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Constructing Spanning Sets of Affine Algebraic
Curvature Tensors

By Stephen Kelly

Abstract. In this paper, we construct two spanning sets for the affine algebraic curvature tensors. We

then prove that every 2-dimensional affine algebraic curvature tensor can be represented by a single

element from either of the two spanning sets. This paper provides a means to study affine algebraic

curvature tensors in a geometric and algebraic manner similar to previous studies of canonical algebraic

curvature tensors.

1 Introduction

When studying the geometry of a pseudo-Riemannian manifold (M, g ), it is natural to
investigate the geometry of its curvature tensor. This tensor has three symmetries that
enable it to be studied algebraically as an algebraic curvature tensor (ACT). We define an
ACT below.

Definition 1.1. Let V be a n-dimensional real vector space. We define an algebraic cur-
vature tensor to be an R ∈⊗4(V∗) such that R satisfies the following algebraic properties
of a Riemannian curvature tensor:

1. R(x, y, z, w) =−R(y, x, z, w),

2. R(x, y, z, w)+R(y, z, x, w)+R(z, x, y, w) = 0,

3. R(x, y, z, w) = R(z, w, x, y).

One studies algebraic curvature tensors because they allow algebraic methods to be
used to understand geometric properties of manifolds. The current body of work on
ACTs has mostly focused on linear dependence and decompositions of ACTs [2, 5, 6, 10],
but there has also been some investigation of ACTs in specific model spaces [8].

The commonality among all of these investigations has been the existence of some
set which spans the vector space of ACTs; we refer to the elements of any such set as
canonical ACTs
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2 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

While many manifolds have curvature tensors that can be represented by ACTs, this
is not the case for every manifold. As will be discussed in Section 3, the third symmetry of
ACTs is based upon an assumption about the interaction between a manifold’s connec-
tion and the metric. But, this assumption does not necessarily hold for all manifolds of
interest. The limits of this assumption motivate us to consider affine algebraic curvature
tensors (AACT) which describes the curvature tensors of manifolds where the interaction
assumption does not hold. This enables us to study the geometry of a more general set
of manifolds through algebraic investigations of its curvature tensor. Below we define an
affine algebraic curvature tensor.

Definition 1.2. Using V as above, an AACT is an R ∈ ⊗4(V∗) such that R satisfies the
following two properties:

1. R(x, y, z, w) =−R(y, x, z, w),

2. R(x, y, z, w)+R(y, z, x, w)+R(z, x, y, w) = 0.

Note that an AACT is just an ACT without (3) in Definition 1.
The goal of this paper is to find two spanning sets of the affine algebraic curvature

tensors. This is significant because having these sets will allow researchers to generalize
the results previously only proved for ACTs like the results from [5, 6, 8, 10]. Moreover, as
will be explained in Section 3, the study of ACTs places each ACT on a manifold with a
metric and relies upon assumptions about the interaction of the manifold’s connection
with the metric. Readers familiar with differential geometry will know this structure as the
Levi-Civita connection. When studying AACTs, we do not assume we have this structure
which lets us work with a broader set of geometric objects. As such, mathematicians
will be able to analyze the broader subject of affine geometry through the algebraic
perspective of AACTs.

The organization of this paper is as follows. In Section 2 we will review the necessary
differential geometry to understand the differences between affine and classical differ-
ential geometry. This will set the stage for the following sections and highlight why the
generalization of ACTs to AACTs is not immediate.

In Section 3 we will use geometric methods to determine a reasonable spanning
set which will provide us with the first notion of a canonical AACT. Specifically, we will
highlight how the canonical ACTs require the Levi-Civita connection, while the canonical
AACTs do not. This serves to highlight the geometric nature of AACTs and clarify how
the algebraic proofs in Sections 4 and 6 have their roots in geometry. In Section 4 we
demonstrate this set is indeed a spanning set.

In Section 5 we will produce a second spanning set, but we will do so without any
geometric intuition. We do this by adjusting the canonical AACTs found in Section 4 in
an analogous way to how the canonical symmetric ACTs are adjusted to produce the
canonical anti-symmetric ACTs [3].
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Kelly 3

Then, in Section 6 we will prove that every AACT on a two dimensional vector space
can be represented by a single canonical AACT in both the symmetric and anti-symmetric
build. These final sections will act as a jumping off point for further study of the canonical
representations of AACTs.

2 Preliminaries

The goal of this section is to explain all of the necessary differential geometry to define the
Levi-Civita connection and the curvature tensor of a manifold. This section will follow
the standard submanifold and connection theory as laid out in [4]. This section assumes
knowledge of undergraduate analysis and some manifold theory. Those unfamiliar with
either of these can see [7] and Chapter 2 of [4] respectively.

With that being said, one of the fundamental objects of study for this paper are
connections on manifolds. We will be using the definition below.

Definition 2.1. Let C∞(M) be the set of smooth real valued functions on the manifold
M. Moreover, let π : E → M be a vector bundle on the manifold M, T (M) be the tangent
bundle of M, and E (M) be the space of smooth sections of E. A connection in E is a map

∇ : T (M)×E (M) → E (M),

written as (X,Y) →∇XY that has the following properties:

1. ∇XY is C∞(M)-linear over X. That is for f , g ∈ C∞(M) and X1,X2 vector fields in
T (M) we have

∇ f X1+g X2 Y = f ∇X1 Y+ g∇X2 Y

2. ∇XY is R-linear in Y. That is for a,b ∈R and Y1,Y2 vector fields in E (M) we have

∇Xa1Y1 +a2Y2 = a1∇XY1 +a2∇XY2.

3. ∇XY satisfies this product rule for f ∈ C∞(M):

∇X( f Y) = f ∇XY+ (X f )Y.

We call ∇XY the covariant derivative of Y along X. It can be thought of as the derivative
of Y in the direction of X. Next, we define a linear connection on M.

Definition 2.2. An linear connection is a connection in the tangent bundle TM. That is

∇ : T (M)×T (M) →T (M).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



4 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

A well known and important result is that every manifold admits a linear connection.
See page 52 of [4] for more details on the proof of this fact. We will use this fact in Section
3.

Linear connections are fundamental objects in differential geometry, and so naturally
we would like to know how they act with regard to the tangent and normal bundles of a
manifold. Definition 5 lays that out for us.

Definition 2.3. Let X and Y be vector fields in the tangent bundle of a manifold, M, M be
a submanifold of N, and N have the connection ∇. Let N have the metric g (·, ·). Finally,

let N (M) be the normal bundle of M. We define ∇>
and ∇⊥

to be the tangential and
perpendicular components of ∇, respectively. That is to say that

∇>
: T (M)×T (M) →T (M)

and
∇⊥

: T (M)×T (M) →N (M).

We call (∇XY)⊥ the second fundamental form, and will denote it as η(X,Y).

Because ∇>
describes the ∇’s behavior on T (M) and ∇⊥

describes the ∇’s behavior
on N (M) it stands to reason that ∇>

and ∇⊥
can combine to make ∇. Proposition 1

formalizes this notion.

Proposition 2.4. Let M be a submanifold of N. Let N have the connection ∇ and metric
g (·, ·). If X,Y ∈ T (M) are extended arbitrarily to vector fields on the ambient space, the
following formula holds along M:

∇XY = (∇XY)>+η(X,Y).

Details of this proof can be found on page 135 of [4]. Moreover, details for a proof
that the choice of extension of X and Y does not change the result can be found on page
50 of [4].

We can now move on to defining the Lie bracket of vector fields. This is the last step
required to define the Levi-Civita connection. Note that the Lie Bracket does not require
the manifold to have a metric.

Definition 2.5. Let X and Y be vector fields on a manifold, M, and let
f ∈ C∞(M). Then, we define Lie bracket, [X,Y]( f ), to be

[X,Y]( f ) := X(Y( f ))−Y(X( f )).

When referring to the Lie bracket as an operator we write [X,Y].

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Up until this point, there have been no differences between affine differential geom-
etry and classical differential geometry. The Levi-Civita connection (as defined below) is
the first split in these fields. In classical differential geometry the Levi-Civita connection
is frequently used, but in in affine differential geometry we use a connection that may
not be the Levi-Civita connection.

Definition 2.6. Let M have the metric g (·, ·) and let X,Y, and Z be vector fields on M. The
Levi-Civita connection (or Riemannian connection), denoted as ∇LC, is the unique linear
connection on M such that

1. ∇LC
X Y−∇LC

Y X = [X,Y],

2. X(g (Y,Z)) = g (∇LC
X Y,Z)+ g (Y,∇LC

X Z).

We say ∇LC is (1) torsion-free and (2) metric compatible, respectively.

The fundamental fact about the Levi-Civita connection is that it is the unique con-
nection on M that has both of these properties. Details of a proof of this fact can be found
on page 69 of [4]. We can apply these properties to derive the Weingarten equation.

Proposition 2.7. Let M be a submanifold of N with metric g (·, ·), and let N have a metric,

g (·, ·), and the Levi-Civita connection, ∇LC
. Suppose X,Y ∈T (M) and Z ∈N (M). When

X,Y,Z are extended arbitrarily to the ambient space, the following equation holds at points
of M:

g (∇LC
X Z,Y) =−g (Z,η(X,Y)).

We call this the Weingarten equation.

The Weingarten equation is critical in deriving the canonical ACTs, but it requires
∇ to be torsion-free and metric compatible. By uniqueness, that means it requires ∇ to
be the Levi-Civita connection. Since we do not assume ∇ is metric compatible in affine
geometry we cannot use this equation. As we will show later in Section 3, this is the
primary reason that the canonical ACTs are not the complete set of canonical AACTs.

Now that we have completed our first goal of defining the Levi-Civita connection,
we can move on to defining the curvature tensor. To do that we must first define the
curvature operator, and we will also define some important properties of connections.
Note that the curvature operator does not require a metric, but the curvature tensor
does.

Definition 2.8. Let X,Y, and Z be vector fields on M endowed with the connection ∇.
Then we define the curvature operator on M with respect to ∇ to be

R(X,Y)Z :=∇X∇YZ−∇Y∇XZ−∇[X,Y]Z.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



6 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

∇ is said to be flat if
R ≡ 0.

∇ is said to be symmetric or torsion-free if

∇XY−∇YX = [X,Y].

Also, we denote the curvature operator on Rn as R(X,Y)Z. Note that when Rn is equipped
with a flat, symmetric connection ∇, the curvature operator R = 0.

Now we can finally use the curvature operator to define the curvature tensor.

Definition 2.9. Let X,Y, Z, and W be vector fields on (M, g ). Then we define the curvature
tensor on M with respect to ∇ to be

R(X,Y,Z,W) := g (R(X,Y)Z,W).

Notice that since connections determine the curvature operator they ultimately
determine the curvature tensor too.

3 Geometric Derivation of the Spanning Set

As was mentioned in Section 1, the point of this section is to provide the reader with a
geometric justification for our choice of spanning set.

For this section we will make three standing assumptions: (1) Mn−1 is a manifold
of dimension n −1 embedded into Rn , (2) g (·, ·) is a metric on Rn , and (3) Rn has a flat,
symmetric connection ∇.

These assumptions allow us to conclude the next proposition whose proof is similar
to the one on page 135 in [4].

Proposition 3.1. (∇)> is a torsion-free connection on M.

Proof. First we will prove (∇)> is a connection on M and then that it is torsion-free.

1. (∇XY)> is C∞(M)-linear over X because

(∇ f X1+hX2 Y)> = ( f ∇X1 Y)>+ (h∇X2 Y)>

= f (∇X1 Y)>+h∇X2 Y)>

since ∇ is a connection.

2. (∇XY)> is R-linear in Y because for a1, a2 ∈R we have

(∇Xa1Y1 +a2Y2)> = (∇Xa1Y1)>+ (∇Xa2Y2)>

= a1(∇XY1)>+a2(∇XY2)>.

This too is because ∇ is a connection.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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3. Finally, (∇XY)> follows the product rule. We see that for f ∈ C∞(M)

(∇X f Y)> = ( f ∇XY+ (X f )Y)> = f (∇XY)>+ ((X f )Y)>.

So, (∇XY)> is a connection. Next, it is torsion-free because

(∇XY)>− (∇YX)> = (∇XY−∇YX)> = [X,Y]> = [X,Y]

where we use the fact that if X,Y ∈T (M) and M is embedded in Rn , then [X,Y] ∈T (M),
which implies that [X,Y]> = [X,Y].

For simplicity we will now denote ∇>
simply as ∇. More importantly, this proposition

is critical to expanding the curvature in a meaningful way that enables us to find our
canonical tensors. Performing this expansion will also need one last property of η.

Proposition 3.2. η(A,B) is a symmetric 2-tensor. We denote this as

η ∈ S2(V∗).

A proof of Proposition 4 can be found in Lemma 8.1 of [4].
Having explained all of this background we can now begin to focus on demonstrating

the geometric roots of our first spanning set for the AACTs.
First of all, notice that η maps two vector fields on M into N (M). Let k be a basis

vector for N (M). Then η(A,B) = h(A,B)k for some symmetric bilinear form h ∈ S2(V∗).
Let us look at R, the curvature tensor of Rn with respect to the flat connection ∇. Let

X,Y,Z and W be vector fields on Rn that are tangent to M. We see that by expanding ∇
into ∇+η we get that

0 = R(X,Y,Z,W) = g (R(X,Y)Z,W)

= g (∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,W)

= g (∇X(∇YZ+η(Y,Z))−∇Y(∇XZ+η(X,Z))−∇[X,Y]Z,W)

= g (∇X(∇YZ)+∇X(η(Y,Z))−∇Y(∇XZ)−∇Y(η(X,Z))−∇[X,Y]Z,W)

= g (∇X∇YZ+η(X,∇YZ),W)− g (∇Y∇XZ+η(Y,∇XZ),W)

− g (∇[X,Y]Z+η([X,Y],Z),W)+ g (∇X(η(Y,Z)),W)− g (∇Y(η(X,Z)),W).

Recall that W is a vector field in the tangent bundle of M, and that η exclusively maps
into the normal bundle. So, we can eliminate their inner products to get

0 = R(X,Y,Z,W) = g (∇X∇YZ,W)− g (∇Y∇XZ,W)− g (∇[X,Y]Z,W)

+ g (∇X(η(Y,Z)),W)− g (∇Y(η(X,Z)),W).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



8 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

Then, by the definition of the curvature tensor this simplifies to

0 = R(X,Y,Z,W) = R(X,Y,Z,W)+ g (∇X(η(Y,Z)),W)

− g (∇Y(η(X,Z)),W).

At this point in the derivation for ACTs one normally uses the Weingarten equation
here to simplify the expression further [4]. However, we do not do that because we do
not necessarily have metric compatibility. So, instead we will substitute η with h(A,B)k.
It is this difference that will ultimately lead us to canonical AACTs that are distinct from
the canonical ACTs. When we make our substitution we get

0 = R(X,Y,Z,W) = R(X,Y,Z,W)+ g (∇X(h(Y,Z)k),W)

− g (∇Y(h(X,Z)k),W).

Using the product rule of connections gives us

0 = R(X,Y,Z,W) = R(X,Y,Z,W)+ g ((h(Y,Z)∇Xk)+X(h(Y,Z))k,W)

− g (h(X,Z)∇Yk +X(h(X,Z))k,W).

Then, since X(h(X,Z))k is in the normal bundle of M its inner product with W is 0. Hence
we can simplify it down to

0 = R(X,Y,Z,W) = R(X,Y,Z,W)+ g ((h(Y,Z)∇Xk),W)

− g (h(X,Z)∇Yk,W).

Simply letting α(X,W) :=−g (∇Xk,W) gives us

0 = R(X,Y,Z,W) = R(X,Y,Z,W)−h(Y,Z)α(X,W)+h(X,Z)α(Y,W).

But, R ≡ 0 because ∇ is flat. So we have the result

R(X,Y,Z,W) = α(X,W)h(Y,Z)−α(Y,W)h(X,Z).

This is strikingly similar to the tensors in the spanning set of the ACTs, so we suspect
that these functions span the AACTs.

But, before we prove that, we return to the vector space setting and verify that these
functions are AACTs to begin with.

Proposition 3.3. R(X,Y,Z,W) = α(X,W)h(Y,Z)−α(Y,W)h(X,Z) is an AACT if α ∈⊗2(V∗)
and h ∈ S2(V∗).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Proof. We first check the anti-symmetry in the first two spots. We get that

R(X,Y,Z,W) = α(X,W)h(Y,Z)−α(Y,W)h(X,Z)

=− (α(Y,W)h(X,Z)−α(X,W)h(Y,Z) ) =−(R(Y,X,Z,W)).

Then, checking the Bianchi identity gives us that

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)

= α(X,W)h(Y,Z)−α(Y,W)h(X,Z)

+α(Y,W)h(Z,X)−α(Z,W)h(Y,X)

+α(Z,W)h(X,Y)−α(X,W)h(Z,Y)

= 0.

Definition 3.4. We define

Rα,h(X,Y,Z,W) := α(X,W)h(Y,Z)−α(Y,W)h(X,Z),

where α ∈⊗2(V∗) and h ∈ S2(V∗).

So, we have that the Rα,h ’s are AACTs, and that they can be found in a similar way to
how one finds the canonical ACTs in the metric compatible setting. In the next section,
we will prove our conjecture that the Rα,h ’s really are a spanning set.

4 The Symmetric Build

In this section, we build on the geometric arguments of Section 3 and prove that the
Rα,h ’s are a spanning set of the AACTs. This point also marks a shift in our methods.
While Sections 2 and 3 mostly used geometric and analytic methods, Sections 4, 5, and 6
will be algebraic in nature. Importantly, this shift emphasizes why Theorem 1 matters. It
ties these fundamentally geometric Rα,h ’s to the algebraic set of AACTs. Thus, it enables
us to look at affine geometry in a new algebraic light and view the algebraic AACTs from a
geometric perspective. That said, due to the change in methods we must now introduce
two new maps that will be crucial to proving Theorem 1 below.

Remark 4.1. Let V be a real vector space of dimension n, and let (e1,e2, ...,en) be a basis
for V. Then, the map e i ⊗e j ⊗ek ⊗e l : V4 →R maps the input α(ei ,e j ,ek ,el ) to α for α ∈R

and all other combinations of basis vectors to 0.

More advanced readers will know this as a tensor product of the dual basis of V∗,
but for our purposes it suffices to know how this map acts on these basis vectors of V.
Understanding it in this way allows us to make the next definition, inspired by Gilkey’s
approach on page 42 of [3].

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023



10 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

Definition 4.2. Let (e1,e2, ...,en) be a basis for V. We define the map Ti j kl : V4 →R to be

Ti j kl := e i ⊗e j ⊗ek ⊗e l −e j ⊗e i ⊗ek ⊗e l .

In particular, Ti j kl maps (ei ,e j ,ek ,el ) to 1, (e j ,ei ,ek ,el ) to −1, and all other combinations
of basis vectors to 0.

Having said that we can begin Theorem 1 by formally defining the span of Rα,h ’s.

Definition 4.3. We define B to be the set span({Rα,h : α ∈⊗2(V∗),h ∈ S2(V∗)}).

This leads us to the main result.

Theorem 4.4. The set of affine algebraic curvature tensors on V equals B.

Proof. Let (e1,e2, ...,en) be a basis for V, and let each ci j kl be a real number. Furthermore,
let W be an arbitrary affine algebraic curvature tensor. Then, W can be expressed as
follows:

W = ∑
i , j distinct

ci j i j Ti j i j + ci j i i Ti j i i

+ ∑
i , j ,k distinct

ci j ki Ti j ki + ci j i k Ti j i k + ci j kk Ti j kk (1)

+ ∑
i , j ,k,l distinct

ci j kl Ti j kl

where all indices go from 1 to n. This expression of W is possible because each Ti j kl

essentially encodes how W acts on (ei ,e j ,ek ,el ). As such, adding together all possible
combinations of the Ti j kl ’s encodes how W acts on every set of basis vectors. Therefore,
when this sum is scaled properly by ci j kl ’s this sum is equivalent to W itself. We can see
that proving each of these summands is in B will prove W ∈ B. Following this logic, we
will break this argument into cases dealing with each of these sums.
Case 1: Ti j i j

Fix i and j . If there is a linear combination of Rα,h ’s that equals Ti j i j on the basis
vectors, then Ti j i j ∈ B. If we can do this for all i and j , then we will have that the linear
combination of the Ti j i j ’s will be in B as well.

Now, for any arbitrary α ∈⊗2(V),h ∈ S2(V) we have that

Rα,h(ei ,e j ,ei ,e j ) = α(ei ,e j )h(e j ,ei )−α(e j ,e j )h(ei ,ei ).

If we pick α and h so that α(e j ,e j ) = −1,h(ei ,ei ) = 1, and they map all other basis
vectors to 0, then Ti j i j (ei ,e j ,ei ,e j ) = Rα,h(ei ,e j ,ei ,e j ) = 1. This in turn means that

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 1, 2023
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Ti j i j (e j ,ei ,ei ,e j ) = Rα,h(e j ,ei ,ei ,e j ) =−1. We also know that Ti j i j sends all other com-
binations of basis vectors to 0, so we need to show that Rα,h does as well.

In order for an input to be non-zero for Rα,h , we have to have ei in the third position
and e j in the fourth position. Also, ei and e j must occupy either the first or second
positions. Hence, the only non-zero inputs are (ei ,e j ,ei ,e j ) and (e j ,ei ,ei ,e j ) which is
what was desired. Therefore Ti j i j = Rα,h ∈ B. And, since this process did not rely on
specific values for i and j , we know that

∑
i , j distinct ci j i j Ti j i j ∈ B.

Case 2: Ti j i i

Similarly to the last case, we want to find an Rα,h that equals Ti j i i . Again, for an
arbitrary α ∈⊗2(V∗),h ∈ S2(V∗) we have that

Rα,h(ei ,e j ,ei ,ei ) = α(ei ,ei )h(e j ,ei )−α(e j ,ei )h(ei ,ei ).

So, if we pick α and h so that α(e j ,ei ) = −1,h(ei ,ei ) = 1, and they map all other basis
vectors to 0, then we have that Ti j i i = Rα,h .
Case 3: Ti j i k

Following the same logic as the previous cases, we see that for an arbitrary α and h
we have that

Rα,h(ei ,e j ,ei ,ek ) = α(ei ,ek )h(e j ,ei )−α(e j ,ek )h(ei ,ei ).

So, picking α and h such that α(e j ,ek ) =−1,h(ei ,ei ) = 1 and all other combinations of
basis vectors are mapped to zero gives us that Ti j i k = Rα,h .
Case 4: Ti j ki and Ti j kk

We start off in a similar manner to the last three cases, and see that

Rα,h(ei ,e j ,ek ,ei ) = α(ei ,ei )h(e j ,ek )−α(e j ,ei )h(ei ,ek ).

Pick α and h such that α(e j ,ei ) =−1,h(ei ,ek ) = 1, and all other basis vectors get mapped
to 0. Unlike in previous cases where we could ignore the symmetry of h by defining its
only nonzero term to be (ei ,ei ), in this case we also have that h(e j ,ek ) = h(ek ,e j ) = 1.
This means that 

Rα,h(ei ,e j ,ek ,ei ) = 1,

Rα,h(e j ,ei ,ek ,ei ) =−1,

Rα,h(ek ,e j ,ei ,ei ) = 1,

Rα,h(e j ,ek ,ei ,ei ) =−1,

and all other inputs are 0. So unlike in the previous cases Rα,h 6= Ti j ki , although, Rα,h =
Ti j ki +Tk j i i .

Now we will examine Tk j i i . Consider another arbitrary α̃ ∈⊗2(V∗) and h̃ ∈ S2(V∗).
Then, we have that

Rα̃,h̃(ek ,e j ,ei ,ei ) = α̃(ek ,ei )h̃(e j ,ei )− α̃(e j ,ei )h̃(ek ,ei ).
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12 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

Pick α̃ and h̃ so that α̃(ek ,ei ) = 1 and h̃(e j ,ei ) = h̃(ei ,e j ) = 1. That means that
Rα̃,h̃(ek ,e j ,ei ,ei ) = 1,

Rα̃,h̃(e j ,ek ,ei ,ei ) =−1,

Rα̃,h̃(ek ,ei ,e j ,ei ) = 1,

Rα̃,h̃(ei ,ek ,e j ,ei ) =−1,

and all other inputs are 0. Thus, Rα̃,h̃ = Tk j i i +Tki j i .
Let W(ei ,e j ,ek ,el ) = ci j kl for any i , j ,k, l ∈ {1, ...,n}. Since W satisfies the Bianchi

identity, we can pick these constants so that ci j kl + c j ki l + cki j l = 0. We claim that all
terms in the Ti j ki and Tk j i i sums can be expressed by a linear combination of Rα,h and
Rα̃,h̃ . We need 

xRα,h(ei ,e j ,ek ,ei )+ yRα̃,h̃(ei ,e j ,ek ,ei ) = ci j ki ,

xRα,h(e j ,ek ,ei ,ei )+ yRα̃,h̃(e j ,ek ,ei ,ei ) = c j ki i ,

xRα,h(ek ,ei ,e j ,ei )+ yRα̃,h̃(ek ,ei ,e j ,ei ) = cki j i .

If we let x = ci j ki and y = cki j i we can check that we get

ci j ki Rα,h(ei ,e j ,ek ,ei ) + cki j i Rα̃,h̃(ei ,e j ,ek ,ei ) = ci j ki · 1 + cki j i · 0 = ci j ki .

Similarly, for the input (ek ,ei ,e j ,ei ) this linear combination gives us

ci j ki Rα,h(ek ,ei ,e j ,ei ) + cki j i Rα̃,h̃(ek ,ei ,e j ,ei ) = ci j ki · 0 + cki j i · 1 = cki j i .

The final non-zero, independent input is (e j ,ek ,ei ,ei ). We have that

ci j ki Rα,h(e j ,ek ,ei ,ei )+ cki j i Rα̃,h̃(e j ,ek ,ei ,ei ) = ci j ki ·−1+ cki j i ·−1 = c j ki i .

And, since

ci j ki Rα,h + cki j i Rα̃,h̃ = ci j ki (Ti j ki +Tk j i i )+ cki j i (Tk j i i +Tki j i )

we see that all other combinations of basis vectors are mapped to 0.
Hence, Rα,h +Rα̃,h̃ covers the Ti j ki and T j ki i terms, and thus the

∑
ci j ki Ti j ki and∑

ci j kk Ti j kk summations can be completely replicated through the summation of (Rα,h+
Rα̃,h̃)’s. So, the sums are in B.
Case 5: Ti j kl The final case is very similar Case 4. We start by considering an arbitrary
Rα,h for the input (ei ,e j ,ek ,el ). This is

Rα,h(ei ,e j ,ek ,el ) = α(ei ,el )h(e j ,ek )−α(e j ,el )h(ei ,ek ).

Let α(ei ,el ) = 1 and h(e j ,ek ) = h(ek ,e j ) = 1. The non-zero, independent inputs are
(ei ,e j ,ek ,el ) and (ei ,ek ,e j ,el ) both of which map to 1. Thus, Rα,h = Ti j kl +Ti k j l .
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We now shift to consider another arbitrary Rα̃,h̃ for the input (ei ,ek ,e j ,el ). That gives
us

Rα̃,h̃(ei ,ek ,e j ,el ) = α̃(ei ,el )h̃(ek ,e j )− α̃(ek ,el )h̃(ei ,e j ).

Let α̃(ek ,el ) =−1 and h̃(ei ,e j ) = h̃(e j ,ei ) = 1. Then the non-zero, independent inputs of
Rα̃,h̃ are (ei ,ek ,e j ,el ) and (e j ,ek ,ei ,el ). Thus, Rα̃,h̃ = Ti k j l +T j ki l .

As in the previous case, let W(ei ,e j ,ek ,el ) = ci j kl for any i , j ,k, l ∈ {1, ...,n}. Again, we
can pick these constants so that ci j kl +c j ki l +cki j l = 0. Then, we can consider a linear
combination xRα,h + yRα̃,h̃ . We need

xRα,h(ei ,e j ,ek ,el )+ yRα̃,h̃(ei ,e j ,ek ,el ) = ci j kl ,

xRα,h(e j ,ek ,ei ,el )+ yRα̃,h̃(e j ,ek ,ei ,el ) = c j ki l ,

xRα,h(ek ,ei ,e j ,el )+ yRα̃,h̃(ek ,ei ,e j ,el ) = cki j l .

So, we find x = ci j kl and y = c j ki l . Plugging these inputs into the linear combination
shows us that

ci j kl Rα,h(ei ,e j ,ek ,el )+ c j ki l Rα̃,h̃(ei ,e j ,ek ,el ) = ci j kl ·1+ c j ki l ·0 = ci j kl ,

ci j kl Rα,h(e j ,ek ,ei ,el )+ c j ki l Rα̃,h̃(e j ,ek ,ei ,el ) = ci j kl ·0+ c j ki l ·1 = c j ki l ,

and

ci j kl Rα,h(ek ,ei ,e, j ,el )+ c j ki l Rα̃,h̃(ek ,ei ,e j ,el ) = ci j kl ·−1+ c j ki l ·−1

=−(ci j kl + c j ki l ) = ck j i l .

Notice that the last equality follows from the Bianchi identity. Finally, we know that

ci j kl Rα,h + cki j l Rα̃,h̃ = ci j kl (Ti j kl +Ti k j l )+ cki j l (Ti k j l +T j ki l ).

So, we can see that the ci j kl Rα,h + cki j l Rα̃,h̃ is zero for all other inputs. As a result, a
summation of (Rα,h +Rα̃,h̃)’s can give the same output as

∑
ci j kl Ti j kl . So,

∑
ci j kl Ti j kl ∈ B.

All of the sums in (1) are in the span of B so we can conclude that W ∈ B.

5 The Anti-Symmetric Build

The definition of the Rα,h from the previous sections was inspired by geometric con-
siderations. However, for the anti-symmetric case we obtain our spanning set through
analogy to the canonical anti-symmetric ACTs. See page 2 of [3].

Definition 5.1. We define

Rα,p (X,Y,Z,W) = α(X,W)p(Y,Z)−α(Y,W)p(X,Z)−2α(Z,W)p(X,Y)

where α ∈⊗2(V∗) and p ∈Λ2(V∗), where Λ2(V∗) is the set of anti-symmetric 2-tensors
on V.
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14 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

From here we must first check that our Rα,p ’s are AACTs.

Proposition 5.2. Rα,p is an AACT.

Proof. Again, we check the anti-symmetry in the first two spots. We get that

Rα,p (X,Y,Z,W) = α(X,W)p(Y,Z)−α(Y,W)p(X,Z)−2α(Z,W)p(X,Y)

=−(α(Y,W)p(X,Z)−α(X,W)p(Y,Z)−2α(Z,W)p(Y,X) )

=−Rα,p (Y,X,Z,W).

Then, checking the Bianchi identity gives us that

Rα,p (X,Y,Z,W)+Rα,p (Y,Z,X,W)+Rα,p (Z,X,Y,W)

= α(X,W)p(Y,Z)−α(Y,W)p(X,Z)−2α(Z,W)p(X,Y)

+α(Y,W)p(Z,X)−α(Z,W)p(Y,X)−2α(X,W)p(Y,Z)

+α(Z,W)p(X,Y)−α(X,W)p(Z,Y)−2α(Y,W)p(Z,X)

= 0.

With that we formally define the span of the set of Rα,p ’s.

Definition 5.3. We define Q to be the set span({Rα,p : α ∈⊗2(V∗), p ∈Λ2(V)}) .

Much like in Section 4, this leads us to the main theorem of Section 5.

Theorem 5.4. The set of affine algebraic curvature tensors on V equals Q.

Proof. This proof follows very similarly to the proof of Theorem 1 in the previous section.
In fact, we define Ti j kl the same as in the previous theorem, and we break up an arbitrary
AACT, W, in the same way. We again have

W = ∑
i , j distinct

ci j i j Ti j i j + ci j i i Ti j i i

+ ∑
i , j ,k distinct

ci j ki Ti j ki + ci j i k Ti j i k + ci j kk Ti j kk (2)

+ ∑
i , j ,k,l distinct

ci j kl Ti j kl

Also, as we had done in the previous proof let W(ei ,e j ,ek ,el ) = ci j kl for any i , j ,k, l ∈
{1, ...,n}, and pick these c’s so that they satisfy the Bianchi identity.
Case 1: Ti j i j
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We again consider an arbitrary Rα,h with the input (ei ,e j ,ei ,e j ). We see that

Rα,p (ei ,e j ,ei ,e j ) = α(ei ,e j )p(e j ,ei )−α(e j ,e j )p(ei ,ei )−2α(ei ,e j )p(ei ,e j ).

Let α(ei ,e j ) = 1, p(e j ,ei ) = 1, and all other independent combinations of basis vectors
be mapped to 0. Then, we have that Rα,p (ei ,e j ,ei ,e j ) = 3 and Rα,p (e j ,ei ,ei ,e j ) =−3. As
such, we need to show that Rα,p is zero on all other independent combinations of basis
vectors.

In order for Rα,p to be non-zero, its input must have an e j in its fourth slot. But, then
all other combinations of basis vectors will be (ei ,e j ,ei ,e j ), (e j ,ei ,ei ,e j ), or (ei ,ei ,e j ,e j ).
The last of these is 0 for all AACTs due to anti-symmetry in the first two positions. So, we
have found an Rα,p such that 1

3 Rα,p = Ti j i j ∈ Q.
Case 2: Ti j i i

Similarly, computing Rα,p with the input (ei ,e j ,ei ,ei ) gives us that

Rα,p (ei ,e j ,ei ,ei ) = α(ei ,ei )p(e j ,ei )−α(e j ,ei )p(ei ,ei )−2α(ei ,ei )p(ei ,e j ).

Let α(ei ,ei ) = 1 p(e j ,ei ) = 1, and all other combinations of basis vectors be mapped to
0. Then the only non-zero, independent input is (ei ,e j ,ei ,ei ) which is mapped to 3. So,
1
3 Rα,p = Ti j i i ∈ Q.
Case 3: Ti j i k We start in the same way as before by computing Rα,p (ei ,e j ,ei ,ek ). If we let
α(ei ,ek ) = 1, p(e j ,ei ) = 1, and all other combinations of basis vectors be mapped to 0 we
get that

Rα,p (ei ,e j ,ei ,ek ) = α(ei ,ek )p(e j ,ei )−α(e j ,ek )p(ei ,ei )−2α(ei ,ek )p(ei ,e j ) = 3.

As in the first two cases this is the only non-zero, independent input, and thus we get
that 1

3 Rα,p = Ti j i k ∈ Q.
Case 4: Ti j ki and T j ki i

We let α(e j ,ei ) = 1, p(ei ,ek ) = −1, and compute that Rα,p (ei ,e j ,ek ,ei ) = 1. This
Rα,p has two other distinct inputs, namely (e j ,ek ,ei ,ei ) which is also mapped to 1 and
(ek ,ei ,e j ,ei ) which is mapped to −2. So, Rα,p = Ti j ki +T j ki i −2Tki j i .

We now look at the T j ki i case. Let α̃(ek ,ei ) = 1, p̃(e j ,ei ) =−1, and compute that

Rα̃,p̃ (e j ,ek ,ei ,ei ) = α̃(e j ,ei )p̃(ek ,ei )− α̃(ek ,ei )p̃(e j ,ei )−2α̃(ei ,ei )p̃(e j ,ek ) = 1.

We also see that Rα̃,p̃ maps (ek ,ei ,e j ,ei ) to 1 and (ei ,e j ,ek ,ei ) to −2. So, Rα̃,p̃ = T j ki i +
Tki j i −2Ti j ki .

Much like in case 4 of the symmetric build’s proof, we solve the following systems of
equations: 

xRα,p (ei ,e j ,ek ,ei )+ yRα̃,p̃ (ei ,e j ,ek ,ei ) = ci j ki ,

xRα,p (e j ,ek ,ei ,ei )+ yRα̃,p̃ (e j ,ek ,ei ,ei ) = c j ki i ,

xRα,p (ek ,ei ,e j ,ei )+ yRα̃,p̃ (ek ,ei ,e j ,ei ) = cki j i .
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16 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

Solving this ultimately gives us that x = 2c j ki i+ci j ki

3 and y = c j ki i−ci j ki

3 . Finally, we see that
if we plug in x and y into the above linear combination and evaluate sum at (ei ,e j ,ek ,ei ),
(e j ,ek ,ei ,ei ), or (ek ,ei ,e j ,ei ) we get the desired result. Moreover, since

2c j ki i + ci j ki

3
Rα,p + c j ki i − ci j ki

3
Rα̃,p̃ = 2c j ki i + ci j ki

3
(T j ki i +Ti j ki −2Tki j i )

+ c j ki i − ci j ki

3
(T j ki i +Tki j i −2Ti j ki )

these are the only independent inputs that do not map to 0. Hence, we have that both∑
ci j ki Ti j ki and

∑
c j ki i T j ki i can be expressed as a sum of Rα,p ’s.

Case 5: Ti j kl

As in the last few cases, we let α(ei ,el ) = 1, p(e j ,ek ) = 1, and all other combinations
of basis vectors be mapped to 0. Then, we get that

Rα,p (ei ,e j ,ek ,el ) = α(ei ,el )p(e j ,ek )−α(e j ,el )p(ei ,ek )−2α(ek ,el )p(ei ,e j ) = 1.

This has two other non-zero, independent inputs: (ek ,ei ,e j ,el ) which is mapped to 1
and (e j ,ek ,ei ,el ) which is mapped to −2. So, Rα,p = Ti j kl +Tki j l −2T j ki l .

Now let α̃(ek ,el ) = 1, p̃(ei ,e j ) = 1, and compute

Rα̃,p̃ (ek ,ei ,e j ,el ) = α̃(ek ,el )p̃(ei ,e j )− α̃(ei ,el )p̃(ek ,e j )−2α̃(e j ,el )p̃(ek ,ei ) = 1.

This also has two other non-zero, independent inputs outside its kernel, (e j ,ek ,ei ,el )
which maps to 1 and (ei ,e j ,ek ,el ) which maps to −2. So, Rα̃,p̃ = Tki j l +T j ki l −2Ti j kl .

Much like in Case 4, we now solve the following system of equations:
xRα,p (ei ,e j ,ek ,el )+ yRα̃,p̃ (ei ,e j ,ek ,el ) = ci j kl ,

xRα,p (ek ,ei ,e j ,el )+ yRα̃,p̃ (ek ,ei ,e j ,el ) = cki j l ,

xRα,p (e j ,ek ,ei ,el )+ yRα̃,p̃ (e j ,ek ,ei ,el ) = c j ki l .

We get that x = 2cki j l+ci j kl

3 and y = cki j l−ci j kl

3 . So, we can express
∑

ci j kl Ti j kl as a sum of
(xRα,p + yRα̃,p̃ )’s. Hence,

∑
ci j kl Ti j kl ∈ Q.

As such, all of the sums in (2) are a linear combination of Rα,p ’s which implies that
W ∈ Q. Therefore Q spans the AACTs.

6 Representation by Canonical AACTs

Now that we have created two spanning sets for the AACTs researchers can begin to
ask questions about their representations. This section acts as a starting point for this
research by proving that the maximum number of canonical AACTs are required to
represent an arbitrary AACT in a 2-dimensional real vector space is 1. We formally define
this notion, which is the title of this section, in Definitions 14 and 15.
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Definition 6.1. Let V be an n-dimensional vector space. We define

σ(R) = min

{
k : R =

k∑
i=1

Rαi ,hi

}
,

for R an AACT. Then, we define

σ(n) = max
R∈AACT

σ(R).

Note that maxR∈AACT σ(R) exists because the dimension of the space of AACTs is
n2(n2−1)

3 [9], and thus each spanning set needs no more than n2(n2−1)
3 tensors to linearly

combine to any AACT. That lets us express the following theorem.

Theorem 6.2. σ(2) = 1.

Proof. Let A be an arbitrary AACT in a 2-dimensional real vector space. A’s behavior for
any (x, y, z, w) is defined by its behavior on a set of basis vectors of M. Let {e1,e2} be basis
vectors for M. Then, by evaluating A on all the independent sets of basis vectors we can
show that there is an Rα,h = A. If there was such an Rα,h then we would need

A1211 = α(e1,e1)h(e2,e1)−α(e2,e1)h(e1,e1),

A1212 = α(e1,e2)h(e2,e1)−α(e2,e2)h(e1,e1),

A1221 = α(e1,e1)h(e2,e2)−α(e2,e1)h(e1,e2),

A1222 = α(e1,e2)h(e2,e2)−α(e2,e2)h(e1,e2).

Then, simply letting h(e1,e1) = 1, h(e2,e2) = 1, −α(e2,e1) = A1211, −α(e2,e2) = A1212,
α(e1,e1) = A1221, and α(e1,e2) = A1222 gives us an Rα,h = A.

In the same vein of thought we define the maximum number of anti-symmetric
AACTs required to express an arbitrary AACT in n-dimensions.

Definition 6.3. Let V be an n-dimensional vector space. We define

κ(R) = min

{
k : R =

k∑
i=1

Rαi ,pi

}
,

for R an AACT. Then, we define

κ(n) = max
R∈AACT

κ(R).

Note that maxR∈AACT κ(R) exists for the same reason that maxR∈AACT σ(R) exists. This
gives us a similar result to Theorem 3.

Theorem 6.4. κ(2) = 1.
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18 Constructing Spanning Sets of Affine Algebraic Curvature Tensors

Proof. By the same logic as in the previous proof, we consider if there was an Rα,p = A.
Then we would need

A1211 = α(e1,e1)p(e2,e1)−α(e2,e1)p(e1,e1)−2α(e1,e1)p(e1,e2),

A1212 = α(e1,e2)p(e2,e1)−α(e2,e2)p(e1,e1)−2α(e1,e2)p(e1,e2),

A1221 = α(e1,e1)p(e2,e2)−α(e2,e1)p(e1,e2)−2α(e2,e1)p(e1,e2),

A1222 = α(e1,e2)p(e2,e2)−α(e2,e2)p(e1,e2)−2α(e2,e2)p(e1,e2).

So, much like in Theorem 3, letting p(e1,e1) = 1, p(e2,e2) = 1, −α(e2,e1) = A1211, −α(e2,e2) =
A1212, α(e1,e1) = A1221, and α(e1,e2) = A1222 gives us an Rα,p = A.

7 Conclusion and Open Problems

Thus far we have constructed two spanning sets for the AACTs and discovered σ(2) and
κ(2). As was mentioned in the introduction, this is only the starting point for questions
concerning AACTs. Here are just a few interesting open problems:

1. What are upper bounds for σ(n) and κ(n)? Are these bounds sharp?

2. Under what conditions can linear independence of multiple canonical AACTs
occur?

3. Is there a geometric proof that the symmetric build spans the AACTs? There is such
a proof for the ACTs, but this proof has not been adapted for AACTs. Adapting it to
the AACTs would require that each Rα,h be geometrically realized on a manifold, M,
with a connection, ∇. M would then have to be embedded into Rn in a way such
that ∇ is flat in Rn and ∇ = (∇)>. It is unknown if such an embedding is always
possible.

4. In [1] the authors mention an object similar to our Rα,h ’s, but instead of h ∈ S2(V∗)
they use the manifold’s metric, g . They then go on to prove that this is an AACT. Is
the set

{
Rα,g |α ∈⊗2(V∗)

}
a spanning set for the AACTs?
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