
ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum
Coupled Compositional Stochastic Optimization

Bokun Wang∗ Tianbao Yang∗

Abstract

This paper revisits a class of convex Finite-Sum Coupled Compositional Stochastic Opti-
mization (cFCCO) problems with many applications, including group distributionally robust
optimization (GDRO), learning with imbalanced data, reinforcement learning, and learning to
rank. To better solve these problems, we introduce an efficient single-loop primal-dual block-
coordinate proximal algorithm, dubbed ALEXR. This algorithm leverages block-coordinate
stochastic mirror ascent updates for the dual variable and stochastic proximal gradient
descent updates for the primal variable. We establish the convergence rates of ALEXR in both
convex and strongly convex cases under smoothness and non-smoothness conditions of involved
functions, which not only improve the best rates in previous works on smooth cFCCO problems
but also expand the realm of cFCCO for solving more challenging non-smooth problems such as
the dual form of GDRO. Finally, we present lower complexity bounds to demonstrate that the
convergence rates of ALEXR are optimal among first-order block-coordinate stochastic algorithms
for the considered class of cFCCO problems.

1 Introduction

In this paper, we focus on the following class of convex finite-sum coupled compositional optimization
(cFCCO) problems:

min
x∈X

F (x) ∶=
1
n

n

∑
i=1
fi(gi(x)) + r(x), where gi(x) = Eζi∼Pi[gi(x; ζi)], (1.1)

where X ⊂ Rd is a convex closed set, gi ∶ Rd → Rm is convex while fi ∶ Rm → R and r ∶ Rd → R∪ {+∞}
are closed proper convex. The problem (1.1) is more challenging than empirical risk minimization in
machine learning and conventional two-level stochastic compositional optimization (SCO) [1, 2] due
to some unique challenges. Firstly, computing the gradient of each term fi(gi(x)) poses difficulties
because the inner function gi is in an expectation form. Therefore, existing algorithms based on
stochastic gradient descent do not apply to (1.1). Second, the FCCO problems involve a substantial
number of inner functions gi coupled with the outer summation index i, making FCCO distinct
from previous SCO problems with a single inner function [1, 2].
The problem (1.1) is closely related to the empirical X-risk minimization introduced in [3] to
formulate many objectives in machine learning [4, 5, 6, 7, 8]. Several existing algorithms have
been proposed to solve FCCO problems with provable convergence guarantees [4, 5, 9, 10, 11, 12].

∗Department of Computer Science and Engineering, Texas A&M University, College Station, TX.
Correspondence to: bokun-wang@tamu.edu, tianbao-yang@tamu.edu

1

ar
X

iv
:2

31
2.

02
27

7v
4

 [m
at

h.
O

C
]

18
 Ju

n
20

24

mailto:bokun-wang@tamu.edu
mailto:tianbao-yang@tamu.edu

However, most existing results are devoted to non-convex FCCO where the functions fi and gi
are non-convex, yielding slow convergence to stationary points. Despite the global convergence
guarantees established for convex problems in [5, 10], these results do not simultaneously achieve
three crucial desiderata: (i) optimal rate in terms of the accuracy level ϵ of the objective gap or
the distance to optimal solution; (ii) parallel speed-up through both inner and outer mini-batches;
(iii) single-loop algorithmic design. In particular, the analysis of the SOX algorithm in [5] either
lacks parallel speed-up in terms of the inner batch size or only achieves a sub-optimal rate in terms
of ϵ for convex problems. The double-loop algorithm MSVR [10], while achieving the optimal rate in
terms of ϵ for the objective gap of a convex objective, exhibits only partial parallel speed-up with
the inner mini-batch size (see Table 1). Furthermore, their convergence results do not hold when
either fi or gi is a non-smooth function, limiting their applicability to broader problems.
The overarching goal of this paper is to design an algorithm to attain the three nice properties
mentioned above. Under the non-decreasing monotonicity and Lipschitz continuity of fi (see
Section 4.2), we can reformulate (1.1) into a convex-concave min-max problem:

min
x∈X

max
y∈Y

L(x, y) ∶=
1
n

n

∑
i=1
[⟨y(i), gi(x)⟩ − f

∗
i (y

(i)
)] + r(x), (1.2)

where f∗i the convex conjugate of fi, y(i) ∈ Yi ⊆ Rm+ is the i-th block of y, Yi is convex and compact,
and Y = Y1 × . . .×Yn ⊆ Rnm+ . To solve the above problem, we propose a primal-dual block-coordinate
proximal algorithm named ALEXR1 to efficiently solve (1.2). This is motivated by state-of-the-art
primal-dual algorithms for empirical risk minimization with linear models [13, 14] and for convex-
concave min-max optimization problems [15]. However, (1.2) possesses unique characteristics that
make it non-trivial to extend existing algorithms and analysis to solving (1.2): (i) the objective in
(1.2) is not necessarily bilinear as in [13, 14]; (ii) it is prohibitive to access the stochastic gradient
for all dual variables {y1, . . . , yn}, which is different from [15] assuming the stochastic gradient for
y is given at each iteration. The key steps of ALEXR are the following block-coordinate stochastic
mirror ascent update for the dual variable and stochastic proximal gradient descent update for the
primal variable:

g̃
(i)
t = gi(xt;B

(i)
t) + θ(gi(xt;B

(i)
t) − gi(xt−1;B(i)t)), ∀i ∈ St (1.3)

y
(i)
t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

arg maxy(i)∈Yi {y
(i)g̃(i)t − f

∗
i (y

(i)) − τUψi(y
(i), y(i)t)} , if i ∈ St

y
(i)
t o.w.

xt+1 = arg min
x∈X

⎧⎪⎪
⎨
⎪⎪⎩

⟨
1
S
∑
i∈St
[∇gi(xt; B̃(i)t)]

⊺y(i)t+1, x⟩ + r(x) +
η

2
∥x − xt∥

2
2

⎫⎪⎪
⎬
⎪⎪⎭

,

where θ ∈ (0,1], St ⊂ {1,2, . . . , n} refers to the outer mini-batch, Bit and B̃it are two independent
inner mini-batches sampled from Pi for each i ∈ St, ψi is a convex distance-generating function, the
prox-function associated with a distance-generating function ψi is defined as Uψi(u, v) = ψi(u) −
ψi(v) − ψ

′
i(v)(u − v) for u, v ∈ Rm, ψ′i(v) ∈ ∂ψi(v). ALEXR has some interesting connections with

existing algorithms for FCCO and convex-concave problems, including SOX [5], MSVR [10] and
SAPD [15], which will be discussed in subsection 5.1. Let S = ∣St∣ be the outer mini-batch size and
B = ∣Bit∣ = ∣B̃

i
t∣ be the inner mini-batch size.

Our contributions can be summarized as follows:
1Instead of naming our algorithm based on the techniques used, we name it based on what problems it can address.

In particular, ALEXR means Algorithms for Learning with Empirical X-Risks.

2

● We introduce a single-loop primal-dual block-coordinate algorithm called ALEXR to tackle (1.1),
which requires only O(1) oracles and O(d) computational cost per iteration.
● For cFCCO problems with µ-strongly convex r and smooth fi, gi, our ALEXR requires T =
O (nS +

1
µ +

√
n√
Sµ
+

σ2
1

µBϵ +
δ2

µSϵ +
nσ2

0
BSϵ) iterations to achieve the ϵ level of distance gap2, where σ2

0, σ
2
1, δ

2

are variances. For non-strongly convex cFCCO problems with smooth gi and possibly non-smooth
fi, ALEXR requires T = O (

√
n√
Sϵ
+

σ2
1

Bϵ2 +
δ2

Sϵ2 +
nσ2

0
BSϵ2) iterations to achieve the ϵ level of objective gap.

In both convex and strongly convex cases, the convergence rates of our ALEXR improve upon the
rates in previous works [5, 10] on cFCCO problems with smooth fi, gi (see Table 1 for a detailed
comparison). Besides, we also provide the convergence rates of ALEXR for cFCCO problems with
non-smooth gi in both convex and strongly convex cases.
● For cFCCO problems with the non-smooth outer function fi, we present a lower complexity
bound to show that an abstract first-order update scheme with S oracles per iteration (covering our
ALEXR and previous algorithms SOX [5], MSVR [10] with B = 1 as special cases) requires at least
T = Ω(nσ

2
0

Sϵ2) iterations to achieve the ϵ level of objective gap. For cFCCO problems with the smooth
outer function fi and strongly convex r(x), we also that any algorithm in the abstract first-order
update scheme requires at least T = Ω(1

µϵ ∨
nσ2

0
Sϵ) iterations to achieve the ϵ level of the distance

gap to the optimum. Thus, the convergence rate of ALEXR is optimal among first-order stochastic
algorithms for cFCCO problems, in terms of n and ϵ.

2 Applications

In this section, we present several motivating examples of the cFCCO problem in (1.1) and its
special case, where the distribution Pi is independent of i, denoted as Pi ≡ P for all i in the set [n].

2.1 Group Distributionally Robust Optimization

Machine learning models are typically trained through the process of empirical risk minimization
(ERM), which often results in high average accuracy on similarly distributed test data. However,
models with high average accuracy may perform poorly on some rare sub-populations. The Group
Distributionally Robust Optimization (GDRO) framework was proposed to tackle this problem [16].
Suppose that there are n predefined groups and the data distribution of the i-th group is Pi. The
ϕ-divergence (Csiszár divergence) penalized GDRO problem can be formulated as

min
w∈W
L(w) ∶=max

q∈∆n

{
n

∑
i=1
(q(i)Ri(w) −

λ

n
ϕ(nqi))} + r(w), Ri(w) ∶= Ez∼Pi[ℓ(w; z)], (2.1)

where w is the model parameter, Ri(w) is the expected loss of the i-th group, domain W ⊂ Rd is
convex compact, penalty λ ≥ 0, generator ϕ ∶ R+ → R ∪ {+∞}, ϕ(1) = 0, and ∆n is the probability
simplex in Rn. Several prior works [16, 17] discarded the ϕ-divergence penalty (λ = 0 in (2.1)) and
consider the problem minw∈W maxi∈[n]Ri(w), which minimizes the risk of the worst group. However,
the model trained through worst-group risk minimization may be vacuous if the worst group is an
outlier. Moreover, the sizes of groups may follow a long-tailed distribution such that multiple rare
groups exist. To resolve these issues, we choose λ > 0 and consider the penalized GDRO problem
with CVaR divergence ϕ = I[0,α−1] or χ2-divergence ϕ(t) = 1

2(t − 1)2. The challenges of directly
2See Table 1 for the definition of distance gap.

3

solving (2.1) using stochastic min-max algorithms lie in estimating the stochastic gradient of q and
controlling its variance when n ≫ 1 is large [17]. To address these issues, we transfer the above
problem into the following dual form by the duality relationship [18]:

min
w∈W,c∈[c,c]

F (w, c), F (w, c) =
λ

n

n

∑
i=1
ϕ∗ (

Ri(w) − c

λ
) + c + r(w), (2.2)

where Ri(w) is convex and ϕ∗ is monotonically non-decreasing, e.g., ϕ∗(u) = 1
α(u)+ for CVaR

divergence and ϕ∗(u) = 1
4(u+ 2)2+ − 1 for χ2-divergence, (⋅)+ ∶=max(⋅, 0). Indeed, for any (wout, cout)

that satisfies E[F (wout, cout) −minw,c F (w, c)] ≤ ϵ and an optimal solution w∗ ∈ arg minw∈W L(w)
to (2.1), we have L(wout)−L(w∗) =minc F (wout, c)−minc F (w∗, c) ≤ F (wout, cout)−minw,c F (w, c)
(see Section A.1.2 in Levy et al. [18]). Thus, an approximate solution to the dual formulation
(2.2) also leads to an approximate solution to the original problem (2.1). The dual formulation in
(2.2) is recognized as a difficult open problem in Sagawa et al. [16] due to the biased stochastic
estimator (refer to footnote 4 in their paper). In this work, we can solve the problem in (2.2)
by viewing it as a cFCCO problem with a convex outer function fi(⋅) = λϕ

∗(⋅) and an inner
function gi(x) = (Ri(w) − c)/λ that is jointly convex to x = (w, c). In Section 7, we provide the
convergence rates and per-iteration computational costs of our new algorithm ALEXR for solving
(2.2), in comparison to existing algorithms specifically designed for addressing the GDRO problem.
Our algorithm only requires sampling O(1) groups and O(1) samples and does not involve handling
expensive dual projection onto (constrained) (n − 1)-dimensional simplex, yet enjoy competitive
performance compared with stochastic min-max algorithms for solving (2.1) directly.

2.2 Partial AUC Maximization with Restricted True Positive Rate

The Area Under the ROC Curve (AUC) is acknowledged as a more informative metric than accuracy
for assessing the performance of binary classifiers in the context of imbalanced data [19]. In scenarios
influenced by diagnostic or monetary considerations, the primary objective may be to maximize the
partial AUC (pAUC) with a specified lower bound α for the true positive rate (TPR). As shown in
[6, 3], a surrogate objective for maximizing pAUC with restricted TPR is formulated as

min
w∈Rd

1
n+n−

∑

ai∈S↑+[1,n+(1−α)]
∑
aj∈S−

L(w;ai, aj), (2.3)

Here S+,S− are the sets of positive/negative data, w refers to the model and L(w;ai, aj) = ℓ(hw(aj)−
hw(ai)) represents a continuous pairwise surrogate loss, where hw(ai) denotes the prediction score
for data ai. Additionally, S↑+[1, k] the bottom-k positive data based on the prediction scores. In
particular, ℓ is a convex and monotonically non-decreasing function, ensuring the consistency of the
surrogate objective [20]. Following Lemma 7 of Zhu et al. [6], pAUC maximization with restricted
TPR≥ α is equivalent to

max
w∈Rd

max
y∈∆n+

y(i)≤ 1
n+(1−α)

∑
ai∈S+

y(i)L(w;ai,S−), L(w;ai,S−) ∶=
1
n−
∑
aj∈S−

L(w;ai, aj), (2.4)

which can be transformed into its dual form:

min
w∈Rd,s∈R

1
n+(1 − α)

∑
ai∈S+

⎛

⎝

1
n−
∑
aj∈S−

L(w;ai, aj) − s
⎞

⎠
+

+ s, (2.5)

where (⋅)+ ∶=max(⋅,0) is monotonically non-decreasing and convex and 1
n−
∑aj∈S− L(w;ai, aj) − s is

jointly convex to (w, s). Thus, the problem in (2.5) is a cFCCO problem.

4

2.3 Other Applications

In addition to GDRO and pAUC, there are many other intriguing applications of the cFCCO
problem.
● Robust Logistic Regression: Consider a collection of data-label pairs, denoted as (ai, bi)ni=1. We
formulate the robust logistic regression problem as minx∈X 1

n ∑
n
i=1 log(1+exp biE[A(ai)⊺x ∣ ai])+r(x).

In this formulation, A(ai) represents the perturbed data generated from an underlying distribution
Pi. This problem aligns with the structure of (1.1), where the functions fi(⋅) are convex and
monotonically non-decreasing given by fi(⋅) = log(1 + exp(bi⋅)), and gi(x) = EA(ai)∼Pi[A(ai)

⊺x].

● Bellman Residual Minimization: The task of approximating the value function, denoted as V π(s),
for each state s under policy π using a linear mapping can be expressed as minx∈X ∑Ss=1(ϕ⊺sx −
∑s′ Pπ

s,s′[rs,s′ + γ ⋅ ϕ
⊺
s′x])

2. In this formulation, ϕs and ϕs′ are feature vectors representing states s
and s′, respectively. Additionally, rs,s′ represents the random reward obtained during the transition
from state s to s′, γ < 1 is the discount factor, π denotes the policy, and Pπ

s,s′ represents the
probability of transitioning from state s to s′ under policy π. This problem can be formulated
as (1.1), where the functions fs(⋅) are convex and given by fs(⋅) =

1
S (⋅)

2, and the affine function
gs(x) = ϕ

⊺
sx −∑s′ Pπ

s,s′[rs,s′ + γ ⋅ ϕ
⊺
s′x].

● Bipartite Ranking for Classification or Retrieval: Imbalanced data classification is usually tackled
in the context of the bipartite ranking problem. There is often a desire to penalize those positive
examples with lower scores. One approach is the p-norm push, introduced by Rudin et al. [21]. It
formulates the problem as minx∈X 1

n+
∑ai∈D+ (

1
n−
∑aj∈D− ℓ(sx(aj) − sx(ai)))

p
+ r(x), p ≥ 1. Here, D+

and D− represent positive and negative data sets. The function sx(a) denotes the ranking score
of data point a, which is determined by a linear model parameterized by x. The loss function ℓ is
non-negative, convex, and monotonically non-decreasing, for instance, ℓ(⋅) = exp(⋅). The p-norm
push method is in the structure of (1.1), where the functions fi(⋅) are convex and monotonically
non-decreasing and given by fi(⋅) = (⋅)p, and the convex function gi(x) = 1

n+
∑aj∈D+ ℓ(sx(aj)−sx(ai)).

One popular approach for retrieval problems is maximizing the precision or recall at top k positions
(prec/rec@k). Yang [3] has formulated the problem as minx∈X 1

n+
∑ai∈D+ ℓ1(∑aj∈D+∪D− ℓ2(sx(aj) −

sx(ai) − k)) + r(x), where ℓ1, ℓ2 are monotonically non-decreasing convex surrogate losses of the
zero-one loss. Hence, maximizing precision or recall at top k positions with a convex model sx(a) is
covered by (1.1).

● Multi-Task GDRO: The Group Distributionally Robust Optimization (GDRO) problem can
be extended to the multi-task setting. Consider a scenario with n tasks and m groups. We
represent the data distribution for the i-th task and the j-th group as Pi,j . Additionally, let
ℓ(x; z) be the loss function associated with parameter x on data point z. The Multi-Task GDRO,
with a regularization term r, is formulated as minx∈X 1

n ∑
n
i=1 maxj∈[m]E[ℓ(x; zij)] + r(x). In this

formulation, the functions fi(⋅) are defined as fi(gi) =maxj∈[m](gij), and gij(x) = E[ℓ(x; zij)], where
gi(x) = [gi1(x), . . . , gim(x)]. Alternatively, we may consider the smooth fi(gi) = log∑j∈[m] exp(gij).
This problem fits within the structure of (1.1) and is particularly relevant when dealing with a
scenario featuring a substantial number n of tasks, such as identity prediction in human faces, with
a limited number m of groups (e.g. lightning conditions).

3 Related Work

Problem (1.1) or its min-max reformulation (1.2) is closely related to several widely studied problems.

5

Table 1: Comparison of iteration complexities and per-iteration #oracles for achieving ϵ-
optimal solution of (1.1) with smooth gi in terms of some optimality gap, where “Dist.” de-
notes the distance gap Eµ

2 ∥xout − x∗∥
2
2 ≤ ϵ in the strongly convex case, “Obj.” denotes the ob-

jective gap E[F (xout) − F (x∗)] ≤ ϵ, and “Gap” denotes the duality gap E[Gap(xout,yout)] =
E maxx,y{L(xout, y) −L(x, yout)} ≤ ϵ, “W-Gap” denotes a weak duality gap maxx,y E{L(xout, y) −
L(x, yout)} ≤ ϵ. Here xout (probably also yout) is the output of each algorithm. We hide other
constant quantities except for n, variances σ2

0, σ
2
1, δ

2, modulus of strong convexity µ, and batch sizes
B,S. “-” means that the result is missing. Besides, Õ hides poly log(1/ϵ) factors.

Algorithm #Oracles(1)
Strongly Convex r

Smooth fi
Convex r Single-

Loop?
Complexity Metric Complexity Metric

ASC-PG (2)[2] O(n)/O(1) O (1
µϵ1.25) Dist. O (1

ϵ3.5
)(3) Obj. ✓

SAPD (4)[15] O(n)/O(1) Õ (1
µ +

1√
nµ +

σ2
0
ϵ +

σ2
1+δ2

µϵ) Dist. O (1
ϵ +

σ2
0+σ2

1+δ2

ϵ2) Gap ✓

SSD [22] O(n)/O(1) O (1√
ϵ
+
σ2

0
ϵ +

σ2
1+δ2

µϵ)
(5) Dist. O (1√

ϵ
+
σ2

0+σ2
1+δ2

ϵ2)(3), O (1
ϵ +

σ2
0+σ2

1+δ2

ϵ2) Obj. ✓

BSGD (2)[23] O (1
ϵ
)/O (1

ϵ
)(6) O (1

µϵ) Obj.(7) O (1
ϵ2
) Obj. ✓

MSVR (2)[10] O(1)/O(1) O (n

µ
√
BSϵ
) Obj.(7) O (n√

BSϵ2
)(3) Obj. ✗

SOX-Boost (2)[5] O(1)/O(1) O (1
µmin{B,S}ϵ +

nσ2
0

µ2BSϵ) Obj. O (1
min{B,S}ϵ2 +

nσ2
0

BSϵ3)
(3) Obj. ✗

SOX [5] O(1)/O(1) Õ(n
Sµϵ) Dist. O (n

Sϵ2
) W-Gap ✓

ALEXR
(This Work) O(1)/O(1) Õ (1

µ +
√
n√
Sµ
+
nσ2

0
BSϵ +

σ2
1

µBϵ +
δ2

µSϵ) Dist. O (
√
n√
Sϵ
+

nσ2
0

BSϵ2 +
σ2

1
Bϵ2 +

δ2

Sϵ2)
(8) Obj. ✓

(1) Representing the number of zeroth-order oracles for gi(x) / the number of first-order oracles for ∇gi(x) in each iteration.
(2) Under the assumption that F (x) is convex, which is slightly weaker than the layerwise convexity assumption stated in Section 4.2.
(3) Requiring smoothness of fi.
(4) For general convex-concave L(x, y). It does not need that L(x, y) is linear in y or Y is block-separable over i ∈ [n].
(5) The O (1/

√
ϵ) term can be improved to Õ(1/√µ) by the restarting technique, which makes SSD a double-loop algorithm.

(6) Requiring smoothness of fi. If fi is non-smooth, the number of oracles per iteration increases to O (1
ϵ2)

(7) In strongly convex stochastic optimization problem, converting the O(1/(µϵ)) convergence rate in terms of “Obj.” can be converted to the
optimal O(1/(µϵ)) rate [24, 25, 26] for first-order methods in terms of “Dist.” by the strong convexity of F .

(8) This result requires the distance-generating function ψi to be smooth.

3.1 History of FCCO

The FCCO problem was first introduced in [4] for optimizing average precision (AP) to address
the large batch size issue of previous stochastic algorithms for AP maximization. Later, it was
used for solving a wide range of problems in the field of machine learning, including optimizing
listwise losses for learning to rank [7], optimizing surrogate losses of partial areas under the curves
for imbalanced data classification [6], and optimizing global contrastive losses for contrastive
self-supervised learning [8, 27].
Qi et al. [4] proposed an algorithm SOAP and analyzed its convergence for solving a non-convex
surrogate loss of AP in the form of FCCO. Wang et al. [9] adopted the momentum update to
accelerate the convergence rate of SOAP for AP maximization, improving the iteration complexity
from O (n

ϵ5
) to O (n

Sϵ4
) for finding an ϵ-stationary point. The work by Wang and Yang [5] was

the first to study the general form of FCCO and proposed SOX to further improve the rate by
enjoying the parallel speed-up of using inner and outer mini-batches. For non-convex and smooth
problems, SOX has a convergence rate of O (n

BSϵ4
) for finding an ϵ-stationary solution. Jiang et

al. [10] proposed a new variance reduction technique (MSVR) for tracking and estimating multiple
inner functions gi by accessing only a constant number of samples per iteration. For non-convex

6

Table 2: Comparison of iteration complexities and per-iteration #oracles for achieving ϵ-optimal
solution of (1.1) with non-smooth gi in terms of some optimality gap, where Dist. denotes
the distance gap Eµ

2 ∥xout − x∗∥
2
2 ≤ ϵ in the strongly convex case, Obj. denotes the objective gap

E[F (xout)−F (x∗)] ≤ ϵ. Here xout is the output of each algorithm. We hide other constant quantities
except for n, variances σ2

0, σ
2
1, δ

2, modulus of strong convexity µ, and batch sizes B,S. “-” means
that the result is missing. Besides, Õ hides poly log(1/ϵ) factors.

Algorithm #Oracles(1)
Strongly Convex r

Smooth fi
Convex r Single-

Loop?
Complexity Metric Complexity Metric

SCGD (2)[1] O(n)/O(1) O (1
µ4.5ϵ1.5) Dist. O (1

ϵ4
) Obj. ✓

nSSD [22] O(n)/O(1) - - O (
1+σ2

0+σ2
1+δ2

ϵ2) Obj. ✓

ALEXR
(This Work) O(1)/O(1) Õ (

√
n√
Sµ
+
nσ2

0
BSϵ +

σ2
1

µBϵ +
δ2

µSϵ +
1
µϵ) Dist. O (

√
n√
Sϵ
+

nσ2
0

BSϵ2 +
σ2

1
Bϵ2 +

δ2

Sϵ2 +
1
ϵ2)

(3) Obj. ✓

(1) Representing the number of zeroth-order oracles for gi(x) / the number of first-order oracles for ∇gi(x) in each iteration.
(2) Under the assumption that F (x) is convex, which is slightly weaker than the layerwise convexity assumption stated in Section 4.2.
(3) This result requires the distance-generating function ψi to be smooth.

problems, they improve the complexity to O (n√
BSϵ3
) for finding an ϵ-stationary point.

To establish the convergence for convex FCCO problems, the two studies [5, 10] have used the
restarting trick to boost the convergence rate for finding an ϵ-optimal solution of strongly convex
and convex problems. In particular, restarted SOX (named SOX-boost) suffers rates of O (n

BSµ2ϵ)

for strongly convex problems and O (n
BSϵ3
) for convex problems, and restarted MSVR suffers rates

of O (n

S
√
Bµϵ
) for strongly convex problems and O (n

S
√
Bϵ2
) for convex problems, where µ > 0 is

the strong convexity parameter. It is notable that SOX-boost achieves full mini-batch speedup but
non-optimal rates, while MSVR enjoys the optimal rates in terms of µ and ϵ but has only partial
speedup with B. Both algorithms only require O(1) oracles per iteration. Under the slightly
stronger assumption (f is convex and monotonically non-decreasing while g is convex), Wang and
Yang [5] follow the technique in [22] to reformulate the FCCO as the saddle point problem in (1.2).
Subsequently, they propose a randomized block-coordinate variant of SCGD [1]. This variant, similar
to SOX-boost, demands merely O(1) oracles per iteration and T = O (n

Sϵ2
) iterations to find a (x̄, ȳ)

satisfying maxx,y E[L(x̄, y) −L(x, ȳ)] ≤ ϵ for the convex FCCO problem. However, it is important
to note that achieving maxx,y E[L(x̄, y) −L(x, ȳ)] ≤ ϵ does not guarantee E[F (x̄) − F (x∗)] ≤ ϵ, as
demonstrated in Section 3.1.1 of Alacaoglu et al. [14]. Consequently, the convergence criterion
in terms of maxx,y E[L(x̄, y) − L(x, ȳ)] is considered to be relatively weak and is not of primary
interest. It is worth mentioning that the previous results [4, 9, 5, 10] restrict to those problems in
which both fi and gi are smooth. In this work, we also consider non-smooth fi and non-smooth gi.

Advantage of Single-Loop Algorithms: It is worth noting that some algorithms such as MSVR
and SOX-boost contain nested inner loops to solve some subproblems inexactly with high accuracy.
However, the termination criterion of each inner loop depends on problem-specific unknown constants.
Thus, single-loop algorithms are easier to implement than multi-loop counterparts.

7

3.2 Convex Stochastic Compositional Problem

The stochastic compositional optimization (SCO) problem takes the form of minx∈Rd F (x), with
F (x) = Eξ [f(Eζ [g(x; ζ)] ; ξ)], where ζ and ξ are mutually independent. In this context, when F is
µ-convex (µ ≥ 0) and f is smooth, Wang et al. [1] have introduced a stochastic method named SCGD,
which achieves a convergence rate of O (1

ϵ4
) for convex problems, ensuring that E[F (x̄)−F (x∗)] ≤ ϵ.

For strongly convex problems, it requires O (1
µ2ϵ1.5) iterations to reach µ

2 E ∥x̄ − x∗∥22 ≤ ϵ. Further
exploiting the smoothness of function g, Wang et al. [2] proposed ASC-PG, which improves the
convergence rate to O(1/ϵ3.5) for convex problems and O (1

µϵ1.25) for strongly convex problems.
Lian et al. [28] consider the finite-sum SCO problem F (x) = 1

n ∑
n
i=1 fi(

1
m ∑

m
j=1 gj(x)) and utilizes

the technique from SVRG [29] to obtain linear convergence for strongly convex F . Similar to SVRG,
the algorithm presented in [28] follows a double-loop structure and requires full gradient evaluations
at the start of each outer-loop iteration. Notably, the algorithms designed for the SCO problem
can also be applied to tackle the FCCO problem, as discussed in Appendix G.1. However, it is
important to underscore that all these algorithms require O(n) oracles per iteration, which can
become computationally demanding when n takes on large values.
Building upon a slightly stronger assumption than that composition F is convex, specifically that
f is convex and monotonically non-decreasing while g is convex, Zhang and Lan [22] reformulate
SCO problem as a convex-concave min-max-max problem and propose the stochastic sequential
dual (SSD) algorithm to obtain the optimal O (1√

ϵ
+ σ2

ϵ2) rate in terms of E[F (x̄) − F (x∗)] in the
convex case and O (1√

ϵ
+ σ2

µϵ) rate in terms of µ
2 E ∥x̄ − x∗∥22 in the strongly convex case. Moreover,

the primal-dual algorithm in [22] has a primal-only implementation when f is smooth similar to
SCGD by properly choosing the distance-generating function for its dual mirror step.
Hu et al. [23] consider the conditional stochastic optimization (CSO) problem minx F (x), F (x) =
Eξ [f(Eζ∣ξ [gξ(x; ζ)] ; ξ)]. Compared to the SCO problem, the inner function g and the distribution
of the inner random vector ζ depend on the outer random vector ξ. For convex and smooth F , SGD
with biased oracles (BSGD) in [23] requires O(ϵ−2) iterations and B = O(ϵ−1) large inner batch size
per iteration to find an x̄ s.t. E[F (x̄) − F (x∗)] ≤ ϵ for convex problems, and O (1

µϵ) iterations and
B = O(ϵ−1) large inner batch size per iteration to find an x̄ s.t. E[F (x̄) − F (x∗)] ≤ ϵ for strongly
convex problems.

3.3 Convex-Concave Saddle Point (SP) Problem

The saddle point (SP) problem minx∈X maxy∈Y L(x, y) that is µx-convex in x and µy-concave in y
(µx, µy ≥ 0) has been thoroughly studied. We refer to the SP problem with µx, µy > 0 as a strongly-
convex-strongly-concave (SCSC) problem while those with µx, µy = 0 as a convex-concave (CC)
problem. A saddle point (x∗, y∗), if it exists, satisfies the condition L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗),
∀(x, y) ∈ X × Y. Besides, the saddle point (x∗, y∗) is unique in an SCSC problem. To assess the
optimality of any point (x̄, ȳ) ∈ X × Y, we can employ the concept of the duality gap, defined
as Gap(x̄, ȳ) ∶=maxx,y{L(x̄, y) −L(x, ȳ)}, and for SCSC problems, we can also use the Euclidean
distance to the saddle point, given by D(x̄, ȳ) ∶= µx

2 ∥x̄ − x∗∥
2
2 +

µy
2 ∥ȳ − y∗∥

2
2. The SP problem is

closely related to the more general monotone variational inequalities (VI), which involve finding
a point z∗ = (x∗, y∗) such that ⟨Φ(z∗), z − z∗⟩ ≥ 0, Φ(z) = (∂xL(x, y),−∂yL(x, y)), ∀z ∈ X × Y.
The convergence rate is quantified by measuring the number of iterations required to find an
ϵ-approximate saddle point (x̄, ȳ) or an ϵ-approximate solution to the VI, satisfying one of the

8

following conditions:

Gap(x̄, ȳ) ≤ ϵ, or D(x̄, ȳ) ≤ ϵ, or max
z∈X×Y

⟨Φ(z̄), z̄ − z⟩ ≤ ϵ.

Notably, extragradient methods (EG), initially introduced in [30], have proven to achieve the optimal
convergence O(1/ϵ) rate among first-order approaches for solving deterministic monotone Lipschitz
Variational Inequalities (VIs) in both Euclidean and non-Euclidean spaces [31, 32, 33]. Moreover,
EG can be viewed as approximations of the implicit proximal point (PP) method [34]. All of these
methods share a convergence rate of Õ (1

µx
∨ 1
µy
)3, where Õ(⋅) hides a poly log (1

ϵ
) term when

applied to problems with smooth and SCSC objective functions [35, 36]. For deterministic problems
that are both smooth and SCSC, the convergence rate of Õ (1√

µx
∨ 1√

µy
+ 1√

µxµy
) presented in [37]

is known to be optimal for first-order algorithms, as demonstrated by lower bounds established
in [38]. Regarding CC problems, a lower bound result [39] indicates that the O (1

ϵ
) convergence

rate achieved by extragradient methods [31, 32, 40] is indeed optimal. Furthermore, the primal-
dual hybrid gradient (PDHG) method [41, 42] and some more recent works [43, 44, 45, 46] have
concentrated on the bilinear problem with L(x, y) = x⊺Ay. Hamedani and Aybat [47] have extended
this focus to problems where L(x, y) is convex in x and linear in y.
Accessing exact oracles such as ∇xL and ∇yL may not be feasible in many real-world scenarios.
Instead, the available resources provide only unbiased stochastic estimators, denoted as ∇̃xL and ∇̃yL,
with variances bounded by σ2. This limitation has prompted the development of numerous algorithms
tailored for addressing the stochastic saddle point problem (SPP) and the more general stochastic
variational inequalities (SVIs). For instance, the stochastic mirror descent (SMD) method [48]
achieves the optimal convergence rate of O (1

ϵ2
) for non-Lipschitz SVIs. For Lipschitz monotone

SVIs, the stochastic mirror-prox (SMP) method [49] attains the optimal rate of O (1
ϵ +

σ2

ϵ2). For SCSC
and non-smooth SP problems, Yan et al. [50] establish the Õ (1

ϵ +
1
µxϵ
∨ 1
µyϵ
) rate with probability

1 − p. Hsieh et al. [51] propose a single-call stochastic extragradient (SSEG) method that achieves a
rate of O (1

ϵ +
σ2

µxϵ
∨ σ2

µyϵ
) for Lipschitz and strongly monotone SVIs. More recently, several works

have devised stochastic algorithms for both the SSP and SVI problems, achieving (near-)optimal
deterministic and stochastic convergence rates simultaneously. Zhang et al. [15] introduce the
SAPD algorithm, which reaches a convergence rate of Õ (1

µx
∨ 1
µy
+ 1√

µxµy
+ σ2

µxϵ
∨ σ2

µyϵ
) for the SCSC

problem and O (1
ϵ +

σ2

ϵ2) for the CC problem. Du et al. [52] further close the gap for the SCSC
problem by improving the rate to Õ (1√

µx
∨ 1√

µy
+ 1√

µxµy
+ σ2

µxϵ
∨ σ2

µyϵ
).

3.4 Coordinate Methods for the Block-Separable Deterministic SP Problem

A special class of bilinearly-coupled SP problem is in the form minxmaxy L(x, y) ∶= 1
n ∑

n
i=1(⟨y

(i), Ax⟩−

ϕi(y
(i)))+r(x), where L(x, y) is block-separable w.r.t. the dual variable y. One illustrative example

is the primal-dual reformulation of the (regularized) empirical risk minimization (ERM) problem,
denoted as minx F (x), where F (x) is defined as F (x) ∶= 1

n ∑
n
i=1 ℓ(a

⊺
i x) + r(x). This reformulation

applies to data-label pairs (ai, bi)ni=1 in the context of a linear model. Particularly in scenarios
with a significantly large value of n, the computational overhead of computing ∇yL(x, y) and
updating y can become prohibitively expensive. In such cases, randomized coordinate methods
offer a viable solution by reducing the per-iteration oracle cost from O(n) to O(1). The SPDC

3a ∧ b denotes min{a, b} and a ∨ b denotes max{a, b}.

9

method [13] leads to Õ (n +
√

n
µxµy
) convergence rate to make E[D(x̄, ȳ)] ≤ ϵ for the SCSC problem

and Õ (n +
√
n
ϵ) rate to make E[F (x̄) − F (x∗)] ≤ ϵ for the CC problem. Recently, Alacaoglu et

al. [14] extended the PURE-CD originally proposed in [53] to incorporate importance sampling and
exploit the potential sparsity in A. For the CC problem with dense A, PURE-CD not only achieves
an improved rate of O (n +

√
n
ϵ) to guarantee E[F (x̄) − F (x∗)] ≤ ϵ but also attains a rate of Õ (nϵ)

to ensure E[Gap(x̄, ȳ)] ≤ ϵ. It is worth noting that E[Gap(x̄, ȳ)] ≤ ϵ serves as a sufficient but not
necessary condition for E[F (x̄) − F (x∗)] ≤ ϵ.
In addition to addressing the bilinearly-coupled block-separable saddle point (SP) problem, Hamedani
et al. [54] have extended their focus to the more general Convex-Concave (CC) problem, defined as
L(x, y) = Φ(x, y) − ϕ(y) +∑mi=1 hi(x(i)). Their work establishes a convergence rate of O (mϵ) for a
randomized block-coordinate primal-dual method, ensuring that E[Gap(x̄, ȳ)] ≤ ϵ. Furthermore,
Jalilzadeh et al. [55] have delved into scenarios where L(x, y) exhibits block-separability to both x
and y. In this context, L(x, y) is defined as L(x, y) = Φ(x, y) −∑ni=1 ϕi(y(i)) +∑mj=1 hj(x(j)). They
introduce a doubly-randomized block-coordinate method to address such problems. It is worth
emphasizing that all the works mentioned in this section [13, 53, 14, 55] rely on the assumption
of having access to the exact ∇xΦ(x, y) and ∇yΦ(x, y). In contrast, our work addresses the more
challenging problem where only stochastic oracles are available.

4 Preliminaries

In this section, we present the necessary notations, definitions, and assumptions.

4.1 Notations and Definitions

The following notations are used throughout this paper.
- For a vector y ∈ Rnm, we use y(i) ∈ Rm to represent the i-th coordinate (block) of y, i.e.,
y = (y(1), . . . , y(n))⊺.
- f∗i denotes the convex conjugate of fi.
- The prox-function associated with a distance-generating function (d.-g.f.) ψi ∶ Rm → R is defined as
Uψi(u, v) ∶= ψi(u) − ψi(v) − ⟨ψ

′
i(v), u − v⟩ for u, v ∈ Rm, where ψ′i(v) ∈ ∂ψi(v) is a subgradient of ψi.

Besides, we define Uψ(y1, y2) ∶= ∑
n
i=1Uψi(y

(i)
1 , y

(i)
2) for y1, y2 ∈ Rnm.

- For a function g(x) = Eζ∼P[g(x; ζ)], we define the stochastic estimator based on the mini-batch B
as gi(x;B) ∶= 1

∣B∣ ∑ζ∈B g(x; ζ).
- For a, b ∈ R, we define a ∨ b ∶=max(a, b) and a ∧ b ∶=min(a, b).
- a ≍ b means that there exists c,C > 0 such that cb ≤ a ≤ Cb.
- For a set X , we define its diameter w.r.t. a d.-g.f. ψ as Dψ,X ∶= [maxx∈X ψ(x) −minx∈X ψ(x)]1/2.
If ψ(⋅) = 1

2 ∥⋅∥
2
2, we simply denote Dψ,X as DX .

- Let X be a normed vector space with ∥ ⋅ ∥2. For each i ∈ [n], let Yi ⊂ Rm be a normed vector space
with a general norm ∥⋅∥. The norm of the dual space Y∗i ⊂ Rm is defined as ∥⋅∥∗ ∶= sup∥v∥≤1 ⟨⋅, v⟩.
- For any linear operator Ti ∶ X → Y∗i , we define the operator norm of Ti as ∥Ti∥op ∶= supx∈X {

∥Tix∥∗
∥x∥2
}

and the operator norm of its adjoint operator T ∗i ∶ Yi → X is defined as ∥T ∗i ∥op ∶= supy(i)∈Yi {
∥T ∗i y(i)∥2
∥y(i)∥ }.

- We say gi ∶ X → Rm is Lg-smooth if it is differentiable on X and there exists Lg > 0 such that
∥gi(x) − gi(x

′) −∇gi(x′)(x − x′)∥∗ ≤
Lg
2 ∥x − x

′∥22, for any x,x′ ∈ X .

10

- We say that fi ∶ Rm → R is Lf -smooth if it is differentiable on its domain and there exists Lf > 0
such that ∣fi(u) − fi(u′) − ⟨∇fi(u′), u − u′⟩∣ ≤

Lf
2 ∥u − u

′∥2∗, for any u,u′ ∈ Y∗i .

4.2 Assumptions

Throughout the paper, we make the following assumptions that are standard in the literature [1, 22].

Assumption 1. X ⊆ Rd is a convex and closed set. Besides, r is µ-convex on X , µ ≥ 0.

Assumption 2. fi ∶ Rm → R is proper convex and lower-semicontinuous. Besides, there exists
Cf > 0 such that ∣fi(u) − fi(u′)∣ ≤ Cf ∥u − u′∥∗ for any u,u′ ∈ Y∗i .

Assumption 2 implies that ∥y(i)∥ ≤ Cf ∀y(i) ∈ domf∗i , ∀i ∈ [n]. Thus, (1.1) is equivalent to (1.2)
with a closed and proper f∗i and a convex and compact Y = Y1 × . . . ×Yn.

Assumption 3. If gi is not affine, we assume that fi is monotonically non-decreasing for each
coordinate of its input.

The assumption above ensures that the dual domain Y in (1.2) satisfies Yi ⊆ Rm+ for each i ∈ [n]
such that the min-max problem in (1.2) is convex-concave. Note that the outer functions fi of all
examples in Section 2 satisfy Assumption 3.

Assumption 4. gi is convex and Lipschitz continuous, i.e., ∥gi(x) − gi(x′)∥∗ ≤ Cg ∥x − x′∥2 for some
Cg > 0 and any x,x′ ∈ X .

While the smoothness conditions of fi and gi are not obligatory in this work, incorporating them
leads to better convergence bounds. Lastly, we assume that the variances of stochastic estimators
are bounded.

Assumption 5. Assume that Eζi ∥gi(x) − gi(x; ζi)∥2∗ ≤ σ2
0 <∞, Eζi ∥[g

′
i(x)]

⊺ − [g′i(x; ζi)]⊺∥2op ≤ σ
2
1 <

∞ for any g′i(x) ∈ ∂gi(x), x ∈ X , and ζi ∼ Pi. Besides, Eι ∥[g
′
ι(x)]

⊺y(ι) − 1
n ∑

n
i=1[g

′
i(x)]

⊺y(i)∥
2
2 ≤ δ

2 ≤

C2
fC

2
g for any g′i(x) ∈ ∂gi(x), x ∈ X , and y ∈ Y.

5 A Primal-Dual Block-Coordinate Stochastic Algorithm for cFCCO

First, we describe the proposed algorithm, which is named ALEXR (refer to Algorithm 1), designed
for solving (1.1). We also establish connections between our algorithm and several existing methods.
Subsequently, we delve into the main technical challenges in our convergence analysis, emphasizing
the differences from previous works.
Each iteration of ALEXR consists of two main steps. The first step involves a block-coordinate
stochastic proximal mirror ascent update of the selected dual variables from a random block St
out of {1,2, . . . , n}, which occurs between Line 3 and Line 9 in Algorithm 1. It is notable that
we use proximal mapping to tackle f∗i (y(i)) and we use an extrapolated stochastic gradient g̃(i)t
of the linear term y(i)gi(xt) in terms of y(i). The second step, involving a stochastic proximal
gradient descent update of the primal variable, occurs between Line 10 and Line 11 in Algorithm 1
to compute the next x, where Gt is a (sub)gradient estimator of the coupling term 1

n ∑i y
(i)
t+1gi(xt)

using an independent mini-batch B̃(i)t .
It is crucial to carefully select the distance-generating function ψi for the proximal mirror ascent step
to satisfy the following necessary condition and the proximal mapping can be efficiently computed
without requiring inner loops for an inexact solution.

11

Algorithm 1 ALEXR
1: Initialize x0 ∈ X , y0 ∈ Y
2: for t = 0,1, . . . , T − 1 do
3: Sample a batch St ⊂ {1, . . . , n}, ∣St∣ = S
4: for each i ∈ St do
5: Sample independent size-B mini-batches B(i)t , B̃(i)t from Pi
6: Compute g̃(i)t = gi(xt;B

(i)
t) + θ(gi(xt;B

(i)
t) − gi(xt−1;B(i)t))

7: Update y(i)t+1 = arg maxy(i)∈Yi {y
(i)g̃(i)t − f

∗
i (y

(i)) − τUψi(y
(i), y(i)t)}

8: end for
9: For each i ∉ St, y(i)t+1 = y

(i)
t

10: Compute g′i(xt; B̃
(i)
t) ∈ ∂gi(xt; B̃

(i)
t) and Gt =

1
S ∑i∈St[g

′
i(xt; B̃

(i)
t)]

⊺y(i)t+1
11: Update xt+1 = arg minx∈X {⟨Gt, x⟩ + r(x) + η

2 ∥x − xt∥
2
2}

12: end for

Assumption 6. Distance-generating function ψi is µψ-strongly convex on Yi w.r.t. ∥⋅∥.

Next, we give some general recipes and specific examples of ψi for applications of (1.1) considered
in subsection 2.
● When fi is smooth on its domain, we can select ψi = f∗i . By the first-order optimality condition,
it is not difficult to show that (see Lemma 11 in Appendix A):

y
(i)
t+1 = ∇fi(u

(i)
t+1), u

(i)
t+1 =

g̃
(i)
t + τu

(i)
t

1 + τ
,∀i ∈ St (5.1)

Then, ALEXR has a primal-only implementation similar to SOX and MSVR. This applies to the
Bellman residual minimization/p-norm push problem with fi(⋅) = (⋅)

2, pre/rec@k maximization
with a smooth surrogate loss ℓ1, the GDRO problem with χ2-divergence, as well as the multi-task
GDRO problem with smooth fi(gi) = log∑j∈[m] exp(gij).
● When fi is non-smooth, we need to choose a strongly convex function for ψi depending on
the problems. For example, for multi-task GDRO, we can use the entropy function ψi(y

(i)) =
∑
m
j=1 y

(i,j) log(y(i,j)), which is 1-strongly convex to ∥ ⋅ ∥1.
● When r is non-strongly convex, to derive a better rate in Section 6.2, we also require that ψi is
smooth. If fi(⋅) is strongly convex, we can set ψi = f∗i ; Otherwise, we need a smooth and strongly
convex ψi. For example, we can choose ψi(⋅) = 1

2 ∥⋅∥
2
2 for the multi-task group DRO problems, where

the proximal mapping can be solved by efficient projection onto the probability simplex [56]. For
p-norm push with fi(⋅) = (⋅)3, we can also choose ψi(⋅) = 1

2 ∥⋅∥
2
2, where the proximal mapping of both

cases has a closed-form solution (see Section 6.9 of Beck [57]). Moreover, we can choose ψi(⋅) = 1
2 ∥⋅∥

2
2

for any structured non-smooth4 functions fi. For example, the outer function fi(⋅) =
1
α(⋅)+ in

GDRO with CVaR divergence is structured non-smooth, where the proximal mapping of f∗i with
ψi(⋅) =

1
2 ∥⋅∥

2
2 can be efficiently computed by the projection onto a closed interval.

4The definition of structured non-smooth functions is from Zhang and Lan [22]: We call a function g structured
non-smooth if there is some convex closed set Π and convex closed and proper function g∗ such that g(y) =
maxπ∈Π⟨π, y⟩ − g∗(π),∀y ∈ Y . Additionally, the proximal mapping of g∗ with 1

2 ∥⋅∥
2
2 as the prox-function can be

efficiently computable.

12

5.1 Relations with Existing Algorithms

Our algorithm ALEXR exhibits certain similarities to SOX [5], MSVR [10] and SAPD [15] with
remarkable differences for adressing their limitations for solving (1.1) or (1.2).
Relationship with SOX. By setting θ = 0, ψi = f∗i in ALEXR, the dual update and the gradient
estimator become similar to that used in SOX [5]. In particular, the update of u(i)t+1 in (5.1) becomes
the moving average estimator, i.e., u(i)t+1 = (1 − γ)u

(i)
t + γgi(xt;B

(i)
t), where γ = 1/(1 + τ). Hence, the

updates of ALEXR with θ = 0, ψi = f∗i reduces to SOX without a momentum update5. SOX without
the momentum update is analyzed in [5] for solving convex FCCO, but only achieves an iteration
complexity of O (n

Sϵ2
) for the weak duality gap. However, a convergence guarantee in terms of the

objective gap for SOX on non-strongly convex problems remains absent.
Relationship with MSVR. ALEXR with ψi = f

∗
i is closely related to MSVR [10] but has a subtle

difference that gives ALEXR an advantage over MSVR. In particular, the update of u(i)t+1 in (5.1) can
be written as

u
(i)
t+1 = (1 − γ)u

(i)
t + γgi(xt;B

(i)
t) + γθ(gi(xt;B

(i)
t) − gi(xt−1;B(i)t)),∀i ∈ St

where γ = 1/(1 + τ) < 1. This estimator is similar to the one used in MSVR except that the scaling
factor before the correction term (gi(xt;B(i)t) − gi(xt−1;B(i)t)) is β = n−S

S(1−γ) + 1 − γ, which could be
much larger than 1 when S ≪ n and γ ≪ 1. In contrast, the scaling factor in ALEXR is γθ ≤ 1.
Notably, several existing works have reported better empirical performance using a scaling factor
less than one [11, 58], which is consistent with our setting and theory. Another difference between
ALEXR and MSVR is that ALEXR does not use the variance-reduction technique (e.g., STORM [59])
for computing the gradient estimator of the primal variable. For FCCO problems under the PL
condition, MSVR employs the STORM gradient estimator of the primal variable to accelerate the
convergence. Then, the convergence rate of MSVR on convex FCCO problems is derived by adding a
small quadratic regularization term and using the restarting trick. In our work, we find that the
STORM gradient estimator is unnecessary for convex FCCO problems: It demands more memory
and computational costs, albeit resulting in a worse convergence rate compared to that of ALEXR.
Relationship with SAPD. Both SAPD [15] and ALEXR employ the extrapolated estimator in (6)
for the dual step. The difference is that SAPD [15] updates all coordinates i ∈ [n] while ALEXR
only updating those sampled coordinates i ∈ St, St ⊂ [n]. This design characterizes ALEXR as a
randomized block-coordinate variant of SAPD. However, it introduces several novel challenges in the
convergence analysis, not present in the analysis of SAPD:
● Firstly, one might initially intend to follow the proof of SAPD in the convex case to bound
the gap E(L(xt+1, y) − L(x, yt+1)) = E[1

n(y
(i)gi(xt+1) − y

(i)
t+1gi(x)) −

1
n ∑

n
i=1(f

∗
i (y

(i)) − f∗i (y
(i)
t+1)) +

r(xt+1) − r(x)] for the t-th iteration. However, the single-iteration analysis of ALEXR only yields
a bound containing 1

S ∑i∈St f
∗
i (y

(i)) instead of 1
n ∑

n
i=1 f

∗
i (y

(i)) due to the coordinate update of y.
Unfortunately, we cannot easily get around this by taking conditional expectation, as the desired
1
SE[∑i∈St f

∗
i (y

(i))] = 1
n ∑

n
i=1 E[f∗i (y(i))] is valid only when the chosen y(i) does not depend on St.

To achieve convergence results in terms of E[F (xout) − F (x∗)] ≤ E maxy[L(xout, y) − L(x∗, yout)]
for the output xout =

1
T ∑

T−1
t=0 xt, the optimal y involved is y(i) ∈ arg maxv{v⊺gi(xout) − f

∗
i (v)} for

each i ∈ [n], which actually depends on St such that the proof does not directly go through. To
address this challenge, we need to introduce a virtual sequence {ȳt} where each ȳt is obtained by
updating all coordinates of yt. Nevertheless, this will make the analysis much more involved.

5Another difference is that SOX computes the gradient estimator by Gt = y
(i)
t ∇gi(xt,B(i)t) instead of Gt =

y
(i)
t+1∇gi(xt, B̃(i)t). However, this is not the fundamental difference as SOX can also use the latter one.

13

● Furthermore, ALEXR offers more options for distance-generating functions ψi other than ψi(⋅) =
1
2 ∥⋅∥

2
2 in SAPD for the dual step, enhancing its flexibility to a broader range of problems. In addition,

we also provide convergence results for non-smooth problems, which are lacking in [15].

6 Convergence Analysis

In this section, we first present the convergence analysis of ALEXR for a class of strongly convex
problems, where r is µ-strongly convex and fi is smooth (i.e. f∗i is strongly convex). Following that,
we shift our focus to the case that r is only convex (µ = 0 in Assumption 1) and fi can be smooth
or non-smooth.
Proposition 1. There exists ρ ≥ 0 such that Uf∗i (u, v) ≥ ρUψi(u, v). ∀u, v ∈ Yi. When ρ > 0 and ψ
is µψ-strongly convex w.r.t. ∥⋅∥, we have fi is Lf -smooth w.r.t. ∥⋅∥∗, where Lf = 1

µψρ
.

For instance, when choosing ψi = f
∗
i , we have ρ = 1, and when setting ψi(⋅) =

1
2 ∥⋅∥

2, ρ becomes
1
Lf

—the inverse of the smoothness constant of fi. Besides, we have Uf∗i (u, v) ≥ 0 regardless of the
smoothness of fi.
For the convenience of analysis, we define the virtual sequence {ȳt}t≥0 as follows.

ȳ
(i)
t+1 = arg max

y(i)∈Yi
{y(i)g̃(i)t − f

∗
i (y

(i)
) − τUψi(y

(i), y(i)t)} , g̃t = (g̃
(1)
t , . . . , g̃

(n)
t)

⊺, ∀i ∈ [n].

The reason for introducing this virtual sequence is to decouple the dependence between yt+1 and
St. Note that only those coordinates i ∈ St of g̃t are computed in the t-th iteration of Algorithm 1.
Lemma 2 describes the progress made in the t-th iteration of ALEXR.
Lemma 2. Under Assumptions 1 and 6, the following holds for any x ∈ X , y ∈ Y after the t-th
iteration of Algorithm 1.

L(xt+1, y) −L(x, ȳt+1) (6.1)

≤
τ

n
Uψ(y, yt) −

τ + ρ

n
Uψ(y, ȳt+1) −

τ

n
Uψ(ȳt+1, yt) +

1
n

n

∑
i=1
⟨gi(xt+1) − g̃

(i)
t , y(i) − ȳ(i)t+1⟩ +

η

2
∥x − xt∥

2
2

−
η + µ

2
∥x − xt+1∥

2
2 −

η

2
∥xt+1 − xt∥

2
2 +

1
n

n

∑
i=1
⟨gi(xt+1) − gi(x), ȳ

(i)
t+1⟩ − ⟨Gt, xt+1 − x⟩ .

6.1 Strongly Convex and Smooth Case

We first consider the scenario µ > 0, ρ > 0, where r is µ-strongly convex and fi is 1
µψρ

-smooth. In this
case, L(x, y) in (1.2) is strongly-convex-strongly-concave and a unique saddle point (x∗, y∗) exists
where x∗ = arg minx∈X F (x). Note that both x∗ and y∗ are independent of the randomness in the
algorithm’s execution. We define that Gt is the σ-algebra generated by {B0,S0, . . . ,Bt−1,St−1,Bt}
and Ft is the σ-algebra generated by {B0,S0, . . . ,Bt−1,St−1,Bt,St}. Note that Gt ⊂ Ft and yt+1 is
Ft-measurable. For any i ∈ [n], we have

E[Uψi(y
(i)
∗ , y

(i)
t+1) ∣ Gt] =

S

n
Uψi(y

(i)
∗ , ȳ

(i)
t+1) +

n − S

n
Uψi(y

(i)
∗ , y

(i)
t).

Thus, the expectation of the τ
nUψ(y, yt) −

τ+ρ
n Uψ(y, ȳt+1) terms in (6.1) with y = y∗ can form a

contraction as

E [τ
n
Uψ(y∗, yt) −

τ + ρ

n
Uψ(y∗, ȳt+1)] =

τ + ρ (1 − S
n
)

S
E[Uψ(y∗, yt)] −

τ + ρ

S
E[Uψ(y∗, yt+1)]. (6.2)

14

Based on Lemma 2, (6.2), and other intermediate results in Appendix C, we can derive the following
results for the strongly convex case.

Theorem 3. Suppose that Assumptions 1, 2, 3, 4, 5, 6 hold. Moveover, r is µ-strongly convex with
µ > 0 while ρ in Proposition 1 satisfies that ρ > 0, i.e., fi is Lf -smooth, Lf ∶= 1

µψρ
.

● If gi is Lg-smooth, Algorithm 1 with η = µθ
1−θ , τ = S

n(1−θ) , and a specific θ < 1 can make
µ
2 E ∥xT − x∗∥22 ≤ ϵ after T = Õ (nS +

Cg
√
nLf√
Sµ

+
LgCf
µ +

nLfσ
2
0

BSϵ +
C2
fσ

2
1

µBϵ +
δ2

µSϵ) iterations.

● If gi is non-smooth, Algorithm 1 under the same settings of η, τ and θ < 1 can make µ
2 E ∥xT − x∗∥22 ≤

ϵ after T = Õ (nS +
Cg
√
nLf√
Sµ

+
C2
fC

2
g

µϵ +
nLfσ

2
0

BSϵ +
C2
fσ

2
1

µBϵ +
δ2

µSϵ) iterations.

Remark 4. We would like to highlight several observations:
(1) When n = 1, Problem (1.2) with smooth fi, gi becomes a standard µ-strongly-convex-ρ-strongly-
concave and smooth stochastic min-max optimization problem. Our ALEXR algorithm reverts to
SAPD [15] and achieves the same Õ (1

µ +
1√
µρ +

σ2
0+σ2

1
µϵ) convergence rate;

(2) When fi is the identity mapping and n = 1 (i.e., σ0 = 06 and δ = 0), Problem (1.1) with a smooth
gi degenerates into the classical strongly convex and smooth stochastic optimization problem and
our ALEXR with τ = 0 reverts to (proximal) stochastic gradient descent (SGD) and nearly matches
its O (σ

2
1
µϵ) lower iteration complexity bound [25];

(3) When gi is smooth, ALEXR needs T = Õ (nσ
2
0

BSϵ +
σ2

1
µBϵ +

δ2

µSϵ) iterations to find an ϵ-accurate solution

x̄ (i.e., Eµ
2 ∥x̄ − x∗∥

2
2 ≤ ϵ), which improves upon the T = O (n

µ
√
BSϵ
) iterations needed by MSVR [10].

(4) When gi is non-smooth, the complexity has a worse term Õ(1
µϵ) compared to that Õ(1

µ) for the
smooth gi highlighted in blue in the theorem. It persists even when the variances are zero, and
hence offers no parallel speedup in this term for mini-batches B. Such a result is similar to those of
(stochastic) subgradient methods.

6.2 Convex Case

Directly converting the result in the strongly convex case to that in the non-strongly case leads to
an unsatisfactory Õ (nσ2

0
BSϵ2 +

σ2
1

Bϵ3 +
δ2

Sϵ3) convergence rate (See Appendix C.3). To address this issue,
we provide a better result matching the optimal rate by restricting the distance-generating function
ψi to be Lψ-smooth and µψ-strongly convex w.r.t. ∥⋅∥.
To derive a bound of the objective gap E[F (x̄T)−F (x∗)] for the time-average iterate x̄T = 1

T ∑
T−1
t=0 xt,

we will plug x = x∗ and y(i)(x̄T) ∈ arg maxv∈Yi{v
⊺gi(x̄T) − f

∗
i (v)} ∈ ∂fi(gi(x̄T)) for all i ∈ [n] into

Lemma 2. It is important to note that the sum ∑T−1
t=0 (

τ
nUψ(y, yt) −

τ
nUψ(y, ȳt+1)) in Lemma 2 does

not form a telescoping sum. Additionally, the technique outlined in (6.2) does not address this issue
because y also depends on St. Instead, we handle this by employing the lemma below, which draws
inspiration from Lemma A.2 in Alacaoglu et al. [14] but extends it to mini-batch sampling and a
general smooth and strongly convex distance-generating function ψi.

6Here σ0 = 0 because we have f ′i ≡ 1 for the identity mapping fi(gi(x)) = gi(x) such that there is no need to
compute the stochastic estimator of gi(x) because ∇fi(gi(x)) = ∇gi(x).

15

Lemma 5. Under Assumption 6, the following holds for Algorithm 1 with Lψ-smooth distance-
generating function ψi and any λ1 > 0 satisfies that

E [τ
n
(Uψ(y, yt) −Uψ(y, ȳt+1)) −

τ

n
Uψ(ȳt+1, yt)] (6.3)

≤ E [τ
S
(Uψ(y, yt) −Uψ(y, yt+1)) +

τλ1
S
(Uψ(y, ŷt) −Uψ(y, ŷt+1))] −

τ

n

⎛

⎝
1 −

L2
ψ

λ1µ2
ψS

⎞

⎠
E [Uψ(ȳt+1, yt)] ,

where the sequence {ŷt}t, ŷt ∈ Y is virtual.

Based on Lemma 2, Lemma 5 and other intermediate results in Appendix D, we are ready to present
the main theorem for the convergence of ALEXR in the convex case. To facilitate the discussion, we
introduce the following quantity:

Ω0
Y = E[

n

∑
i=1
Uψi(y

(i)
(x̄T), y

(i)
0)] ≤

n

∑
i=1
D2
ψi,Yi = O(n).

Theorem 6. Suppose Assumptions 1, 2, 3, 4, 5, 6 hold. Besides, Algorithm 1 selects a smooth
distance-generating function ψi. We denote that x̄T = 1

T ∑
T−1
t=0 xt.

● If gi is Lg-smooth, Algorithm 1 with θ = 1, η = O (LgCf ∨
√
nCg√
S
∨ δ2

Sϵ ∨
C2
fσ

2
1

Bϵ), τ = O (
√
SCg

µψ
√
n
∨

σ2
0

µψBϵ
)

can make E[F (x̄T) − F (x∗)] ≤ ϵ after

T = O (
LgCfD

2
X

ϵ +

√
nCgD2

X√
Sϵ

+
Cg(1+L2

ψ/(Sµ2
ψ))Ω0

Y

µψ
√
nSϵ

+
D2
X δ

2

Sϵ2 +
C2
fσ

2
1D

2
X

Bϵ2 +
σ2

0(1+L2
ψ/(Sµ2

ψ))Ω0
Y

µψBSϵ2
).

● If gi is non-smooth, Algorithm 1 with θ = 1, η = O (
√
nCg√
S
∨ δ2

Sϵ ∨
C2
fσ

2
1

Bϵ ∨
C2
fC

2
g

ϵ), τ = O (
√
SCg

µψ
√
n
∨

σ2
0

µψBϵ
)

can make E[F (x̄T) − F (x∗)] ≤ ϵ after

T = O (
√
nCgD2

X√
Sϵ

+
Cg(1+L2

ψ/(Sµ2
ψ))Ω0

Y

µψ
√
nSϵ

+
C2
fC

2
gD

2
X

ϵ2 +
D2
X δ

2

Sϵ2 +
C2
fσ

2
1D

2
X

Bϵ2 +
σ2

0(1+L2
ψ/(Sµ2

ψ))Ω0
Y

µψBSϵ2
).

Remark: We discuss the results in the worst case where Ω0
Y = nmaxiD2

ψi,Yi , where Dψi,Yi ∶=

[maxv∈Yi ψi(v) −minv∈Yi ψi(v)]1/2. When gi is smooth, the leading term in the iteration complexity
of ALEXR is O (nσ2

0
BSϵ2 +

δ2

Sϵ2 +
σ2

1
Bϵ2). This result outperforms the Õ (nσ2

0
BSϵ2 +

δ2

Sϵ3 +
σ2

1
Bϵ3) rate derived

from the strongly convex result, as well as the O (n√
BSϵ2
) rate of MSVR [10]. Nevertheless, the

requirement for ψi to be smooth prevents us from selecting ψi = f∗i except when fi is strongly convex.
However, it is worth noting that Theorem 6 remains applicable to our motivating examples, which
include GDRO with CVaR divergence, pAUC maximization with restricted TPR, Bellman residual
minimization, p-norm push, and multi-task GDRO. In these problems, the dual mirror step of our
proposed ALEXR can be efficiently solved with a smooth ψi, e.g. ψi(⋅) = 1

2 ∥⋅∥
2
2, as indicated in the

paragraph below Assumption 6. Moreover, when the optimal dual variable y(x̄T) at x̄T has some
sparsity structure, then Ω0

Y could be much smaller than nmaxiDψi,Yi , the results above indicate
much better complexity of ALEXR when n is large. An example is considered in the next section.

16

7 Application to GDRO with ϕ-divergence

We discuss two examples of the GDRO problem with ϕ-divergence: CVaR divergence with a hyper-
parameter α ∈ (0,1) and χ2-divergence with a hyper-parameter λ > 0. We compare ALEXR to the
following baselines:
● SMD [48, 17]: It can be applied to the GDRO problem in (2.1) with CVaR divergence, where
the dual mirror step with the entropy d.-g.f. can be efficiently solved by projection onto the
permutahedron [60]. Moreover, SMD can also be applied to the worst-group DRO problem [16]
(i.e., λ = 0 in (2.1) or α = 1

n in CVaR). The iteration complexity of SMD is T = O (logn
ϵ2), which

is independent of α (Theorem 1 in [17]). Besides, it requires O(n logn) computational cost for
performing the dual projection and O(n) oracles in each iteration. Note that SMD cannot be applied
to the GDRO problem in (2.1) with χ2-divergence due to the non-linear penalty term.
● OOA [16]: This algorithm can be viewed as a variant of the SMD algorithm with the dual gradient
estimator [0, . . . , nℓ(wt; z(it)t), . . . ,0]⊺ such that it only requires O(1) oracles per iteration. But
the dual projection cost in each iteration is still O(n logn). The iteration complexity of SMD is
T = O (n

2 logn
ϵ2), which is also independent of α. OOA is not applicable to the GDRO problem in

(2.1) with χ2-divergence either.
It comes to our attention that the NOL algorithm [17] designed for the worst-group DRO problem
(λ = 0 in (2.1) or α = 1

n in CVaR) can achieve T = O(n logn
ϵ2) iteration complexity in high probability

with per-iteration O(1) oracles. However, this result cannot be extended to the GDRO problem
with CVaR or χ2-divergence, since their proof technique relies on powerful tools for multi-armed
bandits. Besides, Soma et al. [61] also consider the GDRO problem with CVaR divergence but their
convergence analysis suffers from dependency issues, as pointed out in Zhang et al. [17]. Recently,
Hu et al. [62] studied non-smooth weakly convex FCCO problems and proposed an algorithm SONX,
which can be applied to solving GDRO with CVaR divergence. However, their algorithm does not
leverage the convexity of the inner function and hence suffers from a worse complexity of O (n

S
√
Bϵ6
).

7.1 GDRO with CVaR divergence

GDRO with CVaR divergence can be formulated as (1.1) with fi(⋅) = α
−1(⋅)+, α ∈ (0,1) and

gi(w, c) = Ri(w) − c such that Cf = 1
α and Cg = CR + 1, where CR is the Lipschitz constant

of Ri. The dual update (7) of ALEXR with ψi(⋅) =
1
2(⋅)

2 has the closed-form expression y
(i)
t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

Proj[0,α−1] [y
(i)
t + (1/τ)g̃

(i)
t] , i ∈ St

y
(i)
t , i ∉ St

. According to Theorem 6, we can derive the following result.

Corollary 7. Suppose that Ri is convex and Lipschitz continuous. For the GDRO problem (2.1) with
CVaR divergence, the ALEXR algorithm with y(i)0 = 0 requires T = O (

√
n√
Sϵ
+ 1
α2ϵ2 +

δ2

Sϵ2 +
σ2

1
α2Bϵ2 +

σ2
0Ω0
Y

BSϵ2)

iterations to return an ϵ-approximate solution wout that satisfies E[L(wout) − L(w∗)] ≤ ϵ, where
Ω0
Y ∶= E[∑ni=1Uψi(ỹ(i),0)] and ỹ(i) ∈ ∂fi(gi(wout, cout)).

Remark 8. The worst-case estimate of the Ω0
Y term is Ω0

Y = E[∑ni=1Uψi(ỹ(i),0)] ≤
nC2

f

2 = n
2α2

when ψi =
1
2(⋅)

2. However, it could be much smaller than n
2α2 in practice since ỹ(i) = 0 for those

coordinates i that satisfy Ri(wout) ≤ cout, i.e., the ALEXR algorithm can benefit from the “sparsity” of
ỹ(i) ∈ ∂fi(gi(wout, cout)). In particular, when (wout, cout) is close to the optimal solution, then roughly
about αn number of groups such that [Ri(wout)−cout]+ > 0. As a result, Ω0

Y = E[∑ni=1Uψi(ỹ(i), 0)] ≈

17

Table 3: Comparison of iteration complexities, dual projection cost, and per-iteration #oracles for
achieving ϵ-optimal solution of the GDRO problem in (2.1) in terms of E[L(wout) − L(w∗)] ≤ ϵ.
Here xout is the output of each algorithm. We hide other constant quantities except for n, variances
σ2

0, σ
2
1, δ

2, and batch sizes B,S. Besides, Õ hides poly log(1/ϵ) factors.
ϕ-Divergence Algorithm #Oracles(1) Dual Proj. Iteration Complexity

CVaR
SMD [17] O(n)/O(1) O(n logn) O (logn

ϵ2)

OOA [16] O(1)/O(1) O(n logn) O (n
2 logn
ϵ2)

ALEXR O(1)/O(1) O(1) O (
√
n

α2
√
Sϵ
+ 1
α2ϵ2 +

δ2

Sϵ2 +
σ2

1
α2Bϵ2 +

σ2
0Ω0
Y

BSϵ2)
(2)

χ2 ALEXR O(1)/O(1) O(1)
Convex r Strongly Convex r

O (
√
n

λ
√
Sϵ
+ 1
λ2ϵ2 +

δ2

Sϵ2 +
σ2

1
Bϵ2 +

σ2
0Ω0
Y

BSϵ2)
(3) Õ (

√
n

λ
√
Sµ
+ 1
µλ2ϵ +

nσ2
0

BSϵ +
σ2

1
µBϵ +

δ2

µSϵ)
(4)

(1) Representing #zeroth-order oracles for gi(x)/#first-order oracles for ∇gi(x) in each iteration.
(2) The worst-case estimate of Ω0

Y is n
2α2 , but it could be much smaller than n

2α2 in practice, as explained in Remark 8.
(3) The worst-case estimate of Ω0

Y is nC2
f

2 , but it could be much smaller than nC2
f

2 in practice.
(4) In terms of the distance gap.

nαC2
f

2 = n
2α . Then, the complexity may become T = O (

√
n√
Sϵ
+ 1
α2ϵ2 +

δ2

Sϵ2 +
σ2

1
α2Bϵ2 +

σ2
0n

αBSϵ2).

7.2 GDRO with χ2- divergence

GDRO with χ2- divergence can be formulated as (1.1) with fi(⋅) = λ (
1
4(⋅ + 2)2+ − 1) and gi(w, c) =

(Ri(w) − c)/λ such that Cf = max{BR−c,BR+c}
2

7 and Cg =
CR+1
λ , where BR ∶= maxw∈W ∣Ri(w)∣.

In this case, the proximal mapping of f∗i (y(i)) = λ
2 (y

(i)/λ − 1)2 with ψi(⋅) =
1
2(⋅)

2 can also be
efficiently solved. We can also consider the GDRO problem with a convex regularization term
r(x). With a strongly convex regularizer, we can choose either ψi = f∗i or ψi(⋅) = 1

2(⋅)
2. When

ψi = f
∗
i , the dual update (7) of ALEXR has the closed-form expression y

(i)
t+1 = f

′
i(u
(i)
t+1), u

(i)
t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

τ
1+τ u

(i)
t +

1
1+τ g̃

(i)
t , i ∈ St

u
(i)
t , i ∉ St

. When ψi(⋅) =
1
2(⋅)

2, the dual update (7) of ALEXR has the closed-form

expression y(i)t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

λ
1+λ(y

(i)
t + (1/τ)g̃

(i)
t + 1), i ∈ St

y
(i)
t , i ∉ St

. Theorem 3 and Theorem 6 imply the following

convergence result.

Corollary 9. Suppose that Ri(w) is uniformly bounded and Lipschitz continuous. For the
GDRO problem (2.1) with χ2-divergence and a convex regularization term r(x), the ALEXR al-
gorithm with y

(i)
0 = 0 requires T = Õ (

√
n

λ
√
Sµ
+ 1
µλ2ϵ +

σ2
0Ω0
Y

BSϵ +
σ2

1
µBϵ +

δ2

µSϵ) iterations to return an ϵ-

approximate solution wout that satisfies E[L(wout)−L(w∗)] ≤ ϵ, where Ω0
Y ∶= E[∑ni=1Uψi(ỹ(i), 0)] and

ỹ(i) ∈ ∂fi(gi(wout, cout)). If r is µ-strongly convex, it takes T = Õ (
√
n

λ
√
Sµ
+ 1
µλ2ϵ +

nσ2
0

BSϵ +
σ2

1
µBϵ +

δ2

µSϵ)

iterations to find an wout such that µ
2 ∥wout −w∗∥

2
2 ≤ ϵ.

7A valid choice of c, c is c = −λ, c = BR (see Appendix A.3 in Levy et al. [18]).

18

7.3 Comparison with Baselines

In Table 3, we compare our ALEXR to the baseline algorithms OOA and SMD. It is notable that
although SMD has a better iteration complexity for CVaR divergence, it requires O(n) oracles at
each iteration. In contrast, ALEXR and OOA only require O(1) oracles in each iteration. On the
GDRO problem with CVaR divergence, the iteration complexity of ALEXR is better than OOA when
Ω0
Y = o(n

2 logn) or the variance σ2
0 is small. In the worst case, we have Ω0

Y = O(n/α
2), then ALEXR

has a better complexity than OOA when 1
α = o(

√
n logn). In practice, we have Ω0

Y = O(n/α), then
ALEXR has a better complexity than OOA when 1

α = o(n logn). In addition, OOA cannot enjoy the
parallel speedup with respect to the inner batch size B due to its scaled dual gradient estimator.
Moreover, we also provide the iteration complexity of ALEXR on this the GDRO problem with
χ2-divergence, with or without a regularization term.

8 Lower Complexity Bounds

The proposed ALEXR and previous algorithms SOX [5], MSVR [10] are all special instantiations of an
abstract first-order block-coordinate stochastic update scheme (Algorithm 2) with O(1) oracles and
O(d) computation cost per iteration. For an affine subspace S ⊂ Rd, we denote the linear span of
{s(i) ∣ s ∈S} as S(i) for each i ∈ [d]. The “+” in Algorithm 2 refers to the Minkowski addition.

Algorithm 2 Abstract First-Order Block-Coordinate Stochastic Update Scheme
1: Initialize affine subspaces X0, Y0, g0, G0
2: for t = 0,1, . . . , T − 1 do
3: Sample a batch St ⊂ {1, . . . , n}, ∣St∣ = S
4: for each i ∈ St do
5: Sample independent size-B mini-batches B(i)t , B̃

(i)
t from Pi

6: g
(i)
t+1 = g

(i)
t + span{gi(x̂;B(i)t) ∣ x̂ ∈ Xt}

7: Y
(i)
t+1 =Y

(i)
t +span{arg maxy(i) {y(i)ĝ(i) − f∗i (y(i)) − τUψi(y(i), ŷ(i))} ∣ ĝ(i) ∈ g

(i)
t+1, ŷ

(i) ∈Y(i)t }

8: end for
9: For each i ∉ St, g(i)t+1 = g

(i)
t ,Y

(i)
t+1 =Y

(i)
t

10: Gt+1 = Gt + span{ 1
S ∑i∈St ŷ

(i)∇gi(x̂; B̂(i)t) ∣ x̂ ∈ Xt, ŷ ∈Yt+1}

11: Xt+1 = Xt + span {arg minx {⟨Ĝ, x⟩ + r(x) + η
2 ∥x − x̂∥

2
2} ∣ x̂ ∈ Xt, Ĝ ∈ Gt+1}

12: end for

To obtain the best possible iteration complexity of this abstract scheme on cFCCO problems, we
consider a special instance of problem (1.1) that is separable over the coordinates i and Pi = P.

min
x∈[−D,D]n

F (x), F (x) =
1
n
(
n

∑
i=1
f(gi(x)) +

α

2
∥x∥2) , (8.1)

gi(x) = Eζ∼P[gi(x; ζ)], gi(x; ζ) = x(i) + ζ,

where the additive noise ζ follows

ζ =

⎧⎪⎪
⎨
⎪⎪⎩

−ν w.p. 1 − p,
ν(1 − p)/p w.p. p.

, where p ∶= ν
2

σ2 ∈ (0,1).

Based on the abstract scheme (Algorithm 2) and the “hard” problems in Appendix E, we can derive
the following lower complexity bounds.

19

Theorem 10. Consider the abstract scheme (Algorithm 2) with inner mini-batch size B = 1 and
initialization X

(i)
0 = {0}, Y

(i)
0 = {0}, g

(i)
0 = ∅, G(i)0 = ∅.

● There exists a cFCCO problem (1.1) with smooth fi and µ-strongly convex r such that any
algorithm in the abstract scheme requires at least T = Ω (1

µϵ) iterations to find an x̄ that satisfies
E [µ2 ∥x̄ − x∗∥

2
2] ≤ ϵ. Moreover, there exists another cFCCO problem (1.1) with smooth fi and

µ-strongly convex r such that any algorithm in the abstract scheme requires at least T = Ω(nσ
2
0

Sϵ)

iterations to find an x̄ that satisfies E [µ2 ∥x̄ − x∗∥
2
2] ≤ ϵ or E[F (x̄) − F (x∗)] ≤ ϵ.

● There exists a cFCCO problem (1.1) with non-smooth fi such that any algorithm in the abstract
scheme requires at least T = Ω(nσ

2
0

Sϵ2) iterations to find an x̄ that satisfies E[F (x̄) − F (x∗)] ≤ ϵ.

Compared with the upper bound results in Section 6, this theorem demonstrates that ALEXR is
optimal among first-order block-coordinate stochastic algorithms for cFCCO problems.

9 Numerical Experiments

In this section, we show experimental results on the Group Distributionally Robust Optimization
(GDRO) and Partial AUC Maximization with restricted TPR. More details of the experiments and
additional results can be found in Appendix F.

9.1 Experiments on GDRO with the CVaR divergence

First, we numerically compare our proposed ALEXR and baseline methods on the GDRO problem in
(2.1) with the CVaR divergence for the binary classification task, where the objective function L(w)
is the average risk on the top-αn worst groups, i.e., L(w) = 1

⌊αn⌋ ∑
⌊αn⌋
i=1 R[[i]](w) and [[i]] refers to the

i-th worst group in descending order. We consider the linear model w and the logistic loss ℓ(w; z).
Baselines. We compare our ALEXR with previous algorithms on the FCCO problem and, more
specifically, the GDRO problem: BSGD [23], SOX [5], SONX [11], OOA [16], and SGD with up-weighting
(SGD-UW) [63, 64]. Note that the MSVR algorithm [10] is not applicable since the outer function fi
in this problem is non-smooth. Instead, we consider the non-smooth variant SONX of the MSVR
algorithm. To show the benefit of GDRO, we also include SGD which is based on empirical risk
minimization (ERM) and neglects the group information. Besides, OOA needs a projection onto an
(n − 1)-dimensional capped simplex {y ∈ Rn ∣ ∑ni=1 y

(i) = 1,0 ≤ y(i) ≤ 1
αn} in each iteration.

Datasets. We perform experiments on two datasets: a tabular dataset Adult [65] and an image
dataset CelebA [66]. The Adult dataset contains 48,842 data points, where we use 22,792 data
points for training, 9,769 points for validation, and 16,281 points for testing [67]. We construct 83
groups for the Adult dataset according to some categorical features such as race and gender. The
original CelebA dataset is composed of 162,770 celebrity images for training, 198,670 images for
validation, and 199,620 images for testing. We construct 160 groups for the CelebA dataset. On
the Adult dataset, the task is to predict the income, whereas on the CelebA dataset, the goal is to
determine whether the individual in the image possesses blonde hair. More details of the datasets
and the preprocessing steps can be found in Appendix F.1.1.
Results. We report the loss curves on the validation dataset for FCCO algorithms that share the
same objective function (2.1) in Figure 1. Then, we report test accuracy for all algorithms in Table 4
on the worst-(αn) groups under 4 different values of α. First, we notice that the vanilla SGD performs
poorly on the worst-(αn) groups’ data. While the up-weighting trick offers some improvement for

20

500 1000 1500 2000 2500
Iterations

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75
Lo

ss
Adult (α=0.1)

ALEXR
BSGD
SOX

SONX
OOA

500 1000 1500 2000 2500
Iterations

0.67

0.68

0.69

0.70

0.71

0.72

0.73

Lo
ss

Adult (α=0.15)
ALEXR
BSGD
SOX

SONX
OOA

500 1000 1500 2000 2500
Iterations

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Lo
ss

Adult (α=0.2)
ALEXR
BSGD
SOX

SONX
OOA

500 1000 1500 2000 2500
Iterations

0.65

0.66

0.67

0.68

0.69

0.70

0.71

Lo
ss

Adult (α=0.25)
ALEXR
BSGD
SOX

SONX
OOA

2500 5000 7500 10000 12500 15000
Iterations

0.50

0.55

0.60

0.65

0.70

Lo
ss

CelebA (α=0.1)
ALEXR
SOX
BSGD

SONX
OOA

2500 5000 7500 10000 12500 15000
Iterations

0.46

0.48

0.50

0.52

0.54

0.56

Lo
ss

CelebA (α=0.15)
ALEXR
SOX
BSGD

SONX
OOA

2500 5000 7500 10000 12500 15000
Iterations

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Lo
ss

CelebA (α=0.2)
ALEXR
SOX
BSGD

SONX
OOA

2500 5000 7500 10000 12500 15000
Iterations

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Lo
ss

CelebA (α=0.25)
ALEXR
SOX
BSGD

SONX
OOA

Figure 1: Losses evaluated on the validation dataset during training with different α ∈
{0.1,0.15,0.2,0.25}.

Table 4: Comparison of test accuracy (%) on the worst-(αn) groups with α ∈ {0.1,0.15,0.2,0.25}.
The best accuracy is highlighted in black while the second-best one is highlighted in gray.

Methods
Adult CelebA

α = 0.1 α = 0.15 α = 0.2 α = 0.25 α = 0.1 α = 0.15 α = 0.2 α = 0.25
SGD 0.71±0.20 1.87±0.25 4.14±0.26 7.35±0.27 2.75±0.08 4.89±0.10 6.61±0.07 8.02±0.08

SGD-UW 23.70±1.01 26.26±1.06 31.84±0.71 36.77±0.65 73.70±0.13 74.18±0.13 74.79±0.12 75.28±0.11
OOA 51.46±2.21 54.12±2.04 56.08±1.98 57.45±1.73 66.40±6.37 73.43± 0.79 75.62±0.01 74.90±0.02
BSGD 55.81±0.70 58.58±0.61 59.48±0.47 60.48±0.45 75.30±0.27 76.16±0.12 77.00±0.09 77.53±0.07
SOX 56.34 ±1.15 58.36±0.44 60.39±0.36 61.45±0.25 75.04±0.20 76.10±0.30 76.85±0.11 77.59±0.25

SONX 47.78±1.06 49.49±0.95 51.78±0.66 54.42±0.65 75.34±0.28 76.17±0.09 76.99±0.06 77.47±0.09
ALEXR 56.58±0.69 58.52±0.71 60.23±0.50 61.76±0.36 75.79±0.05 76.29±0.07 76.80±0.12 77.28±0.10

SGD, its effectiveness still falls short of Group DRO algorithms. Among GDRO algorithms, our
proposed ALEXR, exhibits faster convergence compared to baseline methods. Additionally, ALEXR
also achieves superior testing performance in most cases.

9.2 Partial AUC Maximization with Restricted TPR

Next, we compare the proposed ALEXR and existing baselines on the pAUC maximization problem
with restricted TPR in (2.3) and its equivalent forms (2.4), (2.5). In our experiments, we consider
linear prediction model w and two different lower bounds α of TPR: 0.5 and 0.75.
Baselines. Previous FCCO algorithms BSGD, SOX and SONX can be applied to (2.5) and OOA can
be applied to (2.4). We also include SGD with over-sampling to minimize the cross-entropy (CE)
loss. In Zhu et al. [6], they propose an algorithm called SOTA for the weakly convex pAUC problem
with TPR and FPR restrictions. We modify the SOTA algorithm for the convex pAUC problem
with only restricted TPR.
Datasets. We perform experiments on four datasets: Covtype, Cardiomegaly, Lung-mass, and
Higgs. The Covtype and Higgs datasets are from the LibSVM repository8. We create the imbalanced
datasets by randomly removing 99.5% positive data from the Covtype dataset and 99.9% positive

8https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

21

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

250 500 750 1000 1250 1500
Iterations

0.78

0.79

0.80

0.81

0.82

0.83

0.84

Lo
ss

Covtype (TPR¸0.5)
ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71
pA

U
C

Covtype (TPR¸0.5)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Lo
ss

Covtype (TPR¸0.75)
ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

0.46

0.48

0.50

0.52

0.54

0.56

pA
U

C

Covtype (TPR¸0.75)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

0.92

0.94

0.96

0.98

1.00

1.02

Lo
ss

Cardiomegaly (TPR¸0.5)
ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

0.59

0.60

0.61

0.62

0.63

0.64

pA
U

C

Cardiomegaly (TPR¸0.5)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

1.050
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250

Lo
ss

Cardiomegaly (TPR¸0.75)
ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

pA
U

C

Cardiomegaly (TPR¸0.75)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

1.12

1.14

1.16

1.18

1.20

Lo
ss

Lung-mass (TPR¸0.5)
ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

0.33

0.34

0.35

0.36

0.37

0.38

pA
U

C

Lung-mass (TPR¸0.5)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

1.20

1.25

1.30

1.35

1.40

Lo
ss

Lung-mass (TPR¸0.75)
ALEXR
SOX
BSGD

SONX
OOA
SOTA

0 200 400 600
Iterations

0.16

0.17

0.18

0.19

0.20

0.21

0.22

pA
U

C

Lung-mass (TPR¸0.75)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

1.04

1.06

1.08

1.10

1.12

1.14

Lo
ss

Higgs (TPR¸0.5)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

0.40

0.42

0.44

0.46

0.48

pA
U

C

Higgs (TPR¸0.5)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Lo
ss

Higgs (TPR¸0.75)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

250 500 750 1000 1250 1500
Iterations

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

pA
U

C

Higgs (TPR¸0.75)

ALEXR
SOX
BSGD

SONX
OOA
SOTA

Figure 2: Loss and partial AUC evaluated on the validation set during training under TPR≥ 0.5
and TPR≥ 0.75.

22

data from the Higgs dataset. Cardiomegaly and Lung-mass are two imbalanced datasets that share
the same collection of Chest X-ray images and different label annotations from the MedMNIST
repository [68]. Details of the dataset and the preprocessing steps can be found in Appendix F.2.1.

Table 5: Comparison of partial AUC on the test dataset. The best result is highlighted in black.

Methods
Covtype Cardiomegaly Lung-mass Higgs

TPR≥ 0.5 TPR≥ 0.75 TPR≥ 0.5 TPR≥ 0.75 TPR≥ 0.5 TPR≥ 0.75 TPR≥ 0.5 TPR≥ 0.75
CE 0.707±0.001 0.581±0.004 0.524±0.001 0.378±0.002 0.292±0.009 0.143±0.009 0.482±0.001 0.318±0.003

OOA 0.716±0.002 0.594±0.003 0.613±0.001 0.477±0.005 0.323±0.008 0.181±0.012 0.482±0.002 0.316±0.005
BSGD 0.726±0.003 0.597±0.005 0.606±0.001 0.481±0.003 0.329±0.004 0.170±0.004 0.482±0.001 0.320±0.004
SOX 0.726±0.002 0.597±0.005 0.607±0.000 0.481±0.003 0.329±0.003 0.170±0.004 0.481±0.002 0.319±0.004

SONX 0.723±0.003 0.597±0.004 0.603±0.002 0.474±0.003 0.318±0.002 0.165±0.005 0.481±0.001 0.318±0.002
SOTA 0.726±0.004 0.600±0.007 0.611±0.002 0.481±0.001 0.332±0.008 0.183±0.008 0.483±0.002 0.321±0.003

ALEXR 0.727±0.003 0.605±0.005 0.613±0.002 0.477±0.004 0.333±0.005 0.185±0.014 0.485±0.000 0.322±0.003

Results. For each algorithm, we present the objective function values in (2.3) and the partial AUC
values evaluated on the validation dataset throughout the training process, as depicted in Figure 2.
Additionally, we also compare the final partial AUC values on the test dataset for all algorithms,
summarized in Table 5. The results suggest that optimizing the surrogate loss in Equation (2.3)
outperforms optimizing the Cross-Entropy (CE) loss for maximizing the partial AUC with restricted
TPR. Among algorithms tailored for optimizing (2.3), our proposed algorithm, named ALEXR,
demonstrates overall superior performance when compared to previous algorithms.

10 Conclusion

In this paper, we delve into a class of convex finite-sum compositional stochastic optimization
(cFCCO) problems, as represented by (1.1), by leveraging the min-max reformulation in (1.2). To
tackle this problem, we propose a single-loop primal-dual block-coordinate proximal algorithm called
ALEXR. Our proposed ALEXR achieves improved convergence rates compared to previous works on
both convex and strongly convex problems. Furthermore, we present lower complexity bounds to
show that the convergence rate of ALEXR stands as optimal among first-order block-coordinate
stochastic methods for cFCCO problems. We demonstrate that ALEXR has applications in a broad
spectrum of problems, including the Group Distributionally Robust Optimization (GDRO) problem
and partial AUC maximization problem with restricted TPR. Numerical experiments demonstrate
the promising performance of ALEXR on the GDRO and pAUC problems.

Acknowledgements

We are deeply grateful to Guanghui Lan for his invaluable feedback on this paper. We are also
thankful to Stephen J. Wright for bringing the analysis of the duality gap for PureCD to our attention.
We thank Guanghui Wang for the initial discussion of the problem.

References
[1] Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent:

algorithms for minimizing compositions of expected-value functions. Mathematical Programming,
161(1-2):419–449, 2017.

23

[2] Mengdi Wang, Ji Liu, and Ethan X Fang. Accelerating stochastic composition optimization.
Journal of Machine Learning Research, 18:1–23, 2017.

[3] Tianbao Yang. Algorithmic foundations of empirical x-risk minimization. arXiv preprint
arXiv:2206.00439, 2022.

[4] Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimization of
areas under precision-recall curves with provable convergence. Advances in Neural Information
Processing Systems, 34, 2021.

[5] Bokun Wang and Tianbao Yang. Finite-sum coupled compositional stochastic optimization:
Theory and applications. In International Conference on Machine Learning, pages 23292–23317.
PMLR, 2022.

[6] Dixian Zhu, Gang Li, Bokun Wang, Xiaodong Wu, and Tianbao Yang. When AUC meets
DRO: optimizing partial AUC for deep learning with non-convex convergence guarantee. In
International Conference on Machine Learning, 2022.

[7] Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, and Tianbao Yang. Large-scale
stochastic optimization of ndcg surrogates for deep learning with provable convergence. In
International Conference on Machine Learning, pages 18122–18152. PMLR, 2022.

[8] Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
Yang. Provable stochastic optimization for global contrastive learning: Small batch does not
harm performance. In International Conference on Machine Learning, pages 25760–25782.
PMLR, 2022.

[9] Guanghui Wang, Ming Yang, Lijun Zhang, and Tianbao Yang. Momentum accelerates the
convergence of stochastic auprc maximization. arXiv preprint arXiv:2107.01173, 2021.

[10] Wei Jiang, Gang Li, Yibo Wang, Lijun Zhang, and Tianbao Yang. Multi-block-single-probe vari-
ance reduced estimator for coupled compositional optimization. arXiv preprint arXiv:2207.08540,
2022.

[11] Quanqi Hu, Dixian Zhu, and Tianbao Yang. Non-smooth weakly-convex finite-sum coupled
compositional optimization. In NeurIPS, 2023.

[12] Lie He and Shiva Prasad Kasiviswanathan. Debiasing conditional stochastic optimization.
arXiv preprint arXiv:2304.10613, 2023.

[13] Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. In ICML, pages 353–361, 2015.

[14] Ahmet Alacaoglu, Volkan Cevher, and Stephen J Wright. On the complexity of a practical
primal-dual coordinate method. arXiv preprint arXiv:2201.07684, 2022.

[15] Xuan Zhang, Necdet Serhat Aybat, and Mert Gürbüzbalaban. Robust accelerated primal-dual
methods for computing saddle points. arXiv preprint arXiv:2111.12743, 2021.

[16] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

24

[17] Lijun Zhang, Peng Zhao, Tianbao Yang, and Zhi-Hua Zhou. Stochastic approximation ap-
proaches to group distributionally robust optimization. arXiv preprint arXiv:2302.09267,
2023.

[18] Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for
distributionally robust optimization. Advances in Neural Information Processing Systems,
33:8847–8860, 2020.

[19] Tianbao Yang and Yiming Ying. Auc maximization in the era of big data and ai: A survey.
ACM Computing Surveys, 55(8):1–37, 2022.

[20] W. Gao and Z.-H. Zhou. On the consistency of AUC pairwise optimization. In International
Joint Conferences on Artificial Intelligence (IJCAI), pages 939–945, 2015.

[21] C. Rudin. The p-norm push: A simple convex ranking algorithm that concentrates at the top
of the list. Journal of Machine Learning Research, 10(Oct):2233–2271, 2009.

[22] Zhe Zhang and Guanghui Lan. Optimal algorithms for convex nested stochastic composite
optimization. arXiv preprint arXiv:2011.10076, 2020.

[23] Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased stochastic first-order methods for
conditional stochastic optimization and applications in meta learning. Advances in Neural
Information Processing Systems, 33, 2020.

[24] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. Advances in neural information processing systems,
27, 2014.

[25] Phuong Ha Nguyen, Lam Nguyen, and Marten van Dijk. Tight dimension independent lower
bound on the expected convergence rate for diminishing step sizes in sgd. Advances in Neural
Information Processing Systems, 32, 2019.

[26] Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

[27] Zi-Hao Qiu, Quanqi Hu, Zhuoning Yuan, Denny Zhou, Lijun Zhang, and Tianbao Yang. Not all
semantics are created equal: Contrastive self-supervised learning with automatic temperature
individualization. In International Conference on Machine Learning, Proceedings of Machine
Learning Research, 2023.

[28] Xiangru Lian, Mengdi Wang, and Ji Liu. Finite-sum composition optimization via variance
reduced gradient descent. In Artificial Intelligence and Statistics, pages 1159–1167. PMLR,
2017.

[29] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26:315–323, 2013.

[30] Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

[31] Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229–251, 2004.

25

[32] Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and
related problems. Mathematical Programming, 109(2-3):319–344, 2007.

[33] Paul Tseng. On linear convergence of iterative methods for the variational inequality problem.
Journal of Computational and Applied Mathematics, 60(1-2):237–252, 1995.

[34] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal
on control and optimization, 14(5):877–898, 1976.

[35] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient
and optimistic gradient methods for saddle point problems: Proximal point approach. In
International Conference on Artificial Intelligence and Statistics, pages 1497–1507. PMLR,
2020.

[36] Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local
convergence of generative adversarial networks. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 907–915. PMLR, 2019.

[37] Dmitry Kovalev and Alexander Gasnikov. The first optimal algorithm for smooth and strongly-
convex-strongly-concave minimax optimization. Advances in Neural Information Processing
Systems, 35:14691–14703, 2022.

[38] Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for
the saddle point problems. arXiv preprint arXiv:1912.07481, 2019.

[39] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for
convex-concave bilinear saddle-point problems. Mathematical Programming, 185(1-2):1–35,
2021.

[40] Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization.
submitted to SIAM Journal on Optimization, 2(3), 2008.

[41] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40:120–145, 2011.

[42] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order
primal–dual algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

[43] Kiran K Thekumparampil, Niao He, and Sewoong Oh. Lifted primal-dual method for bilinearly
coupled smooth minimax optimization. In International Conference on Artificial Intelligence
and Statistics, pages 4281–4308. PMLR, 2022.

[44] Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-dual gradient
method for smooth and convex-concave saddle-point problems with bilinear coupling. Advances
in Neural Information Processing Systems, 35:21725–21737, 2022.

[45] Guangzeng Xie, Yuze Han, and Zhihua Zhang. Dippa: An improved method for bilinear saddle
point problems. arXiv preprint arXiv:2103.08270, 2021.

[46] Chris Junchi Li, Huizhuo Yuan, Gauthier Gidel, Quanquan Gu, and Michael I. Jordan. Nesterov
meets optimism: Rate-optimal separable minimax optimization. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 20351–20383. PMLR, 2023.

26

[47] Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A primal-dual algorithm for general
convex-concave saddle point problems. arXiv preprint arXiv:1803.01401, 2, 2018.

[48] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

[49] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

[50] Yan Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. Optimal epoch stochastic gradient
descent ascent methods for min-max optimization. In Advances in Neural Information Processing
Systems 33 (NeurIPS), 2020.

[51] Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. On the
convergence of single-call stochastic extra-gradient methods. arXiv preprint arXiv:1908.08465,
2019.

[52] Simon S Du, Gauthier Gidel, Michael I Jordan, and Chris Junchi Li. Optimal extragradient-
based bilinearly-coupled saddle-point optimization. arXiv preprint arXiv:2206.08573, 2022.

[53] Ahmet Alacaoglu, Olivier Fercoq, and Volkan Cevher. Random extrapolation for primal-dual
coordinate descent. In International conference on machine learning, pages 191–201. PMLR,
2020.

[54] Erfan Yazdandoost Hamedani, Afrooz Jalilzadeh, and Necdet S Aybat. Randomized primal-dual
methods with adaptive step sizes. In International Conference on Artificial Intelligence and
Statistics, pages 11185–11212. PMLR, 2023.

[55] Afrooz Jalilzadeh, Erfan Yazdandoost Hamedani, and Necdet S Aybat. A doubly-randomized
block-coordinate primal-dual method for large-scale saddle point problems. arXiv preprint
arXiv:1907.03886, 2019.

[56] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the L1-ball for learning in high dimensions. In International Conference on Machine
Learning, 2008.

[57] Amir Beck. First-order methods in optimization. SIAM, 2017.

[58] Quanqi Hu, Zi-Hao Qiu, Zhishuai Guo, Lijun Zhang, and Tianbao Yang. Blockwise stochastic
variance-reduced methods with parallel speedup for multi-block bilevel optimization. In
International Conference on Machine Learning, 2023.

[59] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
SGD. In Advances in Neural Information Processing Systems 32 (NeurIPS), pages 15236–15245,
2019.

[60] Cong Han Lim and Stephen J Wright. Efficient bregman projections onto the permutahedron
and related polytopes. In Artificial Intelligence and Statistics, pages 1205–1213. PMLR, 2016.

[61] Tasuku Soma, Khashayar Gatmiry, and Stefanie Jegelka. Optimal algorithms for group
distributionally robust optimization and beyond. arXiv preprint arXiv:2212.13669, 2022.

27

[62] Quanqi Hu, Dixian Zhu, and Tianbao Yang. Non-smooth weakly-convex finite-sum coupled
compositional optimization. In Advances in Neural Information Processing Systems, volume
abs/2310.03234, 2023.

[63] Li Shen, Zhouchen Lin, and Qingming Huang. Relay backpropagation for effective learning
of deep convolutional neural networks. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14,
pages 467–482. Springer, 2016.

[64] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural networks, 106:249–259, 2018.

[65] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

[66] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[67] John C Platt. Fast training of support vector machines using sequential minimal optimization.
Advances in kernel methods, pages 185–208, 1999.

[68] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister,
and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical
image classification. Scientific Data, 10(1):41, 2023.

[69] Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

[70] Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A primal-dual algorithm with line
search for general convex-concave saddle point problems. SIAM Journal on Optimization,
31(2):1299–1329, 2021.

[71] Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-
theoretic lower bounds on the oracle complexity of convex optimization. Advances in Neural
Information Processing Systems, 22, 2009.

28

Appendix

A Basic Lemmas

Lemma 11. Suppose that y(i)0 = f
′
i(u
(i)
0) ∈ ∂fi(u

(i)
0) for some u(i)0 ∈ R and

u
(i)
t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

τ
1+τ u

(i)
t +

1
1+τ g̃

(i)
t , i ∈ St

u
(i)
t , i ∉ St

. (A.1)

Algorithm 1 with ψi = f∗i satisfies that y(i)t = f ′i(u
(i)
t) ∈ ∂fi(u

(i)
t) for all i ∈ {1, . . . , n} and t ≥ 0.

Proof. We prove it by induction. The base case follows from the premise. Assume that y(i)t =

f ′i(u
(i)
t) ∈ ∂fi(u

(i)
t). We discuss two cases.

• Case I (i ∉ St): Note that y(i)t+1 = y
(i)
t and u

(i)
t+1 = u

(i)
t . Thus, y(i)t+1 = f

′
i(u
(i)
t+1) ∈ ∂fi(u

(i)
t+1).

• Case II (i ∈ St): This part resembles Lemma 2 in Zhang and Lan [22]. Based on the update
rule and the premise y(i)t ∈ ∂fi(u

(i)
t) (⇔ u

(i)
t ∈ ∂f

∗
i (y

(i)
t)), we have

y
(i)
t+1 = arg max

y(i)
{y(i)g̃(i)t − f

∗
i (y

(i)
) − τ (f∗i (y

(i)
) − (f∗i)

′
(y
(i)
t) ⋅ y

(i)
)}

= arg max
y(i)
{(

1
1 + τ

g̃
(i)
t +

τ

1 + τ
u
(i)
t) ⋅ y

(i)
− f∗i (y

(i)
)}

∈ ∂fi (
1

1 + τ
g̃
(i)
t +

τ

1 + τ
u
(i)
t) = ∂fi(u

(i)
t+1).

Lemma 12 (Corollary 2 in [49]). Consider an adapted sequence {∆t,Ft}t≥0 where (∆t) is a
martingale difference sequence. Define a sequence {π̂t}t:

π̂0 = 0, π̂t+1 = arg min
v
{⟨−∆t, v⟩ + αUψ(v, π̂t)},

where we also assume that ψ is µψ-strongly convex w.r.t. ∥⋅∥ (µψ > 0). For any v (that possibly
depends on ∆t) we have

E [⟨∆t, v⟩] ≤ E [αUψ(v, π̂t) − αUψ(v, π̂t+1)] +
1

2αµψ
E ∥∆t∥

2
∗ .

Proof. Use the three-point inequality:

⟨−∆t, π̂t+1 − v⟩ ≤ αUψ(v, π̂t) − αUψ(v, π̂t+1) − αUψ(π̂t+1, π̂t).

Add ⟨−∆t, π̂t − π̂t+1⟩ to both sides and use Young’s inequality.

⟨−∆t, π̂t − v⟩ ≤ αUψ(v, π̂t) − αUψ(v, π̂t+1) − αUψ(π̂t+1, π̂t) + ⟨∆t, π̂t+1 − π̂t⟩

≤ αUψ(v, π̂t) − αUψ(v, π̂t+1) − αUψ(π̂t+1, π̂t) +
αµψ

2
∥π̂t+1 − π̂t∥

2
+

1
2αµψ

∥∆t∥
2
∗ .

If ψ is µψ-strongly convex, we have −Uψ(π̂t+1, π̂t) ≤ −
µψ
2 ∥π̂t+1 − π̂t∥

2. Lastly, Et[∆t, π̂t] = 0.

29

Lemma 13 (Lemma 4 in [49] and Lemma 7 in [22]). Let Π ⊂ Rm be a non-empty closed and
convex domain and let function u(π) be µ-strongly convex on Π w.r.t. ∥⋅∥. For a π̂ generated
via a prox-mapping with the argument g + δ, π̂ ← arg minπ∈Π{⟨π, g + δ − u′(π)⟩ + u(π)} for some
π ∈ Π, where δ denotes a noise term with E[δ] = 0 and E[∥δ∥2∗] ≤ σ2

0. Then, for π̄ generated via a
prox-mapping with the argument g, π̄ ← arg minπ∈Π{⟨π, g − u′(π)⟩ + u(π)}, we have

∥π̂ − π̄∥ ≤ ∥δ∥∗ /µ, (A.2)
∣E ⟨π̂, δ⟩ ∣ ≤ σ2

0/µ. (A.3)

For completeness, we present the proof of the lemma above. We do not claim any novelty here.

Proof. By the optimality condition of prox-mapping, we have

⟨u′(π̂) − u′(π) + g + δ, π̂ − π⟩ ≤ 0, ∀π ∈ Π, (A.4)
⟨u′(π̄) − u′(π) + g, π̄ − π⟩ ≤ 0, ∀π ∈ Π. (A.5)

Choose π = π̄ in (A.4) and π = π̂ in (A.5). By combining (A.4) and (A.5), we have

∥δ∥∗ ∥π̂ − π̄∥ ≥ ⟨δ, π̂ − π̄⟩ ≥ ⟨u
′
(π̂) − u′(π̄), π̂ − π̄⟩ .

Since u is µ-strongly convex, we have ⟨u′(π̂) − u′(π̄), π̂ − π̄⟩ ≥ µ ∥π̂ − π̄∥2. Thus, ∥π̂ − π̄∥ ≤ ∥δ∥∗ /µ.
Moreover, the triangle inequality leads to ∣E ⟨π̂, δ⟩ ∣ ≤ ∣E ⟨π̂ − π̄, δ⟩ ∣+ ∣E ⟨π̄, δ⟩ ∣. Note that E ⟨π̄, δ⟩ = 0.
Moreover, Cauchy-Schwartz inequality and (A.2) leads to

∣E ⟨π̂, δ⟩ ∣ ≤ ∣E ⟨π̂ − π̄, δ⟩ ∣ ≤ E[∥π̂ − π̄∥ ∥δ∥∗] ≤ E ∥δ∥2∗ /µ ≤ σ
2
0/µ.

Next, we present a basic inequality about the mirror proximal update. Similar results have been
widely used in the literature, e.g., Lemma 3.8 in Lan [69] and Lemma 7.1 in Hamedani and Aybat [70].

Lemma 14. Suppose that the function ϕ ∶ X → R is on a convex closed domain X and ϕ is
µ-convex (µ ≥ 0) with respect to a prox-function Uψ(x, y) ∶= ψ(x) − ψ(y) − ⟨ψ

′(y), x − y⟩ for any
x, y ∈ X with a generating function ψ, i.e., ϕ(x) ≥ ϕ(y) + ⟨ϕ′(y), x − y⟩ + µUψ(x, y), ∀x, y ∈ X . For
x̂ = arg minx∈X {ϕ(x) + ηUψ(x,x)}, we have

ϕ(x̂) − ϕ(x) ≤ ηUψ(x,x) − (η + µ)Uψ(x, x̂) − ηUψ(x̂, x), ∀x ∈ X . (A.6)

Proof. By the definition of the prox-function Uψ(x, y), we have

Uψ(x,x) −Uψ(x, x̂) −Uψ(x̂, x)

= ψ(x) − ψ(x) − ⟨ψ′(x), x − x⟩ − ψ(x) + ψ(x̂) + ⟨ψ′(x̂), x − x̂⟩ − ψ(x̂) + ψ(x) + ⟨ψ′(x), x̂ − x⟩

= ⟨ψ′(x̂) − ψ′(x), x − x̂⟩ .

By the strong convexity of ϕ with respect to ψ, we have ϕ(x) − ϕ(x̂) ≥ ⟨ϕ′(x̂), x − x̂⟩ + µUψ(x, x̂).
The optimality condition of the prox-mapping implies that ⟨ϕ′(x̂) + η(ψ′(x̂) − ψ′(x)), x − x̂⟩ ≥ 0 for
any x ∈ X . Thus, we obtain ⟨ϕ′(x̂), x − x̂⟩ ≥ η ⟨ψ′(x̂) − ψ′(x), x − x̂⟩ such that

ϕ(x) − ϕ(x̂) ≥ ⟨ϕ′(x̂), x − x̂⟩ + µUψ(x̂, x)

≥ η ⟨ψ′(x) − ψ′(x̂), x − x̂⟩ + µUψ(x̂, x) ≥ −ηUψ(x,x) + (η + µ)Uψ(x, x̂) +Uψ(x̂, x).

30

B Proof of Lemma 2

Proof. According to Lemma 14, the primal update rule implies that

− ⟨Gt, x − xt+1⟩ + r(xt+1) − r(x) ≤
η

2
∥x − xt∥

2
2 −

η + µ

2
∥x − xt+1∥

2
2 −

η

2
∥xt+1 − xt∥

2
2 . (B.1)

Similarly, for all i ∈ [n] the dual update rule implies that

⟨g̃
(i)
t , y(i) − ȳ(i)t+1⟩ + f

∗
i (ȳ

(i)
t+1) − f

∗
i (y

(i)
) ≤ τUψi(y

(i), y(i)t) − (τ + ρ)Uψi(y
(i), ȳ(i)t+1) − τUψi(ȳ

(i)
t+1, y

(i)
t).

Average this equation over i = 1, . . . , n.

1
n

n

∑
i=1
⟨g̃
(i)
t , y(i) − ȳ(i)t+1⟩ +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t+1) −

1
n

n

∑
i=1
f∗i (y

(i)
) ≤

τ

n
Uψ(y, yt) −

τ + ρ

n
Uψ(y, ȳt+1) −

τ

n
Uψ(ȳt+1, yt).

(B.2)

By the definition of L(x, y) in (1.2), we have

L(xt+1, y) −L(x, ȳt+1)

=
1
n

n

∑
i=1
⟨y(i), gi(xt+1)⟩ −

1
n

n

∑
i=1
f∗i (y

(i)
) + r(xt+1) −

1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(x)⟩ +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t+1) − r(x)

=
1
n

n

∑
i=1
⟨gi(xt+1), y

(i)
− ȳ
(i)
t+1⟩ +

1
n

n

∑
i=1
f∗i (ȳ

(i)
t+1) −

1
n

n

∑
i=1
f∗i (y

(i)
) +

1
n

n

∑
i=1
⟨gi(xt+1) − gi(x), ȳ

(i)
t+1⟩

+ r(xt+1) − r(x).

Combine the equation above with (B.1) and (B.2).

L(xt+1, y) −L(x, ȳt+1)

≤
τ

n
Uψ(y, yt) −

τ + ρ

n
Uψ(y, ȳt+1) −

τ

n
Uψ(ȳt+1, yt) +

1
n

n

∑
i=1
⟨gi(xt+1) − g̃

(i)
t , y(i) − ȳ(i)t+1⟩ +

η

2
∥x − xt∥

2
2

−
η + µ

2
∥x − xt+1∥

2
2 −

η

2
∥xt+1 − xt∥

2
2 +

1
n

n

∑
i=1
⟨gi(xt+1) − gi(x), ȳ

(i)
t+1⟩ − ⟨Gt, xt+1 − x⟩ .

C Convergence Analysis of ALEXR in the Strongly Convex Case

In this section, we present several lemmas that upper-bound different terms in (6.1) with x = x∗,
y = y∗, where we define x∗ =minx∈X F (x), y∗ = arg maxy∈Y L(x∗, y).

C.1 Supporting Lemmas

Lemma 15. Under Assumptions 4, 5, 6, (C.1) holds for Algorithm 1 with θ < 1 and any λ2, λ3 > 0.

1
n

n

∑
i=1

E ⟨gi(xt+1) − g̃
(i)
t , y

(i)
∗ − ȳ

(i)
t+1⟩ (C.1)

≤ Γt+1 − θΓt +
C2
g ∥xt+1 − xt∥

2
2

2λ2
+
θC2

g ∥xt − xt−1∥
2
2

2λ3
+
(λ2 + λ3θ)Uψ(ȳt+1, yt)

µψn
+

2(1 + 2θ)σ2
0

Bµψ(ρ + τ)
,

where Γt ∶= 1
n ∑

n
i=1 ⟨gi(xt) − gi(xt−1), y

(i)
∗ − y

(i)
t ⟩.

31

Proof. The 1
n ∑

n
i=1 E(gi(xt+1) − g̃

(i)
t)(y

(i)
∗ − ȳ

(i)
t+1) term can be decomposed as

♢ =
1
n

n

∑
i=1
⟨gi(xt+1) − g̃

(i)
t , y

(i)
∗ − ȳ

(i)
t+1⟩ (C.2)

=
1 + θ
n

n

∑
i=1
⟨gi(xt) − gi(xt;B(i)t), y

(i)
∗ − ȳ

(i)
t+1⟩

´¹¹¸¹¹¶
I

+
1
n

n

∑
i=1
⟨gi(xt+1), y

(i)
∗ − ȳ

(i)
t+1⟩ −

1
n

n

∑
i=1
⟨gi(xt), y

(i)
∗ − ȳ

(i)
t+1⟩

´¹¹¸¹¹¶
II

+
θ

n

n

∑
i=1
⟨gi(xt−1) − gi(xt), y

(i)
∗ − ȳ

(i)
t+1⟩

´¹¹¸¹¹¶
III

+
θ

n

n

∑
i=1
⟨gi(xt−1;B(i)t) − gi(xt−1), y

(i)
∗ − ȳ

(i)
t+1⟩

´¹¹¸¹¹¹¶
IV

.

Taking conditional expectations of terms I and IV leads to E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
∗ ⟩ ∣ Ft−1] =

0 and E [⟨gi(xt−1) − gi(xt−1;B(i)t), y
(i)
∗ ⟩ ∣ Ft−1] = 0. Define ẏ

(i)
t+1 ∶= arg maxv∈Yi{v

⊺ḡ(i)t − f
∗
i (v) −

τUψi(v, y
(i)
t)} and ḡ(i)t ∶= gi(xt)+ θ(gi(xt)− gi(xt−1)), ∀i ∈ [n]. Note that ẏ(i)t+1 is independent of B(i)t

such that E [⟨gi(xt;B(i)t) − gi(xt), ẏ
(i)
t+1⟩ ∣ Ft−1] = 0.

E [⟨gi(xt;B(i)t) − gi(xt), ȳ
(i)
t+1⟩]

= E [⟨gi(xt;B(i)t) − gi(xt), ȳ
(i)
t+1 − ẏ

(i)
t+1⟩] ≤ E ∥gi(xt;B(i)t) − gi(xt)∥∗ ∥ȳ

(i)
t+1 − ẏ

(i)
t+1∥

Lemma 13
≤

1
µψ(ρ + τ)

E ∥gi(xt) − gi(xt;B(i)t)∥∗ ∥(1 + θ)(gi(xt) − gi(xt;B
(i)
t)) − θ(gi(xt−1) − gi(xt−1;B(i)t))∥∗

=
(1 + θ)E ∥gi(xt) − gi(xt;B(i)t)∥

2

∗
µψ(ρ + τ)

+
θE ∥gi(xt) − gi(xt;B(i)t)∥∗ ∥gi(xt−1) − gi(xt−1;B(i)t)∥∗

µψ(ρ + τ)

≤
(1 + θ)E ∥gi(xt) − gi(xt;B(i)t)∥

2

∗
µψ(ρ + τ)

+
0.5θE ∥gi(xt) − gi(xt;B(i)t)∥

2

∗
+ 0.5θ ∥gi(xt−1) − gi(xt−1;B(i)t)∥

2

∗
µψ(ρ + τ)

≤
(1 + 2θ)σ2

0
Bµψ(ρ + τ)

,

E [⟨gi(xt−1;B(i)t) − gi(xt−1), ȳ
(i)
t+1⟩] = E [⟨gi(xt−1;B(i)t) − gi(xt−1), ȳ

(i)
t+1 − ẏ

(i)
t+1⟩] ≤

(1 + 2θ)σ2
0

Bµψ(ρ + τ)
.

Define Γt ∶= 1
n ∑

n
i=1 ⟨gi(xt) − gi(xt−1), y

(i)
∗ − y

(i)
t ⟩. II + III in (C.2) can be rewritten as

II + III = 1
n

n

∑
i=1
⟨gi(xt+1), y

(i)
∗ − ȳ

(i)
t+1⟩ −

1
n

n

∑
i=1
⟨gi(xt), y

(i)
∗ − ȳ

(i)
t+1⟩ +

θ

n

n

∑
i=1
⟨gi(xt−1) − gi(xt), y

(i)
∗ − ȳ

(i)
t+1⟩

= Γt+1 − θΓt +
1
n

n

∑
i=1
⟨gi(xt+1) − gi(xt), y

(i)
t+1 − ȳ

(i)
t+1⟩ +

θ

n

n

∑
i=1
⟨gi(xt−1) − gi(xt), y

(i)
t − ȳ

(i)
t+1⟩

≤ Γt+1 − θΓt +
1
n

n

∑
i=1
∥gi(xt+1) − gi(xt)∥∗ ∥y

(i)
t+1 − ȳ

(i)
t+1∥ +

θ

n

n

∑
i=1
∥gi(xt−1) − gi(xt)∥∗ ∥y

(i)
t − ȳ

(i)
t+1∥

≤ Γt+1 − θΓt +
C2
g ∥xt+1 − xt∥

2
2

2λ2
+
θC2

g ∥xt − xt−1∥
2
2

2λ3
+
(λ2 + λ3θ)Uψ(ȳt+1, yt)

µψn
.

32

Lemma 16. Suppose that gi is Lg-smooth and Assumptions 1, 2, 3, 4, 5 hold. Then, the following
holds for Algorithm 1.

1
n

E
n

∑
i=1
⟨gi(xt+1) − gi(x∗), ȳ

(i)
t+1⟩ −E ⟨Gt, xt+1 − x∗⟩ ≤

C2
fσ

2
1

B + δ2

S

η + µ
+
LgCf

2
∥xt+1 − xt∥

2
2 . (C.3)

Proof. We define ∆t ∶=
1
S ∑i∈St[∇gi(xt; B̃

(i)
t)]

⊺y(i)t+1 −
1
n ∑

n
i=1[∇gi(xt)]

⊺ȳ(i)t+1.

1
n

n

∑
i=1
⟨gi(xt+1) − gi(x∗), ȳ

(i)
t+1⟩ − ⟨Gt, xt+1 − x∗⟩

=
1
n

n

∑
i=1
⟨gi(xt+1) − gi(xt), ȳ

(i)
t+1⟩ +

1
n

n

∑
i=1
⟨gi(xt) − gi(x∗), ȳ

(i)
t+1⟩ + ⟨

1
n

n

∑
i=1
[∇gi(xt)]

⊺ȳ(i)t+1 +∆t, x∗ − xt+1⟩

gi convex
≤

Yi ⊆ Rm+

1
n

n

∑
i=1
⟨gi(xt+1) − gi(xt), ȳ

(i)
t+1⟩ + ⟨

1
n

n

∑
i=1
[∇gi(xt)]

⊺ȳ(i)t+1, xt − x∗⟩ + ⟨
1
n

n

∑
i=1
[∇gi(xt)]

⊺ȳ(i)t+1 +∆t, x∗ − xt+1⟩

=
1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(xt+1) − gi(xt)⟩ + ⟨

1
n

n

∑
i=1
[∇gi(xt)]

⊺ȳ(i)t+1, xt − xt+1⟩ + ⟨∆t, x∗ − xt+1⟩ , (C.4)

We bound the first two terms above by the Lipschitz continuity of fi and ∇gi.

1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(xt+1) − gi(xt)⟩ + ⟨

1
n

n

∑
i=1
[∇gi(xt)]

⊺ȳ(i)t+1, xt − xt+1⟩

=
1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(xt+1) − gi(xt) −∇gi(xt)(xt+1 − xt)⟩

≤
1
n

n

∑
i=1
∥ȳ
(i)
t+1∥ ∥gi(xt+1) − gi(xt) −∇gi(xt)(xt+1 − xt)∥∗ ≤

Cf

n

n

∑
i=1
∥gi(xt+1) − gi(xt) −∇gi(xt)(xt+1 − xt)∥∗ .

Due to the Lg-smoothness of gi, we have

∥gi(xt+1) − gi(xt) −∇gi(xt)(xt+1 − xt)∥∗ ≤
Lg

2
∥xt+1 − xt∥

2
2 .

Thus, the first two terms in (C.4) can be upper bounded by

1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(xt+1) − gi(xt)⟩ + ⟨

1
n

n

∑
i=1
[∇gi(xt)]

⊺ȳ(i)t+1, xt − xt+1⟩ ≤
LgCf

2
∥xt+1 − xt∥

2
2 . (C.5)

Besides, we have that E[⟨∆t, x∗⟩ ∣ Ft−1] = 0. By the Lipschitz continuity of fi and the definition of the
operator norm, we have ∥([∇gi(xt)]⊺ − [∇gi(xt; B̃(i)t)]⊺) ȳ

(i)
t+1∥2

≤ ∥[∇gi(xt)]
⊺ − [∇gi(xt; B̃(i)t)]⊺∥op

∥ȳ
(i)
t+1∥ ≤

Cf ∥[∇gi(xt)]
⊺ − [∇gi(xt; B̃(i)t)]⊺∥op

. According to Lemma 13 and Assumption 5, we can derive that

−E[⟨xt+1, ∆t⟩] ≤
E ∥∆t∥

2
2

µ + η
≤

1
µ + η

⎛

⎝

δ2

S
+E
XXXXXXXXXXX

1
S
∑
i∈St
([∇gi(xt)]

⊺
− [∇gi(xt; B̃(i)t)]

⊺
) ȳ
(i)
t+1

XXXXXXXXXXX

2

2

⎞

⎠
≤

C2
fσ

2
1

B + δ2

S

µ + η
.

(C.6)

Then, combining (C.4), (C.5) and (C.6) leads to

1
n

E
n

∑
i=1
⟨gi(xt+1) − gi(x∗), ȳ

(i)
t+1⟩ −E ⟨Gt, xt+1 − x⟩ ≤

C2
fσ

2
1

B + δ2

S

µ + η
+
LgCf

2
∥xt+1 − xt∥

2
2 .

33

Lemma 17. Suppose that gi is non-smooth and Assumptions 1, 2, 3, 4, 5 hold. The following holds
for Algorithm 1.

1
n

E
n

∑
i=1
⟨gi(xt+1) − gi(x∗), ȳ

(i)
t+1⟩ −E ⟨Gt, xt+1 − x⟩ ≤

C2
fσ

2
1

B + δ2

S + 4C2
fC

2
g

µ + η
+
η + µ

4
∥xt+1 − xt∥

2
2 . (C.7)

Proof. Note that (C.4) and (C.6) still hold. Since gi is non-smooth, we need to bound the left-hand
side of (C.5) in a different way. Based on the definition of the operator norm and the Lipschitz
continuity of gi, we have ∥g′i(xt)(xt − xt+1)∥∗ ≤ ∥g

′
i(xt)∥op ∥xt − xt+1∥2 ≤ Cg ∥xt − xt+1∥2 such that

1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(xt+1) − gi(xt)⟩ + ⟨

1
n

n

∑
i=1
[g′i(xt)]

⊺ȳ(i)t+1, xt − xt+1⟩

=
1
n

n

∑
i=1
⟨ȳ
(i)
t+1, gi(xt+1) − gi(xt)⟩ +

1
n

n

∑
i=1
⟨ȳ
(i)
t+1, g

′
i(xt)(xt − xt+1)⟩

≤
1
n

n

∑
i=1
∥ȳ
(i)
t+1∥ ∥gi(xt+1) − gi(xt)∥∗ +

1
n

n

∑
i=1
∥ȳ
(i)
t+1∥ ∥g

′
i(xt)(xt − xt+1)∥∗

≤ 2CfCg ∥xt+1 − xt∥2 ≤
4C2

fC
2
g

η + µ
+
η + µ

4
∥xt+1 − xt∥

2
2 , (C.8)

where g′i(xt) ∈ ∂gi(xt). Merge (C.4), (C.6), and (C.8).

1
n

E
n

∑
i=1
⟨gi(xt+1) − gi(x∗), ȳ

(i)
t+1⟩ −E ⟨Gt, xt+1 − x⟩ ≤

C2
fσ

2
1

B + δ2

S + 4C2
fC

2
g

µ + η
+ 0.25(η + µ) ∥xt+1 − xt∥

2
2 .

C.2 Proof of Theorem 3

Proof. If gi is smooth, we combine (6.1), (6.2), (C.1), and (C.3).

E[L(xt+1, y∗) −L(x∗, ȳt+1)]

≤
τ + ρ (1 − S

n
)

S
E[Uψ(y∗, yt)] −

τ + ρ

S
E[Uψ(y∗, yt+1)] +

η

2
E ∥x∗ − xt∥22 −

η + µ

2
E ∥x∗ − xt+1∥

2
2

− (
τ

n
−
λ2 + λ3θ

µψn
)E [Uψ(ȳt+1, yt)] − (

η

2
−
C2
g

2λ2
−
LgCf

2
)E ∥xt+1 − xt∥

2
2 +

θC2
g

2λ3
E ∥xt − xt−1∥

2
2

+E[Γt+1 − θΓt] +
2(1 + 2θ)σ2

0
Bµψ(ρ + τ)

+

C2
fσ

2
1

B + δ2

S

η + µ
. (C.9)

Define Υx
t ∶=

1
2E ∥x∗ − xt∥22 and Υy

t =
1
SEUψ(y∗, yt). Note that L(xt+1, y∗)−L(x∗, ȳt+1) ≥ 0. Multiply

both sides of (C.9) by θ−t and do telescoping sum from t = 0 to T − 1. Add ηθ−TΥx
T to both sides.

ηθ−TΥx
T ≤

T−1
∑
t=0

θ−t ((ηΥx
t + (τ + ρ(1 −

S

n
))Υy

t − θEΓt) − ((η + µ)Υx
t+1 + (τ + ρ)Υ

y
t+1 −EΓt+1))

+ ηθ−TΥx
T +
⎛
⎜
⎝

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

T−1
∑
t=0

θ−t −
T−1
∑
t=0

θ−t (
τ

n
−
(λ2 + λ3θ)

µψn
)E[Uψ(ȳt+1, yt)]

−
T−1
∑
t=0

θ−t (
η

2
−
LgCf

2
−
C2
g

2λ2
−
C2
g

2λ3
)E ∥xt+1 − xt∥

2
2 .

34

Let η ≥ µθ
1−θ such that θ ≤ η

η+µ and τ ≥ ρS
n(1−θ) such that θ ≤ τ+ρ(1−S

n
)

τ+ρ . Then,

T−1
∑
t=0

θ−t ((ηΥx
t + (τ + ρ(1 −

S

n
))Υy

t − θEΓt) − ((η + µ)Υx
t+1 + (τ + ρ)Υ

y
t+1 −EΓt+1))

= ηΥx
0 + (τ + ρ(1 −

S

n
))Υy

0 − θEΓ0 − θ
−T+1 ((η + µ)Υx

T + (τ + ρ)Υ
y
T −EΓT) .

By setting x−1 = x0, we have Γ0 = 0. Besides, we have −ΓT ≤ 1
n ∑

n
i=1 ∥gi(xT) − gi(xT−1)∥∗ ∥y

(i)
∗ − y

(i)
t ∥ ≤

Cg
n ∥xT − xT−1∥2 ∥y∗ − yT ∥. Thus,

ηθ−TΥx
T ≤ ηΥx

0 + (τ + ρ(1 −
S

n
))Υy

0 − θ
−T+1

((η + µ)Υx
T + (τ + ρ)Υ

y
T −

η

θ
Υx
T −

Cg

n
∥xT − xT−1∥2 ∥y∗ − yT ∥)

−
T−1
∑
t=1

θ−t+1
(((η + µ)Υx

t+1 + (τ + ρ)Υ
y
t+1 −EΓt+1) − (

η

θ
Υx
t + (τ + ρ(1 −

S

n
)) /θΥy

t −EΓt))
´¹¹¹¸¹¹¹¶

♡

+
⎛
⎜
⎝

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

T−1
∑
t=0

θ−t −
T−1
∑
t=0

θ−t (
τ

n
−
(λ2 + λ3θ)

µψn
)

´¹¹¹¸¹¹¹¶
♡

E[Uψ(ȳt+1, yt)]

−
T−1
∑
t=0

θ−t (
η

2
−
LgCf

2
−
C2
g

2λ2
−
C2
g

2λ3
)

´¹¹¸¹¹¹¶
♡

E ∥xt+1 − xt∥
2
2 . (C.10)

Note that η + µ − η
θ ≥ 0⇔ θ ≥ η

η+µ such that (η + µ)Υx
T −

η
θΥx

T ≥ 0 and Cg
n ∥xT − xT−1∥2 ∥y − yT ∥ ≤

C2
g

2λ2
∥xT − xT−1∥

2
2 +

λ2
2µψn2Uψ(y∗, yT). To make the ♡ terms in (C.10) be non-negative, we choose

λ2 ≍
Cg
√
Sρµψ√
nµ , λ3 ≍

Cg
√
Sρµψ√
nµ while ensuring that

1/τ ≤ O (
√
nµµψ

Cg
√
Sρ
) , 1/η ≤ O

⎛

⎝

√
Sρµψ

Cg
√
nµ
∧

1
LgCf

⎞

⎠
. (C.11)

Notice that τ + (1 − S
n
) ≤ θ(τ + ρ) and (τ + ρ)(1 − θ) = ρS+ρn(1−θ)

n(1−θ) (1 − θ) = ρ (
S
n + (1 − θ)).

µΥx
T ≤ µθ

TΥx
0 +
(τ + ρ (1 − S

n
)) (1 − θ)

θ
θTΥy

0 +
⎛
⎜
⎝

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

≤ µθTΥx
0 + (τ + ρ)(1 − θ)θTΥy

0 +
⎛
⎜
⎝

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

= µθTΥx
0 + ρ(

S

n
+ (1 − θ)) θTΥy

0 +
⎛
⎜
⎝

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠
.

We select η = µθ
1−θ , τ = ρS

n(1−θ) , and

θ = O
⎛

⎝
1 − S

n
∧

µ

LgCf
∧

¿
Á
ÁÀ

µρµψS

C2
gn
∧
µψBρSϵ

σ2
0n

∧
Bµϵ

C2
fσ

2
1
∧
Sµϵ

δ2
⎞

⎠

35

to make (C.11) hold and

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ
≤

2(1 + 2θ)(1 − θ)σ2
0n

µψBρS
+

(1 − θ) (C
2
fσ

2
1

B + δ2

S)

µ
≤ ϵ.

Since Lf ∶= 1
µψρ

, the number of iterations needed by Algorithm 1 to make µΥx
T ≤ ϵ is

T = Õ
⎛

⎝

n

S
+
LgCf

µ
+
Cg
√
nLf

√
Sµ

+
nLfσ

2
0

BSϵ
+
C2
fσ

2
1

µBϵ
+
δ2

µSϵ

⎞

⎠
,

where Õ(⋅) hides the polylog(1/ϵ) factor. In the case that gi is non-smooth, we utilize (C.7) instead of
(C.3). Correspondingly, we need to replace the blue term LgCf

2 in (C.9) by 0.25(η +µ). Additionally,
there is a 4C2

fC
2
g

η+µ term on the right-hand side of (C.9). Following similar steps, we can get the
iteration complexity to make µΥx

T ≤ ϵ is

T = Õ
⎛

⎝

n

S
+
Cg
√
nLf

√
Sµ

+
nLfσ

2
0

BSϵ
+
C2
fσ

2
1

µBϵ
+
δ2

µSϵ
+
C2
fC

2
g

µϵ

⎞

⎠
.

C.3 A Direct Conversion to Non-strongly Convex Results

We can directly convert the results from Theorem 3 for the strongly convex and smooth case to the
convex and smooth case using a commonly employed regularization technique. For a non-strongly
convex F (x) in (1.1), we can construct the strongly convex F̂ (x) ∶= F (x) + ϵ

2 ∥x∥
2
2 and define that

x̂∗ = arg minx∈X F̂ (x). We then apply Algorithm 1 to solve the problem minx∈X F̂ (x), and the
output is denoted as xout. Leveraging the smoothness of fi, we can convert the iteration complexity
from Theorem 3, originally for making µ

2 E ∥xout − x̂∗∥
2
2 ≤ ϵ, to that for F̂ (xout) − F̂ (x̂∗) ≤ ϵ. The

objective gap of the original F can be upper-bounded as

F (xout) − F (x∗) ≤ F̂ (xout) − F (x∗) = (F̂ (xout) − F̂ (x̂∗)) + F̂ (x̂∗) − F (x∗) (C.12)

≤ (F̂ (xout) − F̂ (x̂∗)) + F̂ (x̂∗) − F̂ (x∗) +
ϵ

2
∥x∗∥

2
2 ≤ F̂ (xout) − F̂ (x̂∗) +

ϵ

2
∥x∗∥

2
2 .

Therefore, running our algorithm on the strongly convexified function F̂ results in an ϵ-accurate
solution for the original convex problem as long as ∥x∗∥ is bounded.

Theorem 18. Suppose that fi is smooth and Assumptions 1, 2, 3, 4, 5, 6 hold. Moveover, ρ in
Proposition 1 satisfies that ρ > 0, i.e., fi is Lf -smooth, Lf ∶= 1

µψρ
.

● If gi is Lg-smooth, Algorithm 1 can find an xout such that E[F (xout) − F (x∗)] ≤ ϵ after T =
Õ (nS +

LgCf
ϵ +

Cg
√
nLf√
Sϵ
+
nC2

gL
2
fσ

2
0

BSϵ2 +
C2
fC

2
gLfσ

2
1

Bϵ3 +
C2
gLf δ

2

Sϵ3) iterations.

● If gi is non-smooth, Algorithm 1 can find an xout such that E[F (xout) − F (x∗)] ≤ ϵ after T =
Õ (nS +

Cg
√
nLf√
Sϵ
+
nC2

gL
2
fσ

2
0

BSϵ2 +
C2
fC

2
gLfσ

2
1

Bϵ3 +
C2
gLf δ

2

Sϵ3 +
LfC

2
fC

4
g

ϵ3) iterations.

Proof. According to (C.12), the proof can be completed by converting the distance gap result to the
objective gap result in the strongly convex case. When gi is smooth, multiply both sides of (C.9) by

36

θ−t and do telescoping sum from t = 0 to T − 1. Add ηθ−TΥx
T to both sides.

ηθ−TΥx
T +

T−1
∑
t=0

θ−tE[L(xt, y∗) −L(x∗, ȳt)]

≤
T−1
∑
t=0

θ−t ((ηΥx
t + (τ + ρ(1 −

S

n
))Υy

t − θEΓt) − ((η + µ)Υx
t+1 + (τ + ρ)Υ

y
t+1 −EΓt+1))

+ ηθ−TΥx
T +
⎛
⎜
⎝

2(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

T−1
∑
t=0

θ−t −
T−1
∑
t=0

θ−t (
τ

n
−
(λ2 + λ3θ)

µψn
)E[Uψ(ȳt+1, yt)]

−
T−1
∑
t=0

θ−t (
η

2
−
LgCf

2
−
C2
g

2λ2
−
C2
g

2λ3
)E ∥xt+1 − xt∥

2
2 .

Following similar steps as in the proof of Theorem 3, we can arrive at

µ

2
E ∥xT − x∗∥22 +

θT ∑T−1
t=0 θ−t

η
E[L(x̄T , y∗) −L(x∗, ¯̄yT)]

η= µθ1−θ
=

µ

2
E ∥xT − x∗∥22 +

1 − θT
µ

E[L(x̄T , y∗) −L(x∗, ¯̄yT)]

≤ µθTΥx
0 +

2ρθTS
n

Υy
0 +
⎛
⎜
⎝

(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠
, (C.13)

where x̄T = ∑T−1
t=0

θ−t

∑T−1
t=0 θ−t

xt and ¯̄yT = ∑T−1
t=0

θ−t

∑T−1
t=0 θ−t

ȳt. Note that 1 − θT ≥ 1
2 when T ≥

log(2)
1−θ due to

exp(−u) ≥ 1−u for any u ∈ R. Recall that fi is 1
ρµψ

-smooth. For ỹ(i)T = arg maxv∈Yi{vgi(x̄T)−f
∗
i (v)},

we have ỹ(i)T = f
′
i(gi(x̄T))⇔ gi(x̄T) ∈ ∂f

∗
i (ỹ

(i)
T) and

F (x̄T) − F (x∗) ≤ L(x̄T , ỹT) −L(x∗, ¯̄yT)
= L(x̄T , ỹT) −L(x̄T , y∗) +L(x̄T , y∗) −L(x∗, ¯̄yT)

=
1
n

n

∑
i=1
(⟨ỹ
(i)
T − y

(i)
∗ , gi(x̄T)⟩ + f

∗
i (y

(i)
∗) − f

∗
i (ỹ

(i)
T)) +L(x̄T , y∗) −L(x∗,

¯̄yT)

=
1
n

n

∑
i=1
Uf∗i (ỹ

(i)
T , y

(i)
∗) +L(x̄T , y∗) −L(x∗, ¯̄yT) ▷ gi(x̄T) ∈ ∂f

∗
i (ỹ

(i)
T)

=
1
n

n

∑
i=1
Ufi(gi(x̄T), gi(x∗)) +L(x̄T , y∗) −L(x∗, ¯̄yT)

≤
1

2ρµψ
∥gi(x̄T) − gi(x∗)∥

2
∗ +L(x̄T , y∗) −L(x∗, ¯̄yT)

≤
C2
g

2ρµψ
∥x̄T − x∗∥

2
2 +L(x̄T , y∗) −L(x∗, ¯̄yT). (C.14)

37

Next, we turn to bound the distance between the average iterate x̄T and the optimum x∗.

Eµ
2
∥x̄T − x∗∥

2
2 ≤

T−1
∑
t=0

θ−t

∑
T−1
t=0 θ−t

µ

2
∥xt − x

∗
∥

2
2

≤ (µΥx
0 +

2ρS
n

Υy
0)

T−1
∑
t=0

θ−t

∑
T−1
t=0 θ−t

θt +
⎛
⎜
⎝

(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

= (µΥx
0 +

2ρS
n

Υy
0)

θ−1 − 1
θ−T − 1

+
⎛
⎜
⎝

(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

≤ θ(T−1)
(µΥx

0 +
2ρS
n

Υy
0) +
⎛
⎜
⎝

(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠
. (C.15)

Then, we can upper bound E[F (x̄T) − F (x∗)] by plug (C.13) and (C.15) into (C.14).

E[F (x̄T) − F (x∗)] ≤ (
C2
g

µρµψ
+ 2µθ)

⎛
⎜
⎝
θ(T−1)

(µΥx
0 +

2ρS
n

Υy
0) +
⎛
⎜
⎝

(1 + 2θ)σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

⎞
⎟
⎠
.

D Convergence Analysis of ALEXR in the Convex Case

D.1 Proof of Lemma 5

Proof. When ρ = 0, we decompose the △ term in (6.1) as

τ

n
Uψ(y, yt) −

τ

n
Uψ(y, ȳt+1) −

τ

n
Uψ(ȳt+1, yt) (D.1)

=
τ

S
Uψ(y, yt) −

τ

S
Uψ(y, yt+1) −

τ

n
Uψ(ȳt+1, yt) + (

τ

S
Uψ(y, yt+1) −

τ

n
Uψ(y, ȳt+1) +

(S − n)τ

nS
Uψ(y, yt)) .

We rewrite the last three terms above as follows.

τ

S
Uψ(y, yt+1) −

τ

n
Uψ(y, ȳt+1) +

(S − n)τ

nS
Uψ(y, yt)

=
τ

S

n

∑
i=1
(ψi(y

(i)
) − ψi(y

(i)
t+1) − ⟨∇ψi(y

(i)
t+1), y

(i)
− y
(i)
t+1⟩) −

τ

n

n

∑
i=1
(ψi(y

(i)
) − ψi(ȳ

(i)
t+1) − ⟨∇ψi(ȳ

(i)
t+1), y

(i)
− ȳ
(i)
t+1⟩)

+
(S − n)τ

nS

n

∑
i=1
(ψi(y

(i)
) − ψi(y

(i)
t) − ⟨∇ψi(y

(i)
t), y

(i)
− y
(i)
t ⟩)

=
τ

n

n

∑
i=1
(ψi(ȳ

(i)
t+1) −

n

S
ψi(y

(i)
t+1) +

n − S

S
ψi(y

(i)
t)) +

τ

n

n

∑
i=1
⟨−
n

S
∇ψi(y

(i)
t+1) +∇ψi(ȳ

(i)
t+1) +

n − S

S
∇ψi(y

(i)
t), y

(i)
⟩

´¹¹¹¸¹¹¹¶
♯

+
τ

S

n

∑
i=1
⟨∇ψi(y

(i)
t+1), y

(i)
t+1⟩ −

τ

n

n

∑
i=1
⟨∇ψi(ȳ

(i)
t+1), ȳ

(i)
t+1⟩ +

(S − n)τ

nS

n

∑
i=1
⟨∇ψi(y

(i)
t), y

(i)
t ⟩ .

38

Note that both ȳ
(i)
t+1 and y

(i)
t are independent of St such that

E[ψi(y(i)t+1) ∣ Gt] =
S

n
ψi(ȳ

(i)
t+1) +

n − S

n
ψi(y

(i)
t),

E [⟨∇ψi(y(i)t+1), y
(i)
t+1⟩ ∣ Gt] =

S

n
⟨∇ψi(ȳ

(i)
t+1), ȳ

(i)
t+1⟩ +

n − S

n
⟨∇ψi(y

(i)
t), y

(i)
t ⟩ ,

E [∇ψi(y(i)t+1) ∣ Gt] =
S

n
∇ψi(ȳ

(i)
t+1) +

n − S

n
∇ψi(y

(i)
t).

Apply Lemma 12 to ♯ with ∆(i)t ∶= −nS∇ψi(y
(i)
t+1)+∇ψi(ȳ

(i)
t+1)+

n−S
S ∇ψi(y

(i)
t), ŷ

(i)
t+1 = arg minv ⟨−∆(i)t , v⟩+

αUψi(v, ŷ
(i)
t) (α to be determined) such that

E [⟨∆(i)t , y(i)⟩] ≤ E [αUψi(y
(i), ŷ(i)t) − αUψi(y

(i), ŷ(i)t+1)] +
1

2µψα
E [∥∆(i)t ∥

2

∗
] .

Sum both sides from 1 to n and divide n on both sides

E[♯] ≤ E [ατ
n
(Uψ(y, ŷt) −Uψ(y, ŷt+1))] +

τ

2nµψα
E [

n

∑
i=1
∥∆(i)t ∥

2

∗
] .

Note that E[(∇ψi(y(i)t+1) −∇ψi(y
(i)
t)) ∣ Gt] =

S
n(∇ψi(ȳ

(i)
t+1) −∇ψi(y

(i)
t)) such that

E [∥∆(i)t ∥
2

∗
] = E∥(∇ψi(ȳ(i)t+1) −∇ψi(y

(i)
t)) −

n

S
(∇ψi(y

(i)
t+1) −∇ψi(y

(i)
t)∥

2

∗

≤
n2

S2 E ∥∇ψi(y(i)t+1) −∇ψi(y
(i)
t)∥

2

∗
.

Thus, we have

E[♯] ≤ E [ατ
n
(Uψ(y, ŷt) −Uψ(y, ŷt+1))] +

τn

2µψαS2 E [
n

∑
i=1
∥∇ψi(y

(i)
t+1) −∇ψi(y

(i)
t)∥

2

∗
]

´¹¹¹¸¹¹¹¶
♠

. (D.2)

We need to handle the ♠ term.
τn

2µψαS2 E [
n

∑
i=1
∥∇ψi(y

(i)
t+1) −∇ψi(y

(i)
t)∥

2

∗
] ≤

τnL2
ψ

2µψαS2 E [
n

∑
i=1
∥y
(i)
t+1 − y

(i)
t ∥

2
] .

Choose α = nλ1
S for some λ1 > 0. According to (D.1) and (D.2) and E[∥yt+1 − yt∥

2
∣ Gt] =

S
n ∥ȳt+1 − yt∥

2
≤ 2S
nµψ

Uψ(ȳt+1, yt), we can finish the proof.

D.2 A Supporting Lemma

Lemma 19. Suppose that Assumptions 4, 5, 6 hold. For any λ2, λ3, λ4, λ5 > 0 and any y ∈ Y,
Algorithm 1 with θ = 1 satisfies that
1
n

n

∑
i=1

E ⟨gi(xt+1) − g̃
(i)
t , y(i) − ȳ(i)t+1⟩ (D.3)

= E[Γt+1 − Γt] +
2λ2
n

E[Uψ(y, ˆ̂yt) −Uψ(y, ˆ̂yt+1)] +
λ5
n

E[Uψ(y, y̆t) −Uψ(y, y̆t+1)]

+
(λ3 + λ4)E[Uψ(ȳt+1, yt)]

µψn
+
C2
gE ∥xt+1 − xt∥

2

2λ3
+
C2
gE ∥xt − xt−1∥

2

2λ4
+

9σ2
0

τµψB
+

σ2
0

λ2µψB
+

σ2
0

2λ5µψB
.

where Γt ∶= 1
n ∑

n
i=1 ⟨gi(xt) − gi(xt−1), y

(i) − y(i)t ⟩, {ˆ̂yt}t≥0, {y̆t}t≥0 are virtual sequences and ˆ̂yt, y̆t ∈ Y.

39

Proof. The 1
n ∑

n
i=1 ⟨gi(xt+1) − g̃

(i)
t , y(i) − ȳ(i)t+1⟩ term can be decomposed as

1
n

n

∑
i=1
⟨gi(xt+1) − g̃

(i)
t , y(i) − ȳ(i)t+1⟩ (D.4)

=
1 + θ
n

n

∑
i=1
⟨gi(xt) − gi(xt;B(i)t), y

(i)
− ȳ
(i)
t+1⟩

´¹¹¸¹¹¶
I

+
1
n

n

∑
i=1
⟨gi(xt+1), y

(i)
− ȳ
(i)
t+1⟩ −

1
n

n

∑
i=1
⟨gi(xt), y

(i)
− ȳ
(i)
t+1⟩

´¹¹¸¹¹¶
II

+
θ

n

n

∑
i=1
⟨gi(xt−1) − gi(xt), y

(i)
− ȳ
(i)
t+1⟩

´¹¹¸¹¹¶
III

+
θ

n

n

∑
i=1
⟨gi(xt−1;B(i)t) − gi(xt−1), y

(i)
− ȳ
(i)
t+1⟩

´¹¹¸¹¹¹¶
IV

.

Define ẏ(i)t+1 ∶= arg maxv∈Yi{⟨v, (1 + θ)gi(xt) − θgi(xt−1)⟩−f
∗
i (v)−τUψi(v, y

(i)
t)}, ∀i ∈ [n]. We decom-

pose the I term in (D.4) as

I = 1 + θ
n

n

∑
i=1
⟨gi(xt) − gi(xt;B(i)t), y

(i)
− ȳ
(i)
t+1⟩

=
1 + θ
n

n

∑
i=1
(gi(xt) − gi(xt;Bt))(ẏ(i)t+1 − ȳ

(i)
t+1) +

1 + θ
n

n

∑
i=1
⟨gi(xt) − gi(xt;Bt), y(i)⟩

−
1 + θ
n

n

∑
i=1
⟨gi(xt) − gi(xt;Bt), ẏ(i)t+1⟩ .

Since f∗i + τUψi(y(i), y
(i)
t) is τµψ-strongly convex, Lemma 13 implies that

1
n

E
n

∑
i=1
⟨gi(xt) − gi(xt;Bt), ẏ(i)t+1 − ȳ

(i)
t+1⟩ ≤

1
n

n

∑
i=1

E ∥gi(xt) − gi(xt;B(i)t)∥∗ ∥ẏt+1 − ȳt+1∥

≤
1

nτµψ

n

∑
i=1

E [∥gi(xt) − gi(xt;B(i)t)∥∗ ((1 + θ) ∥gi(xt) − gi(xt;B
(i)
t)∥∗

+ θ ∥gi(xt−1) − gi(xt−1;B(i)t)∥∗)]

≤
1

nτµψ

n

∑
i=1

E [(1 + 1.5θ) ∥gi(xt) − gi(xt;B(i)t)∥
2

∗
+ 0.5θ ∥gi(xt−1) − gi(xt−1;B(i)t)∥

2

∗
] ≤
(1 + 2θ)σ2

0
τBµψ

.

Apply Lemma 12 to the term 1
n ∑

n
i=1 ⟨gi(xt) − gi(xt;Bt), y(i)⟩. For any λ2 > 0 and some auxiliary

sequence {ˆ̂yt}t≥0, ˆ̂y(i)t+1 = arg minv∈Yi{⟨gi(xt;Bt) − gi(xt), v⟩ + λ2Uψi(v, ˆ̂y
(i)
t)}, we have

1
n

n

∑
i=1
⟨gi(xt) − gi(xt;Bt), y(i)⟩ ≤

λ2
n

E[Uψ(y, ˆ̂yt) −Uψ(y, ˆ̂yt+1)] +
1

2λ2µψn
E ∥ℓ(xt) − ℓ(xt;Bt)∥2∗ .

Lastly, E[⟨gi(xt) − gi(xt;B(i)t), ẏ
(i)
t+1⟩ ∣ F

2
t−1] = 0. Choose θ = 1. Then, the I term in (D.4) can be

bounded as

E[I] ≤ 2λ2
n

E[Uψ(y, ˆ̂yt) −Uψ(y, ˆ̂yt+1)] +
σ2

0
λ2µψB

+
6σ2

0
τµψB

. (D.5)

40

Define Γt ∶= 1
n ∑

n
i=1 ⟨gi(xt) − gi(xt−1), y

(i) − y(i)t ⟩. For any λ3, λ4 > 0, II + III can be rewritten as

II + III = 1
n

n

∑
i=1
⟨gi(xt+1), y

(i)
− ȳ
(i)
t+1⟩ −

1
n

n

∑
i=1
⟨gi(xt), y

(i)
− ȳ
(i)
t+1⟩ +

1
n

n

∑
i=1
⟨gi(xt−1) − gi(xt), y

(i)
− ȳ
(i)
t+1⟩

= Γt+1 − Γt +
1
n

n

∑
i=1
⟨gi(xt+1) − gi(xt), y

(i)
t+1 − ȳ

(i)
t+1⟩ +

1
n

n

∑
i=1
⟨gi(xt−1) − gi(xt), y

(i)
t − ȳ

(i)
t+1⟩

≤ Γt+1 − Γt +
C2
g ∥xt+1 − xt∥

2
2

2λ3
+
λ3 ∥yt+1 − ȳt+1∥

2

2n
+
C2
g ∥xt − xt−1∥

2
2

2λ4
+
λ4 ∥yt − ȳt+1∥

2

2n

Note that y(i)t+1 = ȳ
(i)
t+1 if i ∈ St and y

(i)
t+1 = y

(i)
t otherwise. Then, ∥yt+1 − ȳt+1∥

2
≤ ∥yt − ȳt+1∥

2 such that

II + III ≤ Γt+1 − Γt +
C2
g ∥xt+1 − xt∥

2
2

2λ3
+
C2
g ∥xt − xt−1∥

2
2

2λ4
+
(λ3 + λ4)Uψ(ȳt+1, yt)

µψn
. (D.6)

We decompose the IV term in (D.4) as

IV = 1
n

n

∑
i=1
⟨gi(xt−1;B(i)t) − gi(xt−1), y

(i)
− ȳ
(i)
t+1⟩

=
1
n

n

∑
i=1
⟨gi(xt−1;B(i)t) − gi(xt−1), ẏ

(i)
t+1 − ȳ

(i)
t+1⟩ +

1
n

n

∑
i=1
⟨gi(xt−1;B(i)t) − gi(xt−1), y

(i)
⟩

−
1
n

n

∑
i=1
⟨gi(xt−1;B(i)t) − gi(xt−1), ẏ

(i)
t+1⟩ .

By the Cauchy-Schwarz inequality, we have
1
n

n

∑
i=1

E [⟨gi(xt−1;B(i)t) − gi(xt−1), ẏ
(i)
t+1 − ȳ

(i)
t+1⟩] ≤

1
n

n

∑
i=1

E [∥gi(xt−1;B(i)t) − gi(xt−1)∥∗
∥ẏ
(i)
t+1 − ȳ

(i)
t+1∥] .

Since f∗i (y(i)) + τUψi(y(i), y
(i)
t) is τµψ-strongly convex to y(i), Lemma 13 implies that

∥ẏ
(i)
t+1 − ȳ

(i)
t+1∥ ≤

(1 + θ) ∥gi(xt) − gi(xt;B(i)t)∥∗ + θ ∥gi(xt−1) − gi(xt−1;B(i)t)∥∗
τµψ

.

Similar to (D.5), the following holds for any λ5 > 0 and some auxiliary sequence {y̆t}t≥0, where
y̆
(i)
t+1 = arg minv∈Yi{⟨gi(xt−1;Bt) − gi(xt−1), v⟩ + λ2Uψi(v, y̆

(i)
t)}.

1
n

n

∑
i=1

E [⟨gi(xt−1;B(i)t) − gi(xt−1), y
(i)
⟩] ≤

λ5
n

E[Uψ(y, y̆t) −Uψ(y, y̆t+1)] +
σ2

0
2λ5µψB

.

Consider that 1
n ∑

n
i=1 E[⟨gi(xt−1;B(i)t) − gi(xt−1), ÿ

(i)
t+1⟩] = 0.

E[IV] ≤ λ5
n

E[Uψ(y, ŷt) −Uψ(y, ŷt+1)] +
σ2

0
2λ5µψB

+
3σ2

0
τµψB

. (D.7)

Combine (D.5), (D.6), (D.7).
1
n

n

∑
i=1

E ⟨gi(xt+1) − g̃
(i)
t , y(i) − ȳ(i)t+1⟩

≤ E[Γt+1 − Γt] +
2λ2
n

E[Uψ(y, ˆ̂yt) −Uψ(y, ˆ̂yt+1)] +
λ5
n

E[Uψ(y, y̆t) −Uψ(y, y̆t+1)]

+
(λ3 + λ4)E[Uψ(ȳt+1, yt)]

µψn
+
C2
gE ∥xt+1 − xt∥

2

2λ3
+
C2
gE ∥xt − xt−1∥

2

2λ4
+

9σ2
0

τµψB
+

σ2
0

λ2µψB
+

σ2
0

2λ5µψB
.

41

D.3 Proof of Theorem 6

Proof. If gi is smooth, we combine (6.1), (6.3), (C.3), (D.3). Set x = x∗ and x0 = x−1.

E[L(xt+1, yt+1) −L(x∗, ȳt+1)]

≤
τ

S
E[Uψ(y, yt) −Uψ(y, yt+1)] +

τλ1
S

E[Uψ(y, ŷt) −Uψ(y, ŷt+1)] +
η

2
E ∥x∗ − xt∥22 −

η

2
E ∥x∗ − xt+1∥

2
2

+E[Γt+1 − Γt] +
2λ2
n

E[Uψ(y, ˆ̂yt) −Uψ(y, ˆ̂yt+1)] +
λ5
n

E[Uψ(y, y̆t) −Uψ(y, y̆t+1)]

−
⎛

⎝

τ

n
−

τL2
ψ

nλ1µ2
ψS
−
λ3 + λ4
µψn

⎞

⎠
E[Uψ(ȳt+1, yt)] − (

η

2
−
C2
g

2λ3
−
LgCf

2
)E ∥xt+1 − xt∥

2
2 +

C2
g

2λ4
E ∥xt − xt−1∥

2
2

+
9σ2

0
τµψB

+
σ2

0
λ2µψB

+
σ2

0
2λ5µψB

+
C2
fσ

2
1

ηB
+
δ2

ηS
. (D.8)

Do telescoping sum from t = 0 to T − 1 for the equation above.
T−1
∑
t=0

E[L(xt+1, y) −L(x∗, ȳt+1)]

≤
ηE ∥x∗ − x0∥

2
2

2
+
τ

S
E[Uψ(y, y0)] +

τλ1
S

E[Uψ(y, ŷ0)] +
2λ2
n

E[Uψ(y, ˆ̂y0)] +
λ5
n

E[Uψ(y, y̆0)]

−
⎛

⎝

τ

n
−

τL2
ψ

nλ1µ2
ψS
−
λ3 + λ4
µψn

⎞

⎠

T−1
∑
t=0

E[Uψ(ȳt+1, yt)] − (
η

2
−
LgCf

2
−
C2
g

2λ3
−
C2
g

2λ4
)
T−1
∑
t=0

E ∥xt+1 − xt∥
2

+E[ΓT] −
τ

S
E[Uψ(y, yT)] +

⎛

⎝

C2
fσ

2
1

Bη
+
δ2

Sη

⎞

⎠
T +

9σ2
0T

τµψB
+

σ2
0T

λ2µψB
+

σ2
0T

2λ5µψB
.

Note that Γ0 = 0, ΓT ≤ 1
n ∑

n
i=1 ∥gi(xT) − gi(xT−1)∥∗ ∥y

(i) − y(i)T ∥ ≤
C2
g

2λ3
∥xT − xT−1∥

2
2 +

λ3
2nµψUψ(y, yT).

Choose λ1 ≍
L2
ψ

Sµ2
ψ

, λ2 ≍
nτ
S , λ3 ≍

Cg
√
S√
n

, λ4 ≍
Cg
√
S√
n

, λ5 ≍
nτ
S , and let 1/τ ≤ O (

√
nµψ

Cg
√
S
) and 1/η ≤

O (
√
S

Cg
√
n
). Since L(x, y) is convex in x and linear in y, we have

E max
y
[L(x̄T , y) −L(x∗, ¯̄yT)] ≤ E max

y

1
T

T−1
∑
t=0
[L(xt+1, y) −L(x∗, ȳt+1)],

where x̄T = 1
T ∑

T−1
t=0 xt+1, ¯̄yT = 1

T ∑
T−1
t=0 ȳt+1. Now work on the LHS.

L(x̄T , y) −L(x∗, ¯̄yT) =
1
n

n

∑
i=1
(y(i)gi(x̄T) − f

∗
i (y

(i)
)) + r(x̄T) −

1
n

n

∑
i=1
(¯̄y(i)T gi(x∗) − f

∗
i (

¯̄y(i)T)) − r(x∗)

Choose y(i) = ỹ(i)T ∈ arg maxv{vgi(x̄T)−f∗i (v)}⇔ gi(x̄T) ∈ ∂f
∗
i (ỹ

(i)
T)⇔ ỹ

(i)
T ∈ ∂fi(gi(x̄T)) such that

ỹ
(i)
T gi(x̄T) − f

∗
i (ỹ

(i)
T) = fi(gi(x̄T)). By Fenchel-Young, −¯̄y(i)T gi(x∗) + f∗i (¯̄y

(i)
T) ≥ −fi(gi(x∗)). Thus,

E[F (x̄T)−F (x∗)] ≤ E maxy[L(x̄T , y)−L(x∗, ¯̄yT)]. Thus, we can make E[F (x̄T)−F (x∗)] ≤ ϵ after
T = O (

LgCfD
2
X

ϵ +

√
nCgD2

X√
Sϵ

+
Cg(1+L2

ψ/(Sµ2
ψ))∑

n
i=1D

2
ψi,Yi

µψ
√
nSϵ

+
D2
X δ

2

Sϵ2 +
D2
XC

2
fσ

2
1

Bϵ2 +
σ2

0(1+L2
ψ/(Sµ2

ψ))∑
n
i=1D

2
ψi,Yi

µψBSϵ2
) it-

erations by setting θ = 1, τ = O (
√
SCg

µψ
√
n
∨

σ2
0

µψBϵ
), η = O (LgCf ∨

√
nCg√
S
∨ δ2

Sϵ ∨
C2
fσ

2
1

Bϵ).

42

If gi is non-smooth, we utilize (C.7) instead of (C.3). Correspondingly, the blue term LgCf
2 in

(D.8) should be changed to η
4 . Additionally, there is a 4C2

fC
2
g

η term on the right-hand side of (D.8).
Following similar steps, we can get the iteration complexity to make E[F (x̄T) − F (x∗)] ≤ ϵ is T =
O (

C2
fC

2
gD

2
X

ϵ2 +

√
nCgD2

X√
Sϵ

+
Cg(1+L2

ψ/(Sµ2
ψ))∑

n
i=1D

2
ψi,Yi

µψ
√
nSϵ

+
D2
X δ

2

Sϵ2 +
D2
XC

2
fσ

2
1

Bϵ2 +
σ2

0(1+L2
ψ/(Sµ2

ψ))∑
n
i=1D

2
ψi,Yi

µψBSϵ2
) by set-

ting θ = 1, τ = O (
√
SCg

µψ
√
n
∨

σ2
0

µψBϵ
), η = O (

√
nCg√
S
∨
C2
fC

2
g

ϵ ∨ δ2

Sϵ ∨
C2
fσ

2
1

Bϵ).

E Proof of the Lower Complexity Bounds in Theorem 10

Proof. We construct the hard problems for (i) smooth fi; and (ii) non-smooth fi separately.
(i) Smooth fi and strongly convex r: First, we can consider the special instance that fi is the
identity mapping and δ = 0 (e.g., n = 1), σ0 = 0. Then, the cFCCO problem in (1.1) becomes the
standard strongly convex minimization problem. Then, we can apply the information-theoretic
lower bounds [71, 25] for the standard strongly convex minimization problem. Thus, any algorithm
in the abstract scheme requires at least Ω (1

µϵ) iterations to find an x̄ such that E [µ2 ∥x̄ − x∗∥
2
2] ≤ ϵ.

¡1 ¡º 1

u

f(¡º)
0

0:5

1:0

f(
u
)

(i) Visualization of f in (E.1)

º¡ 1 º º+1

y(i)

0.0

0.1

0.2

0.3

0.4

f
¤
(y
(i
))

(ii) Convex conjugate f∗ in (E.2) of f . Note that
f∗(y(i)) = +∞ in grey areas.

Next, we construct another “hard” instance to derive the second half of the lower bound in this
case. Consider the following strongly convex FCCO problem

min
x∈X

F (x) =
1
n

n

∑
i=1
f(gi(x)) + r(x),

f(u) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(ν − 1)u + 1
2(ν − 1)2 + ν − 1 − ν2

2 , u ∈ (−∞,−1)
1
2(u + ν)

2 − ν2

2 , u ∈ [−1,1]
(1 + ν)u + 1

2(1 + ν)
2 − 1 − ν − ν2

2 , u ∈ (1,∞)
, r(x) =

1
4n
∥x∥22 (E.1)

where X = [−1,1]n, the outer function f ∶ R → R is smooth and Lipschitz continuous for ν < 1.
Besides, the inner function gi ∶ Rn → R is gi(x) = Eζ[gi(x; ζ)] and gi(x; ζ) = x(i) + ζ, where ζ follows

ζ =

⎧⎪⎪
⎨
⎪⎪⎩

−ν w.p. 1 − p,
ν(1 − p)/p w.p. p.

, where p ∶= ν
2

σ2 .

43

As stated in Assumption 3, we do not require f to be monotonically non-decreasing when gi is affine.
We define that Fi(x(i)) ∶= f(gi(x)) + 1

4[x
(i)]2 such that F (x) = 1

n ∑
n
i=1 Fi(x

(i)). Thus, the problem
minx F (x) is equivalent to the problems minx(i) Fi(x(i)) on all coordinates i ∈ [n]. Since the problem
is separable over the coordinates, we have x(i)∗ = arg minx∈[−1,1] Fi(x

(i)) for x∗ = arg minx∈X F (x).
Thus, we have x(i)∗ = −2ν

3 and Fi(x
(i)
∗) = −

ν2

3 . By the convex conjugate, for any y(i) ∈ R we have

f∗(y(i)) =max{sup
u<−1
{uy(i) − ((ν − 1)u + 1

2
(ν − 1)2 + ν − 1 − ν

2

2
)} , sup

−1≤u≤1
{uy(i) −

1
2
(u + ν)2 +

ν2

2
} ,

sup
u>1
{uy(i) − ((1 + ν)u + 1

2
(1 + ν)2 − 1 − ν − ν

2

2
)}}

=

⎧⎪⎪
⎨
⎪⎪⎩

+∞, y(i) ∈ (−∞, ν − 1) ∪ (ν + 1,∞)
1
2(y

(i) − ν)2, y(i) ∈ [ν − 1, ν + 1].
(E.2)

Note that the proximal mapping with ψi(⋅) = 1
2 ∥⋅∥

2
2 can be efficiently solved for this f∗i . Since Pi = P

in the “hard” problem (E.1) and we only consider the inner mini-batch size B = 1, the abstract
scheme (Algorithm 2) only needs to sample shared ζt, ζ̃t ∼ P for all coordinates i ∈ St in the t-th
iteration. For an i ∈ [n], suppose that g

(i)
τ = ∅ or {−ν}, Y(i)τ = {0}, X(i)τ = {0} for all τ ≤ t. Then,

● If i ∉ St, the abstract scheme (Algorithm 2) leads to

g
(i)
t+1 = ∅ or {−ν}, Y

(i)
t+1 = {0}, X

(i)
t+1 = {0}.

● If i ∈ St and ζt = −ν, the abstract scheme (Algorithm 2) proceeds as

g
(i)
t+1 = g

(i)
t + span{x̂(i) + ζt ∣ x̂(i) ∈ X(i)t } ,

Y
(i)
t+1 =Y

(i)
t + span

⎧⎪⎪
⎨
⎪⎪⎩

arg max
y(i)∈[ν−1,ν+1]

{y(i)(ĝ(i) + ν) −
1
2
(y(i))

2
− τ (y(i) − ŷ(i)))

2
} ∣ ĝ(i) ∈ g(i)t+1, ŷ

(i)
∈Y

(i)
t

⎫⎪⎪
⎬
⎪⎪⎭

,

X
(i)
t+1 = X

(i)
t + span

⎧⎪⎪
⎨
⎪⎪⎩

arg min
x(i)∈[−1,1]

{
1
S
ŷ(i)x(i) +

1
n
[x(i)]2 +

η

2
(x(i) − x̂(i))

2
} ∣ ŷ(i) ∈Y(i)t+1, x̂

(i)
∈ X
(i)
t

⎫⎪⎪
⎬
⎪⎪⎭

.

Then, we can derive that g
(i)
t+1 = ∅ or {−ν}, Y(i)t+1 = {0}, and X

(i)
t+1 = {0}.

To sum up, given the event ⋂tτ=1{g
(i)
τ = ∅ or {−ν}, Y(i)τ = {0}, X(i)τ = {0}}, we can make sure that

{g
(i)
t+1 = ∅ or {−ν} ∧Y(i)t+1 = {0} ∧X

(i)
t+1 = {0}} for the abstract scheme in Algorithm 2 when one of

the following mutually exclusive events happens:
• Event I: i ∉ St;
• Event II: i ∈ St and ζt = −ν.

Note that the random variable ζt is independent of St. Thus, the probability of the event E(i)t+1 ∶=

{g
(i)
t+1 = ∅ or {−ν} ∧Y(i)t+1 = {0} ∧X

(i)
t+1 = {0}} conditioned on ⋂tτ=1E

(i)
τ can be bounded as

P [E(i)t+1 ∣
t

⋂
τ=1

E(i)τ] = P [{g(i)t+1 = ∅ or {−ν} ∧Y(i)t+1 = {0} ∧X
(i)
t+1 = {0}} ∣

t

⋂
τ=1

E(i)τ]

≥ P [{i ∉ St}] +P [{{i ∈ St} ∧ {ζt = −ν}}]

= P [{i ∉ St}] +P [{i ∈ St}]P [{ζt = −ν}] = (1 −
S

n
) +

S

n
(1 − p) = 1 − Sp

n
.

44

Since St and ζt in different iterations t are mutually independent, we have

P [E(i)T] ≥ P [
T−1
⋂
t=0

E
(i)
t+1] =

T−1
∏
t=0

P [E(i)t+1 ∣
t

⋂
t=1
E
(i)
t] = (1 −

Sp

n
)

T

> 3/4 − TSp
n

.

Thus, letting T < n
4Sp can make P [E(i)T] >

1
2 . Choose ν = 3

√
2ϵ, and σ = σ0 such that p = ν2

σ2 =
18ϵ
σ2

0
.

For any i ∈ [n] and any output x̄(i) ∈ X(i)T , we have

E [(x̄(i) − x(i)∗)
2
] = E [I

E
(i)
T

(x̄(i) − x(i)∗)
2
+ I

E
(i)
T

(x̄(i) − x(i)∗)
2
]

≥ E [I
E
(i)
T

(x̄(i) − x(i)∗)
2
]

= E [I
E
(i)
T

(x
(i)
∗)

2
] = P [E(i)T] (x

(i)
∗)

2
>

2ν2

9
= 4ϵ.

Moreover, we have

E[Fi(x̄(i)) − Fi(x(i)∗)] = E [I
E
(i)
T

(Fi(x̄
(i)
) − Fi(x

(i)
∗)) + I

E
(i)
T

(Fi(x̄
(i)
) − Fi(x

(i)
∗))]

≥ E [I
E
(i)
T

(Fi(x̄
(i)
) − Fi(x

(i)
∗))]

= E [I
E
(i)
T

(Fi(0) − Fi(x(i)∗))] = P[E(i)T] (Fi(0) − Fi(x
(i)
∗)) >

ν2

6
> ϵ.

Since the derivations above hold for arbitrary i ∈ [S] and the r(x) in (E.1) is 1
2n -strongly convex

(µ = 1
2n), we can derive that

E [µ
2
∥x̄ − x∗∥

2
2] = E [1

4n
∥x̄ − x∗∥

2
2] =

1
4n

n

∑
i=1

E [(x̄(i) − x(i)∗)
2
] > ϵ,

E [F (x̄) − F (x∗)] =
1
n

n

∑
i=1

E [Fi(x̄(i)) − Fi(x(i)∗)] > ϵ.

Thus, to find an output x̄ that satisfies E [µ2 ∥x̄ − x∗∥
2
2] ≤ ϵ or E [F (x̄) − F (x∗)] ≤ ϵ, the abstract

scheme requires at least T ≥ n
4Sp =

nσ2
0

72Sϵ iterations.
(ii) Non-smooth fi: We borrow the construction f(⋅) = βmax{⋅,−ν} from Zhang and Lan [22].
We define that Fi(x

(i)) ∶= f(gi(x)) +
α
2 [x

(i)]2 = βmax{x(i),−ν} + α
2 [x

(i)]2 such that F (x) =
1
n ∑

n
i=1 Fi(x

(i)). Thus, the problem minx F (x) is equivalent to the problems minx(i) Fi(x(i)) on
all coordinates i ∈ [n]. Let the domain X be [−2ν,2ν]n. Since the problem is separable over the
coordinates, we have x(i)∗ = arg minx∈[−2ν,2ν] Fi(x

(i)) = arg minx∈[−2ν,2ν] {βmax{x(i),−ν} + α
2 [x

(i)]2}

for x∗ = arg minx∈X F (x). Considering Fi(x(i)) =
⎧⎪⎪
⎨
⎪⎪⎩

βx(i) + α
2 [x

(i)]2 x(i) ≥ −ν

−βν + α
2 [x

(i)]2 x(i) < −ν
, we have

x
(i)
∗ =

⎧⎪⎪
⎨
⎪⎪⎩

−β/α if α > β/ν
−ν if α ∈ βν [0,1]

, Fi(x
(i)
∗) ≤

⎧⎪⎪
⎨
⎪⎪⎩

−β2/(2α) if α > β/ν
−βν/2 if α ∈ βν [0,1].

Since Fi(0) = 0, we can derive that Fi(0) − Fi(x(i)∗) ≥ 1
2 min{βν, β2/α}. By the convex conjugate,

we have

f(ĝ(i)) = max
y(i)∈[0,β]

{y(i)ĝ(i) − ν(β − y(i))} .

45

Consider an arbitrary i ∈ [n]. Suppose that g
(i)
τ = ∅ or {−ν}, X(i)τ = {0}, Y(i)τ = {0} for all τ ≤ t.

Note that f is structured non-smooth such that we can select ψi(⋅) = 1
2 ∥⋅∥

2
2.

● If i ∉ St, the abstract scheme (Algorithm 2) leads to

g
(i)
t+1 = ∅ or {−ν}, Y

(i)
t+1 = {0}, X

(i)
t+1 = {0}.

● If i ∈ St, the abstract scheme (Algorithm 2) proceeds as

g
(i)
t+1 = g

(i)
t + span{x̂(i) + ζt ∣ x̂(i) ∈ X(i)t } ,

Y
(i)
t+1 =Y

(i)
t + span

⎧⎪⎪
⎨
⎪⎪⎩

arg max
y(i)∈[0,β]

{y(i)ĝ(i) − ν(β − y(i)) − τ (y(i) − ŷ(i)))
2
} ∣ ĝ(i) ∈ g(i)t+1, ŷ

(i)
∈Y

(i)
t

⎫⎪⎪
⎬
⎪⎪⎭

,

X
(i)
t+1 = X

(i)
t + span

⎧⎪⎪
⎨
⎪⎪⎩

arg min
x(i)∈[−2ν,2ν]

{
1
S
ŷ(i)x(i) +

1
n
[x(i)]2 +

η

2
(x(i) − x̂(i))

2
} ∣ ŷ(i) ∈Y(i)t+1, x̂

(i)
∈ X
(i)
t

⎫⎪⎪
⎬
⎪⎪⎭

.

Due to the same reason as in the smooth fi case, the probability of the event E(i)T ∶= {g
(i)
T =

∅ or {−ν} ∧Y(i)T = {0} ∧X
(i)
T = {0}} can be bounded as

P [E(i)T] ≥ P [
T−1
⋂
t=0

E
(i)
t+1] =

T−1
∏
t=0

P [E(i)t+1 ∣
t

⋂
t=1
E
(i)
t] = (1 −

Sp

n
)

T

> 3/4 − TSp
n

.

Thus, letting T < n
4Sp can make P [E(i)T] >

1
2 . Choose β = Cf , ν = 4ϵ

Cf
, and σ = σ0 such that

p ∶= ν2

σ2 =
16ϵ2
C2
f
σ2

0
. For any i ∈ [n] and any output x̄(i) ∈ X(i)T , we have

E[Fi(x̄(i)) − Fi(x(i)∗)] = E [IET (Fi(x̄
(i)
) − Fi(x

(i)
∗)) + IET (Fi(x̄

(i)
) − Fi(x

(i)
∗))]

≥ E [IET (Fi(x̄
(i)
) − Fi(x

(i)
∗))]

= E [IET (Fi(0) − Fi(x
(i)
∗))]

= P[ET] (Fi(0) − Fi(x(i)∗)) >min{βν, β2
/α}/4 = ϵ.

Since the derivations above hold for arbitrary i ∈ [S], we can derive that

E[F (x̄) − F (x∗)] =
1
n

n

∑
i=1

E[Fi(x̄(i)) − Fi(x(i)∗)] > ϵ.

Thus, to find an output x̄ that satisfies E[F (x̄) − F (x∗)] ≤ ϵ, the abstract scheme requires at least
T ≥ n

4Sp =
nC2

fσ
2
0

64Sϵ2 iterations.

F More Details of Experiments

All algorithms are implemented using the PyTorch framework. For the projection onto capped
simplex in OOA, we borrow a Python implementation9 of the efficient algorithm by Lim and
Wright [60]. Experiments are conducted on a workstation with the 12th Gen Intel(R) Core(TM)
i7-12700K CPU with 20 logical cores.

9https://github.com/mblondel/projection-losses/blob/master/polytopes.py

46

https://github.com/mblondel/projection-losses/blob/master/polytopes.py

F.1 Group DRO

Here we provide the omitted details and results of our Group DRO experiments.

F.1.1 Data Preprocessing

Adult dataset: We construct 83 groups for the Adult dataset according to income (“>50K”,
“≤50K”), race (“white”, “black”, “other”), sex (“female”, “male”), age (“<=30”, “30-45”, “>45”),
relationship (“single”, “not_single”), and education (“higher”, “others”), where we discard those
groups with less than 50 data points. Following [67], we transform both continuous and categorical
features into binary features, resulting in a 122-dimensional feature vector for each data point.
CelebA dataset: We construct 160 groups for this dataset according to 4 binary attributes (“blond
hair”, “male”, “mouth slightly open”, “smiling”) and 10 types of additive Gaussian noises (means
-0.08:0.02:0.1 and variance 0.08) to the images. Each image of the CelebA dataset is resized to
224×224×3, normalized, and center-cropped. Then, we extract 512-dimensional feature vectors for
those preprocessed images from the last convolutional layer of a ResNet18 pre-trained on ImageNet.

F.1.2 Parameter Tuning

We tune the step sizes of all algorithms in the range {2,5,10} × 10{−3,−2,−1}. Additionally, for
primal-dual algorithms such as ALEXR and OOA, we adjust the step size for the dual variable
within the same range. For SOX and SONX, we also tune the momentum parameter (τ in the
SONX paper [11] and γ in the SOX paper [5]) in the range {0.1,0.3,0.5,0.7,0.9} following their
papers. For ALEXR, we choose the extrapolation parameter θ ∈ {0.1, 1.0} and the generating function
ψi(⋅) =

1
2(⋅)

2. For all algorithms, we choose the weight decay parameter 0.05 on the Adult dataset
and 0.1 on the CelebA dataset to improve the testing performance. We execute all algorithms for 5
runs with different random seeds and each run contains 2500 iterations for the Adult dataset and
15000 iterations for the CelebA dataset. For a fair comparison, each algorithm samples 64 data
points in each iteration. For SGD, these data points are sampled from the entire training dataset,
whereas for other algorithms, they are sampled from 8 sampled groups.

F.1.3 Additional Results

20 40 60 80
Groups

0

500

1000

1500

2000

Po
pu

la
ti
on

s

Adult

70 80
0

50

100

25 50 75 100 125 150
Groups

0

5000

10000

15000

20000

25000

30000

Po
pu

la
ti
on

s

CelebA

140 160

250
500
750

0 500 1000 1500 2000 2500
Iterations

500

750

1000

1250

1500

1750

­
0 Y

Adult (­0Y v.s. T, α=0.15)

­0Y of ALEXR
worst-case estimate

2500 5000 7500 10000 12500 15000
Iterations

500

1000

1500

2000

2500

3000

3500

­
0 Y

CelebA (­0Y v.s. T, α=0.15)

­0Y of ALEXR
worst-case estimate

Figure 3: Group sizes and the estimated values of Ω0
Y .

The first two columns of Figure 3 show the existence of rare groups in the datasets. The last
two columns of Figure 3 demonstrate that the actual value of Ω0

Y is indeed much smaller than its
worst-case estimate n

2α2 , which verifies the claims in Section 6.2 and Section 7.1.

47

F.2 Partial AUC Maximization with Restricted TPR

F.2.1 Dataset Statistics and Preprocessing

To create imbalanced datasets, we randomly remove 99.5% positive data from the Covtype dataset
and 99.9% positive data from the Higgs dataset. For the Covtype dataset, we randomly allocate
60% of the data for training, 20% for validation, and another 20% for testing. For the Higgs dataset,
we randomly select 500,000 data points for validation, 500,000 data points for testing, and the
rest as training data. The Cardiomegaly and Lung-mass datasets are naturally balanced and the
train/val/test split is pre-defined. We vectorize each 28×28 image in Cardiomegaly/Lung-mass
datasets into a 784-dim feature. We list the detailed statistics of those datasets in Table 6.

Table 6: Statistics of datasets used in the partial AUC maximization experiments. Here n+ and n−
refer to the numbers of positive and negative data in the train/val/test splt.

Datasets Train Val Test
n+ n− n+ n− n+ n−

Covtype 889 178,587 252 59,573 275 59,551
Higgs 4,676 4,172,030 582 499,418 571 499,429

Cardiomegaly 1,950 76,518 240 10,979 582 21,851
Lung-mass 3,988 74,480 625 10,594 1,133 21,300

F.2.2 Parameter Tuning

For the step sizes and momentum/extrapolation parameters, we tune them in the same way as
in Appendix F.1.2. We execute all algorithms for 5 runs with different random seeds and each
run contains 750 iterations for the Cardiomegaly/Lung-mass datasets and 1500 iterations for the
Covtype/Higgs datasets. In each iteration, each algorithm randomly samples 16 positive data points
and 16 negative data points.

G Convergence Rates of Baseline Algorithms

In Table 1 and 2, some of the baseline algorithms were originally proposed for stochastic compositional
optimization (SCO) and convex-concave min-max optimization. In this section, we show how to
derive their convergence rates on our FCCO problems.

G.1 SCO Algorithms

The FCCO problem in (1.1) can be reformulated as an SCO problem F (x) = f̂(g(x)), f̂ = 1
n ∑

n
i=1 f̂i,

f̂i(u) = fi(u
(i)) for u ∈ Rn, g = [g1, . . . , gn]

⊺.

SCGD [1]/ASC-PG [2] These two algorithms maintain a sequence {ut}Tt=1, ut ∈ Rnm to estimate the
inner function g(x), which requires n zeroth-order oracles in each iteration. To update the variable
x, the stochastic gradient is computed as ∇g(xt; ζt)∇f̂it(ut+1) = ∇git(xt; ζ

(it)
t)∇fit(u

(it)
t+1), which

requires one first-order oracles in each iteration. All their proofs still go through and the convergence
rates of SCGD/ASC-PG on FCCO are the same as those of the SCO problem.

48

SSD [22] Both π1 and π2 in their paper are now n-dimensional. Then, steps 3 and 4 in their
Algorithm 1 are done for each coordinate i ∈ [n], which leads to O(n) zeroth-order oracles in each
iteration. To update the variable x, the stochastic gradient is computed as ∇g(yt2; ζt)∇f̂it(yt1) =
∇git(y

t
2; ζ(it)t)∇fit(y

t
1), which requires one first-order oracles in each iteration. We only need to

handle the σ̃2
x term in (2.35) in their paper, which now becomes δ2 +Cfσ

2
1 under our assumptions.

G.2 Min-Max Algorithms

The primal-dual formulation in (1.2) of cFCCO can be viewed as a convex-concave min-max
optimization minx∈Rd maxy∈Rn Φ(x, y) −∑ni=1 f∗i (y(i)) + r(x), where Φ(x, y) = 1

n ∑
n
i=1 y

(i)gi(x).

SAPD [15] In this paper, they assume that the coupling term Φ(x, y) is (Lxx, Lxy, Lyx, Lyy)-smooth.

∥∇xΦ(x, y) −∇xΦ(x′, y′)∥ ≤ Lxx ∥x − x′∥ +Lxy ∥y − y′∥ ,
∥∇yΦ(x, y) −∇yΦ(x′, y′)∥ ≤ Lyx ∥x − x′∥ +Lyy ∥y − y′∥ .

Considering the FCCO problem, we have Lxx = CfLg, Lxy = Lyx = Cg
n , Lyy = 0. Besides, the

strong convexity moduli µx, µy in their paper are µ, 1
nLf

in our paper. When applied to the FCCO
problem, SAPD computes stochastic estimators ∇̃yΦ(xt, yt) = 1

n[g1(xt; ζ̃(1)t), . . . , gn(xt; ζ̃
(n)
t)]

⊺ and
∇̃yΦ(xt, yt) = 1

n[g1(xt−1; ζ̃(1)t−1), . . . , gn(xt−1; ζ̃(n)t−1)]
⊺ to update y while computing ∇̃xΦ(xt, yt+1) =

y
(it)
t+1∇git(xt; ζ̃t) to update x. Thus, δ2

x and δ2
y in their paper are C2

fσ
2
1 + δ

2 and σ2
0
n under our

assumptions.

H Convergence Analysis of ALEXR with θ = 0

As an ablation study, we provide the convergence analysis of our ALEXR algorithm with θ = 0.

H.1 Strongly Convex Case

Theorem 20. Suppose that Assumptions 1, 2, 3, 4, 5, 6 hold. Moveover, r is µ-strongly convex
with µ > 0 while ρ in Proposition 1 satisfies that ρ > 0, i.e., fi is Lf -smooth, Lf ∶= 1

µψρ
. If gi is

Lg-smooth, ALEXR with θ = 0, η = µυ
1−υ , τ = S

2n(1−υ) , and a specific υ < 1 can make µ
2 E ∥xT − x∗∥22 ≤ ϵ

after T = Õ (nS +
LgCf
µ +

Cg
√
nLf√
Sµ

+
C2
gLf
µ +

nLfσ
2
0

BSϵ +
C2
fσ

2
1

µBϵ +
δ2

µSϵ) iterations. If gi is non-smooth, the

iteration complexity is T = Õ (nS +
Cg
√
nLf√
Sµ

+
C2
gLf
µ +

nLfσ
2
0

BSϵ +
C2
fσ

2
1

µBϵ +
δ2

µSϵ +
C2
fC

2
g

µϵ).

Remark 21. Compared to the results of ALEXR with θ ∈ (0,1) in Theorem 3, there is an extra
term Õ (

C2
gLf
µ) term, which makes the iteration complexity of SOX has a worse dependence on the

Lipschitz constants Cg and Lf when Cg, Lf ≥ 1.

49

Proof. Plug θ = 0 into (C.9).

E[L(xt+1, y∗) −L(x∗, ȳt+1)] (H.1)

≤
τ + ρ (1 − S

n
)

S
E[Uψ(y∗, yt)] −

τ + ρ

S
E[Uψ(y∗, yt+1)] +

η

2
E ∥x∗ − xt∥22 −

η + µ

2
E ∥x∗ − xt+1∥

2
2

− (
τ

n
−
λ2
µψn
)E [Uψ(ȳt+1, yt)] − (

η

2
−
C2
g

2λ2
−
LgCf

2
)E ∥xt+1 − xt∥

2
2 +E[Γt+1] +

2σ2
0

Bµψ(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ
,

where Γt ∶= 1
n ∑

n
i=1 ⟨gi(xt) − gi(xt−1), y

(i)
∗ − y

(i)
t ⟩. We bound the E[Γt+1] term by

E[Γt+1] =
1
n

n

∑
i=1
⟨gi(xt+1) − gi(xt), y

(i)
∗ − y

(i)
t+1⟩ ≤

Cg

n
∥xt+1 − xt∥2 ∥y∗ − yt+1∥

≤
ρ

2n2 E[Uψ(y∗, yt+1)] +
C2
g

2µψρ
∥xt+1 − xt∥

2
2 .

Choose λ2 = nµψρ and such that

E[L(xt+1, y∗) −L(x∗, ȳt+1)]

≤
τ + ρ (1 − S

n
)

S
E[Uψ(y∗, yt)] −

τ + ρ (1 − S
n2)

S
E[Uψ(y∗, yt+1)] +

η

2
E ∥x∗ − xt∥22 −

η + µ

2
E ∥x∗ − xt+1∥

2
2

− (
τ

n
−
λ2
µψn
)E [Uψ(ȳt+1, yt)] − (

η

2
−
C2
g

2λ2
−

C2
g

2µψρ
−
LgCf

2
)E ∥xt+1 − xt∥

2
2 +

2σ2
0

Bµψ(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ
.

Define Υx
t ∶=

1
2E ∥x∗ − xt∥22 and Υy

t =
1
SE[Uψ(y∗, yt)]. Note that L(xt+1, y∗) − L(x∗, ȳt+1) ≥ 0.

Multiply both sides of (C.9) by υ−t for some υ > 0 and do telescoping sum from t = 0 to T − 1. Add
ηυ−TΥx

T to both sides.

ηυ−TΥx
T ≤

T−1
∑
t=0

υ−t ((ηΥx
t + (τ + ρ(1 −

S

n
))Υy

t) − ((η + µ)Υ
x
t+1 + (τ + ρ(1 −

S

n2))Υy
t+1))

+ ηυ−TΥx
T +
⎛
⎜
⎝

2σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

T−1
∑
t=0

υ−t −
T−1
∑
t=0

υ−t (
τ

n
−
λ2
µψn
)E[Uψ(ȳt+1, yt)]

−
T−1
∑
t=0

υ−t (
η

2
−
C2
g

2λ2
−

C2
g

2µψρ
−
LgCf

2
)E ∥xt+1 − xt∥

2
2 .

Let η ≥ µυ
1−υ such that υ ≤ η

η+µ and τ ≥ ρS
n(1−υ) such that υ ≤ τ+ρ(1−S

n
)

τ+ρ(1− S
n2)

. Then,

T−1
∑
t=0

θ−t ((ηΥx
t + (τ + ρ(1 −

S

n
))Υy

t) − ((η + µ)Υ
x
t+1 + (τ + ρ)Υ

y
t+1)) ≤ ηΥx

0 + (τ + ρ(1 −
S

n
))Υy

0.

50

We choose λ2 ≍
Cg
√
Sρµψ√
nµ and 1/τ ≤ O (

√
nµµψ

Cg
√
Sρ
), 1/η ≤ O (µψρ

C2
g
∨

√
Sρµψ

Cg
√
nµ ∧

1
LgCf

). Then,

µΥx
T ≤ µυ

TΥx
0 +
(τ + ρ (1 − S

n
)) (1 − υ)

υ
υTΥy

0 +
⎛
⎜
⎝

2σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

≤ µυTΥx
0 + (τ + ρ)(1 − υ)υTΥy

0 +
⎛
⎜
⎝

2σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠

= µυTΥx
0 + ρ(

S

2n
+ (1 − υ))υTΥy

0 +
⎛
⎜
⎝

2σ2
0

µψB(ρ + τ)
+

C2
fσ

2
1

B + δ2

S

η + µ

⎞
⎟
⎠
.

We select η = µυ
1−υ , τ = ρS

n(1−υ) , and

υ = O
⎛

⎝
1 − S

n
∧

µ

LgCf
∧
µρµψ

C2
g

∧

¿
Á
ÁÀ

µρµψS

C2
gn
∧
µψBρSϵ

σ2
0n

∧
Bµϵ

C2
fσ

2
1
∧
Sµϵ

δ2
⎞

⎠
.

Since Lf ∶= 1
µψρ

, the number of iterations needed by Algorithm 1 to make µΥx
T ≤ ϵ is

T = Õ
⎛

⎝

n

S
+
LgCf

µ
+
Cg
√
nLf

√
Sµ

+
C2
gLf

µ
+
nLfσ

2
0

BSϵ
+
C2
fσ

2
1

µBϵ
+
δ2

µSϵ

⎞

⎠
.

H.2 Convex Case

Theorem 22. Under Assumptions 1, 2, 3, 4, 5, 6, ALEXR with θ = 0 and an Lψ-smooth ψi can make

E[F (x̄T)−F (x∗)] ≤ ϵ, x̄T = 1
T ∑

T−1
t=0 xt after T = O (C

2
fD

2
X

ϵ2 +
δ2D2

X
Sϵ2 +

C2
fσ

2
1

Bϵ2 +
σ2

0(1+L2
ψ/(Sµ2

ψ))∑
n
i=1D

2
ψi,Yi

µψBSϵ2
)

iterations by setting η = O (C
2
f

ϵ ∨
δ2

Sϵ ∨
C2
fσ

2
1

Bϵ), τ = O (
σ2

0
µψBϵ

).

Remark 23. Compared to the results of ALEXR with θ = 1 in Theorem 6, the O (1
ϵ2
) term persists

even in the case that gi is smooth. Thus, ALEXR with θ = 0 does not fully exhibit the parallel
speed-up to batch sizes B,S, nor does it achieve the O (1

ϵ
) rate when variances σ2

0, σ
2
1, δ

2 vanish.

Proof. For ALEXR with θ = 0, we have g̃(i)t = gi(xt;B
(i)
t). Then, for any λ4 > 0 we have

1
n

n

∑
i=1

E ⟨gi(xt+1) − g̃t, y
(i)
− ȳ
(i)
t+1⟩ =

1
n

n

∑
i=1

E ⟨gi(xt+1) − gi(xt;B(i)t), y
(i)
− ȳ
(i)
t+1⟩

=
1
n

n

∑
i=1

E [⟨gi(xt+1) − gi(xt), y
(i)
− ȳ
(i)
t+1⟩] +

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
− ȳ
(i)
t+1⟩]

≤
1
n

n

∑
i=1

E [∥gi(xt+1) − gi(xt)∥∗ ∥y
(i)
− ȳ
(i)
t+1∥] +

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
− ȳ
(i)
t+1⟩]

≤
C2
gE ∥xt+1 − xt∥

2
2

2λ4
+ 2λ4

1
n

n

∑
i=1

E(∥y(i)∥
2
+ ∥ȳ

(i)
t+1∥

2
) +

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
− ȳ
(i)
t+1⟩]

≤
C2
gE [∥xt+1 − xt∥

2
2]

2λ4
+ 4λ4C

2
f +

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
− ȳ
(i)
t+1⟩] . (H.2)

51

The last term in (H.2) is bounded as

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
− ȳ
(i)
t+1⟩]

=
1
n

n

∑
i=1

Et [⟨gi(xt) − gi(xt;B(i)t), y
(i)
− y
(i)
t ⟩] +

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
t − ȳ

(i)
t+1⟩] (H.3)

To bound the first term in (H.3), we have E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
t ⟩ ∣ Ft−1] = 0. Besides,

Lemma 12 implies that for some λ2 > 0 and sequence {ỹ(i)t }t

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
⟩] ≤ E[λ2Uψi(y

(i), ỹ(i)t) − λ2Uψi(y
(i), ỹ(i)t+1)] +

1
2λ2µψ

E ∥gi(xt) − gi(xt;B(i)t)∥
2

∗

such that

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
⟩] ≤

λ2
n

E[Uψ(y, ỹt) −Uψ(y, ỹt+1)] +
σ2

0
2λ2Bµψ

. (H.4)

For any λ3 > 0, the second term in (H.3) can be bounded as

1
n

n

∑
i=1

E [⟨gi(xt) − gi(xt;B(i)t), y
(i)
t − ȳ

(i)
t+1⟩] ≤

λ3
2n

n

∑
i=1

E [∥gi(xt) − gi(xt;B(i)t)∥
2

∗
] +

E [∥yt − ȳt+1∥
2
]

2λ3n

≤
λ3σ

2
0

2B
+

E [Uψ(ȳt+1, yt)]

λ3µψn
. (H.5)

Put (H.2), (H.3), (H.4), (H.5) together

E [1
n

n

∑
i=1
⟨gi(xt+1) − g̃t, y

(i)
− ȳ
(i)
t+1⟩] ≤

C2
gE [∥xt+1 − xt∥

2
2]

2λ4
+ 4λ4C

2
f +

λ2
n

E[Uψ(y, ỹt) −Uψ(y, ỹt+1)]

+
σ2

0
2Bλ2µψ

+
λ3σ

2
0

2B
+

E [Uψ(ȳt+1, yt)]

2λ3µψn
.

Note that (6.1), (6.3), (C.3) still hold. Choose λ4 = O(1/η), λ2 = O(nτ/(µψS)), λ3 = O(1/(τµψ))
and η = O(1/ϵ), τ = O(1/(Bµψϵ)) and follow the steps in the proof of Theorem 6.

52

	1 Introduction
	2 Applications
	2.1 Group Distributionally Robust Optimization
	2.2 Partial AUC Maximization with Restricted True Positive Rate
	2.3 Other Applications

	3 Related Work
	3.1 History of FCCO
	3.2 Convex Stochastic Compositional Problem
	3.3 Convex-Concave Saddle Point (SP) Problem
	3.4 Coordinate Methods for the Block-Separable Deterministic SP Problem

	4 Preliminaries
	4.1 Notations and Definitions
	4.2 Assumptions

	5 A Primal-Dual Block-Coordinate Stochastic Algorithm for cFCCO
	5.1 Relations with Existing Algorithms

	6 Convergence Analysis
	6.1 Strongly Convex and Smooth Case
	6.2 Convex Case

	7 Application to GDRO with -divergence
	7.1 GDRO with CVaR divergence
	7.2 GDRO with - divergence
	7.3 Comparison with Baselines

	8 Lower Complexity Bounds
	9 Numerical Experiments
	9.1 Experiments on GDRO with the CVaR divergence
	9.2 Partial AUC Maximization with Restricted TPR

	10 Conclusion
	A Basic Lemmas
	B Proof of Lemma 2
	C Convergence Analysis of ALEXR in the Strongly Convex Case
	C.1 Supporting Lemmas
	C.2 Proof of Theorem 3
	C.3 A Direct Conversion to Non-strongly Convex Results

	D Convergence Analysis of ALEXR in the Convex Case
	D.1 Proof of Lemma 5
	D.2 A Supporting Lemma
	D.3 Proof of Theorem 6

	E Proof of the Lower Complexity Bounds in Theorem 10
	F More Details of Experiments
	F.1 Group DRO
	F.1.1 Data Preprocessing
	F.1.2 Parameter Tuning
	F.1.3 Additional Results

	F.2 Partial AUC Maximization with Restricted TPR
	F.2.1 Dataset Statistics and Preprocessing
	F.2.2 Parameter Tuning

	G Convergence Rates of Baseline Algorithms
	G.1 SCO Algorithms
	G.2 Min-Max Algorithms

	H Convergence Analysis of ALEXR with =0
	H.1 Strongly Convex Case
	H.2 Convex Case

