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Abstract— Designing robust algorithms in the face of esti-
mation uncertainty is a challenging task. Indeed, controllers
seldom consider estimation uncertainty and only rely on the
most likely estimated state. Consequently, sudden changes in
the environment or the robot’s dynamics can lead to catas-
trophic behaviors. Leveraging recent results in risk-sensitive
optimal control, this paper presents a risk-sensitive Extended
Kalman Filter that can adapt its estimation to the control
objective, hence allowing safe output-feedback Model Predictive
Control (MPC). By taking a pessimistic estimate of the value
function resulting from the MPC controller, the filter provides
increased robustness to the controller in phases of uncertainty
as compared to a standard Extended Kalman Filter (EKF).
The filter has the same computational complexity as an EKF
and can be used for real-time control. The paper evaluates
the risk-sensitive behavior of the proposed filter when used
in a nonlinear MPC loop on a planar drone and industrial
manipulator in simulation, as well as on an external force
estimation task on a real quadruped robot. These experiments
demonstrate the ability of the approach to significantly improve
performance in face of uncertainties.

I. INTRODUCTION

Adapting the decisions robots make based on their percep-

tion of the world is key to deploying robots outside factories

and laboratories. More precisely, controllers should adapt to

the degree of certainty or confidence of the robot’s belief

of the world. For instance, it is important that a quadruped

chooses conservative footholds and slows body movements

when its confidence in the location of the ground decreases.

Robust output feedback Model Predictive Control (MPC)

studies methods that can adapt robot decisions based on the

confidence of the perception module. However, the general

nonlinear problem is very difficult, and practical algorithms

remain often limited to linear systems [1].

The common practice in robotics is to decouple estimation

and control, i.e., assume that the certainty equivalence prin-

ciple holds [2]–[6], due to the availability of separate and

tractable control and estimation algorithms. The estimation

module is often a variation of a Gaussian filter, such as an

Extended Kalman Filter (EKF) [7], which computes both

the mean and uncertainty of the state estimates from sensor

information. In control, an increasingly popular approach is

MPC, which consists in solving an optimal control problem

(OCP) numerically at each time step or at a fixed frequency

[3], [8]–[11]. The controller can then adapt its behavior based

on the current state of the robot and its environment. During

deployment, an estimator is used to compute the mean of the

state estimate, which is then passed on to the controller to

compute the optimal behavior [2]–[6]. Unfortunately, relying
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on the most likely outcome can lead to catastrophic behavior.

For instance, on a load-carrying task with a quadruped where

the load’s mass is unknown, the notion of mean might not

be appropriate as this could lead the quadruped to apply

insufficient force on the ground and then fall.

Some approaches address this issue by adding robustness

or safety bounds in either the estimation or control block

while keeping them independent. For instance, Robust Ex-

tended Kalman filtering [12] adds robustness to inaccuracies

of the EKF or the model. However, the control objective

is disregarded, and thus the controller cannot be robust to

estimation uncertainties. Robust MPC has been studied and

applied to robots, e.g. to control a biped robot using tube-

based MPC [13] or linear stochastic MPC [14]. However,

this line of work assumes the state to be known. In contrast

to such approaches, we aim to link estimation and control by

adding into the estimation module a notion of control perfor-

mance to improve robustness to the estimation uncertainty.

While robust output-feedback MPC controllers have been

investigated [15], [16], they have not been deployed on robots

due to their high computational cost. In [17], we proposed an

efficient algorithm to solve the dynamic game control with

imperfect state observation formulation introduced by [18].

In this paper, we leverage this result to introduce the

Risk-Sensitive Extended Kalman Filter (RS-EKF), a novel

filter that enables online risk-sensitive output feedback MPC

at a low computational cost. The RS-EKF computes state

estimates robust to measurement uncertainty while taking

into account the value function provided by the controller,

i.e., the estimator tailors risk reduction to the control objec-

tives. This, in turn enables automatic modification of robot

decisions to be cautious in times of high environmental

perturbation. To demonstrate the ability of the filter, we use it

together with an online non-linear controller to perform risk-

sensitive output-feedback MPC on various simulated robots,

such as a quadrotor subjected to arbitrary changes in its

mass, and a KuKa robot facing unforeseen environmental

disturbances. Finally, we test the filter on a real quadruped

robot Solo12 [19] to perform an external force estimation

and balancing task. These experiments demonstrate that the

robots are more robust to perturbations with the RS-EKF

algorithm than a classical EKF. To the best of our knowledge,

this is the first time that a non-linear risk-sensitive output-

feedback MPC controller has been deployed on a robot.

II. BACKGROUND

A. Dynamic game output feedback MPC

To design a controller sensitive to the risk related to

estimation uncertainty, Whittle [18] introduced a zero-sum

game that aims at solving jointly the estimation and control

problem. Given a history of measurements y1:t, a history of



control inputs, u0:t−1 and a prior on the initial state x̂0, we

aim to find a control sequence ut:T−1 that minimizes a given

cost ℓ while an opposing player aims to find the disturbances

(w0:T , µ1:t) that maximize this cost ℓ minus a weighted norm

of the disturbances. Such a problem is formally written as:

min
ut:T−1

max
w0:T

max
µ1:t

ℓT (xT ) +

T−1
∑

i=0

ℓi(xi, ui) (1)

−
1

2µ



ÉT
0 P

−1É0 +
t

∑
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−1

j µj +
T
∑

j=1

wT
j Q

−1

j wj





subject to x0 = x̂0 + w0, (2a)

xj+1 = fj(xj , uj) + wj+1, 0 f j < T, (2b)

yj = hj(xj) + µj , 1 f j f t. (2c)

where µ > 0. xj is the state, Éj the process disturbance,

yj the measurement,µj the measurement disturbance, T the

time horizon, t the current time. The transition model fj , the

measurement model hj , and the cost ℓj are assumed to be

C2. The measurement uncertainty Rj , the process uncertainty

Qj and the initial state uncertainty P are positive-definite

matrices. This weighted sum of the disturbances can be seen

as the estimation of maximum a posteriori probability (MAP)

under Gaussian assumption. Hence, Rj , Qj and P can be

thought of as the covariance matrix of Gaussian noise.

Interestingly, this problem encompasses both formulations

of control and estimation. If t = 0, in the limit where µ tends

to zero, we find the generic OCP formulation [20] which

directly minimizes the cost function assuming standard de-

terministic dynamics. And, if t = T and if we consider all

costs ℓi to be null, then, (1) is equivalent to maximizing the

estimation maximum a posteriori probability (MAP). Here,

the parameter µ is referred to as the risk-sensitive parameter

and regulates how adversarial the problem is.

Whittle [18] provided a solution to this min-max problem

for linear dynamics and quadratic costs. This solution is itera-

tively obtained with two recursions, one on past disturbances

and one on future ones. Recently, [17] showed how this

solution could be used to implement an efficient Newton’s

method that iteratively searches for a saddle point of the

more general Problem (1). Exploiting the sparsity of the

problem, the proposed Newton step has a linear complexity

in the time horizon (a naive optimization has at least a cubic

complexity [15]). The solution can then be interpreted as

a risk-sensitive Kalman smoother non-trivially coupled to

minimax differential dynamic programming (DDP) [21].

Here, we aim to use these insights to derive a computation-

ally efficient risk-sensitive extended Kalman filter that can be

used for output feedback MPC. This is done by simplifying

Problem (1) to match assumptions common to EKF and DDP

while keeping the adversarial min-max formulation.

B. Extended Kalman Filter

The EKF is usually derived by computing the probability

a posteriori of the state given measurements, using the

linearized dynamics and a Gaussian noise assumption [22].

However, from an optimization point of view, the EKF

also corresponds to a Gauss-Newton step around a well-

chosen point on the log-likelihood of the MAP [23], i.e.

log(p(xt, xt−1|yt)). Assuming Gaussian disturbances, µt ∼
N (0, Rt), Ét ∼ N (0, Qt), the MAP is written as:

max
xt,xt−1

−(yt − ht(xt))
TR−1

t (yt − ht(xt))

−(xt − ft−1(xt−1, ut−1))
TQ−1

t (xt − ft−1(xt−1, ut−1))

−(xt−1 − x̂t−1)
TP−1

t−1(xt−1 − x̂t−1) (3)

where x̂t−1 is the prior knowledge on the past state and Pt−1

its associated covariance matrix. As shown in [23], a Gauss-

Newton step around x̂t−1 and x̄t = ft−1(x̂t−1, ut−1) on (3)

leads to the well-known recursion [22]:

P̄t = Qt + Ft−1Pt−1F
T
t−1 (4)

Kt = P̄tH
T
t (Rt +HtP̄tH

T
t )

−1 (5)

Pt = (I −KtHt)P̄t (6)

∆x̂t = Kt(yt − ht(x̄t)) (7)

x̂t = x̄t +∆x̂t (8)

where Ft−1 = ∂xft−1(x̂t−1, ut−1), Ht = ∂xht(x̄t), x̂t is

the most likely estimate and Pt the covariance uncertainty.

Notice the similar structure of the costs of Problem (1) and

Eq. (3), except that the EKF only uses one measurement and

does not include the control cost ℓj . Eq. (1) can be seen as

a maximization of the estimation log-likelihood up to some

cost terms. We leverage this similarity to derive our risk-

sensitive EKF. More precisely, we will add cost-dependent

terms in the maximization (3) to allow the filter to adapt its

estimation to the control objective.

C. Nonlinear MPC

The estimated state can then be used in the MPC module.

At each time step, a stagewise cost defined over a horizon

H is minimized over future control inputs:

Lt(ut, . . . , uH−1) = ℓt+H(xT+H) +

t+H−1
∑

j=t

ℓj(xj , uj) (9)

where the state sequence is implicitly defined by the dynam-

ics xj+1 = fj(xj , uj) and where xt is the state estimated by

the filter. At each time step, we only use the first control

ut. At the next time step, the state estimate is updated

given a new measurement and the OCP is solved again.

There are various ways to solve efficiently this problem. A

popular algorithm is DDP [24] which reassembles the New-

ton method but with linear complexity in the time horizon.

Additionally, DDP provides a quadratic approximation of the

value function which we exploit in our derivation of the risk-

sensitive filter.

III. RISK SENSITIVE FILTER

We now introduce RS-EKF, which builds on the dynamic

game defined in Eq. (1). First, we modify the game to

account for the typical assumptions made for MPC while

keeping the adversarial part to ensure a risk-sensitive be-

havior. Then, we show how to compute the solution with

a Gauss-Newton step similar to the EKF, leading to an



algorithm of the same complexity. This results in a modified

update step of which the standard EKF is a limit case.

First, as for the EKF, we consider a history of measure-

ments of length one. Then, we disregard future uncertainties

and assume deterministic dynamic equations for the future as

is done in classical MPC formulations. Indeed, we expect that

the high-frequency re-planning will compensate for model

discrepancies. Hence, we seek to be adversarial only with

respect to the estimation uncertainties. This is written as:

min
ut:t+H−1

max
wt

max
wt−1

max
µt

Lt(ut, . . . , uH−1) (10)

−
1

2µ

(

µT
t R

−1
t µt + wT

t Q
−1
t wt + wT

t−1P
−1
t−1wt−1

)

s.t. xt−1 = x̂t−1 + wt−1, (11a)

xt = ft−1(xt−1, ut−1) + wt, (11b)

yt = ht(xt) + µt. (11c)

xj+1 = fj(xj , uj), t < j < T. (11d)

As presented in [17], one of the key features of the dynamic

game is that some of the constraints can be removed with an

appropriate change of variable. Indeed, we can use the equal-

ity constraints, Eqs. (11a), (11b) and (11c), to replace the

disturbance maximization into a maximization over xt−1, xt:

min
ut:t+H−1

max
xt−1,xt

Lt(ut, . . . , uH−1) (12)

−
1

2µ
(yt − ht(xt))

TR−1
t (yt − ht(xt))

−
1

2µ
(xt − ft−1(xt−1, ut−1))

TQ−1
t (xt − ft−1(xt−1, ut−1))

−
1

2µ
(xt−1 − x̂t−1)

TP−1
t−1(xt−1 − x̂t−1)

subject to xj+1 = fj(xj , uj), t < j < T,

By definition of the MAP [22], this can be written:

min
ut:t+H−1

max
xt−1,xt

Lt(ut, . . . , uH−1)−
1

µ
log(p(xt, xt−1|yt))

subject to xj+1 = fj(xj , uj), t < j < T. (13)

Problem (13) is intractable in the general case. However,

by taking the concave-convex assumption, the minimization

and maximization can be interchanged according to the min-

imax theorem. Consequently, the problem is equivalent to:

max
xt−1,xt

log(p(xt−1, xt|yt)) + µVt(xt), (14)

where Vt is the value function of the OCP:

Vt(xt) = min
ut:t+H−1

Lt(ut, . . . , uH−1) (15)

Note that in the simplification from Eq. (1) to Eq. (10), it is

not necessary to disregard future uncertainties as the value

function could be the one resulting from minimax DDP [21].

If µ = 0, we will obtain the unbiased estimate of Kalman

filtering and the estimate will be independent of the control

objective. Otherwise, if µ > 0, the term µV (xt) will bias the

estimate towards regions with higher value function, which

in turn will force the controller to be more conservative.

We now take a Gauss-Newton step on the objective of

Eq. (14) around the prior: x̂t−1 and x̄t = ft−1(x̂t−1, ut−1).

Vt(xt) is independent of xt−1 therefore, as shown in the

Appendix, the maximization over xt−1 can be simplified to:

max
xt

−
1

2
(xt − x̂t)

TP−1
t (xt − x̂t) (16)

+ µ
1

2
(xt − x̄t)

TV xx
t (xt − x̄t) + µ(xt − x̄t)

T vxt

where x̂t and Pt are defined as in Eq. (8) and (6). where V xx
t

(respectively vxt ) is the hessian (respectively the gradient) of

the value function. Those are typically provided by optimal

control algorithms such as DDP. In the end, the solution on

the maximization over xt is:

x̂RS
t = x̄t + (I − µPtV

xx
t )−1(∆x̂t + µPtv

x
t ) (17)

Interestingly, if µ = 0, we recover the EKF. This was

to be expected as, when µ tends to zero, the solution of

Problem (1) is exactly the solution of the neutral case

where estimation and control are solved independently [18].

Otherwise, the estimate is shifted towards regions with higher

cost values. Importantly, the magnitude of the shift depends

on Pt the covariance matrix of the estimation. Note that µ

cannot be arbitrarily large as (I − µPt+1V
xx
t+1) needs to be

positive definite. Larger values of µ would make the min-

max problem defined in Eq. (1) ill-posed. More details on

this limit value can be found in [18]. In the end, the estimate

is shifted towards Ptv
x
t , i.e. towards a region with a larger

cost function, and the magnitude of this shift is increased in

the direction corresponding to large eigenvalues of PtV
xx
t .

We obtained the solution to the maximization prob-

lem (13). Therefore, the cost function can now be minimized

with respect to the control inputs by taking x̂RS
t as an initial

condition of the OCP, which can be solved with DDP.

Algorithm 1 summarizes the estimation procedure. It can

then be used to do output-feedback MPC efficiently. At

each time step, given a measurement, past control input,

and a quadratic approximation of the value function, a risk-

sensitive estimate can be computed. This estimate is then

used to minimize the cost function (9) for MPC and the

first control input is applied to the real system. Lastly, the

quadratic approximation of the value function at t + 1 is

saved as it will be used at the next estimation step.

Algorithm 1: Risk Sensitive EKF

Input: x̂t−1, ut−1, yt, Pt−1, Qt, Rt, V
x
t , vxt

/* Predict */

1 P̄t ← Qt + Ft−1Pt−1F
T
t−1

2 x̄t ← f(x̂t−1, ut−1)
/* Classical Update */

3 Kt ← P̄tH
T
t (Rt +HtP̄tH

T
T )

−1

4 Pt ← (I −KtHt)P̄t

5 ∆x̂t ← Kt(yt − ht(x̄t))
/* Value function bias */

6 pxt
← (I − µPtV

x
t )−1(∆x̂t + µPtv

x
t )

7 x̂RS
t ← x̄t + pxt

Output: x̂RS
t , Pt



IV. EXPERIMENTS

We study three problems where we deploy the RS-EKF

inside a MPC loop: a planar quadrotor with a load estima-

tion task, a push-recovery experiment on a 7-dof industrial

manipulator and lastly, an external force estimation task on

a real quadruped robot. In all experiments, we provide a

comparison to the nominal case, i.e. the standard EKF with

a nominal MPC. To the best of our knowledge, the proposed

filter is the first attempt to deploy a robust output-feedback

controller on a robot. In each experiment, the OCP is solved

with DDP [25]. All the code is available online1.

A. Planar quadrotor carrying an unknown load

First, we consider a planar quadrotor moving from position

(px, py) = (0, 0) to position (1, 0) while carrying a unknown

load during the first half of the itinerary. The robot mass is

2 kg and the mass’s load which is unknown a priori is 3 kg.

The system dynamics is:

mp̈x = −(u1 + u2) sin(¹),

mp̈y = (u1 + u2) cos(¹)−mg, (18)

md¹̈ = r(u1 − u2),

where m is the mass of the robot, d the distance between the

rotors, ¹ the orientation of the quadrotor. u1 and u2 are the

control inputs representing the force applied at each rotor.

In this experiment, we want to estimate online the mass

parameter that changes in the middle of the flying phase. As

it is standard in parameter identification [26], we augment the

system’s state with the unknown parameter and let it be esti-

mated recursively by the filter (EKF or RS-EKF). The state

of the system is thus: x =
(

px py ¹ ṗx ṗy ¹̇ m
)T

and it is assumed that ṁ = 0 up to some random Gaussian

noise. The dynamics are integrated with an Euler scheme

and a time step of 0.05. We set P0 = 10−4I7, R = 10−4I3.

Q is a 7 × 7 diagonal matrix where all terms are equal

to 10−4 except the last one that we set to 2 to represent

the uncertainty in the changes of the load. Lastly, we set

µ = 4× 10−3. The stagewise cost describing the task is:

ℓ(x, u) = ³1

(

∥px − pdesx ∥
2 + ∥py − pdesy ∥

2
)

+ ³2∥¹∥
2

+ ³3

(

∥ṗx∥
2 + ∥ṗy∥

2 + ∥¹̇∥2
)

+ ³4∥u− ū∥2 (19)

where ū =
(

mg
2
, mg

2

)T
and where: ³1 = 100, ³2 = 10,

³3 = 0.01 and ³4 = 0.1. We consider a horizon of

20 nodes and re-plan at each new measurement, i.e. every

0.05s. Furthermore, we only measure: y =
(

px py ¹
)T

to illustrate the estimator capabilities. We simulate 4s with

both output-feedback MPC controllers: one relying on the

standard EKF and the other relying on the RS-EKF.

Figure 1 shows the real mass variation and the estimates of

both methods and Figure 2 show the state space trajectories

of the quadrotor. It can be seen that the RS-EKF is more

reactive when the load is added or dropped. The increase of

uncertainty on the components of the state that are important

in the cost function leads to mass estimate spikes in the

1https://github.com/machines-in-motion/risk-sensitive-EKF

RS-EKF. This overestimation of the mass change in turns

leads to an improved control performance (Figure 2). In

other words, some of the eigenvalue of PtV
xx
t become larger

in the phases of uncertainty, which augments the shift on

the estimate as shown in Equation (17). The average Mean

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

1

2

3
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5

m
 [k

g]

Ground truth
RS-EKF estimate
EKF estimate

Fig. 1. Mass estimation for both EKF and RS-EKF.

Square Error (MSE) relative to the reference trajectory is

0.0011 for the RS-EKF and 0.0024 for the EKF. Hence, risk

sensitivity in the estimator brings a 54% improvement in

tracking performance. Furthermore, the average cost along

the trajectory is 0.0569 for the RS-EKF-based controller

and 0.0880 for the EKF-based controller, yielding a 35%
improvement. This illustrates how a filter informed of the

cost objective can improve the controller’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
px [m]

20.1

0.0

0.1
p z

 [m
]

RS-EKF
EKF
reference

Fig. 2. Quadrotor trajectory for both the EKF-MPC and the RS-EKF-MPC.

B. Kuka robot subject to large external disturbances

Now, we consider the 7-DoF torque-controlled KUKA

LWR iiwa R820 14 which needs to track an end-effector

reference trajectory. We consider the following task cost:

ℓk(xk, uk) = 10−2∥xk − x̄∥22 + 10−4∥uk − ū(xk)∥
2
2

+ 102∥ptarget

k − p̄(xk)∥
2
2 (20)

ℓT (xT ) = 102∥ptarget
T − p̄(xk)∥

2
2 + 10−2∥xk − x̄∥22,

x̄, the initial state, is used for regularization and is the

concatenation of the initial robot configuration and a 7-

dimensional zero vector for the velocity. ū(xk) is the gravity

term given by the rigid body dynamics. p̄(xk) is the end-

effector position obtained through forward kinematics. p
target

k

defines an end effector circle trajectory in the xy plane. We

use a horizon of 20 collocation point with an integration step

of 0.05s and re-plan at 500 Hz. We use Pinocchio [27] to

compute the robot dynamics and its analytical derivatives.

This experiment aims to showcase the ability of the

risk-sensitive filter in bringing conservatism during phases

with large environmental perturbations (large forces applied

on the end effector). We assume all states are observed

with high accuracy, therefore, we set R = P0 = 10−6I14.

However, to model the disturbances in the dynamics, we set

Q = 10−1I14. Finally, we consider µ = 7.5× 104.
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Fig. 3. End effector trajectory on a tracking task for both the EKF-MPC
and the RS-EKF-MPC. An unexpected force is applied between 1s and 2s.

Figure 3 depicts the end effector trajectory for both

controllers and their respective estimates. An external force

of norm 80N is applied on the end-effector in the x and z

direction from time 1s to 2s. The RS-EKF overestimates the

distance between the reference and the end-effector which

leads to a more aggressive response of the controller and

results in the end-effector remaining closer to the reference.

This illustrates how taking a pessimistic estimate with respect

to the cost can improve control performance. Note that both

estimates are state estimates that we projected in the end

effector space, the space where the cost function is defined,

to draw Fig. 3. This illustrates the ability of the method to

handle nonlinear dynamics and cost functions.
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Fig. 4. Median MSE on the tracking over 10, 000 experiments with random
external disturbances. The envelope represents the 25th and 75th percentiles.

To validate the consistency of the filter, we performed

10, 000 experiments where the timing and direction of the

forces are uniformly sampled with a fixed perturbation

duration of 1s and force magnitude of 80N . Fig. 4 shows

the median end effector error trajectory. In average, RS-EKF

brings a 32% improvement in the MSE and a 22% reduction

of the mean cost.

C. Load estimation on a quadruped robot

Finally, we deploy the RS-EKF on a real 12-DOFs, torque-

controlled quadruped robot - Solo12 [19]. We demonstrate

the superior performance of the RS-EKF in estimating ex-

ternal wrenches while the robot is standing. A non-linear

MPC scheme is used to generate the standing behavior. At

each control cycle, we minimize a cost function using a

centroidal model to compute the optimal forces and trajectory

that keep the robot’s base at a desired height and orientation.

20.05
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p z
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Fz ex
t[N

]
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RS-EKF measurement
RS-EKF estimate
EKF measurement
EKF estimate

Fig. 5. Comparison of both methods after an external force of 20N is
applied by pulling the robot vertically. Top figure: overlay of the robot
movements using both the EKF (dark blue) and the RS-EKF (solid). Bottom
figure: RS-EKF and EKF estimates and real measurements. The vertical line
indicates the moment when the robot is dropped.

Additionally, we use an augmented state to estimate the

external wrench applied to the robot as in [28]:

ċ =
1

m
l, Ḟext = 0, Ä̇ext = 0, (21)

l̇ = mg +

Mc
∑

i=1

Fi + Fext k̇ =

Mc
∑

i=1

(pi − c)× Fi + Äext

where m denotes the mass, Mc the number of end effectors

in contact andpi are contact locations. The state is x =
(

c l k Fext Äext

)T
which includes the center of mass

(c), linear momentum (l), angular momentum (k) and external

wrench (Fext, Äext). The measurement is y =
(

c l k
)T

up

to some noise. Motion capture measures the base position,

velocity, and orientation and an IMU gives the orientation

velocity. Joint encodings are provided and their velocities

are derived with finite differences. Given q, q̇, we compute

c, l, k which are used as the measurement by the filter.

The control input, u =
(

F1 . . . FMc

)T
, is a Mc × 3

dimensional vector, representing the force applied at each

end effector. For this experiment, the robot is standing,

therefore, Mc = 4. The cost function for the OCP is:

ℓt(x, u) = ∥x− x⋆∥Hx
+ ∥u− u⋆∥Hu

+ 105
Mc
∑

i=1

ℓbarrier(u3i)

ℓT (x) = (x− x⋆)THx(x− x⋆) (22)

where Hx = BlockDiag(102I3, 10I6) and Hu is a diagonal

matrix where the diagonal terms are made of Mc times the

following sequence (10−4, 10−4, 10−6). Lastly, ℓbarrier is a

quadratic barrier function that creates a soft constraint on the

maximum forces the robot can apply on the ground. More

specifically, ℓbarrier(u) is equal to u2 if u < 0, (u − 10)2 if

u > 10 or 0 otherwise. Here, x⋆ is designed to keep the CoM

at constant height above the ground and the base horizontal,

u⋆ is gravity compensation. The reference desired angular

momentum for the OCP is adapted to bring the base back to

a horizontal position as in [29]. We set k∗ = 1

T
log3(RtR

T
des),

where Rt and Rdes are the current and desired base rotation

matrices respectively and T the horizon length. log3 is the

matrix logarithm mapping an element of SO(3) to so(3).



We solve this OCP at 100 Hz using the DDP solver

Croccodyl [25] and track the desired forces using a task space

inverse dynamics QP [30] that we solve at 1 kHz using [31]:

min
f,Ä,a

1

2
∥f − F∥2 (23)

subject to Ma+ g = JT f + ST Ä + ST ffriction

Ja = −J̇ q̇,

where J is the contact Jacobian, M the mass matrix, S

the selection matrix that projects on the actuated joints,

and g is the generalized gravity vector at the current

time step. Static friction in each joint was estimated to

0.07. However, to keep a continuous model, we write

ffriction = −0.07 2

Ã
arctan (2Sq̇). The first constraints en-

sure dynamics consistency and the second ensures that

the end effectors do not move. We update our state es-

timate using the filters at 200 Hz with µ = 6. For

both filter, we consider the following parameters: P0 =
Q = BlockDiag(10−3I6, 10

−4I3, 10
−1I3, 10

−2I3) R =
BlockDiag(10−4I3, 10

−2I3, 10
−4I3).

Fig. 5 shows results from the first experiment where the

base of Solo12 is pulled up (in the z direction) until an

external estimate of 20N is computed by both filters (vertical

line at time 1.4s). The base is then released to let Solo12

recover and bring its base back to the desired height. The

RS-EKF helps the OCP to react quicker and bring the base

to the desired location sooner. This happens because the RS-

EKF, during periods of high uncertainty, underestimates the

base height in z as compared to EKF, which makes the OCP

generate higher ground reaction forces to bring the base up

sooner. As it can be seen in Fig. 5, the external vertical force

does not converge exactly to zero. We find experimentally

that this is due to friction. Lastly, the cost of the RS-EKF-

based controller is lower after the robot is dropped. The

average cost of the RS-EKF is 0.065 while the one of the

EKF is 0.130, which corresponds to a 50% improvement.

To get rid of the human error, we perform two additional

experiments where the filters are initialized with exactly the

same priors. First, we initialize both filters with a wrong

prior on the external vertical force of 20N, while in reality,

no force is applied on the robot. This experiment creates

an identical situation as the previous experiment while also

ensuring the exact same initial conditions. The results are

shown in Fig 6, where the RS-EKF still performs better.

In that experiment, we obtain a 62.9% improvement in the

average cost. In the second experiment, we initialize the

20.1
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Fig. 6. Comparison of the RS-EKF and EKF when initialized with a wrong
prior of 20N on the estimated vertical external force.

filters with a wrong prior of −10 N on the external force,

while, in fact, there is no force on the robot. The RS-EKF

reacts sooner than EKF once again. It brings the base of

Solo12 back to the desired location sooner than EKF (Fig. 7).

We also obtain a 58.9% improvement in the average cost.
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Fig. 7. Comparison of the RS-EKF and EKF when initialized with a wrong
prior of −10 N on the estimated vertical external force.

V. CONCLUSION

Leveraging recent results in dynamic game control, we

introduced a risk-sensitive variation of the EKF which biases

estimates towards high regions of the control cost which

result in more robust controllers. Furthermore, the complex-

ity of this filter is similar to the EKF. Experiments both in

simulation and a real robot show the benefits of this filter

for output-feedback MPC in face of high uncertainty.

APPENDIX

By taking a quadratic approximation of the value function,

the Gauss-Newton step can be written as:

max
xt−1

max
xt

µ(xt − x̄t)
TV xx

t (xt − x̄t) + 2µ(xt − x̄t)
T vxt

− (∆y −Ht∆xt)
TR−1

t (∆y −Ht∆xt)−∆xT
t−1P

−1
t−1∆xt−1

− (∆xt − Ft−1∆xt−1)
TQ−1

t (∆xt − Ft−1∆xt−1)) (24)

where ∆y = yt − h(x̂t), ∆xt−1 = xt−1 − x̂t−1, ∆xt =
xt − x̂t. It can then be found that xt−1 = Q̃−1q̃, where:

Q̃ = P−1
t−1 + FT

t−1Q
−1
t Ft−1 (25)

q̃ = −P−1
t−1x̂t−1 − FT

t−1Q
−1
t (xt − x̂t)− FT

t−1Q
−1
t Ft−1x̂t−1

by using the Woodbury lemma [22], It can be shown that:

max
xt

µ
1

2
(xt − x̄t)

TV xx
t (xt − x̄t) + µ(xt − x̄t)

T vxt

−
1

2
(∆y −Ht∆xt)

TR−1
t (∆y −Ht∆xt)−

1

2
∆xT

t P̄
−1
t ∆xt

where P̄t is defined as in (4). Finally, we can show that:

max
xt

µ
1

2
(xt − x̄t)

TV xx
t (xt − x̄t) + µ(xt − x̄t)

T vxt

−
1

2
(xt − x̂t −∆x̂t)

TP−1
t (xt − x̂t −∆x̂t) (26)

where Pt,∆x̂t are defined as in (6), (7).
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