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1. Introduction

Change-point detection has been a popular research topic in statistics, and related literature is vast due to its broad
applicability in biosciences, climate sciences, economics and quality control, among many other areas. See [1,2,12,25]
for recent reviews. With the development of modern data collection techniques, high-dimensional data has become more
common in the foregoing areas, and the associated data analysis has also triggered the advancement of inference methods
for change-points in high-dimensional data, see, e.g. [7,11,13,18,27-31]. Among the proposed tests and estimation
methods, most of them require quite strong moment conditions (e.g., Gaussian or sub-Gaussian assumption, or sixth
moment assumption) and some of them also require weak component-wise dependence assumption. There are only a few
exceptions, such as [30], where they used anti-symmetric and nonlinear kernels in a U-statistics framework to achieve
robustness. However, the limiting distribution of their test statistic is non-pivotal and their procedure requires bootstrap
calibration, which could be computationally demanding. In addition, their test statistic targets the sparse alternative only.
As pointed out in [17], the interest in the dense alternative can be well motivated by real data and is often the type of
alternative the practitioners want to detect. For example, copy number variations in cancer cells are commonly manifested
as change-points occurring at the same positions across many related data sequences corresponding to cancer samples
and biologically related individuals; see [8].
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In this article, we propose a new test for a change point in the mean of high-dimensional data that works for a
broad class of data generating processes. In particular, our test targets the dense alternative, is robust to heavy-tailedness,
and can accommodate both weak and strong coordinate-wise dependence. Our test is built on two recent advances in
high-dimensional testing: spatial sign based two sample test developed in [5] and U-statistics based change-point test
developed in [28]. Spatial sign based tests have been studied in the literature of multivariate data and they are usually
used to handle heavy-tailedness, see [20] for a book-length review. However, it was until recently that [5,26] discovered
that spatial sign could also help relax the restrictive moment conditions in high dimensional testing problems. [28]
advanced the high-dimensional two sample U-statistic pioneered by [6] to the change-point setting by adopting the self-
normalization (SN) [22,24]. Their test targets dense alternative, but requires sixth moment assumption and only allows
for weak coordinate-wise dependence.

Building on these two recent advances, we shall propose a spatial signed SN-based test for a change point in the mean
of high-dimensional data. Our contribution to the literature is threefold. Firstly, we derive the limiting null distribution
of our test statistic under the so-called fixed-n asymptotics, where the sample size n is fixed and dimension p grows to
infinity. We discovered that the fixed-n asymptotics provide a better approximation to the finite sample distribution when
the sample size is small or moderate. We also let n grow to infinity after we derive n-dependent asymptotic distribution,
and obtain the limit under the sequential asymptotics [21]. This type of asymptotics seems new to the high-dimensional
change-point literature and may be more broadly adopted in change-point testing and other high-dimensional problems.
Secondly, our asymptotic theory covers both scenarios, the weak coordinate-wise dependence via p mixing, and strong
coordinate-wise dependence under the framework of “randomly scaled p-mixing sequence” (RSRM) in [5]. The process
convergence associated with spatial signed U-process we develop in this paper further facilitates the application of our
test under sequential asymptotics where n, in addition to p, also goes to infinity. In particular, we have developed novel
theory to establish the process convergence result under the RSRM framework. In general, this requires to show the finite
dimensional convergence and asymptotic equicontinuity (tightness). For the tightness, we derive a bound for the eighth
moment of the increment of the sample path based on a conditional argument under the sequential asymptotics, which
is new to the literature. Using this new technique, we provide the unconditional limiting null distribution of the test
statistic for the fixed-n and growing-p case. This is stronger than the results in [5] which is a conditional limiting null
distribution. Thirdly, we extend our test to estimate multiple changes by combining the p-value based on the fixed-n
asymptotics and the seeded binary segmentation (SBS) [14]. The use of fixed-n asymptotics is especially recommended
due to the fact that in these popular generic segmentation algorithms such as WBS [9] and SBS, test statistics over
many intervals of small/moderate lengths are calculated and the sequential asymptotics is not accurate in approximating
the finite sample distribution, as compared to its fixed-n counterpart. The superiority and robustness of our estimation
algorithm is corroborated in a small simulation study.

The rest of the paper is organized as follows. In Section 2, we define the spatial signed SN test. Section 3 studies the
asymptotic behavior of the test under both null and local alternatives. Extensions to estimating multiple change-points
are elaborated in Section 4. Numerical studies for testing are relegated to Section 5. Section 6 contains a real data example
and Section 7 concludes. All proofs with auxiliary lemmas are given in the appendix. Additional simulation results are

provided in the online supplementary material. Throughout the paper, we denote £ as the convergence in probability,

2B as the convergence in distribution and ~~ as the weak convergence for stochastic processes. The notations 14 and 04
are used to represent vectors of dimension d whose entries are all ones and zeros, respectively. For a,b € R, denote
anb =min(a, b) and av b = max(a, b). For a vector a € R, ||a|| denotes its Euclidean norm. For a matrix A, ||A||r denotes
its Frobenius norm. Denote a, < b, if there exists M, C > 0 such that a, < Cb,, for n > M, and let a, < b, if a, < b, and

~ ~

b, < a,. Let S(X) = X/|IX||1(X # 0) denote the spatial sign of a vector X.
2. Test statistics

Let {X;}7 ; be a sequence of ii.d RP-valued random vectors with mean 0, and covariance X. We assume that the
observed data {Yi}iL, satisfies Y; = u1; 4 X;, where u; € RP is the mean at time i. We are interested in the following testing
problem:

Hy: 1 =---=pn, VS. Hy:pg=--= g # fgry1 =+ = Ly, forsome2 <k*<n-—1. (1)

In (1), under the null, the mean vectors are constant over time while under the alternative, there is one change-point at
unknown time point k*.
Building on the two-sample U-statistic of [6] by Chen and Qin, it seems natural to consider the following test statistic,

CQ,:= sup D(k;1,n),
k=2,....,n—=2

wherefor1 <Il<k<m<n,

D(k; 1, m) § : § : yJ1 sz (YB _YJ'4)' (2)
1<j1.J3=k k+1<jp.jg<m
1#i3 Jp#i4
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However, as pointed out by [28], the limiting distribution of (properly standardized) D(k; 1, n) depends on some unknown
nuisance parameter, which relies heavily on the covariance (correlation) structure of Y; and is typically unknown in
practice. One may replace the unknown nuisance parameter with a consistent estimator, and this is indeed adopted in high
dimensional one-sample or two-sample testing problems, see, e.g., [5,6]. Unfortunately, in the context of change-point
testing, the unknown location k* makes this method practically unreliable. To this end, [28] applied SN technique in [24]
to avoid the consistent estimation of unknown nuisance parameter. SN technique was initially developed in [22,24] in the
low dimensional time series setting and its main idea is to use an inconsistent variance estimator (i.e. self-normalizer)
which is based on recursive subsample test statistic, so that the limiting distribution is pivotal under the null. See [23]
for a recent review. In particular, the SN based test statistic in [28] is defined as
(D(k; 1, n))?

T,:== sup ———— 3)
" dnea Wa(k; 1,n)”

where D(k; [, m) is defined in (2), and

k—2 m—2

1 1
Wik: Lm) = — > Dt Lk + - > (e k, m)?.

t=I+1 t=k+2

The test statistic T, is applied to the level, and its asymptotic validity requires the existence of sixth moments and weak
componentwise dependence assumption; see [28]. Motivated by the success of multivariate spatial sign test [19,20], we
propose to modify the test statistic (3) to accommodate for heavy-tailedness. Consider the following spatial signed SN
test statistic:

(S)(1,- 2
T = sup (D(S()kil”)) (4)
k=4,...n—-4 Wy (k; 1,n)

where for1 <Il<k<m<n,

DOk Lm)y="Y" > S, —Y,) S(Y;, — V), (5)
I<jq.d3<k k+1<jp.jg<m
1'1#]3 Ip#ia
m—2
WO (k; 1, m) = ZD(Stlk ZDS)tk—i-lm) (6)
t 1+1 t k+2

Here, the superscript ® is used to highlight the role of spatial sign plays in constructing the testing statistic. Note that
S(Y;—Y;) takes value in the unit sphere of R?, its Euclidean norm thus possesses much higher moments than the non-spatial
signed counterpart, making the test statistic (4) robust to heavy-tailedness.

sy — 1 sy — 1
Remark 1. Note if k = k*, then 4~'(%))  ("3)  D®(k; 1, n) is an unbiased estimator for |E[S(Y; — Y,)][%. Hence, our
spatial signed test targets at ||E[S(Y; — Y;)]I|. Note X; —X; is symmetric about 0,, Hp holds if and only if ||[E[S(Y; —Y;)]|| =0
for all i # j, see Theorem 2.1 in [20].

3. Theoretical properties

We first introduce the concept of p-mixing, see e.g. [3]. Typical p-mixing sequences include i.i.d sequences, m-
dependent sequences, stationary strong ARMA processes and many Markov chain models.

Definition 1 (p-mixing). A sequence of random variables &; € R, denoted by (&1, &, .. .) is said to be p-mixing if

p(d) = sup sup |Corr(f,g)| — 0, asd— oo.
k=1 fe]—'f,ge]—'ﬁk

where Corr(f, g) denotes the correlation between f and g, and }‘{ is the o-field generated by (&;, &i11, ..., §). Here p(-)
is called the p-mixing coefficient of (&1, &, ...).

3.1. Assumptions
To analyze the asymptotic behavior of T,ES), we make the following assumptions.

Assumption 1. {X;}!_; are ii.d copies of £, where £ is formed by the first p observations from a sequence of strictly
stationary and p-mixing random variables (&1, &, ...) such that E&; = 0 and Eélz =02

Assumption 2. The p-mixing coefficients of & satisfy Z,fil 0(2¥) < o0

3
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Assumptions 1 and 2 are imposed in [5] to analyze the behavior of spatial sign based two- sample test statistic for the
equality of high dimensional mean. In particular, Assumption 1 allows us to analyze the behavior of Tn ) under the fixed-n
scenario by letting p go to infinity alone. Assumption 2 allows weak dependence among the p coordinates of the data,
and similar assumptions are also made in, e.g. [28,31]. The strict stationary assumption can be relaxed with additional
conditions and the scenario that corresponds to strong coordinate-wise dependence is provided in Section 3.4

3.2, Limiting null
We begin by deriving the limiting distribution of T,SS) when n is fixed while letting p — o0, and then analyze the large
sample behavior of the fixed-n limit by letting n — oo. The sequential asymptotics is fairly common in statistics and

econometrics, see [21].

Theorem 1. Suppose Assumptions 1 and 2 hold, then under Hy: (i) for any fixed n > 8, as p — oo, we have

D D
O = T, Ty — T,

where
nGZ(ia T 1)
Tn = sup L
e Y5 G )+ e GRS 1)
with
k I m m—-DN(m—-k—1 I k m—1)(k—1 k+1 m k—D(m—-k—1 I m
Gn(f,f,—):( )( )Qn<777)+( )( )Qn< 77)_( )( )Qn<7’7)
nnn n n nn n n n o n n n non
and Qu(-, -) is a centered Gaussian process defined on [0, 11> with covariance structure given by:
Cov (Qu(ai, b1), Qu(az, b2))
=n"?(lnb1] A [nbz] — |na1] v [naz])([nb1] A [nba] — [nay| v [naz] 4+ 1)1(by A by > a1 v az).
(ii) Furthermore, if n — oo, then
G(r; 0, 1)?
Tn B 7= sup ( ) (7)

re0.)) [7 G(u; 0, r2du + [ Gu; r, 12du’
with
G(r;a,b) = (b —a)(b—r)Q(a,r) + (r — a)(b — a)Q(r, b) — (r — a)(b —r)Q(a, b),
and Q(-, -) is a centered Gaussian process defined on [0, 1]*> with covariance structure given by:
Cov(Q(ay, by), Q(az, b2)) = (b1 A by —ay V a)*1(by A by > a1 V ay).

Theorem 1(i) states that for each fixed n > 8, when p — oo, the limiting distribution 7, is a functional
of Gaussian process, which is pivotal and can be easily simulated, see Table 1 for tabulated quantiles with n €
{10, 20, 30, 40, 50, 100, 200} (based on 50,000 Monte Carlo replications). Theorem 1(ii) indicates that 7, converges in
distribution as n diverges, which is indeed supported by Table 1. In fact, 7 is exactly the same as the limiting null
distribution obtained in [28] under the joint asymptotics when both p and n diverge at the same time.

Our spatial signed SN test builds on the test by [5], where an estimator X' for the covariance X is necessary as indicated
by Section 2.1 therein. However, if the sample size n is fixed, their estimator X' is only unbiased but not consistent. In
contrast, the SN technique adopted in this paper enables us to av01d such estimation, and thus makes the fixed n inference
feasible in practice. It is worth noting that the test statistics T ) and T, share the same limiting null under both fixed-n
asymptotics and sequential asymptotics.

Our test statistic is based on the spatial signs and only assumes finite second moment, which is much weaker than
the sixth moment in [28] under joint asymptotics of p and n. The fixed-n asymptotics provides a better approximation
to the finite sample distribution of T,Ss) and T, when n is small or moderate. So its corresponding critical value should be
preferred than the counterparts derived under the joint asymptotics. Thus, when data is heavy-tailed and data length is
short, our test is more appealing.

3.3. Power analysis
Denote § = u, — u; as the shift in mean under the alternative, and (> = limp_ 00 p~! I8]1? as the limiting average
signal. Next, we study the behavior of the test under both fixed (: > 0) and local alternatives (¢« = 0).

We first consider the case when the average signal is non-diminishing.

Assumption 3. (i) ¢ > 0, (ii) np|| Z||;' — oo as p — oo.
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Table 1
Simulated 100y %th quantiles of 7, based on 50,000 Monte Carlo replications using
sequences of ii.d. A7(0, 1) variables.

n\y 80% 90% 95% 99% 99.5% 99.9%
10 1681.5 3080.0 5167.8 14334.1 20405.9 46201.9
20 719.0 1124.3 1624.1 3026.2 3810.6 5899.5
30 633.7 965.1 1350.5 2403.6 2988.8 4748.0
40 609.7 926.5 1283.0 22923 2750.0 4035.7
50 596.2 889.3 1225.0 2187.0 2624.7 3846.5
100 594.5 8819 1200.3 2066.4 2482.5 3638.7
200 592.1 878.2 1195.3 2049.3 2456.7 35334

Here Assumption 3(ii) is quite mild and can be satisfied by many weak dependent sequences such as ARMA sequences.

Theorem 2 (Fixed Alternative). Suppose Assumptions 1-3 hold, then
T,SS) z oo, Ty 2

Theorem 2 shows that when average signal is non-diminishing, then both T,i” and T, are consistent tests. Next, we
analyze T,SS) under local alternatives when ¢ = 0.

Assumption 4. (i)¢ =0, (i) §" X8 = o(|| Z||2) as p — oc.

Assumption 4 regulates the behavior of the shift size, and is used to simplify the theoretical analysis of T,Es) under
local alternatives. Similar assumptions are also made in [5]. Clearly, when X is the identity matrix, Assumption 4(ii)
automatically holds if ¢ = 0.

Theorem 3 (Local Alternative). Suppose Assumptions 1, 2 and 4 hold. Assume there exists a k* such that u; = u,i € {1, ..., k*}
and p; = pn+46,ie€ {k*+1,...,n}. Then for any fixed n, as p — oo,
(i) if n|| Z1I7 181 — oo, then T 5 oo and T, 5 oo;
(i) if n|| 2|7 181> — 0, then T 3 7, and T, 3 T
(iii) if n| 2|7 1812 — ¢a € (0, 00), then T 3 Ta(ca, Ap). and Tn B Tn(ca, An), where
n[v/2Gy( )+ cAn(¥; 1 1P

Ta(Cn, An) = sup (i 1 nin :
kedoan—a Y0 o [V/2Gu(5; 1 Ky o AL 1 YR 4 S0 V2G5 KL 1) - An(Ls KL )P

and

k—I4+1y pm—k*
Ko w, l<k<k*<m
a0 = 4("“’“)("1 H.
nn n v
0, otherwise.

| <k* <k <m;

Furthermore, if lim,_, o, ¢, = ¢ € (0, 00), then as n — oo,

TalCn. An) = T(c, A) (8)
where
2G(r; 0,1 A(r,0,1
T(c, A):= sup v/26(r: )+ calr, i
re[01] fo{qu 0,7)+cA(u,0,r }Zdu—i-f (V26(u; 1, 1) + cAu, r, 1)}2du’
and for b* = lim,_, o (k*/n),
(b* —a)*(b—r)?, a<b*<r<b;
A(r,a,b) == {(r—a2 (B -b*?, a<r <b*<b;
0, otherwise.

The above theorem implies that the asymptotic power of T,SS’ and T, depends on the joint behavior of § and || X||F,
holding n as fixed. If X is the identity matrix, then T,ES) and T, will exhibit different power behaviors according to
whether ||8]|/p'/4 converges to zero, infinity, or some positive constant. In addition, under the local alternative, the limiting
distribution of T;” and T, under the sequential asymptotics coincides with that in [28] under the joint asymptotics, see
Theorem 3.5 therein. In Fig. 1, we plot 7(c, A) at 10%, 50% and 90% quantile levels with b* fixed at 1/2 and it suggests
that 7(c, A) is stochastically increasing with ¢, which further supports the consistency of both tests.

5
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Quantiles of T (c, A)
3500 ;

—10%
3000 [ 1
———=50%
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Fig. 1. 7(c, A) (see details below (8)) at 10%, 50% and 90% quantile levels with b* fixed at 1/2, based on 50,000 Monte Carlo simulations.

Remark 2. Let p? = |§||%k*(n — k*)/n be the signal strength parameter. In [16], the minimax rate for detection of a fully
dense change-point under i.i.d. Gaussian assumption is shown to be p? =< || X||r+/loglog(8n) v | X llop log log(8n), where
| X|lop denotes the operator norm of X, see Theorem 7 therein. Therefore, in view of Theorem 3, if n is fixed, both T, and
T,ES) indeed achieve the minimax rate. When k*/n = t € (0, 1) as n diverges, in [31], it is shown that T, is rate-optimal
(up to a logarithmic factor of n) under the joint asymptotics when both n, p — oco.

3.4. Analysis under stronger dependence structure

In this section, we focus on a special class of probability models for high dimensional data termed “randomly scaled
p-mixing (RSRM)” sequence.

Definition 2 (RSRM, [5]). A sequence (11, 12, ...) is a randomly scaled p-mixing sequence if there exist a zero mean
p-mixing sequence (&, &, ...) and an independent positive non-degenerate random variable R such that n; = &/R,
ie{1,2,...}.

RSRM sequences introduce stronger dependence structure among the coordinates than p-mixing sequences, and many
models fall into this category, see, e.g. non-Gaussian sequences in [4] and elliptically symmetric models in [26].

Assumption 5. Suppose Y; = X;/R; + i, where {X;}I_, satisfies Assumptions 1 and 2, and {R;} ; are i.i.d. copies of a
positive random variable R.

Clearly, when R is degenerate (i.e., a positive constant), Assumption 5 reduces to the model assumed in previous
sections. However, when R is non-degenerate, Assumption 5 imposes stronger dependence structure on coordinates of Y;
than p-mixing sequences, and hence result in additional theoretical difficulties. We refer to [5] for more discussions of
RSRM sequences.

Theorem 4. Suppose Assumption 5 holds, then under Hy,
(i) let R, = {Ri}I,, for any fixed n > 8, ifIE(R,.Z) < oo and IE(Ri’z) < 00, as p — o9, there exist two random variables 7;(R"‘S)
and ﬁR”) dependent on R, such that,

7O B 7(Res) 1, B 7Rw),
(ii) Furthermore, if we further assume IE(R;‘) < oo and IE(R;“) < 00, then as n — oo, we have

«TrfanS) B) 7’7 7—Tf7zn) 2) T,
where T is defined in (7).

In general, if the sample size n is small and Y; is generated from an RSRM sequence, the unconditional limiting
distributions of T,(,S) and T, as p — oo are no longer pivotal due to the randomness in R;. Nevertheless, using the
pivotal limiting distribution 7, in hypothesis testing can still deliver relatively good performance for T,S” in both size
and power, see Section 5 for numerical evidence. If n is also diverging, the same pivotal limiting distribution as presented
in Theorem 1(ii) and in Theorem 3.4 of [28] can still be reached.

6
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Let Xy be the covariance of Y; (or equivalently X;/R;), the next theorem provides with the asymptotic behavior under
local alternative for the RSRM model.

Theorem 5. Suppose Assumptions 4 and 5 hold, then under the local alternative such that n||2y||;1 811> = ca € (0, 00),
(i) let Rn = {Ri}l_,, for any fixed n > 8, if IE(RZ) < oo and E(R; 2) < 00, as p — oo, there exist two random variables
T(R” s A(R” ) ) and T(R” ) dependent on R, such that,

TrES) - 7;1(7%'5)(@1, A%Rn's))v T, _> ﬁRn)(Cna Ap).

(ii) Furthermore, if we assume IE(R;‘) < oo and ]E(Ri’4) < 0o, and lim,_, » ¢, = ¢ € (0, 00), then as n — oo, we have

T e, AT S T(Ke, A), (e, AT) 2 T(e, A)
where T(c, A) is defined in (8), and

RiR RiR
K = ]E”[ 12 ]E(R;Z)Ez[#] =1

(R} + R3(RS + K3) YRR

For the RSRM model, similar to Theorem 4% i), the fixed-n limiting distributions of T ) and T, are non-pivotal under local
alternatives. However, the distribution of T under sequential limit is %ontal T(Kc, A) while that of T, is 7(c, A). The
multiplicative constant K > 1 suggests that for the RSRM model, using T,;’ could be more powerful as 7(c, A) is expected
to be monotone in c, see Fig. 1. This finding coincides with [5] where they showed that using spatial sign based U-statistics
for testing the equality of two high dimensional means could be more powerful than the conventional mean-based ones
in [6]. Thus, when strong coordinate-wise dependence is exhibited in the data, T is more preferable.

is a constant.

4. Multiple change-point estimation

In real applications, in addition to change-point testing, another important task is to estimate the number and
locations of these change-points. In this section, we assume there are m > 1 change-points and are denoted by
k = (ki,...,kn) C {1,...,n}. A commonly used algorithm for many practitioners would be binary segmentation (BS),
where the data segments are recursively split at the maximal points of the test statistics until the null of no change-points
is not rejected for each segment. However, as criticized by many researchers, BS tends to miss potential change-points
when non-monotonic change patterns are exhibited. Hence, many algorithms have been proposed to overcome this
drawback. Among them, wild binary segmentation (WBS) by [9] and its variants have become increasingly popular because
of their easy-to-implement procedures. The main idea of WBS is to perform BS on randomly generated sub-intervals
so that some sub-intervals can localize at most one change-point (with high probability). As pointed out by [14], WBS
relies on randomly generated sub-intervals and different researchers may obtain different estimates. Hence, [ 14] propose
seeded binary segmentation (SBS) algorithm based on deterministic construction of these sub-intervals with relatively
cheaper computational costs so that results are replicable. To this end, we combine the spatial signed SN test with SBS to
achieve the task of multiple change-point estimation, and we call it SBS-SN®). We first introduce the concept of seeded
sub-intervals.

Definition 3 (Seeded Sub-Intervals, [14]). Let & € [1/2, 1) denote a given decay parameter. For 1 < k < [log;,(n)]
(i.e. logarithm with base 1/«) define the kth layer as the collection of n intervals of initial length I, that are evenly
shifted by the deterministic shift s; as follows:

ng

I = U {(LG = Dsie], [0 = Vs + L)}

i=1
where n, = 2 ((1/0{)"*‘1 —1, I = 10[na*=1/107 and s; = (n — Iy) / (nx — 1). The overall collection of seeded intervals is

[logy/e(n)]

Z,(n) = U .
k=1

Let « € [1/2, 1) be a decay parameter, denote Z,(n) as the set of seeded intervals based on Definition 3. For each
sub-interval (a, b) € Z,(n), we calculate the spatial signed SN test

(D9(k; a, b))?

X, ) ’
kefa+3,..., 4 W, (ks a,b)

T®(a, b) = —a>17,

where D®)(k; a, b) and Wbs)a“(k a, b) are defined in (5) and (6). We obtain the p-value of the sub-interval test statistic
T®)(a, b) based on the fixed-n asymptotic distribution 7;_q,;. SBS-SN® then finds the smallest p-value evaluated at

7
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all sub-intervals and compare it with a predetermined threshold level ¢,. If the smallest p-value is also smaller than
¢p, denote the correspondmg sub-interval where the smallest p-value is achieved as (a*, b*) and estimate the change-
point by k= arg MaXge(g*+3,..., 4{(D S)(k; a*, b*))? /W w410k @, b*)}. Once a change-point is identified, SBS- SN® then
divides the data sample into two subsamples accordmgly and apply the same procedure to each of them. The process is
implemented recursively until no change-point is detected. Details are provided in Algorithm 1.

Algorithm 1: SBS-SN®
Input: Data {Y;}{_,, threshold p-value ¢, € (0, 1), SBS intervals Z,(n).
Output: Estimated number of change-points m and estimated change-points set k
Initialization: SBS-SN® (1, n, ¢,)
Procedure: SBS-SN® (a, b, ¢,)
1ifb—a+1 < 8 then

2 | Stop

3 else

4 | Mpy = {i:[a,bi] € Z,(n), [a;, bi] C [a, b], bi —a; + 1> 8} ;
5 | for each i € Mqp), find the p-value p; of T®)(q;, b;) based on Tp,_q+1;
6 * = arg miniEM(u‘b) bi;

7 if pi < ¢, then

() (ks aon b )2

8 k* = arg MaXke(ap +3,..., b —4) % B

9 k=kuk:,m=m+1;

10 SBS-SN®) (a, k*, &p);

1 SBS-SN®) (k* + 1, b, &p);

12 else

13 | Stop

14 end
15 end

Our SBS-SN®) algorithm differs from WBS-SN algorithm in [28,31] in two aspects. First, WBS-SN is built on WBS,
which relies on randomly generated intervals while SBS relies on deterministic intervals. As documented in [14], WBS
is computationally more demanding than SBS. Second, the threshold used in WBS-SN is universal for each sub-interval,
depends on the sample size n and dimension p and needs to be simulated via extensive Monte Carlo simulations. Generally
speaking, WBS-SN requires simulating a new threshold each time for a new dataset. By contrast, our estimation procedure
is based on p-values under the fixed-n asymptotics, which takes into account the interval length b — a + 1 for each
sub-interval (a, b). When implementing either WBS or SBS, inevitably, there will be intervals of small lengths. Hence,
the universal threshold may not be suitable as it does not take into account the effect of different interval lengths. In
order to alleviate the problem of multiple testing, we may set a small threshold number for ¢, such as 0.001 or 0.005.
Furthermore, the WBS-SN requires to specify a minimal interval length which can affect the finite sample performance.
In this work, when generating seed sub-intervals as in Definition 3, the lengths of these intervals are set as integer values
times 10 to reduce the computational cost for simulating fixed-n asymptotic distribution 7,. Therefore, we only require
the knowledge of {7;}n=10.20 .. for SBS-SN® to work, which can be simulated once for good and do not change with a
new dataset.

5. Numerical experiments

This section assesses the performance of T,ES) with respect to various covariance structure of the data. In the
Supplementary Material, we provide more simulation results including comparisons with [13,18,30], and performances
of our multiple change-point estimation algorithm SBS-SN,

Consider the following data generating process with p = 100 and n € {10, 20, 50, 100, 200}:

Y; = 81(i > 0.5n) + X;,

where § represents the mean shift vector, and {X;}i_; are i.i.d copies of X based on the following specifications:

(i) X ~ N0, I);
(ii) X ~ ts(Ip);
(iii) X ~ t3(Ip);
(iv) X (X(1 XY X = pxED ¢t e {1,. .., p), where ¢, ~ N(0, 1)/2 are i.i.d random variables;
V) X =X, .. XY XO = px1 ¢, t e {1,...,p}, where ¢ ~ t5/2 are i.i.d random variables;
(vi) X = R/U, R= (R, ..., RPYT RO = pRE=D 4 ¢ t € {1,...,p}, where ¢ ~ N(0, 1)/2 are i.i.d random variables,

and U ~ Exp(1) is independently generated,;
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Table 2
Size and power comparison of T, and T,(f) for Case (i)-(vii) at 5% significance level based on 1000 replications.
Case Test Limit n Under Hp n Under H|/ n H?
10 20 50 100 200 10 20 50 100 200 10 20 50 100 200
T Tn 5.6 4.8 6.9 4.0 6.4 6.3 6.5 152 347 771 7.3 11.0 341 780 999
(i) " T 274 9.0 7.4 4.1 6.7 299 112 165 352 7738 337 181 349 781 999
o Tn 55 4.8 6.2 43 6.6 6.2 5.9 150 334 767 7.2 104 333 777 998
n T 285 8.7 6.8 44 7.1 298 108 157 346 776 335 173 346 786 998
T Tn 6.9 6.4 6.8 4.3 6.0 7.2 7.2 11.7 185 414 8.0 8.8 220 472 873
(i) " T 318 126 7.6 43 6.2 31.8 124 128 19.0 425 339 153 229 475 874
T Tn 5.3 53 6.2 4.1 5.6 5.7 5.5 11.8 26.1 596 6.4 8.1 267 629 968
n T 282 97 6.7 42 57 285 100 126 27.0 604 308 144 280 632 968
T Tn 9.0 9.5 9.2 6.7 7.9 100 104 118 142 257 9.8 123 179 279 575
(iif) " T 358 16.1 9.6 6.9 8.5 356 161 126 147 26.0 368 187 188 287 582
o Tn 5.6 5.0 6.4 4.8 6.4 5.7 49 105 212 502 6.2 6.9 219 53.0 934
n T 275 9.6 7.0 49 6.8 292 93 114 217 508 286 128 230 539 937
T Tn 5.9 4.8 6.1 6.8 5.4 6.5 8.6 235 464 788 9.3 147 432 838 996
(iv) " T 28.1 9.2 6.7 6.9 5.7 30.9 138 246 474 79.1 339 201 444 84.0 99.6
o Tn 48 39 6.0 6.3 5.4 55 7.1 225 442 779 6.9 130 415 841 998
n T 276 82 6.5 6.6 5.4 306 122 235 453 78.1 331 188 430 846 998
T T 7.0 7.6 6.0 6.8 6.1 8.6 111 175  30.1 54.2 9.4 11.3 267 56.7 94.0
W) " T 335 129 6.6 7.2 6.1 336 169 179 304 546 344 183 279 57.1 942
g Tn 53 4.4 5.0 6.9 52 6.1 7.5 185 371 652 5.6 9.4 352 737 987
n T 293 85 53 7.5 5.5 305 11.8 190 377 656 30.6 14.1 358 742 988
T Tn 347 397 392 346 336 346 407 394 356 342 350 396 40.1 343 338
(vi) " T 602 46,7 405 349 34.1 625 475 403 36.1 3438 60.6 469 410 344 341
7 T 5.0 42 53 5.9 5.9 6.0 4.8 11.3  20.1 353 5.6 7.1 16.8 372 735
n T 279 86 5.7 6.2 6.1 28.1 100 120 203 354 282 119 176 380 740
T Tn 337 406 379 365 366 343 403 379 370 369 335 406 383 369 368
(vii) " T 619 473 386 372 368 622 465 391 374 371 615 477 398 377 369
g Tn 43 44 5.2 6.4 6.0 5.1 6.2 9.5 175 329 5.1 5.8 141 285 625
n T 302 84 55 6.7 6.5 306 101 102 177 335 304 92 153 291 630

(vii) X = R/U, R = (RD, ..., RP)T RO = pRE=D 4 ¢ t € {1,...,p}), where ¢ ~ t5/2 are ii.d random variables, and
U ~ Exp(1) is independently generated,;

where t,(I,) is the multivariate t distribution with degree of freedom v and covariance I,; Exp(1) is the exponential
distribution with mean 1.

Case (i) assumes that coordinates of X are independent and light-tailed; Cases (ii) and (iii) consider the scenario
of heavy-tailedness of X; Cases (iv) and (v) assume the coordinates of X are consecutive random observations from a
stationary AR(1) model with autoregressive coefficient p = 0.7; and Cases (vi) and (vii) assume the coordinates of X are
generated from an RSRM with p = 0.7.

Table 2 shows the empirical rejection rate of T,, and T,Ss) in percentage based on 1000 replications under the null
with Hy : § = 0; dense alternative H! : § = 1/,/p1,; and sparse alternative H? : § = (1;,0;72)? We compare the
approximation using the limiting null distribution of fixed-n asymptotics 7; and sequential asymptotics 7 at 5% level.

We summarize the findings of Table 2 as follows: (1) both T, and Tr(f) suffer from severe size distortion using sequential
asymptotics 7 if n is small (i.e., n € {10, 20, 50}); (2) both fixed-n asymptotics 7, and large-n asymptotics 7 work well
for T, and T,ES) when n is large under weak dependence in coordinates (cases (i)-(v)); (3) T, and Tns) are both accurate
in size and comparable in power performance when X;'s are light-tailed (cases (i),(ii), (iv) and (v)) if appropriate limiting
distributions are used; (4) T, is slightly oversized compared with T,Ss) under heavy-tailed distributions (case (iii)); (5)
when strong dependence is exhibited in coordinates (cases (vi) and (vii)), (T,Ss), Tn) still works for small n while other
combinations of tests and asymptotics generally fail; (6) increasing the data length n enhances power under all settings
while increasing dependence in coordinates generally reduces power. Overall, the spatial signed SN test using fixed-n
asymptotic critical value outperforms (or is comparable with) all other tests and should be preferred due to its robustness
and size accuracy.

6. Data application

In this section, we analyze the genomic micro-array (ACGH) dataset for 43 individuals with bladder tumor. The ACGH
data contains log intensity ratios of these individuals measured at 2215 different loci on their genome, and copy number
variations in the loci can be viewed as the change-point in the genome. Hence change-point estimation could be helpful

in determining the abnormality regions, as analyzed by [27,31]. The data is denoted by {Y;}?21°.

9
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H2k

k k

Fig. 2. Hill's estimator (9) for 43 individuals based on the ascending order statistics Y(;; of the jth individual, j € {1, ..., 43}, ie{l,..., 2215}.

To illustrate the necessity of robust estimation method proposed in this paper, we use Hill's estimator to estimate the
tail index of a sequence, see [10]. Specifically, let Y(;; be the ascending order statistics of the jth individual (coordinate)
across 2215 observations. For j € {1, 2, ..., 43}, we give the left-tail and right-tail Hill estimators respectively by

1< Y, - Y, -

(i),j (n—i+1),j
H kj = N lOg <7> ) H. kj = lO < ) ) (9)
" {k ; Y1, o Z Yin-k.j

and they are plotted in Fig. 2. From the plot, we see that most of the right-tail and the left-tail indices are below 3,
suggesting the data is very likely heavy-tailed.

We take the first 200 loci for our SBS-SN® change-point estimation following the practice in [31], where the decay
rate for generation of seeded interval in SBS is 2~1/4. We also compare the results obtained for Adaptive WBS-SN in [31]
and 20 most significant points detected by INSPECT in [27]. For this dataset, INSPECT is more like a screening method as it
delivers a total of 67 change-points. In contrast to Adaptive WBS-SN and INSPECT where the thresholds for change-point
estimation are simulated, the threshold used in SBS-SN®) can be pre-specified, and it reflects a researcher’s confidence in
detecting the change-points. We set the p-value threshold ¢, as 0.001, 0.005 and 0.01 and the results are as follows:

Adaptive WBS-SN 15, 32, 38, 44, 59, 74, 91, 97, 102, 116, 134, 158, 173, 186, 191

INSPECT 15, 26, 28, 33, 36, 40, 56, 73, 91, 97, 102, 119, 131, 134, 135, 146, 155,
174, 180, 191

SBS-SN©), ¢, = 0.001 30, 41, 72, 89, 130, 136, 174

SBS-SN®), ¢, = 0.005 30, 41, 56, 72, 89, 97, 116, 130, 136, 155, 174, 191

SBS-SN®), ¢, = 0.01 30, 41, 56, 72, 89, 97, 111, 116, 130, 136, 155, 174, 191

As we see, increasing the p-value threshold ¢, leads to more estimated change-points, and the set of estimated change-
points by using larger ¢, contain those by smaller ¢, as subsets. In addition, increasing ¢, from 0.005 to 0.01 only brings
in one more estimated change-point, suggesting ¢, = 0.005 may be a reasonable choice for the ACGH dataset.

All of our detected change-points at £, = 0.005 are also detected by INSPECT, i.e., 30(28), 41(40), 56, 72(73), 89(91), 97,
116, 130(131), 136 (134,135), 155, 174, 191. Although most of these points also coincide with Adaptive WBS-SN, there
are non-overlapping ones. For example, 41, 56, 130 in SBS-SN® seem to be missed in Adaptive WBS-SN while 102 is
missed by our SBS-SN®) as it is detected by both Adaptive WBS-SN and INSPECT. These results are not really in conflict as
Adaptive WBS-SN targets both sparse and dense alternatives, whereas our procedure aims to detect dense change with
robustness properties.

7. Conclusion

In this paper, we propose a new method for testing and estimation of change-points in high dimensional independent
data. Our test statistic builds on two recent advances in high-dimensional testing problem: spatial sign used in two-sample
testing in [5] and self-normalized U-statistics in [28], and inherits many advantages therein such as robustness to heavy-
tailedness and tuning-free. The test is theoretically justified under both fixed-n asymptotics and sequential asymptotics,
and under both null and alternatives. When data exhibits stronger dependence in coordinates, we further enhance the
analysis by focusing on RSRM models, and discover that using spatial sign leads to power improvement compared with
mean based tests in [28]. As for multiple change-point estimation, we propose to combine p-values under the fixed-n

10
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asymptotics with the SBS algorithm. Numerical simulations demonstrate that our fixed-n asymptotics for spatial sign
based test provides a better approximation to the finite sample distribution, and the estimation algorithm outperforms
the mean-based ones when data is heavy-tailed and when coordinates are strongly dependent.

To conclude, we mention a few interesting topics for future research. Our method builds on spatial sign and targets
dense signals by constructing unbiased estimators for |ES(Y; — Y;,)||. As pointed out by [18], many real data exhibit both
sparse and dense changes, and it would be interesting to combine with the adaptive SN based test in [31] to achieve both
robustness and adaptiveness. In addition, the independence assumption imposed in this paper may limit its applicability
to high dimensional time series where temporal dependence cannot be neglected. Methodologically, we believe the time
series extension based on our proposed test and a trimming technique should be possible, following the non-spatial
signed time series extension considered in [28]. It would also be interesting to develop robust methods for detecting
change-points in other quantities beyond mean, such as quantiles, covariance matrices and parameter vectors in high
dimensional linear models.
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Appendix A. Proofs of theorems

In what follows, let x; x denote the kth coordinate of a vector x;.

Proof of Theorem 1. First, we have that

p
1Y = Yil2 =D (Koo = Xie) + 205 — 1) "X — Xi) + i — 1> (10)
=1

(i) Under Hy, by Theorem 8.2.2 in [15], as p — oo, we have almost surely,
1
—|Yi = Y;||? = 202 (11)
p

Then, for any fixed k, I, m, we have that

D(s k 1, m Z Z (Yh — sz)T(yja — }/}4)
2po?

I<jq.j3<k k+1<jp.jg<m

#3 Ja#ia
YD (Y = ¥5) (¥ = Yi) { 2po’? _1} (12)
I<jq.j3<k k+1<jp.jg<m ZPGZ ”Y}‘ N sz I ”Y}3 - Yj4 I
1793 #ia

=:(2po?)"'[Di(k; I, m) + Da(k; I, m)],
where clearly Dq(k; [, m) = D(k; [, m), and
2po?
dlibm= 3, 2, =6 _Y”“){ ¥ = Yo lY, — Yl 1} '
I<jjjg<k k+1<jy.jg<m 1 J2 13 Ja
1#i3 p#ia

Then, Theorem 4.0.1 in [15] implies that

r=12(k: 1, m)[Dl(k; L m)}

(m—km—k—k—I+ k-1 N(0, 1),

11
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2[(m=I)(m—I=1)]
(m—k)(m—k—1)(k—I+1)(k—1)

16(") (“57)(") ) (13)

nb

where I'(k; I, m) = tr(X?), or equivalently

1 D
— Ipk: 1. } 0,
n3||2||F{ it} 2 v

Next, since we view n as fixed, then for all j; # js, j3 # js, by Theorem 4.0.1 in [15], it follows that ||2||;1(le -
Y;, )T(yj3 —Y;,) = Op(1). In addition, in view of (11) we have 2p0?

1%, =Y, 1), —Y, 1
n=3|| Z|F 'Da(k; I, m) = 0,(1).
Hence, combined with (13), we have

— 1 = o0,(1), and this implies that

2
2,-3 =1 (s)(1,- —
© (2p02n 21215 "D 1.1m) n=8.Z 1 2(D1(k; 1, m) + Dok 1, m)P?
T = sup - = sup S — +0p(1) (14)
k=4....n—4 4poin=b|| 2| w(k; 1,n) 4,...n—4 n=S|| 2| Wy(k; 1, n)
= Ty + o0p(1),
where the last equality holds since n‘3||2||;1D2(k I, m) = op(1) for each triplet (k, I, m).
For 0 <k <m <n, welet Z(k,m)= Y"1, ., """, X' X;, then it follows that
D(k; I, m) = 2(m —k)(m — k — 1)Z(l, k) + 2(k — I + 1)(k — )Z(k 4+ 1, m) (15)
— 2(k—D(m—k—1D[Z(l,m)—Z(l, k) — Z(k + 1, m)].
Then, by Lemma 1, and continuous mapping theorem, we have
nG(k. 11
T, B G D .
k=4,..., "42 GZ(EHH+ZI I<+2 n’ n’1)
(ii) The proof is a simplified version of the proof of Theorem 4(ii), hence omitted here. O
Proof of Theorem 2. Clearly,
o _ (D9 k: 1, m)? (D (K*: 1, n))”
" kmtenea WO 1,n) T WOk 1,n)
and
T — (D(k; 1, n))? - (DK™ 1,n))?
" keanea Walks 1,n) T Wk 1,n)
Note that W(k; 1, n) = Zk 2DO(t 1, k*)? 4 1 Z[ w2 DO(t; k* + 1, n)%. The construction of D®)(t; 1, k*)? (or

DY(t; k* + 1, n)?) only uses sample before (or after) the change point, so the change point has no influence on this part.
The proof of Theorem 1 indicates that 4p2n~5| S [-2W{(k; 1,n) = 0,(1) and similarly 4n~5|| || 72Wy(k; 1,n) = 0,(1).

Hence, it suffices to show pn=3|| || 'D)(k*; 1, n) 2 ~ and n=3|| 2| 'D(k*; 1, n) 2 .
Denote §; as the ith element of §. By (10), for 1 <j; #j3 <k*and k* + 1 <j, #js <n,

p Y, = Yy l? = p I8 +p”Z(xm— i) — ”Zzs i — Xii)s

i=1

p I, — Yl = p 81 +p”Z(Xm— i) —p”Zzs i = Xig.i):

i=1
and

p
P Yy = Vi) (Y = i) =p U812 + P~ > (i — Xigi )X — Xjo)
i=1

p p
-p! Z 8i(Xjyi — Xjpi) —p ! Z 8i(Xj.i — Xjq.i)-
i=1 i=1
Using Theorem 8.2.2 in [15], and the independence of X;’s, we have

- _ P
pY, Y12 5 2202 pUIY, — YR 5 24202 and pl(Y, - Y,) (Y, - V) S 2
If ¢ > 0, then
2
—4 () *. P Ak * * L
n “D¥(k*; 1,n nk*(k* —1)(n—k*)n—k* —1)——— > 0,
( ) 5 (K — 1)(n — k) V357 >

12
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and

pIn4D(k*; 1, 1) B n4 (kYK — 1)(n — k*)(n — k* — 1)% > 0.
Hence,

pn |21 DOk 1, ) = (pnl| 21l DOk 1, 1) B oo,
and

n 3 1IF'Dek*; 1,n) = (pal| Z1IF p~n 4Dk 1,0) B oo, O

Proof of Theorem 3. By symmetry, we only consider the case | < k < k* < m. Since under Assumption 4, (11) still holds
by Cauchy-Schwartz inequality, then using similar arguments in the proof of Theorem 1, we have

2p0”D ki Lom)y= Y D (X = X)X — Xi,)(1+ (1)
I<j1j3<k k+1<jp.jg<m
#i3 Jp#ia
+ (k= 1+ 1)k — D(m — k*)(m — k* — 1]I8]12(1 + o(1))
k I
- (z(k —Dm—k)m—k—2)Y X8+ 4k —(k—1—1)m—k") > xfa)(l +o(1))
j=I j=k+1
= D)(k: 1. m) + D)(k; I, m) — D\ (k: L, m).
(16)

That is, 2po2D¥)(k; I, m) = D(k; I, m)(1+ o(1)) for any triplet (k, I, m), hence it suffices to consider T(s) as the results of T,
are similar.
We first note that

var(X;'8) = 8" 28 = o(| ZI?),

hence by Chebyshev inequality, for any triplet (k, [, m), we have
3| 21 DE) (ks L m) = 0,(1). (17)

(i) By similar arguments in the proof of Theorem 2, it suffices to show

2po?n 3| 27 DOk 1, 1) 5 oo
In fact, by similar arguments used in the proof of Theorem 1, we can show that

n3 1 21 D5 (ks 1 m) = 0,(1).
Then, recall (16), the result follows by noting

n2 ) 21IF DY) (k%5 1.n) = n 2| Sl (k= 1+ 1)(k — ) (m — k) (m — k* = 1) [§]%(1 + 0(1)) — 0.

(ii) As n||2||;1 811> — 0, it follows from the same argument as (14).
(iii) As nl| 2| 181> — ¢a € (0, 00), then we have

4(k H—l)(m k*)
n S DR m. 1) = B (k= 1 1)k = Dm = k)m = K = DISIP(T -+ o(1)) > e =222
Therefore, continuous mapping theorem together with Lemma 1 indicate that
© 2 n[v2Ga(X: 1, 1) + cuan(®; 1 1)
T, — sup 2 k1 t. k+1 2"
ket 3 pa[V2Ga( 55 1KY o A(Es 1KY 2 1 SR V26 KL 1) (L KL 1)

The last part of the proof is similar to the proof of Theorem 5(ii) below, and is simpler, hence omitted. O

Proof of Theorem 4. (i) Note that
p

1 1 Xioe Xy
Y= YP = ) (2 = =) (18)
p p ; Ri R
hence given R,, as p — oo, we have almost surely
1
—[IYi = Yj|> = o*(R? + R ). (19)
p

13
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Note that
Y, — Y)Y, — Y,
Melm= Y3 o
I<j1.d3<k k+1<jp.ja<m (R; +sz ) (Ré +RJ'4 )
#i3 Jp#ia
2(p—2 —2v1/2(p—2 ~241/2
+ Z Z (Yh - sz)T(Yjs - Yj4) {pa (le +R12 ) (Rf3 +Rj4 ) _ (20)
I<jq.i3<k k+1<jp.jg<m (quz + Rj;z)l/Z(Rjgz + Rjzz)l/z ||y]1 - sz ” ||Yj3 - Yj4 ”
i1#3 Jo#ia
=: [D3(k; I, m) + Da(k; I, m)].
Let

Al lmy= Y (R +RPRE+R T,
k+1_§}'2,_j45m
Ja#a
Boy(kilm)= 3" (R>+R)AR?+R),
I<j1.jz=k
1#i3

Guplkilmy==2>" Y (R>+R>) R+ R

I<jz<k k+1<jg=m
J3#i Ja#ip

Then under Hy,

s(kilm)= > XX (R Ry) A (ks Lm)+ > XX, (R, R,) "By, (ks L m)

1<jy.j3 <k k+1<jp.jg<m
1793 Ja#ia
2 § : T 1
+ Xj]ij( ]2) Ch Jz(k l m)
I<ji<k k+1<j,<m

Denote that Uy = (X] Xz, ..., X] Xn, X; X3, ..., X3 Xn, ... X!, Xs)" which contains all inner products of X; and X; for all
i # j,and Uy = (Ry,...,R,)". By definition, o(U;) 1L o(U,), where o(U) is the o —field generated by U, and we
further observe that 2po?Ds(k; I, m) is a continuous functional of U; and U,. Hence to derive the limiting distribution
of 2po?Ds(k; I, m) when p — oo, it suffices to derive the limiting distribution of (Uy, Us)".

For any o € R"™"1/2 similar to the proof of Theorem 1, by Theorem 4.0.1 in [15] we have

-1.T D T T T
X a'U = a Z=0a (Z12, 213, - 210, 22,30 -2 Z2ns -+ -5 Zn—1.n) »

where Z;,, ..., Z,_1, are ii.d. standard normal random variables, and we can assume Z is independent of U,. For the
ease of our notation, we let 2;; = 2, for all i > j. Furthermore since o(U;) 1L o(U,), for any « € R™™=1D/2 and B € R,
the characteristic function of «"U; + BTU, is the product of the characteristic function of «"U; and that of 8TU,. By

applying the Cramér-Wold device, (||2||F‘1U1, Uy) g (2, Uy). Therefore, by continuous mapping theorem, as p — oo,

|| 21l 'Ds(k: 1, m) > GRn9(k/n; I/n, m/n), (21)
where
a1 ™ 1A (k.1 -3 k.1,
Gy (E n F Z Zj, j3(R s (k. Lm) +n Z 212’1‘4(RJAZRI4) By, ju(k, 1, m)
I<jq.jz<k k+1<jp.jg<m
J1#i3 Ja#ia (22)

n-’ Z Z Zjl,jz(R]1RJ'2)7]CJ'1Jz(k’ [, m).

I<ji<k k+1<jp<m

It is clear that the conditional distribution of G%R"’S)(k/n; I/n, m/n) given R, is Gaussian, and for any l; < k; < my,l; <
ky < my, ki, ky, 11, I, my, my € {1, 2,...,n}, the covariance structure is given by

Cov(GFmS)(ky /n; 11 /n, my/n), G (ky /05 L /n, my/n)| Ry) (23)

= 2n’6{ Z 2R 2/\“ g2 (k1 T, m)Ay, g, (Ka; b, ma)

(lyvIy)<iq.Jp =(kqiAky)
i1#ia

+ Z 2R 2/‘\]1 go(k1s Iy, mq)Bj, j, (kas I, my)

(Iq vk +1)<jq.dp <(kqg Amy)
i1#ia

14
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ky (mynkq)

2 2
+2 Z Z 1(ky > k2)R; “R; “Aj, j, (k13 b, mq)Gy j, (ka: I, m3)
=(l1Vvly) ja=ky+1
—2p-2
+ Z Rj1 Rjz By, jp (k13 I, my)Aj, j, (kas I, m3)
(k1+1vl)<iq.ip<(mqrky)
i1#i2
—2p-2
+ Z le Rjz lequ(kl; L, ml)Bj1Jz4(k2; L, my)
(k1 +1vky+1)<j1.jp <(mq Amy)
J1#i2
(myAmy)
+2 Z Z (M1 > ka)R; *R; *Bi, j, (ki ln m1)Gyjy (Ko b, ma)
J1=(ky+1Vly) jo=ka+1
ki (mynky)

+20) Y ke > k)RR Gy (ks by maA (o b, ma)
Jj1= (11V’2)12 ki+1
(mqyAmy)

+2 Z Z (my > kq)R R 2Cj1,j2(k1; i, m1)B;, j,(ka; I, my)
J1=(ka+1VIy) jo=k1+1
(k1nky) (myAmy)

+ Z Z RJIZR G.ip(k1; I, mi)G iy (kas Lo, mz)}-

=(l1vl) jp=(k1+1Vky+1)

Clearly, when R; = 1, we have 2D5(k; [, m) = Dq(k; I, m) where Dq(k; I, m) is defined in (12), and the result reduces to
(13).
Using (19), we can see that given R, Dylkil.m)

3| Ll

= 0,(1). Hence, given R,, we have

Ds(k; 1, n)]?
Tr(f) = sup L 3(< ol + 0,(1).

k=4,....,n—4 % t l+1 Ds(t; I, k)? Zt ) Ds(t; k+ 1, m)?
Then, by (21), we have that as p — oo,

n(Gy " (k/n; 1/n, 1))

TO|R, B T(Rns) = su
T et YASIGT (e ns 1/ k/m)R + 3ry I (e /n (k+ 1)/n, 1)

As for T,, note that

Dk, m)= (m—k(m—k-1) > X Ry) '+ k—1+ k=1 > XX (R;R;,) !
Isjy.j3=k kt1jp g=m
J1#)3 o #ig
—2k—Dm—k=1) > > X'X,(R,R,)".
I<j1<k k+1<j<m

Using similar arguments as in (21), we have

n3) 17 'Dlk; 1, m) >GRO (k/n; 1/n, m/n), (24)
where
(Rn) k l m -3 —1
Gr(=s — )= (m—k)m —k— T Y Z R Ry 4 (k=14 (k= Dn > 2Z,uR,R,)
n I<jy.j3<k k+1<jp.jg<m
#i3 J2#ia
—2k=Dm—k=1n7 >~ > 2 ,(R,R;)”
I<j1<k k+1<j,<m

(25)

Similar to G%R”'S)(k/n; I/n, m/n), the conditional distribution of GﬁlR”)(k/n; I/n, m/n) given R, is Gaussian, and for any
I <kiy <mq,lh <ky <my, ky, ko, 1y, I, mqy,my =1,2,...,n, the covariance structure is given by

Cov(G*M(ky/n; 1y /n, my/n), G*n)(ky /n; b /n, my /n)|Ry) (26)

_ _6 oo — kl my — kz 2 mp — kl ]C] — 11 +1
= 8n { Z Rfl sz ( 2 )( 2 >+ Z Rh R ( 2 )( 2
(I vky+1)< )

(4 vp)=ip.dp <(kgAky) <j1.Jp =(kyAmy
J1#i2 J1#92

15
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ky (mynkq)

2 Y Y k> kR ( 2"1)(k2—12)(m2—k2—1)

J1=(l1vl) ja=ky+1

ki —L+1\/my—k ki —L+1\[k—-5L+1
—2p—2 1 1 2 2 —2p—2 1 1 2 2
+ Z Rj1 Rjz ( 2 )( 2 )+ Z R'l Rjz ( 2 )( 2 )

(kq+1vh)si1.jp s(myAky) (k1 +1Vky+1)<jq.Jp <(mqAmy)
11#12 I1#i2

(myAmy)

ki —hL+1
) Z > 1m > k)R 2RZBM<1 2‘ )(kz—lz)(mz—kz—l)

J1=(k1+1vl) jo=ka+1
kq (mynky)

2.2 mpy — ](2
_z’ Z | Z 1(ky > kp)R2R-2(ky — I)(mq — ky — 1)( 5 )
11*(11V’2)12*’<1+1
(mqyAmy)

kry—15L+1
-2
—2' Z Z (my > k1)R Rj2 (I<1—11)(m1—k1—1)< 5 )
J1=(k2+1vlq) ja=k1+1
(k1Aky) (myAmy)

+ Z SRRk~ lmy — ki — (ke = b)mz — ks — D).

=(l1Vh) j2=(k1+1Vky+1)
Hence, as p — oo,
n[G(R”)(k/n' 1/n, 12
e EACT e /m 1/, k)P + X0, LG e /m: (k+ 1/m, D

TRy = TR = su

(ii) We shall only show the process convergence GY*"S(.) - E[ﬁ]ﬁc( because that GV*M(.)
/(R24+R2)(R3+R2)
R;z)ﬁc(-) is similar and simpler. Once the process convergence is obtained, the limiting distributions of 7;(R”’S) and
Tnm") can be easily obtained by the continuous mapping theorem.
The proof for the process convergence contains two parts: the finite dimensional convergence and the tightness.

To show the finite dimensional convergence, we need to show that for any positive integer N, any fixed uq, uz, ..., uy €
[0,1)° and any &1, ..., oy € R,
D R4R
a1GRn () 4 - 4 ay G uy) — Ez[ 2 ]\/i[alc(ul) + -+ anG(un)],

(R? + R2)(RZ + R3)

where for u = (u®, 4@, U, Gy(u) = Gu(us; iz, us). Since both GY¥"9(-)|R,, and G(-) are Gaussian processes, by Lemma 2
we have

Pl G Iuy) + - - 4+ G Iuy) < X|Rp)

ZR(E] e |VBlonGlu) + -+ anGlu)] < %)
(R? + R2)(R3 + R3)

Then by bounded convergence theorem we have
lim P(or G (ur) + -+ + G ug) < %) = lim B[P G ug) + - - - 4+ G ) < x|Ry)]
n—oo n—oo

=E[ lim P,(a;G*")(uy) 4 - - - 4+ o, G (wy) < X|Rp)]

:E[ Rika ]«/f[qu(ul) + -4 o Glug)] < x
(R? + R2)(R% + R%)
S — |V2lenGun) + -+ + enGue)) < ).

(R + R3)(R3 + R3)
This completes the proof of the finite dimensional convergence.
To show the tightness, it suffices to show that there exists C > 0 such that
E[(GF(u) — GFm9(w))P] < C(llu — v]|* + 1/n),
for any u, v € [0, 1] (see the proof of equation $8.12 in [28]).

16
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Since given Ry, G%R“’S)(-) is a Gaussian process, we have
E[(G*(u) — G (0))*] = EIE[(G(u) — G*"9(v))*| Ry 1] = CE[Var((Gy*"(u) — G ()| Ra)"]
By (23), for u = (ky/n, l;/n, my/n) (and similar for v = (k,/n, I, /n, m,/n)) this reduces to

Var(GU*m ()| Rn) =2n76{ Z (R, Riy)"%Aj, s (ke I, ma ) + Z (Ri,Ri,)"*Bj, ju (ke 1, my )
hi=i1dz=kq k1 +1<jp.jg<mq
J1#93 Jo#i4

+ Z Z (RhRjz )_chl -12(k1’ L, ml)Z]'

l1<j1<kq kq+1<j2<my
Note that
E[(G" ) (ky /n; 11 /n, my/n) — GFm(ky /s L /n, my/n))¥]
S EUGT )k /n; L /n, ma/n) — GFRmky /s 1y /n, my /)]
+ E[(G (ko /n; Iy /n, my/n) — GRmS)(ky /s b /n, my /n))®]
+ EI(Gmky/n: b /n, my/n) — Gk /s by /m,ma /)] = I + I + L.

We shall analyze I first, and WLOG we let k; < k,. Then we have (with I} = I, m; = my)

Cov(Gm )k /n; 1y /n, my/n), GTFm(ka /n; b /n, my /n)|Ry)
Z R ZR 2/‘\;1 gs(kas b, m)A;, js(kos Iy, my) + Z R; zR 23“ i(kis Iy, mA;, g, (ks I, my)

h=j1d3=kq ky+1=j1.d2<ky
h#i3 i1#i2
ky my
2 . . —2p—2 . .
+ Y RIRByj (ki o mBy, ko bhomy) +2 > > RRPG gy (ks b ma)By, (ke Iy, )
ky+1<jp .jg<mq Jj1=k1+1j2=ky+1
ip#ia
’(1
2 2 2 . .
+2) Z R 2R2Gy (ks L mA jy (Ko b, ma) +§ §j R’R; ch,jz(k],ll,mnch,jz(kz,lz,mz)].
J1=h j2=k1+1 J1=l 2=k +1

Hence,

Var( G ”(kl/n li/n, my/n) — G (ky /n; b /n, my/n)|Ry)

-2 —2 2
> RiR) Ak bomi P Y (RyRy) By (ks 1y, ma)
h=jhdz=<k kq+1=ip.4g<my
1793 Ja#ia

+ Z Z (R, Ry,)™ C}1-12(I<17 h, ml)z}

L =j1=kq k1+1<j=my

-6 -2 2 -2 2
2n { 3 RiRy) PAple om? + S (RyR) B (ke b m)
l1=<ir3<ky ky+1=jp.j4=my
J1793 J2#ia

+ Y > (RiRy) le,jz(kz’lhml)z}

h=ji=k; ky+1<ja=my

_4n*6{ > RPRCA, ks hom)A (ko homy) + YRRy (ke . ma)A (ko b, my)

h=ihdz=ky ki +1<i1d2<ky
J1#03 J1#i2
"2
2 2 2 . .
+ E S R;,“Bjy ja(kas 11, mi)By, j, (ka3 o, mp) + 2 E E R “Ry 2Gi, jp (ka3 b, my)Bj, 4y (ka3 1y, my)
ky+1<jp.jg<my J1=k1+1jz=ky+1
Jp#ia
kq ky kq my
2p—2 —2p-2 . .
+ 22 E R “R;,“Giy o (ks Iy, mo)Ay, j, (ko; I, mp) + Z Z R °R;, le,jz(kl,11,m1)q1,j2(k2,12,m2)}~
J1=h ja=ki+1 J1=lh ja=kz+1

17
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By rearranging terms we have
Var(G )k /n; b /n, ma /) — G kea /s by /n, ma /)| Ry)
=2 D (RyRy) Ayl boma) = A (ke b )2

hi=irdz<ky
1793
ky  j1—1
+ D D (RRL) (A ko L)+ Ay (Ko, 1y, ma )
h=ki+1j3=h
+ Z RJZZR (jz,j4(k1;11,m1)—3j2,j4(k2;11,m1))2
ky+1<jp.jg<my
J2#ia
ky—1 myq
+ > D RIR B,k b my) + By, (ks b, ma)?)
J2=k1+1js=2+1
kq
+> Z R 2R (G gy (K, b my) = Gy (ka, by, my )Y

j1=h j2= ’<2+1

kq
+ Z Z R 2R Gy jp (ki Iy, mq)? Z Z R1 22q1,j2(k2511’m1)2

J1=l ja=k1+1 1=k +1ja=ky+1
ky my
—2p—2 ) A 2 : 2 : —2p—2 . .
-2 E le R]Z Bj1,jz(kla 117 m])AjL,jz(kZa 11, m]) —4 le R]Z Cj] ,jZ(st I]a m])Bj1 ,jz(kla I]a ml)
ky+1<jq.72<k; 1=k +1ja=ky+1
J1#

k] kz

10
— 4 Z Z Rﬁszgzcj],jz(kﬁ i, my)Aj, g (ka; I, my) = Z]i-

J1=l j2=k1+1
Thus by CR-inequality we have I; = E[( Zz NANES Z, L E[J{1. We shall analyze E[J{] first. Note that

Aj],j:;(k]: L, my)— Ajl,j3(k2, Iy, my)

_ -2 —2\—1/2/ p—2 —2\-1/2 _ -2 —2\—1/2/p—2 —21-1/2
- Z (le +R12 ) (Rj3 +Rj4 ) Z (Rh +R]2 ) (Rf3 +Rj4 )
kq+1=jp.04=m ky+1=jp.q4=myq
12#1'4 1'2#4
_ ~1/2/p-2 ~1/2 ~1/2/p-2 —2v-1/2
BB D S XY RCUENEURCRE DD S ART SRR
Ja=k1+1js=ja+1 Jja=k1+1j2=js+1
kz
<2 ) Z (2IR;, 1" IRy, 171 22IRy |7 Ry, 172
Ja=k1+1js=ja+1
kz
= |RJ1RJ3| 12 Z Z |R12RJ4| /

Ja=k1+1j4=jp+1
Since Aj, j;(kq, Ij, m1) — Aj, j5(k2, [, mq) > 0 and J; > 0 almost surely, we have

ky

4
EUfl =2 B[ JC Y ) Z Z Z IRj, Ris | ™" IRy, Riy |2 IRy, Ry, [V2)).

i=1 h=hidzisk jo =kt e i=i2,it1j) =k +1j, /=,1+1
J1,i#3,i
By the Hoélder’s inequality, and the fact that jis # jss, jas # Jas Jos # Jas and jis,j3s are not identical to any of
{j2.s,Jass J2.s,Jas} for any s = 1, 2, 3, 4, we have

» 1V2]

-1 172 172 - 12p
ELIR;, 1Ry i [ IR 1 Riy 1 | / |RJ"2,1RJQ‘1| / " IRy 4Ry 41 |R12 aRig 4l /

|124

< [ TEUCR;, (IRs 1R, Rig R, Ry V2114
s=1
18
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4 4
_ Cp. \4p2 p2 p2 p2 q1/4 _ A p—d1mrp2 p2 P2
_H]E[(R]LSRBS) R]Z sR]4st2 R 5] - H!E[RJIS]E[RBS]E[R]Z SR]4SR]2 R ]}
s=1 s=1
- 4 o4 11/2mpd pd q172] V4 42 pde2
= [T{ER; IER IR RS 1V2EIR B V2] = BIRTPRIRE.
s=1
Therefore,

E[J{] < 2024 (ky — ki )®n'®E[R; *1*E[RS]* = 2*E[R; *I*E[R31*(k2/n — ki/n)®.

We repeatedly apply the Holder's inequality and the above bound for the expectation, and we have IE[]S‘*] < (ky/n—kq/n)®
fors = 1, 3, 5, 8 since there are 8 summations in each E[J?] which take the sum from k;+1 to k, and E[J#] < (ko/n—k;/n)*
fors =2,4,6,7,9, 10 since there are only 4 summations in each IE[]S“] which take the sum from k; + 1 to k,. Combining
these results we have I; < (ky/n — ky/n)*.

We can also show I, < (I,/n — I;/n)%, and I3 < (my/n — my/n)*. Since the steps are very similar to the arguments for
I, we omit the details here. Thus, for any u = (uy, u, u3), v = (v1, V2, v3) € [0, 113, we have

E[(G*m () — G 9())*] < C'((Lnua | /n — [nvr ] /n)* + (Lnuz] /n — [nwa]/n)* + (Lnus] /n — [nvs] /n)?),
for some positive constant C’ > 0. It is easy to see that

(LnuaJ/n — Loy /n)* = ((wn = v1) = (fur} = v })/m)* S (= 01)* + (fur} — {vi )/’

< (g — vp) + 1/,

So
E[(Gu) — GRm9(0)F] < Clur — v1)* + (U3 — v2)* + (u3 — v3)* + 1/n%)
= C(llu - v||2‘l +1/n*) < C(llu = vl|* + 1/n%),
since |lu —v||} = 213 1 4 < Z — vy — v)? = (Z?(ui — ;%) = |lu — v||* This completes the proof of

tightness. O

Proof of Theorem 5. (i) Under Assumption 4, conditional on R,, we still have almost surely

1 1~ [ Xik Xik ) Xik Xk 1 2P 9o 3
—Yi—Yjl* = = <*’—*’ + (i =)\ = — 5= ) + <l — wll* > o“(R7* +R77)
p p ; R R p U\ RR p ' !

as conditional on Ry, {R;” X, k _, is still a p-mixing sequence.
Recall (20), conditional on Rn, we mainly work on Ds(k; [, m) since Dy4(k; I, m) is of a smaller order, where

Y: —Y ) (Y. —Y;
s(k; 1, m) = Z Z _2( " —zjf/)z ( = sz 12
I<jy.jz<k k+1<jp.jg<m (Rh +sz ) (Rfs +Rj4 )
1#03 Ja#i4

By symmetry, we only consider the case | < k < k* < m, and the summation in D3(k; [, m) can be decomposed into

SN Sl BB S SN S SIS S U ol §

Isj1jzsk k+1sjp.ja=m Isj1.j3=k k+1<jp.ja<k* k*+1<jp.jg<m  jo=k+1ja=k*+1  ja=k+1jo=k*+1
J1#03 J2#ia J1#03 J2#ig J2#i4

according to the relative location of j;, j4 and k*.
Then, it is not hard to see that

Ds(k; I, m)
Z Z (le /Rfl - ij /Rjz )T(Xja /Rfs /RJ4 Z Z ||8||2
—2 —2 —2 —2 -2 —2 -2
(R + R)VA(R? + R.?) 1/2 (R” + R,)VA(R,™ + R )2

I5j1.3sk k+1p.045m Isj1j3sk K1 dgsm 1
J1#i3 Jp#ia 1#3 12#14

) Xm: Xm: 81(X;, /Ry, — '/sz -y Z Z 87 (X »/R,~3 — X, /Ri,)
-2 | p-2y1/2 )1/2 R2 12(R72 4 R72)1/2
1g1i3§k Jo=k*+1ja=k+1,js7i> (Rh +Rjz ) (R +R / IJ]#]3<I< ja=k*+1ja=k+1,ja#ir ( +R ) / (st +Rj4 )
J1#i3 J1773

4
= Dsi(k; L,m).
i=1

19
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Under Assumption 4, and conditional on R, similar to (17), we can show for i = 3, 4.
n72 || 25 'Dsi(k; 1, m) = 0,(1),

while by (21), n=3| 2|7 'Ds1(k; L, m) > GRnS)(k/n; I/n, m/n).
Hence, if nE(R2)"1| I 'II8]1> — ¢, as p — oo, then conditional on R,, we obtain that
n7 || Zl7 'pa?D(k; I, m) = n73|| Z|7 ' Ds(k; I, m) 4 0p(1)
=n">| 2|z "[Ds.1(k; I, m) + D3 5(k; I, m)] 4 0,(1)
(X, /Ri, — X, /R;, )T()(j3/Ri3 —Xis/Riy)

-3 -1
= n |12 E E
—2 -2 1/2 —2 —2 1/2
I<itz<k k+1<jp.jg<m (le +Rjz ) (Rj3 +Rj4 )
1793 In#ia
-1
n|| 2 11811

4
n + 0,(1
Z Z (R—z + R 2)1/2(Rj;2 + Rjzz)l/Z p( )

I=j1.3=k I*+1<jp.jg<m
J1#J3 Ja#ia

B3GRk /n; 1/n, m/n) + AR k/n; I/n, m/n),

where
¢ ( 2) <
Z'iﬁé?;'( Leriien G g | <kskKo<m
AT ke /n; 1n,m/n) = n=4 Y 1 cee S kbiiydgem BR) l<k*<k<m (27)
J111;2J3 Jzi}f (R +R_2)1/2(R +R_2)1/2
0, otherwise.
Hence, we have
D
TR = TR0, AT)
n[G(Rn,S)(k. 1 1)+ ¢y A(Rn 5)(7 1 )]2
— n’n’ n’n’
'_ R (R R k+1 Rn, k+1 '
fetnd TIIGEE L)+ T &R+ T lGr (8 T 1) ¢ a9 E T )

For T,, by similar arguments as above, we have

nPIZI D Lmy =0 S0t Y Y (X5, /Ry — X /R, (X, /Ry, — X, /Ry,)

I<j1.j3=k k+1<jp.jg<m
i1#03 Jp#ia

YD B IS + 0p(1) S R k/ms 1/, m/m) + GE(R™)Au(k/n; 1/n. m/m).

I=i13=k K*+1<jp.jg<m
1#3 J2#ia

Hence, we have
D
TOIR, = TR0 (c,, ATRRS))

— s Gy (% 1 1) + GE(R ) Aq(E: 1 1)1
tetn=a 3 IGT (L 1 B) + GER)ANE: 1 5P + 200065 S 1) + GE(R-2)A(: S, 1)

(i) Note that for any u = (uy, uz, u3)" € [0, 113 such that u, < u; < u3, asn — oo,

AT nuy | /n; [nuy)/n, |nus]/n) 5 E(Ry )Ez[&]ﬂ(uﬁ Uy, U3).
JR? +R?
1 TR

by the law of large numbers for U-statistics (since A (Rn9) can be viewed as a two sample U-statistic). Then using the

similar arguments in the proof of Theorem 4 (ii), we have
RiR,
]A(-).

ARR)() o E(R;Z)Ez[i
VRI+R;

Note that A(-) is deterministic, and recall Gy<"9(-) ~ IE[%]«/EG(-) in the proof of Theorem 4(ii), by similar

(R2+R2)(RZ+R3)
arguments in the proof of Theorem 3.6 in [28], we have
RiR;

RiR
GﬁR”'S)(-)JrCnA%R"'”(-)WE[ — ]IG + CE(R )EZ[
VRI+R;

(R? + R3)(R3 + R3)

]A(-).
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Similarly,
GRI(-) + caE(R™2)ARM() IV2G(-) + CB(R;*)A(-).
The result follows by the continuous mapping theorem. Here, the multiplicative K > 1 follows by the proof of Theorem

32in[5]. O

Appendix B. Auxiliary lemmas

Lemma 1. Under Assumptions 1 and 2, let n > 8 be a fixed number, and for any 0 < k < m < n, let Z(k, m) =
m i—1 T
> icki1 2k Xi' X;. Then, as p — oo,

2 !
V2 shem 2 o™,
Rzl -

where Qu(a, b) is a centered Gaussian process defined on [0, 1]*> with covariance structure given by:

Cov(Qn(as, b1), Qu(az, by))
= n7?(|nby] A |nby| — |nay] Vv [nay)([nbi] A [nby] — [nar] v [naz] + 1)1(by Aby > a1 V @)

Proof. By Cramér-Wold device, it suffices to show that for fixed n and N, any sequences of {o;}} |, i € R,

V2 k, ml
oj———Z(k;, m «;Qy
; sy 2t m Z (-

where 1 < k; < m; < n are integers.

For simplicity, we consider the case of N = 2, and by symmetry there are basically three types of enumerations of
(k1, mq, ka2, m2): (1) kyq §m1 <k <m2 (2) k4 <k2 <my <my; 3) k1 <ky <mp <my.

Define SEP = X Z] —k, Xt and S =X ZJ —_k, Xi.¢- Then, we can show

V2 m il my Q-1
=] [a1Z(k1, mq) + aaZ(ky, my)] = 5T ( Z ZXT)(j+a2 Z ZXTXJ)
’ i=ki+1j=k; i=ky+1 j=k,
ﬁ p my my
iz (Z gy + ) “253))’ Case (1)
Pt sk i=ky+1
\/i p ko N my W @ my o
iz Z( Yoo+ Y g s+ Y wt ) Case (2)
F=t ikt i=ky+1 i=my+1
ky my m
n| 2| Z( Z alé(l)_" Z [“151'(,})"‘“251'(,%)]"‘ Z 0115,-(,})), Case (3)
F t=1 i=k{+1 i=ky+1 i=my+1

For simplicity, we consider the Case (2), and using the independence of X;, one can show that

\/i (2) (2)
= n||2|| Z Z @bl S = e Z["“g Fekil %= n||2|| Z Z 2£ic

t=1 i=ky+1 t=1 i=ky+1

are independent. Then by Theorem 4.0.1 in Lin and Lu (2010), they are asymptotically normal with variances given by

Var(S1) = 72 Z(kz - k])(kz — ki + 1)
Var(Sy) =n"2[a?(m; — ky)(ka — ki + 1+ my — k) + 20q02(my — ko)(my — ka + 1) + a2(my — kp)(my — ky 4+ 1)],

Var(S;) =n"2a3(my; — my)my — ky + my —ky + 1).

Similarly, we can obtain the asymptotic normality for Case (1) and Case (3).

Hence,
V2 D 72
la1Z(k1, my) + a2Z(kz, mz)] — N(O, —),
n|| x| n
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where
a?(my — ky)(my — ki + 1) + aZ(my — ky)(my — ko + 1), Case (1)

% = {ad(my — ki) (my — ki + 1) + a3(my — ky)(my — ko + 1) + 20100(my — ky)(mq — k, + 1), Case (2)
a?(my — ky)(my — ky 4+ 1) + a2(my — ky)(my — ko + 1)+ 2aq00(my — ko )(my — ky + 1), Case (3).

Hence, the case of N = 2 is proved by examining the covariance structure of Q, defined in Theorem 1. The cases N > 2

are similar. O

Lemma 2. Asn — oo, we have forany 0 <a; <r;<by <1land0<a, <1, <by <1,asn— oo,

RiR;

(R} + R3)(R3 + R3)

CoV(Gris a1, by), G (r3; a3, b)) 5 282 |covtctris ar. by, Gira: az. b))

Proof. There are 9 terms in the covariance structure given in (23), for first one, we have

n° > R 2R %Aj, jp(LnriJs naa ], Lnb1])Aj, j,(Lnra; (nay), [nby))
[n(aqvay)l<j1.jp=ln(riArp))
J1#2
—on-6 Z R-2R2 Rj, Rj, R;,Rj,
J1 72
Un(ag vay)] iy < n(ry Ary)] Unry 1173 g <Lnby \/(Rjzl +R.) \/(Rjzz +R2)
J1#2 i3#ia
« Rj,Rjs Rj,Rjs
Lnrg ) +175 Jo <Ly \/(Rjz] +R) \/(Rjzz +R)
is#ie
Ri\R;, R;,R;
=2n2 > R; 2R;.*(by { [ “_IR;,. R ]+0M1ﬂ
Ln(a1vaﬂjﬁ]i;ﬁ\_”("l“ﬁi \/(Rz + R2 \/ R2 + R124)
7R

RJ1R15 R]zR
\/RZ +R2)\/(R2 +R2

Bal(r ar2) = (a1 v @)P(by — riP(b; — roPE?|

% (by — rz)z[IE[ R;,. -Z] +op(1)}

R1R2 ]
(R? + R2)(R3 + R?)

where the last equality holds by applying the law of large numbers for U-statistics to Rj,, R;, and R;,, R;;, and the last

ER s » g »
holds by the law of large numbers of U-statistics to R;,, R;,
Therefore, similar arguments for other terms indicate that
RiR
2577 s | 1im Cov(GRnLnryJ; Lnay), Lnb 1), G+ 9(nrs): (nas ), nb2)))
n—oo

(R + R3)(RS + R3)
=[(r1 A1) — (a1 vV @2)P(by — 11 )P(ba — 2’ 1((r1 AT2) > (a1 V a2))

+ [(r1 Aba) = (a1 Vv 12)PP(by — 1) (r2 — @2’ 1((r1 A ba) > (a1 V 12))
— 4[r; — (a1 vV @)[(ba A1) — 12](by — 11)* (b2 — 12)(r2 — @)A(ry > 12,12 > (a1 V @3), (b A1) > 1)
+ [(by AT2) = (11 V @)PP(r1 — a1 (ba — 2P 1((by A12) > (11 V a2))
+ (b1 Aby) = (11 v 1)1 — 1) (r2 — a2 P 1((by A ba) — (ry v 1))
— 4[r; — (1 vV @)ll(b1 A by) — r2](r2 — @2)(ba — r2)(r1 — a1)*A(by > 12,12 > (11 V @3), (b1 A by) > 13)
— 4lr; — (a1 vV @)l[(by A12) — r1(ry — ar)(by — r1)(bz — 12)*A(r2 > 11,11 > (a1 V @3), (by V 13) > 1)
— 4[r; — (2 v a))ll(by A by) — r(ry — ag)(by — r1)(r — a2)*A(by > 11,11 > (12 V ay), (b1 A by) > 17)
+ 4[(r1 A12) — (a1 vV a)ll(b1 A by) — (11 AT2)I(r1 — a1)(by — r1)(r2 — a2)(b2 — 12)
X (11 AT2) > (a1 V az), (b1 A bz) > (11 AT2)).

This is indeed the covariance structure of G(-) after tedious algebra. O
Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105114.
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