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a b s t r a c t

This paper proposes a new test for a change point in the mean of high-dimensional
data based on the spatial sign and self-normalization. The test is easy to implement
with no tuning parameters, robust to heavy-tailedness and theoretically justified with
both fixed-n and sequential asymptotics under both null and alternatives, where n
is the sample size. We demonstrate that the fixed-n asymptotics provide a better
approximation to the finite sample distribution and thus should be preferred in both
testing and testing-based estimation. To estimate the number and locations when
multiple change-points are present, we propose to combine the p-value under the fixed-
n asymptotics with the seeded binary segmentation (SBS) algorithm. Through numerical
experiments, we show that the spatial sign based procedures are robust with respect
to the heavy-tailedness and strong coordinate-wise dependence, whereas their non-
robust counterparts proposed in Wang et al. (2022)[28] appear to under-perform. A real
data example is also provided to illustrate the robustness and broad applicability of the
proposed test and its corresponding estimation algorithm.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Change-point detection has been a popular research topic in statistics, and related literature is vast due to its broad
pplicability in biosciences, climate sciences, economics and quality control, among many other areas. See [1,2,12,25]
or recent reviews. With the development of modern data collection techniques, high-dimensional data has become more
ommon in the foregoing areas, and the associated data analysis has also triggered the advancement of inference methods
or change-points in high-dimensional data, see, e.g. [7,11,13,18,27–31]. Among the proposed tests and estimation
ethods, most of them require quite strong moment conditions (e.g., Gaussian or sub-Gaussian assumption, or sixth
oment assumption) and some of them also require weak component-wise dependence assumption. There are only a few
xceptions, such as [30], where they used anti-symmetric and nonlinear kernels in a U-statistics framework to achieve
obustness. However, the limiting distribution of their test statistic is non-pivotal and their procedure requires bootstrap
alibration, which could be computationally demanding. In addition, their test statistic targets the sparse alternative only.
s pointed out in [17], the interest in the dense alternative can be well motivated by real data and is often the type of
lternative the practitioners want to detect. For example, copy number variations in cancer cells are commonly manifested
s change-points occurring at the same positions across many related data sequences corresponding to cancer samples
nd biologically related individuals; see [8].
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In this article, we propose a new test for a change point in the mean of high-dimensional data that works for a
broad class of data generating processes. In particular, our test targets the dense alternative, is robust to heavy-tailedness,
and can accommodate both weak and strong coordinate-wise dependence. Our test is built on two recent advances in
high-dimensional testing: spatial sign based two sample test developed in [5] and U-statistics based change-point test
developed in [28]. Spatial sign based tests have been studied in the literature of multivariate data and they are usually
used to handle heavy-tailedness, see [20] for a book-length review. However, it was until recently that [5,26] discovered
that spatial sign could also help relax the restrictive moment conditions in high dimensional testing problems. [28]
advanced the high-dimensional two sample U-statistic pioneered by [6] to the change-point setting by adopting the self-
normalization (SN) [22,24]. Their test targets dense alternative, but requires sixth moment assumption and only allows
for weak coordinate-wise dependence.

Building on these two recent advances, we shall propose a spatial signed SN-based test for a change point in the mean
of high-dimensional data. Our contribution to the literature is threefold. Firstly, we derive the limiting null distribution
of our test statistic under the so-called fixed-n asymptotics, where the sample size n is fixed and dimension p grows to
infinity. We discovered that the fixed-n asymptotics provide a better approximation to the finite sample distribution when
the sample size is small or moderate. We also let n grow to infinity after we derive n-dependent asymptotic distribution,
and obtain the limit under the sequential asymptotics [21]. This type of asymptotics seems new to the high-dimensional
change-point literature and may be more broadly adopted in change-point testing and other high-dimensional problems.
Secondly, our asymptotic theory covers both scenarios, the weak coordinate-wise dependence via ρ mixing, and strong
coordinate-wise dependence under the framework of ‘‘randomly scaled ρ-mixing sequence’’ (RSRM) in [5]. The process
onvergence associated with spatial signed U-process we develop in this paper further facilitates the application of our
est under sequential asymptotics where n, in addition to p, also goes to infinity. In particular, we have developed novel
heory to establish the process convergence result under the RSRM framework. In general, this requires to show the finite
imensional convergence and asymptotic equicontinuity (tightness). For the tightness, we derive a bound for the eighth
oment of the increment of the sample path based on a conditional argument under the sequential asymptotics, which

s new to the literature. Using this new technique, we provide the unconditional limiting null distribution of the test
tatistic for the fixed-n and growing-p case. This is stronger than the results in [5] which is a conditional limiting null
istribution. Thirdly, we extend our test to estimate multiple changes by combining the p-value based on the fixed-n
symptotics and the seeded binary segmentation (SBS) [14]. The use of fixed-n asymptotics is especially recommended

due to the fact that in these popular generic segmentation algorithms such as WBS [9] and SBS, test statistics over
many intervals of small/moderate lengths are calculated and the sequential asymptotics is not accurate in approximating
the finite sample distribution, as compared to its fixed-n counterpart. The superiority and robustness of our estimation
algorithm is corroborated in a small simulation study.

The rest of the paper is organized as follows. In Section 2, we define the spatial signed SN test. Section 3 studies the
asymptotic behavior of the test under both null and local alternatives. Extensions to estimating multiple change-points
are elaborated in Section 4. Numerical studies for testing are relegated to Section 5. Section 6 contains a real data example
and Section 7 concludes. All proofs with auxiliary lemmas are given in the appendix. Additional simulation results are
provided in the online supplementary material. Throughout the paper, we denote

P
→ as the convergence in probability,

D
as the convergence in distribution and ⇝ as the weak convergence for stochastic processes. The notations 1d and 0d

re used to represent vectors of dimension d whose entries are all ones and zeros, respectively. For a, b ∈ R, denote
a∧b = min(a, b) and a∨b = max(a, b). For a vector a ∈ Rd, ∥a∥ denotes its Euclidean norm. For a matrix A, ∥A∥F denotes
its Frobenius norm. Denote an ≲ bn if there exists M, C > 0 such that an ≤ Cbn for n > M , and let an ≍ bn if an ≲ bn and
bn ≲ an. Let S(X) = X/∥X∥1(X ̸= 0) denote the spatial sign of a vector X .

2. Test statistics

Let {Xi}
n
i=1 be a sequence of i.i.d Rp-valued random vectors with mean 0p and covariance Σ . We assume that the

observed data {Yi}
n
i=1 satisfies Yi = µi +Xi, where µi ∈ Rp is the mean at time i. We are interested in the following testing

problem:

H0 : µ1 = · · · = µn, v.s. H1 : µ1 = · · · = µk∗ ̸= µk∗+1 = · · · = µn, for some 2 ≤ k∗
≤ n − 1. (1)

In (1), under the null, the mean vectors are constant over time while under the alternative, there is one change-point at
unknown time point k∗.

Building on the two-sample U-statistic of [6] by Chen and Qin, it seems natural to consider the following test statistic,

CQn := sup
k=2,...,n−2

D(k; 1, n),

where for 1 ≤ l ≤ k < m ≤ n,

D(k; l,m) =

∑
l≤j1,j3≤k

∑
k+1≤j2,j4≤m

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 ). (2)
j1 ̸=j3 j2 ̸=j4

2
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owever, as pointed out by [28], the limiting distribution of (properly standardized) D(k; 1, n) depends on some unknown
uisance parameter, which relies heavily on the covariance (correlation) structure of Yi and is typically unknown in
ractice. One may replace the unknown nuisance parameter with a consistent estimator, and this is indeed adopted in high
imensional one-sample or two-sample testing problems, see, e.g., [5,6]. Unfortunately, in the context of change-point
esting, the unknown location k∗ makes this method practically unreliable. To this end, [28] applied SN technique in [24]
o avoid the consistent estimation of unknown nuisance parameter. SN technique was initially developed in [22,24] in the
ow dimensional time series setting and its main idea is to use an inconsistent variance estimator (i.e. self-normalizer)
hich is based on recursive subsample test statistic, so that the limiting distribution is pivotal under the null. See [23]

or a recent review. In particular, the SN based test statistic in [28] is defined as

Tn := sup
k=4,...,n−4

(D(k; 1, n))2

Wn(k; 1, n)
, (3)

where D(k; l,m) is defined in (2), and

Wn(k; l,m) =
1
n

k−2∑
t=l+1

D(t; l, k)2 +
1
n

m−2∑
t=k+2

D(t; k,m)2.

The test statistic Tn is applied to the level, and its asymptotic validity requires the existence of sixth moments and weak
componentwise dependence assumption; see [28]. Motivated by the success of multivariate spatial sign test [19,20], we
propose to modify the test statistic (3) to accommodate for heavy-tailedness. Consider the following spatial signed SN
test statistic:

T (s)
n := sup

k=4,...,n−4

(D(s)(k; 1, n))2

W (s)
n (k; 1, n)

, (4)

where for 1 ≤ l ≤ k < m ≤ n,

D(s)(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

S(Yj1 − Yj2 )
⊤S(Yj3 − Yj4 ), (5)

W (s)
n (k; l,m) =

1
n

k−2∑
t=l+1

D(s)(t; l, k)2 +
1
n

m−2∑
t=k+2

D(s)(t; k + 1,m)2. (6)

Here, the superscript (s) is used to highlight the role of spatial sign plays in constructing the testing statistic. Note that
S(Yi−Yj) takes value in the unit sphere of Rp, its Euclidean norm thus possesses much higher moments than the non-spatial
signed counterpart, making the test statistic (4) robust to heavy-tailedness.

Remark 1. Note if k = k∗, then 4−1
(k∗
2

)−1(n−k∗
2

)−1
D(s)(k; 1, n) is an unbiased estimator for ∥E[S(Y1 − Yn)]∥2. Hence, our

spatial signed test targets at ∥E[S(Y1 −Yn)]∥. Note Xi −Xj is symmetric about 0p, H0 holds if and only if ∥E[S(Yi −Yj)]∥ = 0
for all i ̸= j, see Theorem 2.1 in [20].

3. Theoretical properties

We first introduce the concept of ρ-mixing, see e.g. [3]. Typical ρ-mixing sequences include i.i.d sequences, m-
dependent sequences, stationary strong ARMA processes and many Markov chain models.

Definition 1 (ρ-mixing). A sequence of random variables ξi ∈ R, denoted by (ξ1, ξ2, . . .) is said to be ρ-mixing if

ρ(d) = sup
k≥1

sup
f∈Fk

1 ,g∈F∞
d+k

|Corr(f , g)| → 0, as d → ∞.

where Corr(f , g) denotes the correlation between f and g , and F j
i is the σ -field generated by (ξi, ξi+1, . . . , ξj). Here ρ(·)

is called the ρ-mixing coefficient of (ξ1, ξ2, . . .).

3.1. Assumptions

To analyze the asymptotic behavior of T (s)
n , we make the following assumptions.

Assumption 1. {Xi}
n
i=1 are i.i.d copies of ξ , where ξ is formed by the first p observations from a sequence of strictly

stationary and ρ-mixing random variables (ξ1, ξ2, . . .) such that Eξ1 = 0 and Eξ 2
1 = σ 2.

Assumption 2. The ρ-mixing coefficients of ξ satisfy
∑

∞
ρ(2k) < ∞.
k=1

3
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Assumptions 1 and 2 are imposed in [5] to analyze the behavior of spatial sign based two-sample test statistic for the
equality of high dimensional mean. In particular, Assumption 1 allows us to analyze the behavior of T (s)

n under the fixed-n
scenario by letting p go to infinity alone. Assumption 2 allows weak dependence among the p coordinates of the data,
and similar assumptions are also made in, e.g. [28,31]. The strict stationary assumption can be relaxed with additional
conditions and the scenario that corresponds to strong coordinate-wise dependence is provided in Section 3.4

3.2. Limiting null

We begin by deriving the limiting distribution of T (s)
n when n is fixed while letting p → ∞, and then analyze the large

sample behavior of the fixed-n limit by letting n → ∞. The sequential asymptotics is fairly common in statistics and
econometrics, see [21].

Theorem 1. Suppose Assumptions 1 and 2 hold, then under H0: (i) for any fixed n ≥ 8, as p → ∞, we have

T (s)
n

D
→ Tn, Tn

D
→ Tn,

where

Tn := sup
k=4,...,n−4

nG2
n(

k
n ;

1
n , 1)∑k−2

t=2 G2
n(

t
n ;

1
n ,

k
n ) +

∑n−2
t=k+2 G2

n(
t
n ;

k+1
n , 1)

,

with

Gn

( k
n
;
l
n
,
m
n

)
=

(m − l)
n

(m − k − 1)
n

Qn

( l
n
,
k
n

)
+

(m − l)
n

(k − l)
n

Qn

(k + 1
n

,
m
n

)
−

(k − l)
n

(m − k − 1)
n

Qn

( l
n
,
m
n

)
,

nd Qn(·, ·) is a centered Gaussian process defined on [0, 1]2 with covariance structure given by:

Cov (Qn(a1, b1),Qn(a2, b2))

= n−2(⌊nb1⌋ ∧ ⌊nb2⌋ − ⌊na1⌋ ∨ ⌊na2⌋)(⌊nb1⌋ ∧ ⌊nb2⌋ − ⌊na1⌋ ∨ ⌊na2⌋ + 1)1(b1 ∧ b2 > a1 ∨ a2).

(ii) Furthermore, if n → ∞, then

Tn
D
→ T := sup

r∈(0,1)

G(r; 0, 1)2∫ r
0 G(u; 0, r)2du +

∫ 1
r G(u; r, 1)2du

, (7)

with

G(r; a, b) = (b − a)(b − r)Q (a, r) + (r − a)(b − a)Q (r, b) − (r − a)(b − r)Q (a, b),

nd Q (·, ·) is a centered Gaussian process defined on [0, 1]2 with covariance structure given by:

Cov(Q (a1, b1),Q (a2, b2)) = (b1 ∧ b2 − a1 ∨ a2)21(b1 ∧ b2 > a1 ∨ a2).

Theorem 1(i) states that for each fixed n ≥ 8, when p → ∞, the limiting distribution Tn is a functional
f Gaussian process, which is pivotal and can be easily simulated, see Table 1 for tabulated quantiles with n ∈

10, 20, 30, 40, 50, 100, 200} (based on 50,000 Monte Carlo replications). Theorem 1(ii) indicates that Tn converges in
istribution as n diverges, which is indeed supported by Table 1. In fact, T is exactly the same as the limiting null
istribution obtained in [28] under the joint asymptotics when both p and n diverge at the same time.
Our spatial signed SN test builds on the test by [5], where an estimator Σ̂ for the covariance Σ is necessary as indicated

y Section 2.1 therein. However, if the sample size n is fixed, their estimator Σ̂ is only unbiased but not consistent. In
ontrast, the SN technique adopted in this paper enables us to avoid such estimation, and thus makes the fixed n inference
easible in practice. It is worth noting that the test statistics T (s)

n and Tn share the same limiting null under both fixed-n
symptotics and sequential asymptotics.
Our test statistic is based on the spatial signs and only assumes finite second moment, which is much weaker than

he sixth moment in [28] under joint asymptotics of p and n. The fixed-n asymptotics provides a better approximation
o the finite sample distribution of T (s)

n and Tn when n is small or moderate. So its corresponding critical value should be
referred than the counterparts derived under the joint asymptotics. Thus, when data is heavy-tailed and data length is
hort, our test is more appealing.

.3. Power analysis

Denote δ = µn − µ1 as the shift in mean under the alternative, and ι2 = limp→∞ p−1
∥δ∥2 as the limiting average

ignal. Next, we study the behavior of the test under both fixed (ι > 0) and local alternatives (ι = 0).
We first consider the case when the average signal is non-diminishing.

ssumption 3. (i) ι > 0, (ii) np∥Σ∥
−1

→ ∞ as p → ∞.
F

4
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Table 1
Simulated 100γ%th quantiles of Tn based on 50,000 Monte Carlo replications using
sequences of i.i.d. N (0, 1) variables.
n\γ 80% 90% 95% 99% 99.5% 99.9%

10 1681.5 3080.0 5167.8 14334.1 20405.9 46201.9
20 719.0 1124.3 1624.1 3026.2 3810.6 5899.5
30 633.7 965.1 1350.5 2403.6 2988.8 4748.0
40 609.7 926.5 1283.0 2292.3 2750.0 4035.7
50 596.2 889.3 1225.0 2187.0 2624.7 3846.5
100 594.5 881.9 1200.3 2066.4 2482.5 3638.7
200 592.1 878.2 1195.3 2049.3 2456.7 3533.4

Here Assumption 3(ii) is quite mild and can be satisfied by many weak dependent sequences such as ARMA sequences.

Theorem 2 (Fixed Alternative). Suppose Assumptions 1–3 hold, then

T (s)
n

P
→ ∞, Tn

P
→ ∞

Theorem 2 shows that when average signal is non-diminishing, then both T (s)
n and Tn are consistent tests. Next, we

analyze T (s)
n under local alternatives when ι = 0.

Assumption 4. (i) ι = 0, (ii) δ⊤Σδ = o(∥Σ∥
2
F ) as p → ∞.

Assumption 4 regulates the behavior of the shift size, and is used to simplify the theoretical analysis of T (s)
n under

local alternatives. Similar assumptions are also made in [5]. Clearly, when Σ is the identity matrix, Assumption 4(ii)
automatically holds if ι = 0.

Theorem 3 (Local Alternative). Suppose Assumptions 1, 2 and 4 hold. Assume there exists a k∗ such that µi = µ, i ∈ {1, . . . , k∗
}

and µi = µ + δ, i ∈ {k∗
+ 1, . . . , n}. Then for any fixed n, as p → ∞,

(i) if n∥Σ∥
−1
F ∥δ∥2

→ ∞, then T (s)
n

P
→ ∞ and Tn

P
→ ∞;

(ii) if n∥Σ∥
−1
F ∥δ∥2

→ 0, then T (s)
n

D
→ Tn and Tn

D
→ Tn;

(iii) if n∥Σ∥
−1
F ∥δ∥2

→ cn ∈ (0, ∞), then T (s)
n

D
→ Tn(cn, ∆n), and Tn

D
→ Tn(cn, ∆n), where

Tn(cn, ∆n) = sup
k=4,...,n−4

n[
√
2Gn( kn ;

1
n , 1) + cn∆n( kn ;

1
n , 1)]

2∑k−2
t=2 [

√
2Gn( t

n ;
1
n ,

k
n ) + cn∆n( t

n ;
1
n ,

k
n )]

2 +
∑n−2

t=k+2[
√
2Gn( t

n ;
k+1
n , 1) + cn∆n( t

n ;
k+1
n , 1)]2

,

and

∆n

( k
n
;
l
n
,
m
n

)
=

⎧⎪⎪⎨⎪⎪⎩
4(k−l+1

2 )(m−k∗
2 )

n4
, l < k ≤ k∗ < m;

4(k
∗
−l+1
2 )(m−k

2 )
n4

, l < k∗ < k < m;

0, otherwise.

Furthermore, if limn→∞ cn = c ∈ (0, ∞), then as n → ∞,

Tn(cn, ∆n)
D
→ T (c, ∆) (8)

where

T (c, ∆) := sup
r∈[0,1]

{
√
2G(r; 0, 1) + c∆(r, 0, 1)}2∫ r

0 {
√
2G(u; 0, r) + c∆(u, 0, r)}2du +

∫ 1
r {

√
2G(u; r, 1) + c∆(u, r, 1)}2du

,

nd for b∗
= limn→∞(k∗/n),

∆(r, a, b) :=

⎧⎨⎩
(b∗

− a)2 (b − r)2, a < b∗
≤ r < b;

(r − a)2 (b − b∗)2 , a < r < b∗ < b;
0, otherwise.

The above theorem implies that the asymptotic power of T (s)
n and Tn depends on the joint behavior of δ and ∥Σ∥F ,

olding n as fixed. If Σ is the identity matrix, then T (s)
n and Tn will exhibit different power behaviors according to

hether ∥δ∥/p1/4 converges to zero, infinity, or some positive constant. In addition, under the local alternative, the limiting
istribution of T (s)

n and Tn under the sequential asymptotics coincides with that in [28] under the joint asymptotics, see
heorem 3.5 therein. In Fig. 1, we plot T (c, ∆) at 10%, 50% and 90% quantile levels with b∗ fixed at 1/2 and it suggests
hat T (c, ∆) is stochastically increasing with c , which further supports the consistency of both tests.
5
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Fig. 1. T (c, ∆) (see details below (8)) at 10%, 50% and 90% quantile levels with b∗ fixed at 1/2, based on 50,000 Monte Carlo simulations.

Remark 2. Let ρ2
= ∥δ∥2k∗(n − k∗)/n be the signal strength parameter. In [16], the minimax rate for detection of a fully

dense change-point under i.i.d. Gaussian assumption is shown to be ρ2
≍ ∥Σ∥F

√
log log(8n) ∨ ∥Σ∥op log log(8n), where

Σ∥op denotes the operator norm of Σ , see Theorem 7 therein. Therefore, in view of Theorem 3, if n is fixed, both Tn and
(s)
n indeed achieve the minimax rate. When k∗/n = τ ∈ (0, 1) as n diverges, in [31], it is shown that Tn is rate-optimal
up to a logarithmic factor of n) under the joint asymptotics when both n, p → ∞.

.4. Analysis under stronger dependence structure

In this section, we focus on a special class of probability models for high dimensional data termed ‘‘randomly scaled
-mixing (RSRM)’’ sequence.

efinition 2 (RSRM, [5]). A sequence (η1, η2, . . .) is a randomly scaled ρ-mixing sequence if there exist a zero mean
-mixing sequence (ξ1, ξ2, . . .) and an independent positive non-degenerate random variable R such that ηi = ξi/R,
∈ {1, 2, . . .}.

RSRM sequences introduce stronger dependence structure among the coordinates than ρ-mixing sequences, and many
odels fall into this category, see, e.g. non-Gaussian sequences in [4] and elliptically symmetric models in [26].

ssumption 5. Suppose Yi = Xi/Ri + µi, where {Xi}
n
i=1 satisfies Assumptions 1 and 2, and {Ri}

n
i=1 are i.i.d. copies of a

ositive random variable R.

Clearly, when R is degenerate (i.e., a positive constant), Assumption 5 reduces to the model assumed in previous
ections. However, when R is non-degenerate, Assumption 5 imposes stronger dependence structure on coordinates of Yi
han ρ-mixing sequences, and hence result in additional theoretical difficulties. We refer to [5] for more discussions of
SRM sequences.

heorem 4. Suppose Assumption 5 holds, then under H0,
i) let Rn = {Ri}

n
i=1, for any fixed n ≥ 8, if E(R2

i ) < ∞ and E(R−2
i ) < ∞, as p → ∞, there exist two random variables T (Rn,s)

n

nd T (Rn)
n dependent on Rn such that,

T (s)
n

D
→ T (Rn,s)

n , Tn
D
→ T (Rn)

n .

ii) Furthermore, if we further assume E(R4
i ) < ∞ and E(R−4

i ) < ∞, then as n → ∞, we have

T (Rn,s)
n

D
→ T , T (Rn)

n
D
→ T ,

where T is defined in (7).

In general, if the sample size n is small and Yi is generated from an RSRM sequence, the unconditional limiting
distributions of T (s)

n and Tn as p → ∞ are no longer pivotal due to the randomness in Ri. Nevertheless, using the
ivotal limiting distribution Tn in hypothesis testing can still deliver relatively good performance for T (s)

n in both size
nd power, see Section 5 for numerical evidence. If n is also diverging, the same pivotal limiting distribution as presented
n Theorem 1(ii) and in Theorem 3.4 of [28] can still be reached.
6
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Let ΣY be the covariance of Yi (or equivalently Xi/Ri), the next theorem provides with the asymptotic behavior under
local alternative for the RSRM model.

Theorem 5. Suppose Assumptions 4 and 5 hold, then under the local alternative such that n∥ΣY∥
−1
F ∥δ∥2

→ cn ∈ (0, ∞),
(i) let Rn = {Ri}

n
i=1, for any fixed n ≥ 8, if E(R2

i ) < ∞ and E(R−2
i ) < ∞, as p → ∞, there exist two random variables

T (Rn,s)
n (∆(Rn,s)

n ) and T (Rn)
n (∆n) dependent on Rn such that,

T (s)
n

D
→ T (Rn,s)

n (cn, ∆(Rn,s)
n ), Tn

D
→ T (Rn)

n (cn, ∆n).

(ii) Furthermore, if we assume E(R4
i ) < ∞ and E(R−4

i ) < ∞, and limn→∞ cn = c ∈ (0, ∞), then as n → ∞, we have

T (Rn,s)
n (cn, ∆(Rn,s)

n )
D
→ T (Kc, ∆), T (Rn)

n (cn, ∆(Rn)
n )

D
→ T (c, ∆),

where T (c, ∆) is defined in (8), and

K = E−1
[ R1R2√

(R2
1 + R2

3)(R
2
2 + R2

3)

]
E(R−2

1 )E2
[ R1R2√

R2
1 + R2

2

]
> 1

is a constant.

For the RSRM model, similar to Theorem 4(i), the fixed-n limiting distributions of T (s)
n and Tn are non-pivotal under local

alternatives. However, the distribution of T (s)
n under sequential limit is pivotal T (Kc, ∆) while that of Tn is T (c, ∆). The

multiplicative constant K > 1 suggests that for the RSRM model, using T (s)
n could be more powerful as T (c, ∆) is expected

to be monotone in c , see Fig. 1. This finding coincides with [5] where they showed that using spatial sign based U-statistics
for testing the equality of two high dimensional means could be more powerful than the conventional mean-based ones
in [6]. Thus, when strong coordinate-wise dependence is exhibited in the data, T (s)

n is more preferable.

4. Multiple change-point estimation

In real applications, in addition to change-point testing, another important task is to estimate the number and
locations of these change-points. In this section, we assume there are m ≥ 1 change-points and are denoted by
k = (k1, . . . , km) ⊂ {1, . . . , n}. A commonly used algorithm for many practitioners would be binary segmentation (BS),
where the data segments are recursively split at the maximal points of the test statistics until the null of no change-points
is not rejected for each segment. However, as criticized by many researchers, BS tends to miss potential change-points
when non-monotonic change patterns are exhibited. Hence, many algorithms have been proposed to overcome this
drawback. Among them, wild binary segmentation (WBS) by [9] and its variants have become increasingly popular because
of their easy-to-implement procedures. The main idea of WBS is to perform BS on randomly generated sub-intervals
so that some sub-intervals can localize at most one change-point (with high probability). As pointed out by [14], WBS
relies on randomly generated sub-intervals and different researchers may obtain different estimates. Hence, [14] propose
seeded binary segmentation (SBS) algorithm based on deterministic construction of these sub-intervals with relatively
cheaper computational costs so that results are replicable. To this end, we combine the spatial signed SN test with SBS to
achieve the task of multiple change-point estimation, and we call it SBS-SN(s). We first introduce the concept of seeded
sub-intervals.

Definition 3 (Seeded Sub-Intervals, [14]). Let α ∈ [1/2, 1) denote a given decay parameter. For 1 ≤ k ≤ ⌊log1/α(n)⌋
(i.e. logarithm with base 1/α) define the kth layer as the collection of nk intervals of initial length lk that are evenly
shifted by the deterministic shift sk as follows:

Ik =

nk⋃
i=1

{(⌊(i − 1)sk⌋ , ⌈(i − 1)sk + lk⌉)}

where nk = 2
⌈
(1/α)k−1

⌉
− 1, lk = 10⌈nαk−1/10⌉ and sk = (n − lk) / (nk − 1). The overall collection of seeded intervals is

Iα(n) =

⌈log1/α (n)⌉⋃
k=1

Ik.

Let α ∈ [1/2, 1) be a decay parameter, denote Iα(n) as the set of seeded intervals based on Definition 3. For each
sub-interval (a, b) ∈ Iα(n), we calculate the spatial signed SN test

T (s)(a, b) = max
k∈{a+3,...,b−4}

(D(s)(k; a, b))2

W (s)
b−a+1(k; a, b)

, b − a ≥ 7,

where D(s)(k; a, b) and W (s)
b−a+1(k; a, b) are defined in (5) and (6). We obtain the p-value of the sub-interval test statistic

T (s)(a, b) based on the fixed-n asymptotic distribution T . SBS-SN(s) then finds the smallest p-value evaluated at
b−a+1

7
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ll sub-intervals and compare it with a predetermined threshold level ζp. If the smallest p-value is also smaller than
p, denote the corresponding sub-interval where the smallest p-value is achieved as (a∗, b∗) and estimate the change-
oint by k̂ = argmaxk∈{a∗+3,...,b∗−4}{(D(s)(k; a∗, b∗))2/W (s)

b∗−a∗+1(k; a
∗, b∗)}. Once a change-point is identified, SBS-SN(s) then

ivides the data sample into two subsamples accordingly and apply the same procedure to each of them. The process is
mplemented recursively until no change-point is detected. Details are provided in Algorithm 1.

Algorithm 1: SBS-SN(s)

Input: Data {Yt}
n
t=1, threshold p-value ζp ∈ (0, 1), SBS intervals Iα(n).

Output: Estimated number of change-points m̂ and estimated change-points set k̂
Initialization: SBS-SN(s) (1, n, ζp)
Procedure: SBS-SN(s) (a, b, ζp)

1 if b − a + 1 < 8 then
2 Stop
3 else
4 M(a,b) := {i : [ai, bi] ∈ Iα(n), [ai, bi] ⊂ [a, b], bi − ai + 1 ≥ 8} ;
5 for each i ∈ M(a,b), find the p-value pi of T (s)(ai, bi) based on Tbi−ai+1;
6 i∗ = argmini∈M(a,b) pi;
7 if pi∗ < ζp then
8 k∗

= argmaxk∈{ai∗+3,...,bi∗−4}
(D(s)(k;ai∗ ,bi∗ ))

2

W (s)
bi∗ −ai∗ +1(k;ai∗ ,bi∗ )

;

9 k̂ = k̂ ∪ k∗, m̂ = m̂ + 1;
10 SBS-SN(s) (a, k∗, ζp);
11 SBS-SN(s) (k∗

+ 1, b, ζp);
12 else
13 Stop
14 end
15 end

Our SBS-SN(s) algorithm differs from WBS-SN algorithm in [28,31] in two aspects. First, WBS-SN is built on WBS,
hich relies on randomly generated intervals while SBS relies on deterministic intervals. As documented in [14], WBS

s computationally more demanding than SBS. Second, the threshold used in WBS-SN is universal for each sub-interval,
epends on the sample size n and dimension p and needs to be simulated via extensive Monte Carlo simulations. Generally
peaking, WBS-SN requires simulating a new threshold each time for a new dataset. By contrast, our estimation procedure
s based on p-values under the fixed-n asymptotics, which takes into account the interval length b − a + 1 for each
ub-interval (a, b). When implementing either WBS or SBS, inevitably, there will be intervals of small lengths. Hence,
he universal threshold may not be suitable as it does not take into account the effect of different interval lengths. In
rder to alleviate the problem of multiple testing, we may set a small threshold number for ζp, such as 0.001 or 0.005.
urthermore, the WBS-SN requires to specify a minimal interval length which can affect the finite sample performance.
n this work, when generating seed sub-intervals as in Definition 3, the lengths of these intervals are set as integer values
imes 10 to reduce the computational cost for simulating fixed-n asymptotic distribution Tn. Therefore, we only require
the knowledge of {Tn}n=10,20,... for SBS-SN(s) to work, which can be simulated once for good and do not change with a
new dataset.

5. Numerical experiments

This section assesses the performance of T (s)
n with respect to various covariance structure of the data. In the

Supplementary Material, we provide more simulation results including comparisons with [13,18,30], and performances
of our multiple change-point estimation algorithm SBS-SN(s).

Consider the following data generating process with p = 100 and n ∈ {10, 20, 50, 100, 200}:

Yi = δ1(i > 0.5n) + Xi,

where δ represents the mean shift vector, and {Xi}
n
i=1 are i.i.d copies of X based on the following specifications:

(i) X ∼ N (0, Ip);
(ii) X ∼ t5(Ip);
(iii) X ∼ t3(Ip);
(iv) X = (X (1), . . . , X (p))⊤, X (t)

= ρX (t−1)
+ ϵt , t ∈ {1, . . . , p}, where ϵt ∼ N (0, 1)/2 are i.i.d random variables;

(v) X = (X (1), . . . , X (p))⊤, X (t)
= ρX (t−1)

+ ϵt , t ∈ {1, . . . , p}, where ϵt ∼ t5/2 are i.i.d random variables;
(vi) X = R/U , R = (R(1), . . . , R(p))⊤, R(t)

= ρR(t−1)
+ ϵt , t ∈ {1, . . . , p}, where ϵt ∼ N (0, 1)/2 are i.i.d random variables,

and U ∼ Exp(1) is independently generated;
8
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Table 2
Size and power comparison of Tn and T (s)

n for Case (i)–(vii) at 5% significance level based on 1000 replications.
Case Test Limit n Under H0 n Under H1

a n H2
a

10 20 50 100 200 10 20 50 100 200 10 20 50 100 200

(i)
Tn

Tn 5.6 4.8 6.9 4.0 6.4 6.3 6.5 15.2 34.7 77.1 7.3 11.0 34.1 78.0 99.9
T 27.4 9.0 7.4 4.1 6.7 29.9 11.2 16.5 35.2 77.8 33.7 18.1 34.9 78.1 99.9

T (s)
n

Tn 5.5 4.8 6.2 4.3 6.6 6.2 5.9 15.0 33.4 76.7 7.2 10.4 33.3 77.7 99.8
T 28.5 8.7 6.8 4.4 7.1 29.8 10.8 15.7 34.6 77.6 33.5 17.3 34.6 78.6 99.8

(ii)
Tn

Tn 6.9 6.4 6.8 4.3 6.0 7.2 7.2 11.7 18.5 41.4 8.0 8.8 22.0 47.2 87.3
T 31.8 12.6 7.6 4.3 6.2 31.8 12.4 12.8 19.0 42.5 33.9 15.3 22.9 47.5 87.4

T (s)
n

Tn 5.3 5.3 6.2 4.1 5.6 5.7 5.5 11.8 26.1 59.6 6.4 8.1 26.7 62.9 96.8
T 28.2 9.7 6.7 4.2 5.7 28.5 10.0 12.6 27.0 60.4 30.8 14.4 28.0 63.2 96.8

(iii)
Tn

Tn 9.0 9.5 9.2 6.7 7.9 10.0 10.4 11.8 14.2 25.7 9.8 12.3 17.9 27.9 57.5
T 35.8 16.1 9.6 6.9 8.5 35.6 16.1 12.6 14.7 26.0 36.8 18.7 18.8 28.7 58.2

T (s)
n

Tn 5.6 5.0 6.4 4.8 6.4 5.7 4.9 10.5 21.2 50.2 6.2 6.9 21.9 53.0 93.4
T 27.5 9.6 7.0 4.9 6.8 29.2 9.3 11.4 21.7 50.8 28.6 12.8 23.0 53.9 93.7

(iv)
Tn

Tn 5.9 4.8 6.1 6.8 5.4 6.5 8.6 23.5 46.4 78.8 9.3 14.7 43.2 83.8 99.6
T 28.1 9.2 6.7 6.9 5.7 30.9 13.8 24.6 47.4 79.1 33.9 20.1 44.4 84.0 99.6

T (s)
n

Tn 4.8 3.9 6.0 6.3 5.4 5.5 7.1 22.5 44.2 77.9 6.9 13.0 41.5 84.1 99.8
T 27.6 8.2 6.5 6.6 5.4 30.6 12.2 23.5 45.3 78.1 33.1 18.8 43.0 84.6 99.8

(v)
Tn

Tn 7.0 7.6 6.0 6.8 6.1 8.6 11.1 17.5 30.1 54.2 9.4 11.3 26.7 56.7 94.0
T 33.5 12.9 6.6 7.2 6.1 33.6 16.9 17.9 30.4 54.6 34.4 18.3 27.9 57.1 94.2

T (s)
n

Tn 5.3 4.4 5.0 6.9 5.2 6.1 7.5 18.5 37.1 65.2 5.6 9.4 35.2 73.7 98.7
T 29.3 8.5 5.3 7.5 5.5 30.5 11.8 19.0 37.7 65.6 30.6 14.1 35.8 74.2 98.8

(vi)
Tn

Tn 34.7 39.7 39.2 34.6 33.6 34.6 40.7 39.4 35.6 34.2 35.0 39.6 40.1 34.3 33.8
T 60.2 46.7 40.5 34.9 34.1 62.5 47.5 40.3 36.1 34.8 60.6 46.9 41.0 34.4 34.1

T (s)
n

Tn 5.0 4.2 5.3 5.9 5.9 6.0 4.8 11.3 20.1 35.3 5.6 7.1 16.8 37.2 73.5
T 27.9 8.6 5.7 6.2 6.1 28.1 10.0 12.0 20.3 35.4 28.2 11.9 17.6 38.0 74.0

(vii)
Tn

Tn 33.7 40.6 37.9 36.5 36.6 34.3 40.3 37.9 37.0 36.9 33.5 40.6 38.3 36.9 36.8
T 61.9 47.3 38.6 37.2 36.8 62.2 46.5 39.1 37.4 37.1 61.5 47.7 39.8 37.7 36.9

T (s)
n

Tn 4.3 4.4 5.2 6.4 6.0 5.1 6.2 9.5 17.5 32.9 5.1 5.8 14.1 28.5 62.5
T 30.2 8.4 5.5 6.7 6.5 30.6 10.1 10.2 17.7 33.5 30.4 9.2 15.3 29.1 63.0

(vii) X = R/U , R = (R(1), . . . , R(p))⊤, R(t)
= ρR(t−1)

+ ϵt , t ∈ {1, . . . , p}, where ϵt ∼ t5/2 are i.i.d random variables, and
U ∼ Exp(1) is independently generated;

where tν(Ip) is the multivariate t distribution with degree of freedom ν and covariance Ip; Exp(1) is the exponential
distribution with mean 1.

Case (i) assumes that coordinates of X are independent and light-tailed; Cases (ii) and (iii) consider the scenario
of heavy-tailedness of X; Cases (iv) and (v) assume the coordinates of X are consecutive random observations from a
stationary AR(1) model with autoregressive coefficient ρ = 0.7; and Cases (vi) and (vii) assume the coordinates of X are
generated from an RSRM with ρ = 0.7.

Table 2 shows the empirical rejection rate of Tn and T (s)
n in percentage based on 1000 replications under the null

with H0 : δ = 0; dense alternative H1
a : δ = 1/

√
p1p; and sparse alternative H2

a : δ = (1⊤

2 , 0⊤

p−2)
⊤. We compare the

approximation using the limiting null distribution of fixed-n asymptotics Tn and sequential asymptotics T at 5% level.
We summarize the findings of Table 2 as follows: (1) both Tn and T (s)

n suffer from severe size distortion using sequential
symptotics T if n is small (i.e., n ∈ {10, 20, 50}); (2) both fixed-n asymptotics Tn and large-n asymptotics T work well
or Tn and T (s)

n when n is large under weak dependence in coordinates (cases (i)–(v)); (3) Tn and T (s)
n are both accurate

in size and comparable in power performance when Xi’s are light-tailed (cases (i),(ii), (iv) and (v)) if appropriate limiting
distributions are used; (4) Tn is slightly oversized compared with T (s)

n under heavy-tailed distributions (case (iii)); (5)
when strong dependence is exhibited in coordinates (cases (vi) and (vii)), (T (s)

n , Tn) still works for small n while other
combinations of tests and asymptotics generally fail; (6) increasing the data length n enhances power under all settings
while increasing dependence in coordinates generally reduces power. Overall, the spatial signed SN test using fixed-n
asymptotic critical value outperforms (or is comparable with) all other tests and should be preferred due to its robustness
and size accuracy.

6. Data application

In this section, we analyze the genomic micro-array (ACGH) dataset for 43 individuals with bladder tumor. The ACGH
data contains log intensity ratios of these individuals measured at 2215 different loci on their genome, and copy number
variations in the loci can be viewed as the change-point in the genome. Hence change-point estimation could be helpful
in determining the abnormality regions, as analyzed by [27,31]. The data is denoted by {Y }

2215.
i i=1

9
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t
a

Fig. 2. Hill’s estimator (9) for 43 individuals based on the ascending order statistics Y(i),j of the jth individual, j ∈ {1, . . . , 43}, i ∈ {1, . . . , 2215}.

To illustrate the necessity of robust estimation method proposed in this paper, we use Hill’s estimator to estimate the
ail index of a sequence, see [10]. Specifically, let Y(i),j be the ascending order statistics of the jth individual (coordinate)
cross 2215 observations. For j ∈ {1, 2, . . . , 43}, we give the left-tail and right-tail Hill estimators respectively by

H1k,j =

{
1
k

k∑
i=1

log
(

Y(i),j

Y(k+1),j

)}−1

, H2k,j =

{
1
k

k∑
i=1

log
(
Y(n−i+1),j

Y(n−k),j

)}−1

, (9)

and they are plotted in Fig. 2. From the plot, we see that most of the right-tail and the left-tail indices are below 3,
suggesting the data is very likely heavy-tailed.

We take the first 200 loci for our SBS-SN(s) change-point estimation following the practice in [31], where the decay
rate for generation of seeded interval in SBS is 2−1/4. We also compare the results obtained for Adaptive WBS-SN in [31]
and 20 most significant points detected by INSPECT in [27]. For this dataset, INSPECT is more like a screening method as it
delivers a total of 67 change-points. In contrast to Adaptive WBS-SN and INSPECT where the thresholds for change-point
estimation are simulated, the threshold used in SBS-SN(s) can be pre-specified, and it reflects a researcher’s confidence in
detecting the change-points. We set the p-value threshold ζp as 0.001, 0.005 and 0.01 and the results are as follows:

Adaptive WBS-SN 15, 32, 38, 44, 59, 74, 91, 97, 102, 116, 134, 158, 173, 186, 191
INSPECT 15, 26, 28, 33, 36, 40, 56, 73, 91, 97, 102, 119, 131, 134, 135, 146, 155,

174, 180, 191
SBS-SN(s), ζp = 0.001 30, 41, 72, 89, 130, 136, 174
SBS-SN(s), ζp = 0.005 30, 41, 56, 72, 89, 97, 116, 130, 136, 155, 174, 191
SBS-SN(s), ζp = 0.01 30, 41, 56, 72, 89, 97, 111, 116, 130, 136, 155, 174, 191

As we see, increasing the p-value threshold ζp leads to more estimated change-points, and the set of estimated change-
points by using larger ζp contain those by smaller ζp as subsets. In addition, increasing ζp from 0.005 to 0.01 only brings
in one more estimated change-point, suggesting ζp = 0.005 may be a reasonable choice for the ACGH dataset.

All of our detected change-points at ζp = 0.005 are also detected by INSPECT, i.e., 30(28), 41(40), 56, 72(73), 89(91), 97,
116, 130(131), 136 (134,135), 155, 174, 191. Although most of these points also coincide with Adaptive WBS-SN, there
are non-overlapping ones. For example, 41, 56, 130 in SBS-SN(s) seem to be missed in Adaptive WBS-SN while 102 is
missed by our SBS-SN(s) as it is detected by both Adaptive WBS-SN and INSPECT. These results are not really in conflict as
Adaptive WBS-SN targets both sparse and dense alternatives, whereas our procedure aims to detect dense change with
robustness properties.

7. Conclusion

In this paper, we propose a new method for testing and estimation of change-points in high dimensional independent
data. Our test statistic builds on two recent advances in high-dimensional testing problem: spatial sign used in two-sample
testing in [5] and self-normalized U-statistics in [28], and inherits many advantages therein such as robustness to heavy-
tailedness and tuning-free. The test is theoretically justified under both fixed-n asymptotics and sequential asymptotics,
and under both null and alternatives. When data exhibits stronger dependence in coordinates, we further enhance the
analysis by focusing on RSRM models, and discover that using spatial sign leads to power improvement compared with
mean based tests in [28]. As for multiple change-point estimation, we propose to combine p-values under the fixed-n
10
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symptotics with the SBS algorithm. Numerical simulations demonstrate that our fixed-n asymptotics for spatial sign
ased test provides a better approximation to the finite sample distribution, and the estimation algorithm outperforms
he mean-based ones when data is heavy-tailed and when coordinates are strongly dependent.

To conclude, we mention a few interesting topics for future research. Our method builds on spatial sign and targets
ense signals by constructing unbiased estimators for ∥ES(Y1 − Yn)∥. As pointed out by [18], many real data exhibit both
parse and dense changes, and it would be interesting to combine with the adaptive SN based test in [31] to achieve both
obustness and adaptiveness. In addition, the independence assumption imposed in this paper may limit its applicability
o high dimensional time series where temporal dependence cannot be neglected. Methodologically, we believe the time
eries extension based on our proposed test and a trimming technique should be possible, following the non-spatial
igned time series extension considered in [28]. It would also be interesting to develop robust methods for detecting
hange-points in other quantities beyond mean, such as quantiles, covariance matrices and parameter vectors in high
imensional linear models.
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ppendix A. Proofs of theorems

In what follows, let xi,k denote the kth coordinate of a vector xi.

roof of Theorem 1. First, we have that

∥Yi − Yj∥
2

=

p∑
ℓ=1

(Xi,ℓ − Xj,ℓ)2 + 2(µj − µi)⊤(Xj − Xi) + ∥µi − µj∥
2. (10)

(i) Under H0, by Theorem 8.2.2 in [15], as p → ∞, we have almost surely,

1
p
∥Yi − Yj∥

2
= 2σ 2. (11)

hen, for any fixed k, l,m, we have that

D(s)(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

2pσ 2

+

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

2pσ 2

{
2pσ 2

∥Yj1 − Yj2∥∥Yj3 − Yj4∥
− 1

}

=:(2pσ 2)−1
[D1(k; l,m) + D2(k; l,m)],

(12)

where clearly D1(k; l,m) = D(k; l,m), and

D2(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

{
2pσ 2

∥Yj1 − Yj2∥∥Yj3 − Yj4∥
− 1

}
.

Then, Theorem 4.0.1 in [15] implies that

Γ −1/2(k; l,m)
{
D1(k; l,m)

}
D
→ N (0, 1),
(m − k)(m − k − 1)(k − l + 1)(k − l)
11
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here Γ (k; l,m) =
2[(m−l)(m−l−1)]

(m−k)(m−k−1)(k−l+1)(k−l) tr(Σ
2), or equivalently

1
n3∥Σ∥F

{
D1(k; l,m)

}
D
→ N

(
0,

16
(m−l

2

)(k−l+1
2

)(m−k
2

)
n6

)
. (13)

Next, since we view n as fixed, then for all j1 ̸= j3, j3 ̸= j4, by Theorem 4.0.1 in [15], it follows that ∥Σ∥
−1
F (Yj1 −

Yj2 )
⊤(Yj3 − Yj4 ) = Op(1). In addition, in view of (11) we have 2pσ2

∥Yj1−Yj2 ∥∥Yj3−Yj4 ∥
− 1 = op(1), and this implies that

n−3
∥Σ∥

−1
F D2(k; l,m) = op(1).

Hence, combined with (13), we have

T (s)
n = sup

k=4,...,n−4

(
2pσ 2n−3

∥Σ∥
−1
F D(s)(k; 1, n)

)2

4pσ 4n−6∥Σ∥
−2
F W (s)

n (k; 1, n)
= sup

4,...,n−4

n−6
∥Σ∥

−2
F [D1(k; 1, n) + D2(k; 1, n)]2

n−6∥Σ∥
−2
F Wn(k; 1, n)

+ op(1)

= Tn + op(1),

(14)

here the last equality holds since n−3
∥Σ∥

−1
F D2(k; l,m) = op(1) for each triplet (k, l,m).

For 0 ≤ k < m ≤ n, we let Z(k,m) =
∑m

i=k+1
∑i−1

j=k X
⊤

i Xj, then it follows that

D(k; l,m) = 2(m − k)(m − k − 1)Z(l, k) + 2(k − l + 1)(k − l)Z(k + 1,m)
− 2(k − l)(m − k − 1)[Z(l,m) − Z(l, k) − Z(k + 1,m)].

(15)

hen, by Lemma 1, and continuous mapping theorem, we have

Tn
D
→ sup

k=4,...,n−4

nG2
n(

k
n ;

1
n , 1)∑k−1

t=2 G2
n(

t
n ;

1
n ,

k
n ) +

∑n−2
t=k+2 G2

n(
t
n ;

k+1
n , 1)

.

(ii) The proof is a simplified version of the proof of Theorem 4(ii), hence omitted here. □

Proof of Theorem 2. Clearly,

T (s)
n = sup

k=4,...,n−4

(D(s)(k; 1, n))2

W (s)
n (k; 1, n)

≥
(D(s)(k∗

; 1, n))2

W (s)
n (k∗; 1, n)

,

and

Tn = sup
k=4,...,n−4

(D(k; 1, n))2

Wn(k; 1, n)
≥

(D(k∗
; 1, n))2

Wn(k∗; 1, n)
,

Note that W (s)
n (k; 1, n) =

1
n

∑k∗−2
t=2 D(s)(t; 1, k∗)2 +

1
n

∑n−2
t=k∗+2 D

(s)(t; k∗
+ 1, n)2. The construction of D(s)(t; 1, k∗)2 (or

(s)(t; k∗
+ 1, n)2) only uses sample before (or after) the change point, so the change point has no influence on this part.

he proof of Theorem 1 indicates that 4p2n−6
∥Σ∥

−2
F W (s)

n (k; 1, n) = Op(1) and similarly 4n−6
∥Σ∥

−2
F Wn(k; 1, n) = Op(1).

ence, it suffices to show pn−3
∥Σ∥

−1
F D(s)(k∗

; 1, n)
P
→ ∞ and n−3

∥Σ∥
−1
F D(k∗

; 1, n)
P
→ ∞.

Denote δi as the ith element of δ. By (10), for 1 ≤ j1 ̸= j3 ≤ k∗ and k∗
+ 1 ≤ j2 ̸= j4 ≤ n,

p−1
∥Yj1 − Yj2∥

2
= p−1

∥δ∥2
+ p−1

p∑
i=1

(Xj1,i − Xj2,i)2 − p−1
p∑

i=1

2δi(Xj1,i − Xj2,i),

p−1
∥Yj3 − Yj4∥

2
= p−1

∥δ∥2
+ p−1

p∑
i=1

(Xj3,i − Xj4,i)2 − p−1
p∑

i=1

2δi(Xj3,i − Xj4,i),

and

p−1(Yj1 − Yj2 )
⊤(Yj3 − Yj4 ) =p−1

∥δ∥2
+ p−1

p∑
i=1

(Xj1,i − Xj2,i)(Xj3,i − Xj4,i)

− p−1
p∑

i=1

δi(Xj1,i − Xj2,i) − p−1
p∑

i=1

δi(Xj3,i − Xj4,i).

Using Theorem 8.2.2 in [15], and the independence of Xi’s, we have

p−1
∥Yj1 − Yj2∥

2 P
→ ι2 + 2σ 2, p−1

∥Yj3 − Yj4∥
2 P

→ ι2 + 2σ 2, and p−1(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

P
→ ι2.

If ι > 0, then

n−4D(s)(k∗
; 1, n)

P
→ n−4k∗(k∗

− 1)(n − k∗)(n − k∗
− 1)

ι2
> 0,
ι2 + 2σ 2

12
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a

P
b

P

nd

p−1n−4D(k∗
; 1, n)

P
→ n−4(k∗)(k∗

− 1)(n − k∗)(n − k∗
− 1)ι2 > 0.

Hence,

pn−3
∥Σ∥

−1
F D(s)(k∗

; 1, n) = (pn∥Σ∥
−1
F )n−4D(s)(k∗

; 1, n)
P
→ ∞,

and

n−3
∥Σ∥

−1
F D(k∗

; 1, n) = (pn∥Σ∥
−1
F )p−1n−4D(k∗

; 1, n)
P
→ ∞. □

roof of Theorem 3. By symmetry, we only consider the case l < k ≤ k∗ < m. Since under Assumption 4, (11) still holds
y Cauchy–Schwartz inequality, then using similar arguments in the proof of Theorem 1, we have

2pσ 2D(s)(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Xj1 − Xj2 )
⊤(Xj3 − Xj4 )(1 + o(1))

+ (k − l + 1)(k − l)(m − k∗)(m − k∗
− 1)∥δ∥2(1 + o(1))

−

(
2(k − l)(m − k∗)(m − k − 2)

k∑
j=l

X⊤

j δ + 4(k − l)(k − l − 1)(m − k∗)
k∗∑

j=k+1

X⊤

j δ

)
(1 + o(1))

:= D(s)
(1)(k; l,m) + D(s)

(2)(k; l,m) − D(s)
(3)(k; l,m).

(16)

That is, 2pσ 2D(s)(k; l,m) = D(k; l,m)(1+ o(1)) for any triplet (k, l,m), hence it suffices to consider T (s)
n as the results of Tn

are similar.
We first note that

Var(X⊤

i δ) = δ⊤Σδ = o(∥Σ∥
2
F ),

hence by Chebyshev inequality, for any triplet (k, l,m), we have

n−3
∥Σ∥

−1
F D(s)

(3)(k; l,m) = op(1). (17)

(i) By similar arguments in the proof of Theorem 2, it suffices to show

2pσ 2n−3
∥Σ∥

−1
F D(s)(k∗

; 1, n)
P
→ ∞.

In fact, by similar arguments used in the proof of Theorem 1, we can show that

n−3
∥Σ∥

−1
F D(s)

(1)(k; l,m) = Op(1).

Then, recall (16), the result follows by noting

n−3
∥Σ∥

−1
F D(s)

(2)

(
k∗

; 1, n
)

= n−3
∥Σ∥

−1
F (k − l + 1)(k − l)

(
m − k∗

) (
m − k∗

− 1
)
∥δ∥2(1 + o(1)) → ∞.

(ii) As n∥Σ∥
−1
F ∥δ∥2

→ 0, it follows from the same argument as (14).
(iii) As n∥Σ∥

−1
F ∥δ∥2

→ cn ∈ (0, ∞), then we have

n−3
∥Σ∥

−1
F D(s)

(2)(k
∗
;m, l) = n−3

∥Σ∥
−1
F (k − l + 1)(k − l)(m − k∗)(m − k∗

− 1)∥δ∥2(1 + o(1)) → cn
4
(k−l+1

2

)(m−k∗
2

)
n4 .

Therefore, continuous mapping theorem together with Lemma 1 indicate that

T (s)
n

D
→ sup

k=4,...,n−4

n[
√
2Gn( kn ;

1
n , 1) + cn∆n( kn ;

1
n , 1)]

2∑k−2
t=2 [

√
2Gn( t

n ;
1
n ,

k
n ) + cn∆n( t

n ;
1
n ,

k
n )]

2 +
∑n−2

t=k+2[
√
2Gn( t

n ;
k+1
n , 1) + cn∆n( t

n ;
k+1
n , 1)]2

.

The last part of the proof is similar to the proof of Theorem 5(ii) below, and is simpler, hence omitted. □

roof of Theorem 4. (i) Note that

1
p
∥Yi − Yj∥

2
=

1
p

p∑
ℓ=1

(
Xi,ℓ

Ri
−

Xj,ℓ

Rj
)2, (18)

hence given Rn, as p → ∞, we have almost surely
1
∥Yi − Yj∥

2
→ σ 2(R−2

i + R−2
j ). (19)
p
13
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N

=

ote that

pσ 2D(s)(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2

+

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2

{pσ 2(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2

∥Yj1 − Yj2∥∥Yj3 − Yj4∥
− 1

}
=: [D3(k; l,m) + D4(k; l,m)].

(20)

Let

Aj1,j3 (k; l,m) =

∑
k+1≤j2,j4≤m

j2 ̸=j4

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2,

Bj2,j4 (k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2,

Cj1,j2 (k; l,m) = − 2
∑
l≤j3≤k
j3 ̸=j1

∑
k+1≤j4≤m

j4 ̸=j2

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2.

Then under H0,

D3(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

XT
j1Xj3 (Rj1Rj3 )

−1Aj1,j3 (k; l,m) +

∑
k+1≤j2,j4≤m

j2 ̸=j4

XT
j2Xj4 (Rj2Rj4 )

−1Bj2,j4 (k; l,m)

+

∑
l≤j1≤k

∑
k+1≤j2≤m

XT
j1Xj2 (Rj1Rj2 )

−1Cj1,j2 (k; l,m).

Denote that U1 = (XT
1 X2, . . . , XT

1 Xn, XT
2 X3, . . . , XT

2 Xn, . . . , XT
n−1Xn)T which contains all inner products of Xi and Xj for all

i ̸= j, and U2 = (R1, . . . , Rn)T . By definition, σ (U1) ⊥⊥ σ (U2), where σ (U) is the σ−field generated by U , and we
further observe that 2pσ 2D3(k; l,m) is a continuous functional of U1 and U2. Hence to derive the limiting distribution
of 2pσ 2D3(k; l,m) when p → ∞, it suffices to derive the limiting distribution of (U1,U2)T .

For any α ∈ Rn(n−1)/2, similar to the proof of Theorem 1, by Theorem 4.0.1 in [15] we have

∥Σ∥
−1
F αTU1

D
→ αTZ := αT (Z1,2,Z1,3, . . . ,Z1,n,Z2,3, . . . ,Z2,n, . . . ,Zn−1,n)T ,

where Z1,2, . . . ,Zn−1,n are i.i.d. standard normal random variables, and we can assume Z is independent of U2. For the
ease of our notation, we let Zi,j = Zj,i, for all i > j. Furthermore since σ (U1) ⊥⊥ σ (U2), for any α ∈ Rn(n−1)/2 and β ∈ Rn,
the characteristic function of αTU1 + βTU2 is the product of the characteristic function of αTU1 and that of βTU2. By
applying the Cramér–Wold device, (∥Σ∥

−1
F U1,U2)

D
→ (Z,U2). Therefore, by continuous mapping theorem, as p → ∞,

n−3
∥Σ∥

−1
F D3(k; l,m)

D
→ G(Rn,s)

n (k/n; l/n,m/n), (21)

where

G(Rn,s)
n (

k
n
;
l
n
,
m
n
) :=n−3

∑
l≤j1,j3≤k
j1 ̸=j3

Zj1,j3 (Rj1Rj3 )
−1Aj1,j3 (k, l,m) + n−3

∑
k+1≤j2,j4≤m

j2 ̸=j4

Zj2,j4 (Rj2Rj4 )
−1Bj2,j4 (k, l,m)

+ n−3
∑

l≤j1≤k

∑
k+1≤j2≤m

Zj1,j2 (Rj1Rj2 )
−1Cj1,j2 (k, l,m).

(22)

It is clear that the conditional distribution of G(Rn,s)
n (k/n; l/n,m/n) given Rn is Gaussian, and for any l1 < k1 < m1, l2 <

k2 < m2, k1, k2, l1, l2,m1,m2 ∈ {1, 2, . . . , n}, the covariance structure is given by

Cov(G(Rn,s)
n (k1/n; l1/n,m1/n),G(Rn,s)

n (k2/n; l2/n,m2/n)|Rn) (23)

2n−6
{ ∑

(l1∨l2)≤j1,j2≤(k1∧k2)
j1 ̸=j2

R−2
j1

R−2
j2

Aj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2)

+

∑
(l1∨k2+1)≤j1,j2≤(k1∧m2)

R−2
j1

R−2
j2

Aj1,j2 (k1; l1,m1)Bj1,j2 (k2; l2,m2)
j1 ̸=j2

14
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(

T

A

U

w

S
l

=

+ 2
k2∑

j1=(l1∨l2)

(m2∧k1)∑
j2=k2+1

1(k1 > k2)R−2
j1

R−2
j2

Aj1,j2 (k1; l1,m1)Cj1,j2 (k2; l2,m2)

+

∑
(k1+1∨l2)≤j1,j2≤(m1∧k2)

j1 ̸=j2

R−2
j1

R−2
j2

Bj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2)

+

∑
(k1+1∨k2+1)≤j1,j2≤(m1∧m2)

j1 ̸=j2

R−2
j1

R−2
j2

Bj1,j2 (k1; l1,m1)Bj1,j24(k2; l2,m2)

+ 2
k2∑

j1=(k1+1∨l2)

(m1∧m2)∑
j2=k2+1

1(m1 > k2)R−2
j1

R−2
j2

Bj1,j2 (k1; l1,m1)Cj1,j2 (k2; l2,m2)

+ 2
k1∑

j1=(l1∨l2)

(m1∧k2)∑
j2=k1+1

1(k2 > k1)R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2)

+ 2
k1∑

j1=(k2+1∨l1)

(m1∧m2)∑
j2=k1+1

1(m2 > k1)R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Bj1,j2 (k2; l2,m2)

+

(k1∧k2)∑
j1=(l1∨l2)

(m1∧m2)∑
j2=(k1+1∨k2+1)

R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Cj1,j2 (k2; l2,m2)
}
.

Clearly, when Ri ≡ 1, we have 2D3(k; l,m) = D1(k; l,m) where D1(k; l,m) is defined in (12), and the result reduces to
13).

Using (19), we can see that given Rn,
D4(k;l,m)
n3∥Σ∥F

= op(1). Hence, given Rn, we have

T (s)
n = sup

k=4,...,n−4

[D3(k; 1, n)]2

1
n

∑k−2
t=l+1 D3(t; l, k)2 +

1
n

∑m−2
t=k+2 D3(t; k + 1,m)2

+ op(1).

hen, by (21), we have that as p → ∞,

T (s)
n |Rn

D
→ T (Rn,s)

n := sup
k=4,...,n−4

n[G(Rn,s)
n (k/n; 1/n, 1)]2∑k−1

t=2 [G
(Rn,s)
n (t/n; 1/n, k/n)]2 +

∑n−2
t=k+2[G

(Rn,s)
n (t/n; (k + 1)/n, 1)]2

.

s for Tn, note that

D(k; l,m) = (m − k)(m − k − 1)
∑

l≤j1,j3≤k
j1 ̸=j3

XT
j1Xj3 (Rj1Rj3 )

−1
+ (k − l + 1)(k − l)

∑
k+1≤j2,j4≤m

j2 ̸=j4

XT
j2Xj4 (Rj2Rj4 )

−1

− 2(k − l)(m − k − 1)
∑

l≤j1≤k

∑
k+1≤j2≤m

XT
j1Xj2 (Rj1Rj2 )

−1.

sing similar arguments as in (21), we have

n−3
∥Σ∥

−1
F D(k; l,m)

D
→ G(Rn)

n (k/n; l/n,m/n), (24)

here

G(Rn)
n (

k
n
;
l
n
,
m
n
) = (m − k)(m − k − 1)n−3

∑
l≤j1,j3≤k
j1 ̸=j3

Zj1,j3 (Rj1Rj3 )
−1

+ (k − l + 1)(k − l)n−3
∑

k+1≤j2,j4≤m
j2 ̸=j4

Zj2,j4 (Rj2Rj4 )
−1

− 2(k − l)(m − k − 1)n−3
∑

l≤j1≤k

∑
k+1≤j2≤m

Zj1,j2 (Rj1Rj2 )
−1.

(25)

imilar to G(Rn,s)
n (k/n; l/n,m/n), the conditional distribution of G(Rn)

n (k/n; l/n,m/n) given Rn is Gaussian, and for any
1 < k1 < m1, l2 < k2 < m2, k1, k2, l1, l2,m1,m2 = 1, 2, . . . , n, the covariance structure is given by

Cov(G(Rn)
n (k1/n; l1/n,m1/n),G(Rn)

n (k2/n; l2/n,m2/n)|Rn) (26)

8n−6
{ ∑

(l1∨l2)≤j1,j2≤(k1∧k2)

R−2
j1

R−2
j2

(
m1 − k1

2

)(
m2 − k2

2

)
+

∑
(l1∨k2+1)≤j1,j2≤(k1∧m2)

R−2
j1

R−2
j2

(
m1 − k1

2

)(
k1 − l1 + 1

2

)

j1 ̸=j2 j1 ̸=j2

15
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H

(

w
w

− 2
k2∑

j1=(l1∨l2)

(m2∧k1)∑
j2=k2+1

1(k1 > k2)R−2
j1

R−2
j2

(
m1 − k1

2

)
(k2 − l2)(m2 − k2 − 1)

+

∑
(k1+1∨l2)≤j1,j2≤(m1∧k2)

j1 ̸=j2

R−2
j1

R−2
j2

(
k1 − l1 + 1

2

)(
m2 − k2

2

)
+

∑
(k1+1∨k2+1)≤j1,j2≤(m1∧m2)

j1 ̸=j2

R−2
j1

R−2
j2

(
k1 − l1 + 1

2

)(
k2 − l2 + 1

2

)

− 2
k2∑

j1=(k1+1∨l2)

(m1∧m2)∑
j2=k2+1

1(m1 > k2)R−2
j1

R−2
j2

Bj1,j2

(
k1 − l1 + 1

2

)
(k2 − l2)(m2 − k2 − 1)

− 2
k1∑

j1=(l1∨l2)

(m1∧k2)∑
j2=k1+1

1(k2 > k1)R−2
j1

R−2
j2

(k1 − l1)(m1 − k1 − 1)
(
m2 − k2

2

)

− 2
k1∑

j1=(k2+1∨l1)

(m1∧m2)∑
j2=k1+1

1(m2 > k1)R−2
j1

R−2
j2

(k1 − l1)(m1 − k1 − 1)
(
k2 − l2 + 1

2

)

+

(k1∧k2)∑
j1=(l1∨l2)

(m1∧m2)∑
j2=(k1+1∨k2+1)

R−2
j1

R−2
j2

(k1 − l1)(m1 − k1 − 1)(k2 − l2)(m2 − k2 − 1)
}
.

ence, as p → ∞,

Tn|Rn
D
→ T (Rn)

n := sup
k=4,...,n−4

n[G(Rn)
n (k/n; 1/n, 1)]2∑k−1

t=2 [G
(Rn)
n (t/n; 1/n, k/n)]2 +

∑n−2
t=k+2[G

(Rn)
n (t/n; (k + 1)/n, 1)]2

.

ii) We shall only show the process convergence G(Rn,s)
n (·) ⇝ E

[
R1R2√

(R21+R23)(R
2
2+R23)

]√
2G(·), because that G(Rn)

n (·) ⇝

E(R−2
1 )

√
2G(·) is similar and simpler. Once the process convergence is obtained, the limiting distributions of T (Rn,s)

n and
T (Rn)
n can be easily obtained by the continuous mapping theorem.
The proof for the process convergence contains two parts: the finite dimensional convergence and the tightness.
To show the finite dimensional convergence, we need to show that for any positive integer N , any fixed u1, u2, . . . , uN ∈

[0, 1]3 and any α1, . . . , αN ∈ R,

α1G(Rn,s)
n (u1) + · · · + αNG(Rn,s)

n (uN )
D
→ E2

[ R1R2√
(R2

1 + R2
3)(R

2
2 + R2

3)

]√
2[α1G(u1) + · · · + αNG(uN )],

here for u = (u(1), u(2), u(3))T , Gn(u) = Gn(u1; u2, u3). Since both G(Rn,s)
n (·)|Rn and G(·) are Gaussian processes, by Lemma 2

e have

Pr(α1G(Rn,s)
n (u1) + · · · + αkG(Rn,s)

n (uk) < x|Rn)
P
→Pr(E

[ R1R2√
(R2

1 + R2
3)(R

2
2 + R2

3)

]√
2[α1G(u1) + · · · + αNG(uN )] < x).

Then by bounded convergence theorem we have

lim
n→∞

Pr(α1G(Rn,s)
n (u1) + · · · + αkG(Rn,s)

n (uk) < x) = lim
n→∞

E[Pr(α1G(Rn,s)
n (u1) + · · · + αkG(Rn,s)

n (uk) < x|Rn)]

=E[ lim
n→∞

Pr(α1G(Rn,s)
n (u1) + · · · + αkG(Rn,s)

n (uk) < x|Rn)]

=E
[ R1R2√

(R2
1 + R2

3)(R
2
2 + R2

3)

]√
2[α1G(u1) + · · · + αkG(uk)] < x

=Pr(E
[ R1R2√

(R2
1 + R2

3)(R
2
2 + R2

3)

]√
2[α1G(u1) + · · · + αkG(uk)] < x).

This completes the proof of the finite dimensional convergence.
To show the tightness, it suffices to show that there exists C > 0 such that

E[(G(Rn,s)
n (u) − G(Rn,s)

n (v))8] ≤ C(∥u − v∥
4
+ 1/n4),

for any u, v ∈ [0, 1]3 (see the proof of equation S8.12 in [28]).
16
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Since given Rn, G
(Rn,s)
n (·) is a Gaussian process, we have

E[(G(Rn,s)
n (u) − G(Rn,s)

n (v))8] = E[E[(G(Rn,s)
n (u) − G(Rn,s)

n (v))8|Rn]] = CE[Var((G(Rn,s)
n (u) − G(Rn,s)

n (v))|Rn)4].

By (23), for u = (k1/n, l1/n,m1/n) (and similar for v = (k2/n, l2/n,m2/n)) this reduces to

Var(G(Rn,s)
n (u)|Rn) =2n−6

{ ∑
l1≤j1,j3≤k1

j1 ̸=j3

(Rj1Rj3 )
−2Aj1,j3 (k1, l1,m1)2 +

∑
k1+1≤j2,j4≤m1

j2 ̸=j4

(Rj2Rj4 )
−2Bj2,j4 (k1, l1,m1)2

+

∑
l1≤j1≤k1

∑
k1+1≤j2≤m1

(Rj1Rj2 )
−2Cj1,j2 (k1, l1,m1)2

}
.

Note that

E[(G(Rn,s)
n (k1/n; l1/n,m1/n) − G(Rn,s)

n (k2/n; l2/n,m2/n))8]

≲ E[(G(Rn,s)
n (k1/n; l1/n,m1/n) − G(Rn,s)

n (k2/n; l1/n,m1/n))8]

+ E[(G(Rn,s)
n (k2/n; l1/n,m1/n) − G(Rn,s)

n (k2/n; l2/n,m1/n))8]

+ E[(G(Rn,s)
n (k2/n; l2/n,m1/n) − G(Rn,s)

n (k2/n; l2/n,m2/n))8] := I1 + I2 + I3.

We shall analyze I1 first, and WLOG we let k1 < k2. Then we have (with l1 = l2,m1 = m2)

Cov(G(Rn,s)
n (k1/n; l1/n,m1/n),G(Rn,s)

n (k2/n; l2/n,m2/n)|Rn)

=2n−6
{ ∑

l1≤j1,j3≤k1
j1 ̸=j3

R−2
j1

R−2
j3

Aj1,j3 (k1; l1,m1)Aj1,j3 (k2; l1,m1) +

∑
k1+1≤j1,j2≤k2

j1 ̸=j2

R−2
j1

R−2
j2

Bj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2)

+

∑
k2+1≤j2,j4≤m1

j2 ̸=j4

R−2
j2

R−2
j4

Bj2,j4 (k1; l1,m1)Bj2,j4 (k2; l2,m2) + 2
k2∑

j1=k1+1

m1∑
j2=k2+1

R−2
j1

R−2
j2

Cj1,j2 (k2; l2,m2)Bj1,j2 (k1; l1,m1)

+ 2
k1∑

j1=l1

k2∑
j2=k1+1

R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2) +

k1∑
j1=l1

m1∑
j2=k2+1

R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Cj1,j2 (k2; l2,m2)
}
.

Hence,

Var(G(Rn,s)
n (k1/n; l1/n,m1/n) − G(Rn,s)

n (k2/n; l2/n,m2/n)|Rn)

= 2n−6
{ ∑

l1≤j1,j3≤k1
j1 ̸=j3

(Rj1Rj3 )
−2Aj1,j3 (k1, l1,m1)2 +

∑
k1+1≤j2,j4≤m1

j2 ̸=j4

(Rj2Rj4 )
−2Bj2,j4 (k1, l1,m1)2

+

∑
l1≤j1≤k1

∑
k1+1≤j2≤m1

(Rj1Rj2 )
−2Cj1,j2 (k1, l1,m1)2

}
+ 2n−6

{ ∑
l1≤j1,j3≤k2

j1 ̸=j3

(Rj1Rj3 )
−2Aj1,j3 (k2, l1,m1)2 +

∑
k2+1≤j2,j4≤m1

j2 ̸=j4

(Rj2Rj4 )
−2Bj2,j4 (k2, l1,m1)2

+

∑
l1≤j1≤k2

∑
k2+1≤j2≤m1

(Rj1Rj2 )
−2Cj1,j2 (k2, l1,m1)2

}
− 4n−6

{ ∑
l1≤j1,j3≤k1

j1 ̸=j3

R−2
j1

R−2
j3

Aj1,j3 (k1; l1,m1)Aj1,j3 (k2; l1,m1) +

∑
k1+1≤j1,j2≤k2

j1 ̸=j2

R−2
j1

R−2
j2

Bj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2)

+

∑
k2+1≤j2,j4≤m1

j2 ̸=j4

R−2
j2

R−2
j4

Bj2,j4 (k1; l1,m1)Bj2,j4 (k2; l2,m2) + 2
k2∑

j1=k1+1

m1∑
j2=k2+1

R−2
j1

R−2
j2

Cj1,j2 (k2; l2,m2)Bj1,j2 (k1; l1,m1)

+ 2
k1∑

j1=l1

k2∑
j2=k1+1

R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Aj1,j2 (k2; l2,m2) +

k1∑
j1=l1

m1∑
j2=k2+1

R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Cj1,j2 (k2; l2,m2)
}
.

17
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S

B
{

By rearranging terms we have

Var(G(Rn,s)
n (k1/n; l1/n,m1/n) − G(Rn,s)

n (k2/n; l2/n,m2/n)|Rn)

= 2n−6
{ ∑

l1≤j1,j3≤k1
j1 ̸=j3

(Rj1Rj3 )
−2(Aj1,j3 (k1, l1,m1) − Aj1,j3 (k2, l1,m1))2

+

k2∑
j1=k1+1

j1−1∑
j3=l1

(Rj1Rj3 )
−2(Aj1,j3 (k2, l1,m1)2 + Aj3,j1 (k2, l1,m1)2)

+

∑
k2+1≤j2,j4≤m1

j2 ̸=j4

R−2
j2

R−2
j4

(Bj2,j4 (k1; l1,m1) − Bj2,j4 (k2; l1,m1))2

+

k2−1∑
j2=k1+1

m1∑
j4=j2+1

R−2
j2

R−2
j4

(Bj2,j4 (k1; l1,m1)2 + Bj4,j2 (k1; l1,m1)2)

+

k1∑
j1=l1

m1∑
j2=k2+1

R−2
j1

R−2
j2

(Cj1,j2 (k1, l1,m1) − Cj1,j2 (k2, l1,m1))2

+

k1∑
j1=l1

k2∑
j2=k1+1

R−2
j1

R−2
j2

Cj1,j2 (k1, l1,m1)2 +

k2∑
j1=k1+1

m1∑
j2=k2+1

R−2
j1

R−2
j2

Cj1,j2 (k2, l1,m1)2

− 2
∑

k1+1≤j1,j2≤k2
j1 ̸=j2

R−2
j1

R−2
j2

Bj1,j2 (k1; l1,m1)Aj1,j2 (k2; l1,m1) − 4
k2∑

j1=k1+1

m1∑
j2=k2+1

R−2
j1

R−2
j2

Cj1,j2 (k2; l1,m1)Bj1,j2 (k1; l1,m1)

− 4
k1∑

j1=l1

k2∑
j2=k1+1

R−2
j1

R−2
j2

Cj1,j2 (k1; l1,m1)Aj1,j2 (k2; l1,m1) =:

10∑
l=1

Ji.

Thus by CR-inequality we have I1 = E[(
∑10

l=1 Jl)
4
] ≲

∑10
i=1 E[J4l ]. We shall analyze E[J41 ] first. Note that

Aj1,j3 (k1, l1,m1) − Aj1,j3 (k2, l1,m1)

=

∑
k1+1≤j2,j4≤m1

j2 ̸=j4

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2
−

∑
k2+1≤j2,j4≤m1

j2 ̸=j4

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2

=

k2∑
j2=k1+1

m1∑
j4=j2+1

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2
+

k2∑
j4=k1+1

m1∑
j2=j4+1

(R−2
j1

+ R−2
j2

)−1/2(R−2
j3

+ R−2
j4

)−1/2

≤ 2
k2∑

j2=k1+1

m1∑
j4=j2+1

(2|Rj1 |
−1

|Rj2 |
−1)−1/2(2|Rj3 |

−1
|Rj4 |

−1)−1/2

≤ |Rj1Rj3 |
1/2

k2∑
j2=k1+1

m1∑
j4=j2+1

|Rj2Rj4 |
1/2.

ince Aj1,j3 (k1, l1,m1) − Aj1,j3 (k2, l1,m1) > 0 and J1 > 0 almost surely, we have

E[J41 ] ≤ 24n−24E[

4∏
i=1

(
∑

l1≤j1,i,j3,i≤k1
j1,i ̸=j3,i

k2∑
j2,i=k1+1

m1∑
j4,i=j2,i+1

k2∑
j′2,i=k1+1

m1∑
j′4,i=j2,1+1

|Rj1,iRj3,i |
−1

|Rj2,iRj4,i |
1/2

|Rj′2,i
Rj′4,i

|
1/2)].

y the Hölder’s inequality, and the fact that j1,s ̸= j3,s, j2,s ̸= j4,s, j′2,s ̸= j′4,s and j1,s, j3,s are not identical to any of
j2,s, j4,s, j2,s, j4,s} for any s = 1, 2, 3, 4, we have

E[|Rj1,1Rj3,1 |
−1

|Rj2,1Rj4,1 |
1/2

|Rj′2,1
Rj′4,1

|
1/2

· · · |Rj1,4Rj3,4 |
−1

|Rj2,4Rj4,4 |
1/2

|Rj′2,4
Rj′4,4

|
1/2

]

≤

4∏
E[((|Rj1,s∥Rj3,s |)

−1
|Rj2,sRj4,sRj′2,s

Rj′4,s
|
1/2)4]1/4
s=1

18
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T

S

s
t

P

a

a

=

4∏
s=1

E[(Rj1,sRj3,s )
−4R2

j2,sR
2
j4,sR

2
j′2,s

R2
j′4,s

]
1/4

=

4∏
s=1

{
E[R−4

j1,s
]E[R−4

j3,s
]E[R2

j2,sR
2
j4,sR

2
j′2,s

R2
j′4,s

]

}1/4

≤

4∏
s=1

{
E[R−4

j1,s
]E[R−4

j3,s
]E[R4

j2,sR
4
j4,s ]

1/2E[R4
j′2,s

R4
j′4,s

]
1/2

}1/4
= E[R−4

1 ]
2E[R4

2]
2.

herefore,

E[J41 ] ≲ 24n−24(k2 − k1)8n16E[R−4
1 ]

2E[R4
2]

2
= 24E[R−4

1 ]
2E[R4

2]
2(k2/n − k1/n)8.

We repeatedly apply the Hölder’s inequality and the above bound for the expectation, and we have E[J4s ] ≲ (k2/n−k1/n)8
for s = 1, 3, 5, 8 since there are 8 summations in each E[J4s ] which take the sum from k1+1 to k2, and E[J4s ] ≲ (k2/n−k1/n)4
for s = 2, 4, 6, 7, 9, 10 since there are only 4 summations in each E[J4s ] which take the sum from k1 + 1 to k2. Combining
these results we have I1 ≲ (k2/n − k1/n)4.

We can also show I2 ≲ (l2/n − l1/n)4, and I3 ≲ (m2/n − m1/n)4. Since the steps are very similar to the arguments for
I1, we omit the details here. Thus, for any u = (u1, u2, u3), v = (v1, v2, v3) ∈ [0, 1]3, we have

E[(G(Rn,s)
n (u) − G(Rn,s)

n (v))8] ≤ C ′((⌊nu1⌋/n − ⌊nv1⌋/n)4 + (⌊nu2⌋/n − ⌊nv2⌋/n)4 + (⌊nu3⌋/n − ⌊nv3⌋/n)4),

for some positive constant C ′ > 0. It is easy to see that

(⌊nu1⌋/n − ⌊nv1⌋/n)4 = ((u1 − v1) − ({u1} − {v1})/n)4 ≲ (u1 − v1)4 + ({u1} − {v1})4/n4

≲ (u1 − v1)4 + 1/n4.

o

E[(G(Rn,s)
n (u) − G(Rn,s)

n (v))8] ≤ C((u1 − v1)4 + (u2 − v2)4 + (u3 − v3)4 + 1/n4)

= C(∥u − v∥
4
4 + 1/n4) ≤ C(∥u − v∥

4
+ 1/n4),

ince ∥u − v∥
4
4 =

∑3
i=1(ui − vi)4 ≤

∑3
i,j=1(ui − vi)2(uj − vj)2 = (

∑3
i (ui − vi)2)2 = ∥u − v∥

4. This completes the proof of
ightness. □

roof of Theorem 5. (i) Under Assumption 4, conditional on Rn, we still have almost surely

1
p
∥Yi − Yj∥

2
=

1
p

p∑
k=1

(
Xi,k

Ri
−

Xj,k

Rj

)2

+
2
p
(µi − µj)

(
Xi,k

Ri
−

Xj,k

Rj

)
+

1
p
∥µi − µj∥

2 P
→ σ 2(R−2

i + R−2
j )

s conditional on Rn, {R−1
i Xi,k}

p
k=1 is still a ρ-mixing sequence.

Recall (20), conditional on Rn, we mainly work on D3(k; l,m) since D4(k; l,m) is of a smaller order, where

D3(k; l,m) =

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Yj1 − Yj2 )
⊤(Yj3 − Yj4 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2
.

By symmetry, we only consider the case l < k ≤ k∗ < m, and the summation in D3(k; l,m) can be decomposed into

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

=

∑
l≤j1,j3≤k
j1 ̸=j3

⎧⎪⎪⎨⎪⎪⎩
∑

k+1≤j2,j4≤k∗
j2 ̸=j4

+

∑
k∗+1≤j2,j4≤m

j2 ̸=j4

+

k∗∑
j2=k+1

m∑
j4=k∗+1

+

k∗∑
j4=k+1

m∑
j2=k∗+1

⎫⎪⎪⎬⎪⎪⎭ ,

ccording to the relative location of j2, j4 and k∗.
Then, it is not hard to see that

D3(k; l,m)

=

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Xj1/Rj1 − Xj2/Rj2 )
⊤(Xj3/Rj3 − Xj4/Rj4 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2
+

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k∗+1≤j2,j4≤m

j2 ̸=j4

∥δ∥2

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2

−

∑
l≤j1,j3≤k
j1 ̸=j3

m∑
j2=k∗+1

m∑
j4=k+1,j4 ̸=j2

δ⊤(Xj1/Rj1 − Xj2/Rj2 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2
−

∑
l≤j1,j3≤k
j1 ̸=j3

m∑
j4=k∗+1

m∑
j2=k+1,j4 ̸=j2

δ⊤(Xj3/Rj3 − Xj4/Rj4 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2

:=

4∑
D3,i(k; l,m).
i=1
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U

w

H

b
s

nder Assumption 4, and conditional on Rn, similar to (17), we can show for i = 3, 4.

n−3
∥Σ∥

−1
F D3,i(k; l,m) = op(1),

while by (21), n−3
∥Σ∥

−1
F D3,1(k; l,m)

D
→ G(Rn,s)(k/n; l/n,m/n).

Hence, if nE(R−2)−1
∥Σ∥

−1
F ∥δ∥2

→ cn as p → ∞, then conditional on Rn, we obtain that

n−3
∥Σ∥

−1
F pσ 2D(s)(k; l,m) = n−3

∥Σ∥
−1
F D3(k; l,m) + op(1)

=n−3
∥Σ∥

−1
F [D3,1(k; l,m) + D3,2(k; l,m)] + op(1)

= n−3
∥Σ∥

−1
F

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Xj1/Rj1 − Xj2/Rj2 )
⊤(Xj3/Rj3 − Xj4/Rj4 )

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2

+ n−4
∑

l≤j1,j3≤k
j1 ̸=j3

∑
k∗+1≤j2,j4≤m

j2 ̸=j4

n∥Σ∥
−1
F ∥δ∥2

(R−2
j1

+ R−2
j2

)1/2(R−2
j3

+ R−2
j4

)1/2
+ op(1)

D
→G(Rn,s)(k/n; l/n,m/n) + cn∆(Rn,s)

n (k/n; l/n,m/n),

here

∆(Rn,s)
n (k/n; l/n,m/n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n−4 ∑

l≤j1,j3≤k
j1 ̸=j3

∑
k∗+1≤j2,j4≤m

j2 ̸=j4

E(R−2)
(R−2

j1
+R−2

j2
)1/2(R−2

j3
+R−2

j4
)1/2

, l < k ≤ k∗ < m

n−4 ∑
l≤j1,j3≤k∗

j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

E(R−2)
(R−2

j1
+R−2

j2
)1/2(R−2

j3
+R−2

j4
)1/2

, l < k∗ < k < m

0, otherwise.

(27)

Hence, we have

T (s)
n |Rn

D
→ T (Rn,s)

n (cn, ∆(Rn,s)
n )

:= sup
k=4,...,n−4

n[G(Rn,s)
n ( kn ;

1
n , 1) + cn∆

(Rn,s)
n ( kn ;

1
n , 1)]

2∑k−1
t=2 [G

(Rn,s)
n ( t

n ;
1
n ,

k
n ) + cn∆

(Rn,s)
n ( t

n ;
1
n ,

k
n )]

2 +
∑n−2

t=k+2[G
(Rn,s)
n ( t

n ;
(k+1)

n , 1) + cn∆
(Rn,s)
n ( t

n ;
(k+1)

n , 1)]2
.

For Tn, by similar arguments as above, we have

n−3
∥Σ∥

−1
F D(k; l,m) = n−3

∥Σ∥
−1
F

∑
l≤j1,j3≤k
j1 ̸=j3

∑
k+1≤j2,j4≤m

j2 ̸=j4

(Xj1/Rj1 − Xj2/Rj2 )
′(Xj3/Rj3 − Xj4/Rj4 )

+ n−4
∑

l≤j1,j3≤k
j1 ̸=j3

∑
k∗+1≤j2,j4≤m

j2 ̸=j4

n∥Σ∥
−1
F ∥δ∥2

+ op(1)
D
→ G(Rn)(k/n; l/n,m/n) + cnE(R−2)∆n(k/n; l/n,m/n).

ence, we have

T (s)
n |Rn

D
→ T (Rn)

n (cn, ∆(Rn,s)
n )

:= sup
k=4,...,n−4

n[G(Rn)
n ( kn ;

1
n , 1) + cnE(R−2)∆n( kn ;

1
n , 1)]

2∑k−1
t=2 [G

(Rn)
n ( t

n ;
1
n ,

k
n ) + cnE(R−2)∆n( t

n ;
1
n ,

k
n )]

2 +
∑n−2

t=k+2[G
(Rn)
n ( t

n ;
(k+1)

n , 1) + cnE(R−2)∆n( t
n ;

(k+1)
n , 1)]2

.

(ii) Note that for any u = (u1, u2, u3)⊤ ∈ [0, 1]3 such that u2 ≤ u1 ≤ u3, as n → ∞,

∆(Rn,s)
n (⌊nu1⌋/n; ⌊nu2⌋/n, ⌊nu3⌋/n)

P
→ E(R−2

1 )E2
[ R1R2√

R2
1 + R2

2

]
∆(u1; u2, u3).

y the law of large numbers for U-statistics (since ∆
(Rn,s)
n can be viewed as a two sample U-statistic). Then using the

imilar arguments in the proof of Theorem 4 (ii), we have

∆(Rn,s)
n (·) ⇝ E(R−2

1 )E2
[ R1R2√

R2
1 + R2

2

]
∆(·).

Note that ∆(·) is deterministic, and recall G(Rn,s)
n (·) ⇝ E

[
R1R2√

(R21+R23)(R
2
2+R23)

]√
2G(·) in the proof of Theorem 4(ii), by similar

arguments in the proof of Theorem 3.6 in [28], we have

G(Rn,s)
n (·) + cn∆(Rn,s)

n (·) ⇝ E
[ R1R2√

(R2
+ R2)(R2

+ R2)

]√
2G(·) + cE(R−2

1 )E2
[ R1R2√

R2
+ R2

]
∆(·).
1 3 2 3 1 2
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S

T
3

A

L∑

P

S

imilarly,

G(Rn)
n (·) + cnE(R−2)∆(Rn)

n (·) ⇝ E(R−2)
√
2G(·) + cE(R−2

1 )∆(·).

he result follows by the continuous mapping theorem. Here, the multiplicative K > 1 follows by the proof of Theorem
.2 in [5]. □

ppendix B. Auxiliary lemmas

emma 1. Under Assumptions 1 and 2, let n ≥ 8 be a fixed number, and for any 0 ≤ k < m ≤ n, let Z(k,m) =
m
i=k+1

∑i−1
j=k X

⊤

i Xj. Then, as p → ∞,
√
2

n∥Σ∥F
Z(k,m)

D
→ Qn(

k
n
,
m
n
),

where Qn(a, b) is a centered Gaussian process defined on [0, 1]2 with covariance structure given by:

Cov(Qn(a1, b1),Qn(a2, b2))

= n−2(⌊nb1⌋ ∧ ⌊nb2⌋ − ⌊na1⌋ ∨ ⌊na2⌋)(⌊nb1⌋ ∧ ⌊nb2⌋ − ⌊na1⌋ ∨ ⌊na2⌋ + 1)1(b1 ∧ b2 > a1 ∨ a2).

roof. By Cramér–Wold device, it suffices to show that for fixed n and N , any sequences of {αi}
N
i=1, αi ∈ R,

N∑
i=1

αi

√
2

n∥Σ∥F
Z(ki,mi)

D
→

N∑
i=1

αiQn(
ki
n

,
mi

n
),

where 1 ≤ ki ≤ mi ≤ n are integers.
For simplicity, we consider the case of N = 2, and by symmetry there are basically three types of enumerations of

(k1,m1, k2,m2): (1) k1 ≤ m1 ≤ k2 ≤ m2; (2) k1 ≤ k2 ≤ m1 ≤ m2; (3) k1 ≤ k2 ≤ m2 ≤ m1.
Define ξ

(1)
i,t = Xi,t

∑i−1
j=k1

Xj,t , and ξ
(2)
i,t = Xi,t

∑i−1
j=k2

Xj,t . Then, we can show

√
2

n∥Σ∥F
[α1Z(k1,m1) + α2Z(k2,m2)] =

√
2

n∥Σ∥F

(
α1

m1∑
i=k1+1

i−1∑
j=k1

X⊤

i Xj + α2

m2∑
i=k2+1

i−1∑
j=k2

X⊤

i Xj

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

n∥Σ∥F

p∑
t=1

( m1∑
i=k1+1

α1ξ
(1)
i,t +

m2∑
i=k2+1

α2ξ
(2)
i,t

)
, Case (1)

√
2

n∥Σ∥F

p∑
t=1

( k2∑
i=k1+1

α1ξ
(1)
i,t +

m1∑
i=k2+1

[α1ξ
(1)
i,t + α2ξ

(2)
i,t ] +

m2∑
i=m1+1

α2ξ
(2)
i,t

)
, Case (2)

√
2

n∥Σ∥F

p∑
t=1

( k2∑
i=k1+1

α1ξ
(1)
i,t +

m2∑
i=k2+1

[α1ξ
(1)
i,t + α2ξ

(2)
i,t ] +

m1∑
i=m2+1

α1ξ
(1)
i,t

)
, Case (3)

For simplicity, we consider the Case (2), and using the independence of Xi, one can show that

S1 =

√
2

n∥Σ∥F

p∑
t=1

k2∑
i=k1+1

α1ξ
(1)
i,t , S2 =

√
2

n∥Σ∥F

p∑
t=1

[α1ξ
(1)
i,t + α2ξ

(2)
i,t ], S3 =

√
2

n∥Σ∥F

p∑
t=1

m2∑
i=k2+1

α2ξ
(2)
i,t

are independent. Then by Theorem 4.0.1 in Lin and Lu (2010), they are asymptotically normal with variances given by

Var(S1) =n−2α2
1(k2 − k1)(k2 − k1 + 1),

Var(S2) =n−2
[α2

1(m1 − k2)(k2 − k1 + 1 + m1 − k1) + 2α1α2(m1 − k2)(m1 − k2 + 1) + α2
2(m1 − k2)(m1 − k2 + 1)],

Var(S1) =n−2α2
2(m2 − m1)(m2 − k2 + m1 − k2 + 1).

imilarly, we can obtain the asymptotic normality for Case (1) and Case (3).
Hence,

√
2

[α1Z(k1,m1) + α2Z(k2,m2)]
D
→ N(0,

τ 2
),
n∥Σ∥F n2
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w

H
a

L

P

h

A

here

τ 2
=

⎧⎨⎩
α2
1(m1 − k1)(m1 − k1 + 1) + α2

2(m2 − k2)(m2 − k2 + 1), Case (1)
α2
1(m1 − k1)(m1 − k1 + 1) + α2

2(m2 − k2)(m2 − k2 + 1) + 2α1α2(m1 − k2)(m1 − k2 + 1), Case (2)
α2
1(m1 − k1)(m1 − k1 + 1) + α2

2(m2 − k2)(m2 − k2 + 1) + 2α1α2(m2 − k2)(m2 − k2 + 1), Case (3).

ence, the case of N = 2 is proved by examining the covariance structure of Qn defined in Theorem 1. The cases N > 2
re similar. □

emma 2. As n → ∞, we have for any 0 ≤ a1 < r1 < b1 ≤ 1 and 0 ≤ a2 < r2 < b2 ≤ 1, as n → ∞,

Cov(G(Rn,s)
n (r1; a1, b1),G(Rn,s)

n (r2; a2, b2))
P
→ 2E2

[ R1R2√
(R2

1 + R2
3)(R

2
2 + R2

3)

]
Cov(G(r1; a1, b1),G(r2; a2, b2)).

roof. There are 9 terms in the covariance structure given in (23), for first one, we have

2n−6
∑

⌊n(a1∨a2)⌋≤j1,j2≤⌊n(r1∧r2)⌋
j1 ̸=j2

R−2
j1

R−2
j2

Aj1,j2 (⌊nr1⌋; ⌊na1⌋, ⌊nb1⌋)Aj1,j2 (⌊nr2⌋; ⌊na2⌋, ⌊nb2⌋)

= 2n−6
∑

⌊n(a1∨a2)⌋≤j1,j2≤⌊n(r1∧r2)⌋
j1 ̸=j2

R−2
j1

R−2
j2

∑
⌊nr1⌋+1≤j3,j4≤⌊nb1⌋

j3 ̸=j4

Rj1Rj3√
(R2

j1
+ R2

j3
)

Rj2Rj4√
(R2

j2
+ R2

j4
)

×

∑
⌊nr2⌋+1≤j5,j6≤⌊nb2⌋

j5 ̸=j6

Rj1Rj5√
(R2

j1
+ R2

j5
)

Rj2Rj6√
(R2

j2
+ R2

j6
)

= 2n−2
∑

⌊n(a1∨a2)⌋≤j1,j2≤⌊n(r1∧r2)⌋
j1 ̸=j2

R−2
j1

R−2
j2

(b1 − r1)2
{
E
[ Rj1Rj3√

(R2
j1

+ R2
j3
)

Rj2Rj4√
(R2

j2
+ R2

j4
)
|Rj1 , Rj2

]
+ op(1)

}

× (b2 − r2)2
{
E
[ Rj1Rj5√

(R2
j1

+ R2
j6
)

Rj2Rj6√
(R2

j2
+ R2

j6
)
|Rj1 , Rj2

]
+ op(1)

}
P
→2[(r1 ∧ r2) − (a1 ∨ a2)]2(b1 − r1)2(b2 − r2)2E2

[ R1R2√
(R2

1 + R2
3)(R

2
2 + R2

3)

]
.

where the last equality holds by applying the law of large numbers for U-statistics to Rj3 , Rj4 and Rj5 , Rj6 , and the last
olds by the law of large numbers of U-statistics to Rj1 , Rj2 .
Therefore, similar arguments for other terms indicate that

2−1E−2
[ R1R2√

(R2
1 + R2

3)(R
2
2 + R2

3)

]
lim
n→∞

Cov(G(Rn,s)
n (⌊nr1⌋; ⌊na1⌋, ⌊nb1⌋),G(Rn,s)

n (⌊nr2⌋; ⌊na2⌋, ⌊nb2⌋))

=[(r1 ∧ r2) − (a1 ∨ a2)]2(b1 − r1)2(b2 − r2)21((r1 ∧ r2) > (a1 ∨ a2))

+ [(r1 ∧ b2) − (a1 ∨ r2)]2(b1 − r1)2(r2 − a2)21((r1 ∧ b2) > (a1 ∨ r2))

− 4[r2 − (a1 ∨ a2)][(b2 ∧ r1) − r2](b1 − r1)2(b2 − r2)(r2 − a2)1(r1 > r2, r2 > (a1 ∨ a2), (b2 ∧ r1) > r2)

+ [(b1 ∧ r2) − (r1 ∨ a2)]2(r1 − a1)2(b2 − r2)21((b1 ∧ r2) > (r1 ∨ a2))

+ [(b1 ∧ b2) − (r1 ∨ r2)]2(r1 − a1)2(r2 − a2)21((b1 ∧ b2) − (r1 ∨ r2))

− 4[r2 − (r1 ∨ a2)][(b1 ∧ b2) − r2](r2 − a2)(b2 − r2)(r1 − a1)21(b1 > r2, r2 > (r1 ∨ a2), (b1 ∧ b2) > r2)

− 4[r1 − (a1 ∨ a2)][(b1 ∧ r2) − r1](r1 − a1)(b1 − r1)(b2 − r2)21(r2 > r1, r1 > (a1 ∨ a2), (b1 ∨ r2) > r1)

− 4[r1 − (r2 ∨ a1)][(b1 ∧ b2) − r1](r1 − a1)(b1 − r1)(r2 − a2)21(b2 > r1, r1 > (r2 ∨ a1), (b1 ∧ b2) > r1)
+ 4[(r1 ∧ r2) − (a1 ∨ a2)][(b1 ∧ b2) − (r1 ∧ r2)](r1 − a1)(b1 − r1)(r2 − a2)(b2 − r2)
× 1((r1 ∧ r2) > (a1 ∨ a2), (b1 ∧ b2) > (r1 ∧ r2)).

This is indeed the covariance structure of G(·) after tedious algebra. □

ppendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105114.
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