DBCompliant: Extending Database Management
Systems to Support Compliance Functionality™*

Alexander RasinD<', Nick Scope!, Ben Lenard!, Moaz Reyad!, and James
Wagner?

! DePaul University, Chicago, IL 60604, USA
arasin@cdm.depaul.edu

2 The University of New Orleans, New Orleans, LA. 70148, USA

Abstract. Data privacy policy requirements are a quickly evolving part
of the data management domain. Healthcare (e.g., HIPAA), financial
(e.g., GLBA), and general laws such as GDPR or CCPA impose controls
on how personal data should be managed. Relational databases do not
offer built-in features to support data management features to comply
with such laws. As a result, many organizations implement ad-hoc solu-
tions or use third party tools to ensure compliance with privacy policies.
However, external compliance framework can conflict with the internal
activity in a database (e.g., trigger side-effects or aborted transactions).
In our prior work, we introduced a framework that integrates data re-
tention and data purging compliance into the database itself, requiring
only the support for triggers and encryption, which are already available
in any mainstream database engine. In this demonstration paper, we in-
troduce DBCompliant — a tool that demonstrates how our approach can
seamlessly integrate comprehensive policy compliance (defined via SQL
queries). Although we use PostgreSQL as our back-end, DBCompliant
could be adapted to any other relational database. Finally, our approach
imposes low (less than 5%) user query overhead.

Keywords: database compliance, GDPR, retention, purging, privacy

1 Introduction

Data management in an organization is bound by data privacy regulations that
specify how the data must be stored (e.g., archived, backed up, or destroyed).
Legislation is passed with the intent of giving customers more control over their
data and privacy. An organization may also impose additional internal policies or
need to comply with policies of a business associate. Violating these requirements
may result in large fines or a loss of reputation, such as a data breach that
compromises “expired” (i.e., should have already been deleted) data.

Reliably tracking and accurately enforcing a single policy can be a challenge
when it spans select columns from multiple tables or when retention and purging

* Partially funded by the US National Science Foundation Grant ITP-2016548

2 Rasin et al.

== DBMS
INSERTROW | L= / customer
(100, Jane, Italy) |POlicy trigger NEEE Outsource expiring
I gHHE encryption keys to
1
i external server or 3rd
el::i:rrz ':?”g;: p::f’ encrypt: LOW) . party cloud provider
€ p v encryption
data in backups : e
— customerShadow keys F=F=f= - L - 5| External
DB <-F---- HEE HEHE |_cloud storage
(__Backup = = e >

Fig. 1. Data lifecycle workflow changes in a DBMS to support data purging policies. For
example, if name (but not country) is subject to purging, “Jane” will be encrypted when
placed into the customerShadow table. Retention policies (not pictured) will similarly
use triggers and defined policies to retain data in an additional customerArchiveShadow
table, which archives the data and applies encryption based on applicable policies.

rules overlap over the same data. Policies can be complex and vary by jurisdic-
tion. For example, in the United States [8]: Oregon hospitals to retain all records
for 10 years after the last discharge; Hawaii requires medical record history to
be retained for 7 years after the last data entry. North Carolina hospitals are
required to retain patient data for 11 years following discharge, while the data
of minors must be retained until the patient’s 30" birthday instead.

2 Related Work

Ataulla et al. [1] first proposed the idea of defining data retention policies through
SQL queries and enforcing them through triggers as a first step towards native
DBMS policy support. Scope et al. [7] first leveraged DBMS triggers (natively
supported by all major database vendors) and made revisions to the backup
workflow to support policy-based data purging. Scope et al. [6] also proposed
using triggers to enforce retention by archiving (instead of blocking as in Ataulla
et al. [1]) the deleted records which are still covered by a retention policy.

Figure 1 summarizes the integration of our data purging steps in a DBMS
(retention mechanism is not pictured). Policies are defined with database queries,
such as “customer name, address, and phone columns in EU must be retained
for a duration of 5 years”. Each inserted (or updated) row is checked by a
trigger against applicable policies. Any fields covered by a purging requirement
are encrypted by a trigger and inserted into the customerShadow table. The
customerShadow table replaces the active customer table in database backups.
This allows for “remote” erasure (upon policy expiration) by deleting the corre-
sponding encryption. In order to fully satisfy purging requirements, the database
must also securely delete encryption keys from backups [3]. The keys can be
managed through a third-party service or in-house (see Scope et al. [5]).

Our corresponding retention mechanism (not pictured in Figure 1) checks
deleted rows for values that are currently protected by a retention policy. Such

Title Suppressed Due to Excessive Length 3

values are stored in an archive table (e.g., customerArchive). Archived data is
the data that was deleted but could not be destroyed due to an active retention
policy. Since archived data remains subject to purging rules, in practice we store
archived data in a customerArchiveShadow, which follows the same policy-based
encryption principles as customerShadow (see Scope et al. in [4]).

3 DBCompliant

In this demo, the user interacts with a DBCompliant front-end to add or remove
retention and purging policies, and can verify compliance with defined policies in
a database. We use a schema based on MIMIC [2] with PostgreSQL 14.1 at the
back-end (see Figure 2). PostgreSQL is running on a remote cloud instance and
is a default installation with added pgcrypto extension that enables encryption
for the shadow tables. Thus, although we use PostgreSQL, the demo is applicable
to any major relational database (with minor syntactic adjustment for triggers,
as our demo assumes PL/pgSQL syntax for triggers).

Initialization: Initialization of DBCompliant creates all tables necessary to
support retention and purging capabilities: tableName_shadow for purging and
tableName_archive_shadow for retention, respectively (e.g., vital_shadow in
Figure 2). Additional tables will be created automatically if a new policy (on a
new table) is created. The initialization also requires a key management table in
order to support purging policies (retention policies do not require encryption
keys). In our demo, the table containing encryption keys is local (see [5]) instead
of a third party service. Finally, we create and initialize sequence objects for
bookkeeping. Our approach also requires changing the backup and restore work-
flow, e.g., backing up vital_shadow instead of vital to enable data purging.

Policy Creation: As discussed in [4], we propose a view-like policy defi-
nition which enables administrators to use SQL queries to describe and review
their policy requirements. For example, purging the 3 following columns from
dbc_vital table after 1 year can be described as:

CREATE PURGE dbc_policy_vital_one_year AS
SELECT bloodPressure, weight, time FROM dbc_vital
WHERE DATE_PART(’day’, CURRENT_DATE - dbc_vital.time) > 365;

User Interaction: In Figure 2 UI, users can run queries against the database
to inspect tables (output of the queries is displayed at the bottom of the win-
dow). Policy input window with the corresponding list of policies below is on
the right side of Figure 2. The query output displayed in Figure 2 contains
rows from dbc_vital_shadow and is showing the encryption imposed by the
dbc_policy_vital_one_year policy. The three columns subject to (future) purge
are encrypted and the corresponding decryption keys are available in the addi-
tional columns (to decrypt during restore). First two columns are unaffected.

Retention functionality is self-evident in the archive table. In order to observe
the purging functionality, the user will create a current database backup and
restore the database at an arbitrary time for the future. Thus, they could observe
data values expiring at the future time based on their custom-created policies.

Rasin et al.

v DBCompliant — X

Database Tables Query Input

Policy Input

dbc_patient_shadoy| I i CREATE PURGE
—= SELECT DISTINCT * from dbc_vital_shadow dbc policy vital one year
dbc_patient las — — -_One_;

SELECT bloodPressure,
weight, time

FROM dbc_vital

WHERE DATE_PART ('day’,
CURRENT_DATE -
dbc_vital.time) > 365;

dbc_consent
dbc_consent_shadc
dbc_consent_archiv
dbc_hospitalvisit
dbc_hospitalvisit_st
dbc_hospitalvisit_ar
dbc_vital_shadow
dbc_vital_archive_sl

Run Query

Database Policies

dbc_vital

dbc_prescriptioniss Create Backup dbc_polfcv_wtal_‘nnefy‘ear
dbc_doctor dbc_policy_hospitalvisit_one_y|
dbc_p ipti dbc_policy_patient_two_years
dbc_patient_archive Restore Backup at: (mm/ddlyy): ' ‘ dbc_policy_consent_three_yez

Query Output
VITIALID HOSPITALVISITI|BLOODPRESSL BLOODPRESSL|WEIGHT WEIGHT_KEYID|TIME TIME_KEYID
6888 3039 20aed083756ad2 93776 f3dd20a1dd69d2: 93776 277a86015a75d2 93776
484 474 c43fff507770d23: 80968 7129¢879917842(80968 ef01b2fa7b72d23 (80968
6239 2790 25aa31cdf179d2;92478 cce81928827ed2(92478 7b174e383d73d2(92478
5228 3718 9c53479e5f6ed2: 90456 161d079e7c60d2 90456 427bf692037fd23 90456
1595 1085 09342ac8a178d2 83190 090843d8ad76d2(83190 fc90b3f21078423 83190
2833 2323 7a8cBe94e97dd2 85666 5872d308467ed2(85666 a5a59791f166d2: /85666

Fig. 2. DBCompliant Ul for creation and verification of purging and retention policies.

References

1.

Ataullah, A.A., Aboulnaga, A., Tompa, F.W.: Records retention in relational
database systems. In: Proceedings of the 17th ACM conference on Information and
knowledge management. pp. 873-882 (2008)

Johnson, A.E., Pollard, T.J., Shen, L., Lehman, L.w.H., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Anthony Celi, L., Mark, R.G.: Mimic-iii, a freely accessible
critical care database. Scientific data 3(1), 1-9 (2016)

Reardon, J., Basin, D., Capkun, S.: Sok: Secure data deletion. In: 2013 IEEE sym-
posium on security and privacy. pp. 301-315. IEEE (2013)

. Scope, N., Rasin, A., Lenard, B., Heart, K., Wagner, J.: Harmonizing privacy regard-

ing data retention and purging. In: Proceedings of the 34th International Conference
on Scientific and Statistical Database Management. pp. 1-12 (2022)

Scope, N., Rasin, A., Lenard, B., Wagner, J.: Compliance and data lifecycle man-
agement in databases and backups. In: International Conference on Database and
Expert Systems Applications. pp. 281-297. Springer (2023)

Scope, N., Rasin, A., Wagner, J., Lenard, B., Heart, K.: Database framework for
supporting retention policies. In: Database and Expert Systems Applications: DEXA
2021, September 27-30, 2021, Proceedings, Part I 32. pp. 228-236. Springer (2021)
Scope, N., Rasin, A., Wagner, J., Lenard, B., Heart, K.: Purging data from back-
ups by encryption. In: Database and Expert Systems Applications: DEXA 2021,
September 27-30, 2021, Proceedings, Part I 32. pp. 245-258. Springer (2021)

The Office of the National Coordinator for Health Information Technology: State
medical record laws: Minimum medical record retention periods for records held by
medical doctors and hospitals (2022)

