minimize the cross-entropy (CE)
loss. In Zhu et al. [6], they propose an algorithm called SOTA for the weakly convex pAUC problem
with TPR and FPR restrictions. We modify the SOTA algorithm for the convex pAUC problem
with only restricted TPR.

Datasets. We perform experiments on four datasets: Covtype, Cardiomegaly, Lung-mass, and
Higgs. The Covtype and Higgs datasets are from the LibSVM repository®. We create the imbalanced
datasets by randomly removing 99.5% positive data from the Covtype dataset and 99.9% positive

Shttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 2: Loss and partial A
and TPR> 0.75.
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data from the Higgs dataset. Cardiomegaly and Lung-mass are two imbalanced datasets that share
the same collection of Chest X-ray images and different label annotations from the MedMNIST
repository [68]. Details of the dataset and the preprocessing steps can be found in Appendix F.2.1.

Table 5: Comparison of partial AUC on the test dataset. The best result is highlighted in black.

‘ Covtype ‘ Cardiomegaly ‘ Lung-mass ‘ Higgs
Methods | " "ppR>05  TPR>0.75 | TPR»0.5  TPR>0.75 | TPR=0.5  TPR:=0.75 | TPR>05  TPR>0.75
CE | 0.707:0.001  0.581:0.004 | 0.5240.001  0.378:0.002 | 0.202£0.009  0.143:0.009 | 0.482:0.001  0.318+0.003

00A 0.716+£0.002  0.594+0.003 | 0.613+0.001  0.477+0.005 0.323+0.008  0.181+0.012 0.482+0.002 0.316+0.005
BSGD 0.726+0.003  0.597+0.005 0.606+0.001  0.481+0.003 | 0.329+0.004  0.170+0.004 0.482+0.001 0.320+0.004
SOX 0.726+0.002  0.597+0.005 0.607+0.000  0.481+0.003 | 0.329+0.003  0.170+0.004 0.481+0.002 0.319+0.004
SONX 0.723+0.003  0.597+0.004 0.603+0.002  0.474+0.003 0.318+0.002  0.165+0.005 0.481+0.001 0.318+0.002
SOTA 0.726+0.004  0.600+0.007 | 0.611+0.002 0.481+0.001 | 0.332+0.008  0.183+0.008 0.483+0.002 0.321+0.003
ALEXR | 0.727+0.003 0.605+0.005 | 0.613+0.002 0.477+0.004 | 0.333+0.005 0.185+0.014 | 0.485+0.000 0.322+0.003

Results. For each algorithm, we present the objective function values in (2.3) and the partial AUC
values evaluated on the validation dataset throughout the training process, as depicted in Figure 2.
Additionally, we also compare the final partial AUC values on the test dataset for all algorithms,
summarized in Table 5. The results suggest that optimizing the surrogate loss in Equation (2.3)
outperforms optimizing the Cross-Entropy (CE) loss for maximizing the partial AUC with restricted
TPR. Among algorithms tailored for optimizing (2.3), our proposed algorithm, named ALEXR,
demonstrates overall superior performance when compared to previous algorithms.

10 Conclusion

In this paper, we delve into a class of convex finite-sum compositional stochastic optimization
(cFCCO) problems, as represented by (1.1), by leveraging the min-max reformulation in (1.2). To
tackle this problem, we propose a single-loop primal-dual block-coordinate proximal algorithm called
ALEXR. Our proposed ALEXR achieves improved convergence rates compared to previous works on
both convex and strongly convex problems. Furthermore, we present lower complexity bounds to
show that the convergence rate of ALEXR stands as optimal among first-order block-coordinate
stochastic methods for cFCCO problems. We demonstrate that ALEXR has applications in a broad
spectrum of problems, including the Group Distributionally Robust Optimization (GDRO) problem
and partial AUC maximization problem with restricted TPR. Numerical experiments demonstrate
the promising performance of ALEXR on the GDRO and pAUC problems.
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Appendix

A Basic Lemmas

Lemma 11. Suppose that yoi) = fi'(u(()i)) € 3f¢(ugi)) for some u(()i) €R and

OB WP O

(i) _ )17 1+ =0;, €8

U 7 , . (A.1)
t+1 ~ { g)’ i¢S

Algorithm 1 with o; = f satisfies that yti) = fl-’(uti)) € 6fi(uti)) forallie{l,...,n} and t > 0.
Proof. We prove it by induction. The base case follows from the premise. Assume that y(l)

fi(utz)) € 8fz(utl)). We discuss two cases.

o Casel (i ¢S;): Note that yg)l (1) and u£+)1 = ugz) Thus, yt+1 f! (ugfr)1 € 8fi(u£i)1 .
o Casell (i€S8;): This part resembles Lemma 2 in Zhang and Lan [22]. Based on the update
rule and the premise y ) e 8f1(u ) (= u(l) edf’ (y(z))), we have

v = argmax {y Qg - 17 (D) = (£ (D) - (1) () -4 ) }
y

= arg max {( f]t(l) P uiz)) -y(’) - fz‘*(y(z))}
T

y(@) 1+7 1+

1 ~(1 T A i
687‘1( t() . ug))——afi ug)l.
O]

Lemma 12 (Corollary 2 in [49]). Consider an adapted sequence {A¢, Fi}is0 where (Ay) is a
martingale difference sequence. Define a sequence {71 }¢:

70 =0, 7 =argmin{(-A¢, v) + Uy (v, )},
v

where we also assume that 1 is py-strongly convex w.r.t. |-| (puy >0). For any v (that possibly
depends on A;) we have

2
E[ A

1
E [(Ay, v)] <E[aUy (v, ) - aUy (v, f41) | + 5
a,ud,

Proof. Use the three-point inequality:
<—At, TArt+1 - 1)) < OéUw(U, TA['t) - OéUw(U, TA['t+1) - OzU¢(ﬁ't+1,ﬁ't).
Add (-Ay, 7y — T4+1) to both sides and use Young’s inequality.

(—Au iy — U) < OéUw(U,th) - OéUw(U,thH) - OéUz/;(th+1,7ATt) + (At, Tl — ﬁ't)

. . . . Qfley | . 1
< aUy (v, 1) = Uy (v, fipe1) — aUy (Fpen, ) + Tw |1 — 2] % + " A2

If ¢ is py-strongly convex, we have —Uy (741, 7¢) < —“71” [Fee1 — 7 ”2 Lastly, E;[A¢, 7] = 0. d
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Lemma 13 (Lemma 4 in [49] and Lemma 7 in [22]). Let II ¢ R™ be a non-empty closed and
conver domain and let function u(m) be p-strongly convex on I w.r.t. |-|. For a & generated
via a prox-mapping with the argument g+ 9, # < argmin_g{(m, g+ —u'(x)) + u(m)} for some
7 eI, where § denotes a noise term with E[6] =0 and E[|6]?] < o3. Then, for © generated via a
prox-mapping with the argument g, T < argmin g {(7, g —u'(x)) + u(xw)}, we have
|7 ==l <ol /n, (A.2)
B, 6)| < o3/ (A.3)

For completeness, we present the proof of the lemma above. We do not claim any novelty here.

Proof. By the optimality condition of prox-mapping, we have

(W' (7)-u/(x)+g+6, 7#-m)<0, Vmell,
(u'(ﬁ') -u'(m)+g, - 71') <0, Vmell (A.5)

>
o

Choose m =7 in (A.4) and m =7 in (A.5). By combining (A.4) and (A.5), we have
1], 17 =7 2 (8, 7# = 7) > {u'(7) —u'(7), 7 - 7).
Since u is p-strongly convex, we have (u/(#) —u'(%), # —=7) > p|# - 7|%. Thus, |7 -7| < 8], /-

Moreover, the triangle inequality leads to |[E (7, §)| < |E(# — 7, 0) |+|E (7, ) |. Note that E (7, d) = 0.
Moreover, Cauchy-Schwartz inequality and (A.2) leads to

[E(#, 6)| < [BE (7 -7, 6)| <E[|7 - 7| [3].] <E|6]3 /p < 05 /1.
O

Next, we present a basic inequality about the mirror proximal update. Similar results have been
widely used in the literature, e.g., Lemma 3.8 in Lan [69] and Lemma 7.1 in Hamedani and Aybat [70].

Lemma 14. Suppose that the function ¢ : X - R is on a convexr closed domain X and ¢ is

p-convex (u > 0) with respect to a proz-function Uy(z,y) = ¢(z) —(y) - (¥'(y), x —y) for any
z,y € X with a generating function 1, i.e., () > ¢(y) + (' (y), x —y) + uUy(z,y), Yo,y € X. For
& =argming y{¢(z) + nUy(z, )}, we have

¢(2) - ¢(x) <nUy(z,z) - (n+ p)Uy(2,2) —nUy(2,2), VrzeX. (A.6)
Proof. By the definition of the prox-function Uy (x,y), we have
Uy(z,z) = Up(z,2) - Uy(2, z)
= () = p(a) — (¢ (@), 2 —z) = d(2) + (@) + {¢'(2), © = &) = (@) +o(z) + (V' (2), & - z)
= {'(2) ¢/ (2), v - 2).

By the strong convexity of ¢ with respect to v, we have ¢(x) — ¢(2) > (¢'(2), x - ) + pUy(x, £).
The optimality condition of the prox-mapping implies that (¢'(2) + n(¢)'(2) - ' (z)), = — 2) > 0 for
any x € X. Thus, we obtain (¢'(2), x - &) > n(¢'(2) - ¢'(x), x - &) such that

¢(x) - ¢(2) 2 (¢'(2), © - ) + pUy(2, )
2 77<¢'(£) - w,('@)v x - i‘> + :UU’lZJ('%vT;) 2 —UUw(%E) + (77 + :U’)Ulb(xajj) + Ud;([fi,g)
O]
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B Proof of Lemma 2

Proof. According to Lemma 14, the primal update rule implies that

n+p
2

~(Gry =) + (o) - r(@) < D le—aly - o o - weal - D e - a3 (B

Similarly, for all ¢ € [n] the dual update rule implies that

(37, 5D = g2) + 1 @) - 1 WD) <70, (5D, 5 ) = (7 + ) U 0D 520 = TU (520 987)-

Average this equation over i =1,...,n.

1& ; i
o Z <9t ) l/ - yt+1) +— Zf (yt+1) - = Zf (y( )) < —Uw(y Yt) - —U¢(y Ye1) — _Uw(ytﬂ Yt)-
i=1
(B.2)
By the definition of L(z,y) in (1.2), we have

L($t+1 y) = L(x, Y1)

== Z( O, i) - = Zf (D) +r(ae) -+ > (50 g (@) + if:@é?l ~r(2)

nia n;

SN VCHNRE I EPWACIEE D WACRIET DN CEMEFIBRY
+7(xp1) —r(x).
Combine the equation above with (B.1) and (B.2).
L(zt,y) - L(z, Y1)

n

T T+p _ T _ 1
<=Uyp(y,y0) = —Uyp(y, Ges1) = —Up (G, 1) + = ) (gz($t+1) iy
n n n n;i

n
O =g )+ 5l =l

n

1 _
o= w3 = 5 e =il + — 3 (g = 9i(a). G ) = (G, e — ).

i=1

n+p
2

O

C Convergence Analysis of ALEXR in the Strongly Convex Case

In this section, we present several lemmas that upper-bound different terms in (6.1) with z = x.,
Y = Y, where we define z, = mingex F'(z), y« = argmax,cy L(7,y).

C.1 Supporting Lemmas
Lemma 15. Under Assumptions /, 5, 6, (C.1) holds for Algorithm 1 with 0 <1 and any A2, A3 > 0.

1 n (A 1
ZE<gl xt-%—l) gt y Y ) - y,5(+)1) (Cl)
1:1
C2 |wp — 23 0C2 |we—zecaly (Ao + A30)Uy (i 2
<Ty 0T, + 28 |zes1 — 24|35 L0 |zt = 2415 . (A2 + A30) Uy (Ge1, y1) . 2(1 +20)0?

2o 23 oy Buy(p+71)’

where T'¢ i= 5 TiLy (91'(51716) — gi(zin), vt - (Z)>.
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Proof. The = Y1 E(gi(xe1) - g, ))(yf - yt(i)l) term can be decomposed as

= Z( (l‘t+1) gt ) Z/*Z) gﬁ?l) (02)
2 7 7 _ 1& (2 1& 7 —(2
- Z;(gz(a:t — gi(z; B, o —yt(+)1> - ;(gi(wm), y —yt(+1> - ;(gz(xt) yt yt(+)1>
I I
0 i [ i ;
ﬁ Z <gz(l‘t 1) = gi(xt), Z/( ) - Z/t+1> 5 Z (91’(3715713815( )) - gi(ze-1), yi - y§+)1>
i=1 i=1
III v

Taking conditional expectations of terms I and IV leads to E [(gl(xt) gi(x¢; B(Z)) y(l)> | ]—'t_l] =
0 and E[(gl(xt 1) = gi(z— 1,8(1)) y(l)> | Fio 1] = 0. Define y§+)1 = argmaxvey,{v gt( - fr(v) -
TUy, (0,9, ))} and g( D = gi(x¢) +0(gi(xt) — gi(x4- 1)) Vi € [n]. Note that y§+)1 is independent of B,

such that E [(gl(:r:t,BE )) - gi(xt), yt+1> | .7-},1] =

(@)

E [(gi((ﬂt; Bt(l)) - gi(xt) yt(+)1>]

=E[<9i($t;5’§i)) gilze), 50 - yt(i)1>]<E i

gi(a: B - gi(w) | [wir -9,

Lemma 13 1 i i i
< B - g B[ (1+0)(0i (@) - 9i(i: BY)) - 0(gi (1) - gi (e 1; B
pp(p+7) * .
ONE (i) 0)
(1+0)E | gi(z:) — gi(x; B, )H* OE ||g; (xt) — gi(xe; By )H* gi(wi-1) — gi(wi-1; B, )H*
- oy (p +7) py(p +7)
ON(E ON[E ON[E
(1+0)E |g:(z1) - giei; B)| | 0.50E |giae) - gilaes B +0.50 |gicai-1) - gi(wer: B
<
,U,w(p+ 7') ,U,w(p+ T)
(1+20)02
" Buy(p+7)’

BB - i) 50 - B {0 ) - ) 8 - 563 < 2078,

Define I'; := % I (gl(xt) gi(Te-1), y yf)) IT + III in (C.2) can be rewritten as

’l=

12 ; 1 n o o Z
I + III:_Z<gi($t+1)7y>(+ _y75(+)1> Z(gi(a:t),yg _?Jt+1>+—Z<9z‘(l‘t—1)—gi(:ct),y£ _y§+)1>
ni=1 n i3 n 4
1 7\t b & % —(2
:Ft+1—9Ft+—Z<gz($t+l) gz(xt) yt+1 yt(+)1> Z(gi(xt—l) _gi(JUt), y,f ) _y§+)1>
ni n.,:
<Ten =002 Z lg:(ze1) - 0 R R z lgi(eir) - giCao)l, o - 52
2
< Ft+1 B Hl“t N Cg “l‘t+1 — X ”2 N 909 “l't - ZEt—lHQ N ()\2 + >‘39)U1/1(yt+17yt) .
]
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Lemma 16. Suppose that g; is Lg-smooth and Assumptions 1, 2, 3, 4, 5 hold. Then, the following
holds for Algorithm 1.

CQO'% 52
1 Zn (@) Bt LCy 2
E . —gi(xs Gy, —x,.) < + - . C.3
" i:1<gz($t+1) 91(56 ) yt+1> ( ty Tt+1 — T ) — 5 H-Tt+1 56t||2 ( )

Proof. We define A, = 2 s, [Vai (2 BTy, = L 37 [9gs(2)] 75

1 (i
5 <9i($t+1) = gi(z+), y§+)1> - (Gt, Ts1 — T )

n

3 EANIE

1 n i n
<9@(wt+1) gi(xe), yt+1> EZ(Q@(%) gi(z+), Z/t(+)1> < Z Vgi(xt)] T?/,§+)1+At7 f*—xt+1>

=1 =1
gi convex n 12 1
ngRm n;(Qz(‘TtH) gz(xt )"'(n; ng(xt) Tyt(+)17 Tt — $*>+<E;[Vgi($t)ry§+)1 + Ay, x4 _$t+1>
= Z; (Qt(i)l, gi(ze41) = gi(2r) ) ( 2; Vai(z)]" ym, Ty - :vm) + (A, Ty — Tp41), (C.4)

We bound the first two terms above by the Lipschitz continuity of f; and Vg;.

Sk
M3

~.
I
—_

i=1

> (5, gi(wen) - git)) + (ii[m(m]wﬁ’l,xt—mm)

1 n
= > (ym, Gi(ze41) — gi(xe) = Vgi () (T —:ct))
=1
L (2)) - Vi . O S i (e — gi(20) — Vi .
<2 wi o) - gitan) = Vaite) @i — 2l < =5 3 lgien) - gi(e) = Vailan) (i - 22)]..
i=1 i=1

Due to the Lg-smoothness of g;, we have

L
lgi(xes1) = gi(we) = Vgi(w) (Te41 — 20) |, < 79 |1 = 3 -

Thus, the first two terms in (C.4) can be upper bounded by

3I>—‘

n 1 & G L,Cy
2 {0 9iCarn) —gian) + (nZ[vmt)ryf&,xt—xt+l)< S e -y ()
i=1 i=1

Besides, we have that E[(A¢, x.) | Ft-1] = 0. By the Lipschitz continuity of f; and the definition of the
operator norm, we have H([ng(a:t)] — [Vgi(ze; B(Z))] )yt+1 H vgi(z)]" = [Vgizs B(l)) H ‘ Yeer

Cy H [(Vgi(x)]" = [Vgi(we; Bt(i))]T Hop. According to Lemma 13 and Assumption 5, we can derive that

2\ ot g2
<B S

<

E|A5 1 (42
—E[<$t+1, At)]S ” t”? < (

1 (VT 10 (i)
ntn e §+EH§ Z ([ng(xt)] ~[Vgi(zs; By )] )yt+1

€St 9 /,L"r"f’
(C.6)
Then, combining (C.4), (C.5) and (C.6) leads to
C202 2
1< (i % + % LyCy 2
B {gi(are) = gi(0), i) = B{Gr wa —a) € B+ 20 o~
O
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Lemma 17. Suppose that g; is non-smooth and Assumptions 1, 2, 3, 4, 5 hold. The following holds

for Algorithm 1.
C2%52 2
o1 d 212

5 TGS e
w+n 4

Proof. Note that (C.4) and (C.6) still hold. Since g; is non-smooth, we need to bound the left-hand

side of (C.5) in a different way. Based on the definition of the operator norm and the Lipschitz

continuity of g;, we have | g;(z¢)(2: — zer1) |, <gi(@e)[p |2t — Tes1lly < Cg [2¢ — 2441 |5 such that

|21 =23 (C7)

1 n
ﬁEZ <gi(xt+l) gz(x*) yt+1> <Gt7 Tt+1 — x) <
=1

1& 1&
n ;(ytﬂ, gi(wes1) = gz(l‘t)) < Z [gi(ze)]" yt+17 Tt — $t+1)
1& 1&
= 2l o) - giteo)) + 2 3 (010 o) - )
1 n
<=3 o lgiCeen) - gien)l. + —Z |2 9 o) (e -
i1
AC2C2 4
<204Cy Jovst = ailly s =+ o v -l (C.8)
where g (x¢) € dg;(x¢). Merge (C.4), (C.6), and (C.8).
20'
1 S0 ackc?
;E; <gz(xt+1) gi(@+), l/t+1> E (G, 241 — ) < M+77 2 +0.25(n + ) |weer — 243
O
C.2 Proof of Theorem 3
Proof. 1f g; is smooth, we combine (6.1), (6.2), (C.1), and (C.3).
E[L(2t41,y5) = L(2+, Y1)]
T+p(l-2 T+ Ui +
« 208 it () - LB ()] + LB L - il - LB o, -
T datAgf ; n_ Gy LGy 2 0C )
(T2 R(D A ) Y “IR |y 2
(n ) ) [Uy (Gre1,9t) ] (2 Dy 5 |@es1 — xe]5 + 39 (T
21+ 20)0% 2
+ B[y - 00 + (+20)00 , 75 *'5 (C.9)

Buy(p+7)  n+p

Define Y¥ := %E |z - :L‘t||§ and YY = %EUzp(y*,yt). Note that L(z¢1,Y+) — L(2«, Y1) > 0. Multiply
both sides of (C.9) by 67" and do telescoping sum from ¢ =0 to 7' — 1. Add 70~ Y% to both sides.

T-1 S
w5 < 3 07t (s (rp (1)) TV - 0BT - ((+ ) TE + (74 )Y,y - BLL))
t=0

C2%02 2

21 + 2 2 fo1 + o\ -1 T-1

oo Trs 4 [2020% 75t s Sot- Y e-t(Z _ —(A2+)\30))E[Uw(yt+1,yt)]
ppBlp+1)  n+p |5 =0 n fpm

T-1 L.C C? 02
N Bt A E 2
,; (2 2 2 23 lweer = ez
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Let n> {7 such that 0 S u and 7 > (1 =) such that 6 < = (+p ) . Then,

T-1

- m S o
67" ((nTt + (7’+p(1 - ﬁ)) TY - HEFt) —((n+ )i+ (T+p)YY, —EFt+1))
t=0

nYE + (T+p(1 - §))Tg ~0ELo - 07" (0 + p) Y5 + (7 + p) Y% —El7).
n

e

By setting x_1 = zg, we have I’y = 0. Besides, we have —I'y < % Y lgi(xr) = gi(xr-1)], y(

c
2 xr - 271y |lys — yrl. Thus,

- S _ C,
075 <t + (1o (1-2)) X =07 (4 )05+ (74 )V = 05 = 22 fap =y Iy - )

—29“1(<<n+u>rt+1+<7+p>rt+l B - (217 + (e (1-2)) oy - or))

Q

02 2
2(1 + 20) 02 + % (A2 + A0
+(( )i, )Zet 29 ( Q—”)E[Uw@tﬂ,m]
n+u t=0

pypB(p+T) Hapm

Q

= L,y G C
St (1B Ze e g, - C.10
Yot (1-Ha - e e )Rl -l (.10

Note that n+pu—-7 20 < 60> % such that (7 +p) Y7 - 217 20 and <2 S awr —2r1ly ly —yr| <

2
QCT‘; |xp — - 1H§ 2%”2 Uy (y«,yr). To make the © terms in (C.10) be non-negative, we choose

Ao ACg\/Spuw A3 Cq\/Spiy

while ensuring that

N
/ N
1/730( n““"’), imeoX2Pe 1) (C.11)
Cy\/Sp Cy/npt - LyCy

Noticethat7'+(1—§)§9(7'+p) and (T+p)(1—9):%_(61,)_9)(1 0) = p( +(1- 0))

C2%02 2
1-2))(1-6 2 Ll &
g, < g+ 2 2)) )eTTy+(2(“29)"0+ 5 +S)

0 pypB(p+7)  m+p

252 2
2(1 +20) 02 . £y s
pypB(p+7)  n+p

<pbT g+ (r+p)(1-0)0T 1Y + (

02 2
201+20)08 5+ %)

S
_ T A~z T~y
=uf' Y +p(—+(1—9))0T +
0 n 0 pyB(p+7) n+u

We select 7 = %, T= n(’fe), and

o-ol1-S A, upuwSAuwlipSGA BQMZASNE
n  LyCy C'g?n ogn C'fcr1 52
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to make (C.11) hold and

020.2 fO'l ﬁ
2(1+20)0? . AL . 2(1+20)(1-0)o2n N (- 6)( S)
ppB(p+71)  mtp T pypBpS ju

the number of iterations needed by Algorithm 1 to make pY7 <€ is

—— )
T:O(n+Lng+Cg an+anUg+CfJI+ 62)

Since Ly = o p,

S 7 VS BSe uBe  uSe

where O(-) hides the polylog(1/e) factor. In the case that g; is non-smooth, we utilize (C.7) instead of
(C.3). Correspondingly, we need to replace the blue term LgTCf in (C.9) by 0.25(n+ p). Additionally,

4c2c2
there is a —L-% term on the right-hand side of (C.9). Following similar steps, we can get the

iteration complexity to make Y7 < € is

- Cygr/nL Lio?2 Cjoi 2 C3c?
T:O(n+g L e IO f1+5 + L2

S VS BSe uBe  uSe €

C.3 A Direct Conversion to Non-strongly Convex Results

We can directly convert the results from Theorem 3 for the strongly convex and smooth case to the
convex and smooth case using a commonly employed regularization technique For a non-strongly
convex F(z) in (1.1), we can construct the strongly convex F(z) = F(x)+ & Hng and define that
T, = argming.y F(x) We then apply Algorithm 1 to solve the problem mingex F(x), and the
output is denoted as zoyt. Leveraging the smoothness of f;, we can convert the iteration complexity
from Theorem 3, originally for making 5E |zout — :/U,,||2 €, to that for F(a:out) F(a;*) <e. The
objective gap of the original F' can be upper—bounded as

F(wout) = F(24) < F(out) = F(24) = (F(xout) = F(#4)) + (&) - F(.) (C.12)
A A . A A A € A AN €
< (B (o) = F(82)) + F(32) = F(e) + S 13 < Flaou) - F(2) + 5 3.
Therefore, running our algorithm on the strongly convexified function F results in an e-accurate
solution for the original convex problem as long as ||z.| is bounded.

Theorem 18. Suppose that f; is smooth and Assumptions 1 2,8, 4, 5, 6 hold. Moveover, p in
Proposition 1 satisfies that p >0, i.e., f; is Ly-smooth, Ly =

;wp

o If g; is Lg-smooth, Algorithm 1 can find an o such that E[F(zow) — F(x.)] < € after T =
~(n L Cf Cg\/an ’VZC LfUO C}%Cg[,fo-% CQLf52
O(§ MR BSZT T T Bt TEs
o If g; is non-smooth, Algorithm 1 can find an Tou such that E[F(xouw) — F(x4)] < € after T =
~ Cov/nL nC2L%262 C2C?L;o? (C2L.62 LcC2CH\ | X
O(% + g\/% L e+ Bgegf L4+t fﬁg g) iterations.

) iterations.

Proof. According to (C.12), the proof can be completed by converting the distance gap result to the
objective gap result in the strongly convex case. When g; is smooth, multiply both sides of (C.9) by
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6" and do telescoping sum from ¢t =0 to T'— 1. Add nQ_TT% to both sides.

T-1
WG_TT% + Z e_tEl:L(l‘ta y*) - L(x*vgt)]
t=0

= - x S x
<>t ((nTt + (T +p(1 - ;)) 1Y - QEFt) ~((n+ )Y+ (T+p)YY - EFt+1))
t=0

C2o2 2

e 200420002 SR+ % Lo (Mt s _

Ty [ 22000 Tt | S zaf(——M B{Uy (f1e1,w0)]
ppBlp+7)  m+p |5 =0\ fyn

T-1 L.C C? C2
_ —t(ﬁ_g_f__g_ )]53||95M_$t||2

2 2 2\ 2)

Following similar steps as in the proof of Theorem 3, we can arrive at

T -1 -t
M * (|2 0 Z 0 _ =
LB or -+ T E[L(r. ) - L. 7))
77‘1?99 H 21—

SE|or—2*5+

5 E[L(zr.5.) - L(z..717)]

: (C.13)

C2O'2 52
<M9TTI+2p0TSTy+ (1+20)o5 + i
- " n ppBlp+71)  n+p

—t - _ -t _ 1
where Zp = Y15 ﬁxt and g7 = Y1} ﬁyt. Note that 1 - 67 > % when T" > %(92) due to
exp(-u) > 1 u for any u € R. Recall that f; is Tw—smooth For ygq) = argmax,y, {vg:(Z7r) - fi (v)},
we have i) = f/(gi(21)) = gi(#r) € 917 (3;") and

F(zr) - F(z) < L(Zr,91) - L(2+, Y1)
= L(Z7,97) - L(T7,y+) + L(Z7,y+) — L(xs, y7)

——Z(( 79 =y, g + £ GO - £ GD)) + Larye) - Lz, ir)

== ZUf«yT D) + L(&Er,y.) - Lz, r) > gi(zr) € f7 (1)
1 n
EZ £.(9i(@1), 9i(24)) + L(Z1, y») — L(24, Y1)
i=1
1 — — =
< 5— lgi(@r) —gi(x) % + L(z7,y.) - Lz, y7)
PH
2
<3 9| Zp - 2. |3 + L(Zr, v+ ) - L(2s, Ir). (C.14)
Pl
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Next, we turn to bound the distance between the average iterate zp and the optimum x,.

1 2 Tz_:l o 2
EL |27 - 2.3 < Y < oy - 27|
2 t=0 Zt 010 t2

020'2 2

T-1 —t 2 o1, 6

( Tx+ 2105 ) Z T9_1 0t+ (1+20)UO + B S
n =0 2i—o 071 ,uwB(p+T) n+u

_ Cfl 52
- (15 - QpS,ry)911+((1+29)0(2) = +§)

0T -1 \pypB(p+7) n+p

9 C?O’% ﬁ
< H(T 1) ( T S'ry) (1 + 20)00 + B + S ) (015)
pypB(p+7)  n+p

Then, we can upper bound E[F(z7) — F'(x.)] by plug (C.13) and (C.15) into (C.14).

020'% 2
E[F(:cT)—F(x*)]g( % +2M9) (9<T1>( oy ZSTy) ((1+29)03 +fT+%))‘

[P fLy pypB(p+7)  m+p
L]
D Convergence Analysis of ALEXR in the Convex Case
D.1 Proof of Lemma 5
Proof. When p =0, we decompose the A term in (6.1) as
T T _ T _
—Uy(y,yt) = Uy (y, Y1) = = Uy (Y1, Y1) (D.1)
n n n
_ _ S -
= %Uw(yayt) - %U¢(y7yt+1) - %Uw(ytﬂayt) + (%Uw(y,ytﬂ) - %U¢(yayt+l) + %Uw(%yt)) .
We rewrite the last three terms above as follows.
T T _ S—-n)t
gUv(e1) =~ Up(y, Gee) + %Uw(y, Yt)
T & 7 i % i A (i
=3 Z; (D) = i) - (vea(y ), v yt(+)1>) Z (6 ®) = wah) - (v @), v - 512)

* % > (9i(s™) - i) - (v ), v - 5"))

n i n-.9 i n i i
= I3 (6@ - 2 + 20 ™) + T3 (SR vuni) - vui ) + L v, o)

=1 =1

f

S (™), 4?).

i=1

T T & 7 (1 S-n)t
EZ(V% yt+1 t+1)_EZ<vwl(yt(+)1 y§+)1> ( nS)

i=1 i=1
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Note that both yt(+)1 and y( 2

are independent of S; such that
[wz(y“.l) | gt] _wz(yt ) +

wx%”>
[(V%(ytu) yt+1> | gt] (W(yfﬂ ng?l) R— (V@Z’%(ytl)) ?J(l)> )
E|vei(y) | G = —Wz(ym Wz‘(ytl))-

Apply Lemma 12 to § with A(i)

V¢z(yt+1)+V¢Z(yt+1)+ﬁv¢z(yt1)) Z?t(jd = argmin,, ( Agi), U)"‘
alUy, (v, y ) (o to be determined) such that

(A0, yO)] < B[l (4@.57) - aly, (4

O 5] + E[HA@ 2]
Sum both sides from 1 to n and divide n on both sides
E[j] SE[%(Uw(y,Qt)—U¢(y7gt+1)):| E[é HAgi) 2]
Note that B[(ve;(y?

1+1) ~ Wi(yf))) | Gi] = S(V%(yt(?l) - V?/)i(yt(i))) such that
E [HA,S”

|- wv¢xmﬂ> Vi) - (T D) - T

< ?E vai(yt(?l) - VW(yti))H* '

Thus, we have

E(4] <E| 2 (Us(y: 1) - Un(y: 1)) | J—%E[iuwi (yih) - vm@ﬁ”)H]

®

(D.2)

We need to handle the & term

resz® | S eni) - v | < o

e B[S oo ]

Choose o = e for some A1 > 0. According to (D.1) and (D.2) and E[||lyi+1 —ye|” | Gel
||yt+1 - ytH < m w(Ye+1,Yt), we can finish the proof.

0
D.2 A Supporting Lemma

Lemma 19. Suppose that Assumptions 4, 5, 6 hold. For any A, A3, 4,A5 > 0 and any y € Y
Algorithm 1 with 0 = 1 satisfies that

_ZE<gz(xt+1) gt 7?/() ()>

Y41

(D.3)
N N A5 y
=E[[1 -] + —E[Uw(% U1) = Up(y, e+1) ] + =E[Uy (v, 5:) = Uy (Y, 41)]
n n
, Qs+ AE[Uy (Gerr, 9] | CIB |z — | .\ CIE |z -z ]* 902 ol ol
Moy 23 204
where Ty = L

TupB  AopyB  2Aspyp B
Ly (i) - i), y@ -y

) {9t} 1205 {Ut}1s0 are virtual sequences and 4y, Yy € Y
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Proof. The % >y (gz($t+1) gt , y(l) - y( ) ) term can be decomposed as

1 A
52;(91(%1) 3 ,y()—yt(+)1> (D.4)
N g —(z 1 & (2 1& i
;(gz(xt) gi( wt,B()) y yt(+1> E;(gi(ﬂftﬂ),y( —yt(+1> ;;(gi(l't),y( —yt(+)1>
I 11
0 & o ; ;
# 0 2 (o) =gut). o0 =)+ 202 (g (s BY) - i), o -5 ).
11T v

Define yt(Jr)l = argmax,y {(v, (1 +0)gi(x¢) = 0gi(z¢-1)) = [ (v) =7Uy, (v, 9, ))} Vi e [n]. We decom-
pose the I term in (D.4) as

Z(gz(xt gz’(:vt;Bgi)),y( yf%)

1+0 & ;
<9i(fﬂt) - gi(fvt;Bt), y( )>
i=1

>~ (5i(a1) - 9i(e B) (G2~ ) + —

+ :M:

z (9:(20) - gilaes B, 9.
Since f; + 17Uy, (y(’) Yy )) is Tpy-strongly convex, Lemma 13 implies that

gi(w0) = giwi B lget - g |

n a1
_Ez<gz :Et) gl(xtaBt) yt+1 y1§+)1) EEE

1 & ; ;
: NT by ZE[ 9i(w) - gl(mt’B())H ((L+0)]|gi(ze) - gl(wt’B())H +0gi(wi-1) - gi(ze- 1,3())H )]
=1
1 i ; 1+26
ZE[<1+159> gi(a) ~ giCaers B + 0.5 gi(rr) - g 1,3“)\\] o L+ 20)5
”Tﬂw i=1 TBM@[J

Apply Lemma 12 to the term % P (gi(xt) = gi(x; By), y(i)) For any A2 > 0 and some auxiliary
sequence {¥; }¢»0, @,ﬁ)l =arg minveyi{<gi(xt§8t) - gi(xy), v) + )‘2le(” ytl))} we have

1 n 1 )\ A A 1
7 2 {osCen) = 9i(ei B). y) < TRV 50) = U Buan)] + G B ) = s B

Lastly, [(gl(xt) gl(xt,B( )) yt(fr)l) | 2,1 =0. Choose # = 1. Then, the I term in (D.4) can be
bounded as

29 ol 602
E[l] < ZZ2E[U, U, 0 0_ D.5
(1] - E[Uy(y,9t) = Up(y, Jt+1)] + NoiB 7B (D.5)
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Define T'; = % (gz(ﬂft) gi(ze-1), y(l) - y( )> For any A3, A4 > 0, IT + IIT can be rewritten as

12 (i 1 _ 12 i
IT + I = ﬁ Z (gi(ﬂftﬂ), y( - yt(+)1> ﬁ Z <gi(l't)7 Z/( - yt(+)1> ﬁ Z (gi(l‘t—l) - gi(ﬂﬁt), y( - y§+)1>
i=1 i=1 i=1
12 1& 7 A
=Tyt =Tyt = 2 (g3 (@) = i), i) =00 ) + = - (o) — gaCan), i =5 )
n =1 ni=1

2 _ 2 _
092 |es1 ‘ﬂftHQ N A3 |yes1 —ymH N g ||$t _:Et*IHQ + Ay |yt —yt+1||2

<Typ1 -Ty +
AR 23 2n 2\ on

Note that yffr)l ygfr)l if i € S; and yg)l yiz) otherwise. Then, [y+1 — yjt+1H2 <y - gjt+1||2 such that

2 _
C2 |lwper — 45 . C |lwe — a3 . (A3 + A) Uy (§e+1, 1)
23 24 oy '

We decompose the IV term in (D.4) as

1 & ) %
V=—-2 (9: (@15 B) = gi(win), v - 51
i=1

I+ T <y - Ty + (D.6)

L ; ) JRL ; ;
=~ {oite B — gilwen), 90 - 91 )+~ 2 (9iCeeis B) — giana). )

=1 i=1
L i (0)
- ; <9z'(55t—1; B - gi(i1), y§+1> .
By the Cauchy-Schwarz inequality, we have

—ZEH%(% 1,3( ) = 9i(@i-1), yt+1 371&)1)] <_ZE[ 2

gz Tt-1; B( )) gz(xt 1)H Hyt+1 yt+1

J

Since f;* (y@) + Tle(y(Z) Yy )) is Tpy-strongly convex to y®, Lemma 13 implies that

o o 0] - B)| +6|g(@e) - g B
‘ Y1 ~ Y| = THiy :
Similar to (D.5), the following holds for any As > 0 and some auxiliary sequence {#;}+>0, where
Gy = argmin,ey, {{gi (w15 B:) - gilzi-1), v) + AUy, (v, 5 ))}.
1 & (i) \1. s y y b
— (T ;B - gilT¢-1), < —E|U, R -U, , + .
- ; [(9 (=18, ) = 9i(w-1), y >] - (Uy (Y5 9t) = Uy (Y, Gr41)] Do B
Consider that —Z [(gz(xt 1,8( )) gi(xi-1), ytH)] 0.
A5 R . 0(2] 308
E[IV]<Z2E - . D.7
[1V] < - (Uy(y,9t) = Uy (y, Ge1) ] + DopoB | TiuB (D.7)
Combine (D.5), (D.6), (D.7).
- ZE<91($t+1) gt ) y( D —Qt(ﬁ)
)\ A A A5 9] v
<E[[y -]+ TE[Uw(y,yt) ~Up(y, 9ee)] + LUy (4, 90) = Uy (y, Gee)]
. (A3 + M)E[Uy (Y141, 1) ] . C7E |11 — 2| . CIE |z ~ 2 | 902 . od . od
Hap T 2)\3 2)\4 T,LL¢B )\2M¢B 2)\5[/@3'
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D.3 Proof of Theorem 6
Proof. If g; is smooth, we combine (6.1), (6.3), (C.3), (D.3). Set z = x, and xg = 2z_1.
E[L(214+1,Ye41) = L(z+, Yra1) ]

TA . R
E[Uy(y,yt) = Up(y, ye1)] + ?1E[U¢,(y,yt) —Uy(y, t+1)] + gE |z = 243 - gE [Ny

O)I\\

A A A )\ v 9
+E[Tp -T] + TZE[Uw(y, Ue) = Uyp(y, Jee1)] + fE[Ud;(yayt) —Uy(Y, Yt+1) ]

T 7L M+ _ n_ Gy LGy . Gy 2
-1 —- - E[U | L9 97 R _ B
(n TMmfz,S Ly [ w(yt+173/t)] 2 20 9 |ren — x5 + 2)\ E |z — 21|53
908 03 o’% C]%a% 52 D)

+ + + + + —.
Ty B XopyB  2Xsuy B nB S
Do telescoping sum from ¢ =0 to T'— 1 for the equation above.
-1
Y E[L(zt1,y) - L(ze, §t:1)]
t=0

Bz moly Ty ) CEE[Uu(y,60)] + Z2B[0u(y,§0)] + “2BIUy (v, 40)]

2 S
o TL e+ n L,y C2 C2
B E U, , L= 4 _Z _ E _
(n n)\mig fiym Z [Uy(Yte1,91) ] = 5 5 W Z |zie1 — 2|

S Bn 577

Cfc L\, 98T T | ofT
T/LUJB )\QuwB 2)\5H¢B )

+E[Tr] - —E[Uy(y.yr)] + (

Note that I'g = 0 I'r < % ?1 ”gz(xT) —gi(xT 1)”

. CQ 2
vy | < 5 lor = or-al3 + 22Uy, ur).

o X mT Ay x CX5 0y, chf Xs < "7, and let 1/730(\/_%)and 1/n <

Choose A\ x

S 1211’ \/_ ’ \/_ ’ Cg\/§
(@) (T\/ﬁﬁ) Since L(x,y) is convex in x and linear in y, we have
B 1 T-1
Em;’X[L(ijy) - L(‘/E*ng)] < Em??“X f Z [L($t+1,y) - L(x*vgt-i-l)]v
=0

where T = % 23;61 Tis1, YT = %Zthf)l yt+1- Now work on the LHS.

L) - L) = 2 3 (10000) - 7)) +rGr) - 3 (i00(e) - £ ) = ()
Choose y® = ( ) e argmax,{vg;(zr) - f{(v)} < gi(Zr) € 8f (y )) < y E 0fi(gi(Z7)) such that

75 gi(Tr) - f (y ) = filgi(@r)). By Fenchel-Young, ~5gi(x.) + f7(55)) > - fi(g:(x)). Thus,
E[F(z7) - F(x.)] <Emaxy[L(mT, ) - L(x*,yT)] Thus, we can make E[F(Z7) - F(x*)] <e after

N ch L VACuD% Co(1+L% [(Sp3)) £y DY,y D%6%  D%C30}  og(1+L3/(Spy)) Ty DYy, .

T_O( ] \/ie * ppV/nSe * 522 tTBE Tt fiy BS€? it-
2 CQ 2

erations by setting 6 =1, 7=0 (;L/;(/Ji MZOBG)7 n=0 (L Cyv \/\;99 v ng v gzl )
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If g; is non-smooth, we utilize (C.7) instead of (C.3). Correspondingly, the blue term ngc L in
4C3C?2
(D.8) should be changed to 7. Additionally, there is a f] £ term on the right-hand side of (D.8).
Following similar steps, we can get the iteration complexity to make E[F(Zr) - F(x.)]<eis T =
C3C2D%  /acyD:  Co(I+L3[(Ski))TiyDj y.  D26% DiC20?  of(1+L7/(Spi)) X, Df, .
f X » W i ¥ Vi X~ fo1 » W v ¥i,Yi
O( Eg + \/%E X 4 o/nSe + S’i  t — 5 1 BS ) by set-
) B _ Vsc o2 B JnC, C}C; 52 Cio}
tlnge—l,T—O(Mw\/%vuw%e),n—()(wgv A A el B

O]

E Proof of the Lower Complexity Bounds in Theorem 10

Proof. We construct the hard problems for (i) smooth f;; and (ii) non-smooth f; separately.

(i) Smooth f; and strongly convex r: First, we can consider the special instance that f; is the
identity mapping and 6 =0 (e.g., n =1), og = 0. Then, the cFCCO problem in (1.1) becomes the
standard strongly convex minimization problem. Then, we can apply the information-theoretic
lower bounds [71, 25] for the standard strongly convex minimization problem. Thus, any algorithm

in the abstract scheme requires at least (i) iterations to find an z such that E [% |z - :1:*||§] <e.

v—1 v v+1
u y(i)

(i) Visualization of f in (E.1) (ii) Convex conjugate £* in (B.2) of f. Note that
() = +o0 in grey areas.

Next, we construct another “hard” instance to derive the second half of the lower bound in this
case. Consider the following strongly convex FCCO problem

minF ()= - 3 f(gi(2)) + (o),
=1

(V—l)u+%(1/—1)2+1/—1—§, u € (—oo0,—1) )
fu) = {5 (u+v) -1, wel-11]  r@)=-lef; (B

(1+1/)u+%(1+1/)2—1—y—§, ue (1,00)

where X = [-1,1]", the outer function f : R - R is smooth and Lipschitz continuous for v < 1.
Besides, the inner function g; : R" - R is g;(z) = E¢[gi(x; ()] and g;(z;() = 2 + ¢, where ¢ follows

B {—1/ w.p. 1-p, 2

,  where p=—.
v(l-p)/p w.p. p. o
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As stated in Assumption 3, we do not requlre f to be monotonically non-decreasing when g; is affine.

We define that Fj(z(®) = f(g;(x)) + + [ac(l)] such that F(z) = % n Fy(z™). Thus, the problem

min, F'(z) is equivalent to the problems min,, ;) F;(z(") on all coordinates i € [n]. Since the problem
(4)

is separable over the coordinates, we have x,” = argming_ 1] Fi(zM) for z, = argmin . F(z).

Thus, we have CL‘( R 2—?1/ and Fz(mgf)) = —%. By the convex conjugate, for any y(* ¢ R we have

G (i) 1 2 v? (@ 1 o VP
f(y") = max{ sup Juy'”’ — (1/—1)u+§(1/—1) +v—-1—-—1|}, sup Juy —§(u+y) S

u<—1 2 ~l<us<l
0 L1sy? v
supJuy'”’ - [(1+v)u+=(1+v)*-1-v-—
u>1 2 2
() € (o0, -1 1
— -;00,(1) ) y(l) € ( o,V ) U (V + 700) (E2)
i(y -v)*, yWelv-1v+1].

Note that the proximal mapping with v;(-) = 5 L. ”2 can be efficiently solved for this f;". Since P; = P
in the “hard” problem (E.1) and we only consider the inner mini-batch size B = 1, the abstract
scheme (Algorithm 2) only needs to sample shared (;,(; ~ P for all coordinates i € St in the ¢-th

iteration. For an i € [n], suppose that g( D=z or {-v}, 2}@ = {0}, 9 = {0} for all 7 <t. Then,
o If i ¢ S;, the abstract scheme (Algorithm 2) leads to

951)1 @ or {-v}, gi)l = {0}, %g—)l ={0}.

o If i € S; and (; = —v, the abstract scheme (Algorithm 2) proceeds as

gﬁ)l ( ) + span{ #(0) 4 G 2 ¢ %gi)},

i i i IO S i) A i
= ()+span{ arg max {()(9()+V)— R (y()—y()))}Ig()egﬁfpy()E@E)},

yDe[v-1,v+1]

.’{ﬁ)l = %Ei) +spany argmin { g 4 —[ (1)] ( (@) _ ) } | 7 @(%) () ¢ :{(1)
e(e[-1,1] 2
Then, we can derive that g§+)1 =g or { v}, th+1 = {O} and }:t+1 ={0}.

To sum up, given the event L 1{g =@ or {-v}, 2) = {0}, £ = ={0}}, we can make sure that

{gt+1 =gor {-v}A @Hl ={0} A 36t+1 ={0}} for the abstract scheme in Algorithm 2 when one of
the following mutually exclusive events happens:

e Event I: 7 ¢ S;;
e Event II: 1 € §; and (; = —v.

Note that the random variable (; is independent of S;. Thus, the probability of the event Et( 31
{gg?1 @ or {-v} A QjHl {0} A :{gi)l ={0}} conditioned on N _, EY can be bounded as

p[EQ 10 B0 |2 {df) -0 or () 29D - 002 x - 1)1 1 2]
>P{i¢S}+P[{{ieShA{G=-v}}]
-P[i¢SH+PIesNP G == (1-2)+2a-p=1-22.
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Since S; and (; in different iterations ¢ are mutually independent, we have

[E()]>P[ Et(+)1] h [E(l)1|mE(l)] ( %) 3/4_T_Sp

2

Thus, letting T < %p can make P [E(TZ)] > 1. Choose v = 3v/2¢, and ¢ = oy such that p = 5= 8¢

2" 90

For any i € [n] and any output z() e %Ep), we have

(0 a0 ]~ B[t (50 2) 415 (20 0 ]
L T

- ) 2
ZE-UEi)(i'(Z)—l'S_) ]

=E]|l
Moreover, we have
E[F,(2) - ()] = B| 1,0 (F(D) - Fi(2l)) +

ZE-EU(F(:U()) F(x“)))]

o (F(a) - Fmi")))]

-B[1,00 (FO) - F )| = PLEDY (F0) - RE™) > 2 e

Since the derivations above hold for arbitrary i € [S] and the r(z) in (E.1) is %—strongly convex

(p = 21n) we can derive that

B[4 |- wlf] =B I -] = 1 SB[ -20) ] ¢

i=1

E[F(z) - F(z.)] =%iE[F(x(”) E@)]>e

1=

Thus, to find an output Z that satisfies E[4 ||z — 2.3 ] <eor E[F(Z)- F(z.)] < ¢, the abstract

_ nog
scheme requires at least 1" > 45 = 75g- iterations.

(ii) Non-smooth f;: We borrow the construction f(-) = fmax{-,—v} from Zhang and Lan [22].
We define that Fj(z®) = f(gi(z)) + %[:c(i)]2 = fmax{z® v} + %[as(i)]Q such that F(z) =
%Z?zl F;(z®). Thus, the problem min, F(x) is equivalent to the problems min ) F;(z(*) on
all coordinates i € [n]. Let the domain X be [-2v,2r]". Since the problem is separable over the
Y = argming o, Fi(e ") = argminep o0, {Fmax{a®, -} + 5[0}
Ba 4+ 2 [x(z)] @ >y

-Br+4< [:L'(’)] 2 < -y’

coordinates, we have x

for , = argmin .y F(z). Considering Fj(z(*) = { we have

l‘(i) _ -Bla if04>[3/1/ F(ZB(Z)) —52/(204) ifoz>6/1/
! -v ifaeZ [0 1]’ -pr/2 ifaeZ [O 1].

Since F;(0) = 0, we can derive that F;(0) — F; (arf)) mln{ﬂy 3?/a}. By the convex conjugate,
we have

F(39) = max | {¥D5D - (8- yD)}.

y(Def0,8
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Consider an arbitrary i € [n]. Suppose that g( D~ g or {-v}, 9 = {O} LD = {0} for all 7 < t.
Note that f is structured non-smooth such that we can select ¢;(-) = 3 |- 2.
o If i ¢ S;, the abstract scheme (Algorithm 2) leads to

g1E+)1 @ or {_V}v gi)l = {0}7 %gi)l = {0}
o If i € S, the abstract scheme (Algorithm 2) proceeds as

o’ = g +span {5;@ +¢ |2 e %go} 7

i i) A (i i i) _ )y NG i
M _ <)+Span{af%max{ DD (5 -y D)7 (4@ —§®)) }|g D eg, ()E@p}’
y(Ve[0,5]

%ﬁ)l = %gi) +span4 argmin { 52 4 —[ (’)] ( @) _ ) } | 9 () e Q‘jgi)l,:%(i) € %gi) .
x(De[-2v,2v] n 2

Due to the same reason as in the smooth f; case, the probability of the event Erfpz ) = {ggf) =
@ or {-v}A @gﬁ) ={0} A %(Tl) ={0}} can be bounded as

i = i i Sp TSp
p[e]>p[() B0 TR 01 50] = (1 2) 5o - 222

Thus, letting T < %p can make P [E;l)] > % Choose 8 = Cy, v = é—;, and o = o( such that

p=%= C; . For any ie [n] and any output QNS f{gf), we have

E[F (D) - Fi(2))] =B [ig, (FGED) - F@)) + 1 (RED) - F@))]
> B1g, (F@D) - FE))]
=E[1p, (F(0) - Fi(="))]
= PEr] (F(0) - Fi(2")) > min{pv, 2o} /4 = .

Since the derivations above hold for arbitrary i € [S], we can derive that

1 . -
E[F(Z) - F(z.)] = = Y. E[F(@D) - F(z\")] > €
n01
Thus, to find an output & that satisfies E[F(z) — F'(x.)] < €, the abstract scheme requires at least
2 2
T> 4Sp IS 20 iterations. ]

F More Details of Experiments

All algorithms are implemented using the PyTorch framework. For the projection onto capped
simplex in OOA, we borrow a Python implementation’ of the efficient algorithm by Lim and
Wright [60]. Experiments are conducted on a workstation with the 12th Gen Intel(R) Core(TM)
i7-12700K CPU with 20 logical cores.

*https://github.com/mblondel/projection-losses/blob/master/polytopes.py
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F.1 Group DRO

Here we provide the omitted details and results of our Group DRO experiments.

F.1.1 Data Preprocessing

Adult dataset: We construct 83 groups for the Adult dataset according to income (“>50K”,
“<50K”), race (“white”, “black”, “other”), sex (“female”, “male”), age (“<=30", “30-45”, “>457),
relationship (“single”, “not_single”), and education (“higher”; “others”), where we discard those
groups with less than 50 data points. Following [67], we transform both continuous and categorical
features into binary features, resulting in a 122-dimensional feature vector for each data point.

CelebA dataset: We construct 160 groups for this dataset according to 4 binary attributes (“blond
hair”; “male”, “mouth slightly open”, “smiling”) and 10 types of additive Gaussian noises (means
-0.08:0.02:0.1 and variance 0.08) to the images. Each image of the CelebA dataset is resized to
224x224x3, normalized, and center-cropped. Then, we extract 512-dimensional feature vectors for

those preprocessed images from the last convolutional layer of a ResNet18 pre-trained on ImageNet.

F.1.2 Parameter Tuning

We tune the step sizes of all algorithms in the range {2,5,10} x 1083271}, Additionally, for
primal-dual algorithms such as ALEXR and OOA, we adjust the step size for the dual variable
within the same range. For SOX and SONX, we also tune the momentum parameter (7 in the
SONX paper [11] and ~ in the SOX paper [5]) in the range {0.1,0.3,0.5,0.7,0.9} following their
papers. For ALEXR, we choose the extrapolation parameter 6 € {0.1,1.0} and the generating function
HOE %()2 For all algorithms, we choose the weight decay parameter 0.05 on the Adult dataset
and 0.1 on the CelebA dataset to improve the testing performance. We execute all algorithms for 5
runs with different random seeds and each run contains 2500 iterations for the Adult dataset and
15000 iterations for the CelebA dataset. For a fair comparison, each algorithm samples 64 data
points in each iteration. For SGD, these data points are sampled from the entire training dataset,
whereas for other algorithms, they are sampled from 8 sampled groups.

F.1.3 Additional Results

" -
CelebA Adult (03 v.s. T, €=0.15) CelebA () v.s. T, a=0.15)
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Figure 3: Group sizes and the estimated values of Qg,.

The first two columns of Figure 3 show the existence of rare groups in the datasets. The last
two columns of Figure 3 demonstrate that the actual value of Qg, is indeed much smaller than its
worst-case estimate 5., which verifies the claims in Section 6.2 and Section 7.1.
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F.2 Partial AUC Maximization with Restricted TPR
F.2.1 Dataset Statistics and Preprocessing

To create imbalanced datasets, we randomly remove 99.5% positive data from the Covtype dataset
and 99.9% positive data from the Higgs dataset. For the Covtype dataset, we randomly allocate
60% of the data for training, 20% for validation, and another 20% for testing. For the Higgs dataset,
we randomly select 500,000 data points for validation, 500,000 data points for testing, and the
rest as training data. The Cardiomegaly and Lung-mass datasets are naturally balanced and the
train/val/test split is pre-defined. We vectorize each 28x28 image in Cardiomegaly/Lung-mass
datasets into a 784-dim feature. We list the detailed statistics of those datasets in Table 6.

Table 6: Statistics of datasets used in the partial AUC maximization experiments. Here n, and n_
refer to the numbers of positive and negative data in the train/val/test splt.

Datasets ‘ Train ‘ Val ‘ Test
‘ o n_ ‘ Ty n_ ‘ Ty n_
Covtype 889 178,587 | 252 59,573 275 59,551
Higgs 4,676 4,172,030 | 582 499,418 | 571 499,429

Cardiomegaly | 1,950 76,518 240 10,979 582 21,851
Lung-mass | 3,988 74,480 | 625 10,594 | 1,133 21,300

F.2.2 Parameter Tuning

For the step sizes and momentum/extrapolation parameters, we tune them in the same way as
in Appendix F.1.2. We execute all algorithms for 5 runs with different random seeds and each
run contains 750 iterations for the Cardiomegaly/Lung-mass datasets and 1500 iterations for the
Covtype/Higgs datasets. In each iteration, each algorithm randomly samples 16 positive data points
and 16 negative data points.

G Convergence Rates of Baseline Algorithms

In Table 1 and 2, some of the baseline algorithms were originally proposed for stochastic compositional
optimization (SCO) and convex-concave min-max optimization. In this section, we show how to
derive their convergence rates on our FCCO problems.

G.1 SCO Algorithms

The FCCO problem in (1.1) can be reformulated as an SCO problem F(z) = f(g(x)), f = lyn, fi,
fl(u) = fl(u(l)) forueR"™, g= [glv s 7gn]T'

SCGD [1]/ASC-PG [2] These two algorithms maintain a sequence {u;}X, u; € R*™ to estimate the
inner function g(x), which requires n zeroth-order oracles in each iteration. To update the variable
x, the stochastic gradient is computed as Vg(zy; )V fi, (ue1) = Vgl-t(:z:t;Qt(“))vfit(ugfl)), which
requires one first-order oracles in each iteration. All their proofs still go through and the convergence
rates of SCGD/ASC-PG on FCCO are the same as those of the SCO problem.
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SSD [22] Both m and 7y in their paper are now n-dimensional. Then, steps 3 and 4 in their
Algorithm 1 are done for each coordinate i € [n], which leads to O(n) zeroth-order oracles in each
iteration. To update the variable x, the stochastic gradient is computed as Vg(gg; Ce)V fi, (ytl) =

Vi, (gg;gt(“))v fis (gi), which requires one first-order oracles in each iteration. We only need to
handle the 2 term in (2.35) in their paper, which now becomes 6 + Cyo} under our assumptions.

G.2 Min-Max Algorithms
The primal-dual formulation in (1.2) of cFCCO can be viewed as a convex-concave min-max

optimization min, gs maxyegn ®(,y) - Yity fi*(y(i)) +7(z), where ®(x,y) = % >, y(i)gi(m).

SAPD [15] In this paper, they assume that the coupling term ®(z,y) is (Lye, Loy, Lyz, Lyy)-smooth.
[Va®(z,y) = V2@(2",y)| € Lo |2 = 2" + Loy [y - o]
[Vy@(z,9) = vy @,y < Lys [ = 2| + Lyy [y - o[
Considering the FCCO problem, we have L,, = CyLg, Lyy = Ly, = %, Ly, = 0. Besides, the
strong convexity moduli yi., j1,, in their paper are , Tl_}lf in our paper. When applied to the FCCO
problem, SAPD computes stochastic estimators V,®(z,y;) = %[gl(xt; ft(l)), ooy gn (g ~t(n))]T and
Vy® (2, ye) = %[gl(mt_uff_lf),---,gn(xt_ufffl))]T to update y while computing V,® (2, yi1) =
. _ 2
yﬁtl)Vgit(:Ct;Q) to update x. Thus, §2 and 5; in their paper are C]%af + 6% and %0 under our
assumptions.

H Convergence Analysis of ALEXR with =0
As an ablation study, we provide the convergence analysis of our ALEXR algorithm with 6 = 0.

H.1 Strongly Convex Case

Theorem 20. Suppose that Assumptions 1, 2, 3, 4, 5, 6 hold. Moveover, r is p-strongly convex

with p > 0 while p in Proposition 1 satisfies that p >0, i.e., f; is Ly-smooth, Ly = ﬁ. If g; is
Lg-smooth, ALEXR with 0 =0, n= =, 7 = ﬁ, and a specific v <1 can make S5E |z7 - :C*Hg <e
after T = O (% + Lgucf + C"\\//S_TLTf + ngf + négig CE;E + %6) iterations. If g; is non-smooth, the
iteration complexity is T = O (% + Cg\\//S_ZTf + CaLf + nggig ngj + j—; + Cifg )

Remark 21. Compared to the results of ALEXR with 6 € (0,1) in Theorem 3, there is an extra
term O Cals

Lipschitz constants Cy and Ly when Cy, Ly > 1.

) term, which makes the iteration complexity of SOX has a worse dependence on the
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Proof. Plug 6 =0 into (C.9).

E[L(2t41,y+) = L(2+, Yt41)] (H.1)
S
T+p(l-% T+p n n+u
S %E[Uzb(yhyt)] - TE[Uw(y*aytﬂ)] + §E | — fCt||§ - E|z, - xt+1H§
2 C?O’% 52
T )\2 " n Cg Lng 2 20'0 B + g
I-22\E[U (T 29 RN |y - a2+ E[T N ,
(n szn) [Uy (a1, 91) ] (2 Do 5 |wesr — a3 + E[Ti] + Bru(p 1 7) P

where I'; := % Y (gi(ﬂﬁt) - gi(2-1), ygi) (l)) We bound the E[T';,1] term by

1 & Cy
Elea] = = Y (gi(ze) - gi(@e), v = yi2) < =2 |zver = 2y 9o = v
ni3 n
0 2
< Q—TLQE[Uw(y*,ym)] + |zt —$t||§~

Choose A2 = np,p and such that

E[L(5Ut+lay*) - L(x*a gt+1)]
S

T+p(1-3) T+p(1-2) Ui n+p
< T B0 (g, )] - T RIU (eye)] + DB -l - LB o -
%52 2
Ca C; L,C 203 =
—(I——)\Z )E[U¢(§t+1,yt)]—(ﬁ——g -2 77 f)EHa:t+1—xtg+ % +-B 5
no pyn 22X\ 2uyp 2 Bpy(p+1) n+

Define Y{ = %E |2z, — :vt||§ and Y] = %E[Uw(y*,yt)]. Note that L(xii1,y+) — L(zx,91+1) > 0.
Multiply both sides of (C.9) by v~ for some v > 0 and do telescoping sum from ¢ =0 to 7 — 1. Add
nU_TT§ to both sides.

o T < Zi;v‘t ((an + (T + p(l - %)) T?) - ((77 + )7 + (T + p(l 5 )) Ti’+1))

C?%02 2
9252 A WD T-1 (T A )
~T ~ez 0 B S -t —t 2 _
+nu T T+ B vt =) v [ == —— | E[Uy (Y1, y1)]
(/wB(p”) n+ i 152(:) ;) nopgn v
_ 2 2

& ofn G Cg  LyCy E 2
BRI el ceie - |zeer =23 -

t=0 2 2A2 2[,pr 2

s o _pS__ (1)
Let n > {=, such that v < p and 7 > w(1=0) such that v < r+p(1——) Then,

Tzoe((nr(p(lg)) D)= (e T2+ e T ) <5+ (r0(1-2)) 12
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We choose A\ < COVETTITRN| 1/7 < O(M) 1/n < O(CL VEITITN —) Then,

N CyV/Sp )’ Cy/nit
S C?O’% 52
HT%SMUTT§+ (T+p(1_a))(1_v)vTTy+ 203 + B TS

pypBp+7)  n+p

020.2 2

20_2 fo1 +6_

<8+ (74 p) (L 0)T LY + o T

pypB(p+7) n+p

020.2 2
952 T
:MUTTg+p(£+(1—v))vTT%’+ et

2n pyB(p+7) R

We select i = —1“_1;, T= 'n(/f:qv)’ and

S BpSe B
0 1_§A LN W Auw2peA QMZASME .
n  LyCy Cg C’gn ogn CfU1 &2

ince = ——, the number of iterations neede orithm 1 to make <e€i1ls
Since Ly = 1, th ber of iterati ded by Algorithm 1 ke pY% < e i

\/ 2 2 2
T=0 2+Lng+Cg an+CgLf+an‘7(2)+Cf01 + o
S m NETT n | BSe | juBe @ uSel

H.2 Convex Case

Theorem 22. Under Assumptions 1, 2, 3, 4, 5, 6, ALEXR with 6 =0 and an L.-smooth 1; can make

_ _ 1 «T- C2D2 §2D2 C2452 UO(1+L /(S,u,w))z 7/) Vi
E[F(Zp)-F(x.)] <€, xp = T Zt: xy after T = O( 562X + 5621 + /iy BSE2

2

. . . 52 C?O’Q
iterations by setting n = O V& V5 =0 ¢B€

Remark 23. Compared to the results of ALEXR with 6 = 1 in Theorem 6, the O( ) term persists
even in the case that g; is smooth. Thus, ALEXR with # = 0 does not fully exhibit the parallel

speed-up to batch sizes B, S, nor does it achieve the O (%) rate when variances 08, O’%, 62 vanish.

Proof. For ALEXR with 6 = 0, we have g( R gi(x; B(i)). Then, for any A4 >0 we have

SN
M=

S
Il
—_

E <gz‘($t+1) ~ G,y - yﬁil) ZE<gz(9€t+1) gz(ﬂct,B( ), yC gt(j—)1>

12 ; 1o . »
- S [{otzn) - aitw. v 50+ B[00 - 0o B 0 53]

12 1 .
sE;E[ng‘(xm)—gz‘(:ct)”* y@ - g ] EZ [(gl(xt) gi(z; BY), y —t(+)1)]

2
HLL’ - H 12 i 2 12 ; G

¢ SR L3 ([ [52]7) ¢ 2 3 {8 40 - 52

C2E [t - il Lo Z. P
SRt e LB o o510 i83]] (1)
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The last term in (H.2) is bounded as

%iE[(gmt)—gi(xt;Bﬁ“),y< yfi)l)]
=%i [ {9:(20) = g (s BY), y D =y | + %Zn: ({90 = 9iCis B, 0 -5} (13)

Il
—_

7

To bound the first term in (H.3), we have E[(g,(xt) g,(xt,B( )) y(l)>|.7-“t_1] = 0. Besides,

Lemma 12 implies that for some Ao > 0 and sequence {yt )}t

E | gi(x¢) - gi(xs; Brgi))Hi

7 1 1 7 ) ~(2 1
B [{gi(e0) - gi (i B), y)] < B, (00507 = U, (0P, 5001 + 5 oy

such that

A2

n

7%
2X2Buy

E [(g:(0) - gi2: B, 4™} < (H.4)

1
n;

&MS

E[Uy(y,9t) = Uy (y, G+1)] +

For any A3 >0, the second term in (H.3) can be bounded as

1 & i i i A3 & o2l Ellw —§t+1H2]
EZ [<gi($t)_gi(~1‘t§8t())a Yi —yt(+)1>] % [ gi(xt)—gi(ﬂft;Bt( ))|L]+T
=1 =1
< A308 . E [Uy(Gts1,91) ] (HL.5)
- 2B )\3#1/,71 ' ‘
Put (H.2), (H.3), (H.4), (H.5) together
1Z W C2E (| w1 -z A _ _
[— Z <gi(l't+1) — 9t y( ) - yt(+)1>] < [ . 2] + 4>\4C,20 + —QE[Uw(y»yt) = Uy (Y, Gr+1)]
n;3 204 n

N 0(2) N )\30(2) . E[Uw(gt+layt):|
QB)\QIUJ,Z, 2B 2)\3#¢n ’

Note that (6.1), (6.3), (C.3) still hold. Choose Ay = O(1/n), A2 = O(n7/(pyS)), A3 = O(1/(Tpy))
and 1 =0O(1/e), 7 = O(1/(Buye)) and follow the steps in the proof of Theorem 6. O
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