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Abstract— The field of legged robots has seen tremendous
progress in the last few years. Locomotion trajectories are
commonly generated by optimization algorithms in a Model
Predictive Control (MPC) loop. To achieve online trajectory
optimization, the locomotion community generally makes use of
heuristic-based contact planners due to their low computation
times and high replanning frequencies. In this work, we propose
ContactNet, a fast acyclic contact planner based on a multi-
output regression neural network. ContactNet ranks discretized
stepping locations, allowing to quickly choose the best feasible
solution, even in complex environments. The low computation
time, in the order of 1 ms, enables the execution of the contact
planner concurrently with a trajectory optimizer in a MPC
fashion. In addition, the computational time does not scale
up with the configuration of the terrain. We demonstrate the
effectiveness of the approach in simulation in different scenarios
with the quadruped robot Solo12. To the best knowledge of the
authors, this is the first time a contact planner is presented that
does not exhibit an increasing computational time on irregular
terrains with an increasing number of gaps.

I. INTRODUCTION

Online motion planning for legged robots remains a chal-

lenging problem. The common approach is to use opti-

mization algorithms in a Model Predictive Control (MPC)

loop to automatically generate trajectories based on sensor

feedback [1], [2], [3]. High frequency updates enable robots

to react quickly to changes in the environment and reject ex-

ternal disturbances [4]. In order to maximize the replanning

frequency, the problem is often split into two components -

contact planning and trajectory generation. Contact planning

selects feasible footholds on the terrain to allow the robot

to reach a desired location. Trajectory generation computes

whole-body movements and contact forces to be applied at

these locations.

Significant progress has been made in the area of online

trajectory generation. Some approaches simplify the robot

dynamics to a single rigid body with limited base rotations to

render the underlying optimization problem convex [1]. This

allows for fast trajectory planning using a Quadratic Program
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Fig. 1. Solo12 robot traversing generated terrain with randomly removed
squares of 5x5 cm dimensions.

(QP). Other methods use either the non-linear Single Rigid

Body Dynamics (SRBD) [2] or the full body model [3],

[4] to generate almost any desired behavior on different

robots. Despite this progress, most of these methods still

rely on heuristic-based contact planners [5] to ensure real-

time computation. However, such contact planners limit the

overall motion planning framework (contact planning plus

trajectory generation) to cyclic gaits only.

The most recent works in this direction included the

contact dynamics into a contact implicit MPC [6], [7]. Kim

et al. [6] presented a DDP-based contact implicit MPC with

an analytical gradient for contact impulses to discover new

gait sequences. However, no constraint on the feasibility of

the chosen foot placement with respect to the morphology

of terrain is considered. A bi-level planning formulation was

introduced in [7]. The approach computes offline the optimal

references and performs the linearization of the model for the

entire motion; this allows to obtain an online local tracking

controller that can change the contact plan in the presence of

large disturbances. Finally, [8] simulates in parallel multiple

robot dynamics during the linesearch in the forward pass

of a Hybrid LQR. This allows to solve the hybrid system

till convergence and thus obtain the best contact sequence.

The approach is computationally heavy and so it depends on

the performance of the Isaac Gym simulator [9]. However,

automatically navigating terrain with constraints such as

stepping stones is often not possible with such approaches.

When complex motions are desired, the user is then forced

to design a contact plan suitable for the desired task [10].

In the literature, there are examples of contact planners

that can tackle complicated situations. Deits and Tedrake [11]

proposed a Mixed Integer Program (MIP) to find footholds

that avoid obstacles and violations of the kinematic lim-

its. Similarly, the contact planning problem can also be

optimized by maximizing the sparsity of the contact se-

lection vector [12]. Alternative to optimization techniques,

sampling-based methods have been proposed to select fea-



sible contact plans. For example, Lin et al. [13] presented a

search-based footstep planner which explicitly takes into ac-

count disturbances. A neural network predicts if a a candidate

foothold location is zero-step and one-step capturable for a

full-body dynamic model. Amatucci et al. [14] presented a

contact planner based on a Monte Carlo Tree Search (MCTS)

algorithm; even though this approach demonstrated good

performance, the expansion of the MCTS becomes too slow

when a high number of discrete options are available, e.g.

terrain with holes. Consequently, all these methods cannot

be used in an MPC fashion at high control rates.

In this work, we address these limitations and propose

an online, MPC friendly multi-contact planner - ContactNet,

that can automatically generate arbitrary gait schedules,

select footholds in unstructured environments, e.g. stepping

stones, and recover from external perturbations. This contact

planner extends the principles used in [15], a reactive planner

for bipedal locomotion, which was limited to single contacts

and cyclic gaits. ContactNet, on the other hand, computes

acyclic gaits online for multiple legs. The key point of this

approach is that the solve time is low and remains unaffected

by the number of terrain constraints, such as stepping stones.

ContactNet is based on a multi-output regression network

[16] that ranks a discrete set of foothold locations. This

information is then used to generate a contact plan. The

ContactNet is trained offline on a simple flat terrain using

data generated with a novel cost function (see Sec. III-B)

which considers robustness, stability and minimizes trajec-

tory generation cost. After training, we combine the Contact-

Net foothold plan with a centroidal trajectory optimizer [2]

to generate online a desired behavior.

To evaluate our approach, we generate acyclic walk and

acyclic trot behaviors on the Solo12 robot [17] in simulation

(Fig. 1). We show that ContactNet can automatically navigate

terrains with holes, even though those kind of terrains are not

considered during the data collection for training. Finally,

we systematically analyze the robustness of the ContactNet

in face of measurement uncertainties, i.e. Gaussian noise in

the joint velocity measurements, to emulate the behaviour of

a real sensor.

A. Contributions

In summary, this paper proposes a fast contact planner for

legged locomotion with the following main contributions:

• the ContactNet, a neural network-based contact planner,

which can rapidly generate acyclic gait sequences with

safe footholds, even in the presence of holes in the

ground, considering tracking performance of an MPC,

stability and robustness. To the best knowledge of

the authors, in contrast to all the other state-of-the-

art approaches that suffer from terrain complexity, our

contact planner is the only one with a computational

time that does not increase with the number of gaps

present in the terrain.

• extensive preliminary simulation results with Solo12

that demonstrate the effectiveness of our approach with

two gaits: an acyclic walk and an acyclic trot to navigate

terrains with constraints (stepping stones). We show that

changing online the gait sequence is crucial to address

certain situations where fixed gait sequences fails.

B. Outline

The paper is organized as follows: Sec. II presents other

works related to the proposed approach. Sec. III gives an

overview of our contact planner. Sec. IV presents the results

of simulation with the Solo12 robot with ContactNet for both

walk and trot in different scenarios. Finally, limitations and

conclusions are drawn respectively in Sec. V and VI.

II. RELATED WORK

Several motion planning methods that handle both contact

planning and trajectory generation together by solving a

non-linear problem have been developed in the past years.

Posa et al. [18] use complementary constraints to ensure

that that the end-effector either moves or applies a force to

the environment. Winkler et al. [19] presented a trajectory

optimization formulation which considers also foot position

and stance/swing duration to generate different gaits. Ponton

et al. [20] use Mixed-Integer Quadratically Constrained QPs

to find contact sequences and whole-body movements for

humanoids. On the other hand, methods exist that use convex

optimization. Aceituno-Cabezas et al. [21] use Mixed-Integer

Convex Programming to plan for both Center of Mass (CoM)

trajectory and contacts for the quadruped robot HyQ [22].

Recently, Jiang et al. [23] obtained a QP formulation to

compute optimal trajectories of the CoM by neglecting

several terms in the centroidal dynamics. In addition, the

authors extended the approach to an offline Mixed-Integer

QP which plans also for gait sequences, timings, and foot

locations. A common drawback of all these methods is that

they are not fast enough to be used in an MPC fashion,

which is important to compensate for model inaccuracies

and external disturbances.

As already mentioned, in order to reduce the computa-

tional effort, several approaches assume a predefined gait

sequence and optimize only the foot locations. For example,

Villarreal et al. developed a foothold classifier based on a

Convolutional Neural Network (CNN) [24] and combined it

with a MPC-based trunk controller [25] to achieve reactive

and real-time obstacle negotiation, considering a 3D map

of the terrain. Another example of using a CNN to select

the optimal landing location was presented by Belter et

al. [26]. Their approach is based on the learning of a model

to evaluate the quality a potential touchdown point taking

into account the local elevation map, kinematic constraints

and collision. Grandia et al. [10] performed a convex inner

approximation of the steppable terrain, optimizing foot loca-

tions inside that region. However, the authors mention that

a change in the gait sequence should be required to prevent

the robot from falling in the presence of strong disturbances.

In Section IV we showcase a scenario in which computing

online both footholds and gait sequence is fundamental to

accomplish the motion.



III. CONTACTNET

ContactNet computes foot locations and contact status

(i.e., swing or stance) for each leg in the horizon. In this

section, we describe the cost function and data generation

approach used to rank footholds offline. After that, we

discuss the details regarding ContactNet and we present

the entire framework used to generate acyclic multi-contact

plans.

A. Footholds

We discretize the allowed stepping region for each leg

into a fixed set of Na possible locations. These footholds

are defined at fixed distances from the current hip location

of the corresponding foot, similar to [15]. Subsequently, as

the robot moves, the allowed foot locations also change.

Discretizing the candidate footholds is quite a common

approach, e.g., [24]; we show in our experiments that, despite

losing the freedom of stepping anywhere in the feasible

region very reliable behaviors can be generated.

B. Cost Function

Given the discrete set of possible footholds for all the

legs, the goal is to identify the best one, considering the

morphology of the terrain, the references and the current state

of the robot. For this, we propose a novel cost function that

is used to rank all the foot locations based on several aspects,

such as robot stability, robustness and optimal trajectory. We

consider the input to be:

ur = [Cpf ,pc,z,vc,v
usr
c ] (1)

where Cpf ∈ R
8 represents X and Y components of the foot

location in the CoM frame C1, pc,z ∈ R is the Z component

of the CoM position, vc ∈ R
3 is the actual CoM velocity.

Finally, the variable vusr
c ∈ R

2 is the user-defined reference

linear velocity.

To evaluate a foothold, we first generate a trajectory that

moves the robot from the current configuration to the chosen

one and then use the following cost function

V =

Ns∑

k=0

Vk + VNs
(2)

where Ns is the step horizon, Vk is the running cost (eval-

uated at each node of the trajectory), VNs
is the terminal

cost (evaluated only at the final point). The running cost Vk

consists of three terms

Vk = γoptVk,opt + γstabVk,stab + γkinVk,kin. (3)

The first term corresponds to the cost of the optimization

problem obtained from the trajectory optimization [2], i.e.

tracking of references for states (CoM quantities) and control

inputs (Ground Reaction Forces (GRFs)). It guarantees that

a feasible trajectory that respects the dynamics and friction

cone constraints exists. In this work, we use a SRBD model

[27], but any other model could also be used. The variable

1All the quantities without left subscript are expressed in the inertial fixed
World frame W .

Vk,stab, evaluates the margin of stability of the motion. It

computes the distance of the projection of the CoM on the

ground from the closest support polygon edge. For instance,

in a walk, this encourages footholds in which the robot is

statically stable (CoM inside the support polygon, Vk,dist =

0); for a trot, this maximizes the controllability of the robot.

The last term Vk,kin enforces kinematic limits - it assigns

a high value when a leg in stance violates these limits.

Even though our simplified model does not include joint

values, we consider a violation of the kinematic limits if

the distance between the foot and the hip exceeds a certain

threshold. To do so, we assume that the positional offset

between the hip and the CoM remains constant for the entire

trajectory. Further, a conservative threshold value is chosen

to encourage the motion of one leg when it is close to the

kinematic limits, i.e. to place it in a more kinematically

favourable location, similarly to [28].

The terminal cost VNs
in the cost function V takes into

account future actions of the robot. It is defined as follows:

VNs
= γcentVcent − γareaVarea. (4)

With Vcent, we introduce a penalization on the distance

between the projection of the CoM and the center of the

support polygon. Minimizing this quantity increases the

number of subsequent stable steps. Finally, the quantity

−Varea improves the robustness of the contact configuration

by maximizing the area of the final support polygon.

The numbers γi ∈ R scale the different cost terms.

C. ContactNet

Using the cost function discussed previously, it is possible

to automatically generate acyclic multi-contact plans for

locomotion by simply selecting as action - which leg to move

and where to step - the candidate with lowest value of V .

However, evaluating all the possible footholds by computing

optimized trajectories is not feasible online. Consequently,

we propose to train offline a neural network that learns to

rank the possible footholds using the cost function (2), giving

the input of (1).

1) Data Generation: To train the ContactNet, we generate

a dataset containing many possible stepping situations that

the robot can be dealing with on a flat terrain. We start

the robot in a randomly generated configuration (different

joint position and velocity) and choose a random reference

CoM velocity in the range (-0.1,0.1 m/s) for both X and

Y directions. Before each liftoff, the cost function (2) is

evaluated, and the best foothold among the discrete options

is selected, i.e. the one with the smallest V , is selected.

Subsequently, a trajectory is generated with this contact plan

and is tracked on the robot in simulation. We define this

as an instance. After that, a new instance is run (same

reference velocity, starting from the configuration achieved

at the end of the previous instance) to generate a large

dataset containing the input ur and the corresponding V,

i.e., the vector which contains the values of cost V for

each option. A new episode is restarted (i.e., new reference

velocity and initial configuration) after 30 instances or when



Fig. 2. Example of the evaluation on the ContactNet on a terrain composed of stepping stones. Red disks represent some of the actions evaluated by
the ContactNet. The others are not shown for image clarity. The network computes the ranking order, according to which the yellow disk is the one
which minimizes the cost function (2). In this example, knowing the terrain map, yellow disk is discarded because it corresponds to an hole in the terrain.
Checking iteratively in the ordered output of the ContactNet, the blue disk is chosen since it corresponds to the first action deemed safe.

Fig. 3. Block scheme of the entire locomotion framework. Given the user-defined velocities v
usr the actual robot state xc, and actual foot locations pf

the ContactNet computes in a few milliseconds the gait sequence δ and touchdown points p
d

f
for the three following steps, at a frequency of 3.125 Hz

(after each touchdown). Given the sequence as parameter, the Trajectory Optimizer [2] computes CoM trajectory and GRFs tracked by a 1 kHz centroidal
whole-body controller and a joint space impedance controller [17]. In order to guarantee that the motions are feasible also on the real robot, the torques
are saturated to the maximum values that the motor of Solo12 can produce.

the robot falls down. In this way, the dataset contains the

configurations the robot will likely have during a motion.

Since we do not know which step led to the final fall, we

heuristically remove the last 3 instances of the episode in

case of falling. The framework is not real-time friendly, but

generating the dataset does not take too long - about 6-7

hours with a standard computer.

2) ContactNet Training: Our goal now is to learn a

function fθ : R14 → R
Na , which maps the current input ur

to the list of the ranked footholds. The main advantage of

a learning approach is that it guarantees low computational

effort at runtime, allowing us to integrate it with our MPC.

In order to learn the ranking function for all the possible

actions, we used a multi-output regression network [16]. To

do so, we sort the vector V from the dataset in decreasing

order and create a vector Y ∈ R
Na , assigning to each value

of V its index in the sorted vector; the smaller the cost for the

action a, the higher its value in Y. We normalize each entry

by Na−1, such that the values in Y are between 1 and 0 (1

smaller cost, 0 higher cost). For the sake of clarity we provide

a small example, i.e., an instance with only 3 possible

footholds: V = [0.8, 0.3, 0.9], sorted(V) = [0.9, 0.8, 0.3]
Y = [1/2, 2/2, 0/2], since the cost 0.8 has index 1, the cost

0.3 has index 2, and the 0.9 has index 0 in the sorted V. As

a training loss, we use the mean squared error between the

prediction Ŷ = fθ(ur) and Y.

min
θ

1

Na

Na−1∑

i=0

(Yi − fθ(ur)i) (5)

3) ContactNet Evaluation: After training the ContactNet,

we can quickly obtain the optimal foothold by constructing

the vector of indices that sort in decreasing order Ŷ (we refer

to this vector as Ŷ′) and pick the first value. In the example

before, assuming a perfect output of the neural network, we

have Ŷ = [1/2, 2/2, 0/2], and so Ŷ′ = [1, 0, 2]. This means

that the action number 1 in the discretized set is the optimal

one. Even though we consider only flat terrains, in certain

situations some options in Ŷ′ must be discarded because

unsafe, i.e. they correspond to a point in which there is a

hole in the terrain. We identify if a foothold is safe by using

the knowledge of the terrain map. In particular, we iteratively

check the elements in the vector Ŷ′ till we find the one that

does not coincide with a hole. Since Ŷ′ has been ordered

based on the lower cost function, this approach chooses the

optimal safe action (which leg to move and where to place

the foot). An example of such a situation is shown in Fig. 2,

where the robot is expected to walk across stepping stones.

The red circles correspond to some of the allowed footholds

of the Left Front leg. The others are not shown for image

clarity but are also evaluated in this situation. The yellow



disk represents the first value in Ŷ′, but it cannot be selected

since there is no terrain below it. Consequently, we check the

following elements in Ŷ′ till the first one that is coherent

with the terrain, e.g. blue disk.

Remark: We chose to discretize the foothold locations and

rank all of them, mainly to navigate complicated terrain

situations online without adding the morphology of the

terrain directly into the formulation.

D. Overall control architecture

Figure 3 shows the block scheme of our locomotion

framework. The user decides the linear velocities vusr
c ∈ R

2

that the robot should follow. Given the X and Y components

of actual foot position in the CoM frame C Cpf ∈ R
8, Z

component of the actual CoM position pc,z, actual CoM

velocity vc and reference velocities vusr
c , the ContactNet

returns the best candidate foothold, as explained in the

previous section. In our architecture we compute online a

contact plan with three steps for a prediction horizon of N
= 3 Ns step horizons. Reference velocities are integrated to

compute the CoM position at the end of each step horizon.

They are used together with the chosen foothold to define

the input ur of (1) for the second step horizon to re-

evaluate the neural network; similarly it happens for the

third evaluation. The swing times are preset depending on

the chosen gait (discussed in detail IV-A). This contact plan

along with the reference CoM trajectories and the reference

GRFs2 are provided to the trajectory optimizer to generate an

optimal movement using the algorithm described in [2]. The

CoM trajectories are then tracked by a 1 kHz whole-body

controller [17], combined with a PD controller in Cartesian

space for the swing trajectories. The swing trajectory is

defined in the swing frame; a semi-ellipse represents the X

component and a fifth-order polynomial the Z. At the end of

each step horizon, the procedure is repeated in MPC fashion.

IV. RESULTS

In this section, we present the results obtained by our

approach. We perform simulations with Solo12, a 2.2 kg
open-source torque-controlled modular quadruped robot. The

entire framework runs on a Dell precision 5820 tower ma-

chine with a 3.7 GHz Intel Xeon processor. We perform our

simulation using the PyBullet library [29].

For all the experiments, the ContactNet is composed of

4 fully connected layers with 128 neurons each. All layers

except the last one are activated with a ReLU function. As

hyper-parameters for training, we choose a number of epochs

equal to 1000 with a batch size of 100. The learning rate is set

to 0.001. The input ur is normalized to be in the range (-1,1)

to improve the accuracy of the network [30]. To evaluate the

network’s performance we used 70 % of the entries of the

dataset as a training set and the remaining part as a test

set. We use a top-5 metric to determine the statistics of the

network, i.e., we consider a correct prediction if the first

element of Ŷ, i.e. what the neural network outputs as a best

2Weight of the robot divided by the number of legs in contact with the
terrain for the stance phase, zero for the swing phase

action, is one of the first five elements in the corresponding V

stored in the dataset. In our case, this metric has a particular

importance since the best action will not be always feasible

due to the requirements of the terrain.

A. Acyclic gaits

In this subsection, we discuss the various parameters

defined to generate the two gaits - walk and trot.

1) Walk: In this experiment, the robot is only allowed to

move one leg at a time. We choose a discretization time of

40 ms for the trajectory optimization. The step horizon Ns

is equal to 320 ms (8 Nodes) and it is composed of 120

ms of four leg stance phase (3 nodes), 160 ms (4 nodes)

of swing phase, and the last node of four leg stance phase.

The prediction horizon N used by the trajectory optimizer is

composed of three step horizons, 960 ms, corresponding to

three evaluations of the neural network, as discussed in Sec.

III-D. The duration of the swing and stance phase has been

chosen based on our previous experiments with the Solo12

robot; the presented approach is generic and can be applied

with other values for swing/stance.

We define the allowed stepping region for each leg to be

a 20 × 20 cm grid which is a meaningful size given the

kinematic limits of Solo12. This space is discretized into

25 footholds which are 5 cm apart, see red disks in Fig. 2.

Subsequently, the network needs to choose among a total

of Na = 100 possible footholds (4 × 25) since we do not

prescribe which leg needs to swing, but we only require

one leg swing at a time. For data generation, we run 1500

episodes using the procedure discussed in Sec. III-B. The

resulting data had 43410 instances of (ur/V) tuples. We

obtained an accuracy of the 93.48/90.81 % in the training/test

set according to the top-5 metric.

2) Trot: In the trot gait, two diagonal feet are leaving the

ground at the same time. The total stepping region for each

leg is a square size 10 × 10 cm. The foothold discretization

resolution is still 5 cm, 9 choices per leg. At the start of a

stepping horizon, there are a total of 162 - 2 × 92 foothold

choices since at each step two legs leave the ground. All

the other parameters are the same as the walk. We run 1500

episodes to generate the dataset for this gait and train the

ContactNet, obtaining 45000 instances. The neural network

achieves an accuracy of 99.48/97.7 % in the training/test set.

In the accompanying video3, we show a long horizon trot

motion in a scenario with holes in the terrain. The reference

velocity changes every 10 s in the range (−0.1, 0.1)m/s. In

this way, we demonstrate the locomotion stability and the

ability of avoiding unsafe footholds of ContactNet.

B. Stepping stones scenario

To verify the effectiveness of our MPC framework, we

designed a terrain composed of 8 sparse stepping stones of

different shapes: 3 stars, 2 circles and 3 rectangles, see Fig.

2. Two squares are positioned as starting and end points.

The goal of the task is to traverse the terrain with a user-

defined forward velocity of 0.05 m/s using the ContactNet

3https://www.youtube.com/watch?v=ta1JpSigRKo



Fig. 4. Gait schedule of a walk motion on a stepping stones scenario. White parts indicates moment in which that leg is in swing. The ContactNet finds
a completely acyclic gait.

trained for the walk gait. The proposed approach successfully

navigates the terrain. Fig. 4 shows the resulting gait sequence

for the entire motion. Each color corresponds to a different

leg; white parts indicate that the foot is in the air at that

time. Fig. 4 demonstrates that the motion is completely

acyclic. For example, when the front legs are on the last

square the CoM is closer to the hind legs, automatically

making the swing of the front legs preferable to prevent

the CoM from going outside the support triangle. The hind

legs are moved only when stability is guaranteed and the set

of actions contains a touchdown point on a stepping stone.

The result of the simulation is shown in the accompanying

video. The ContactNet in average has chosen the 6th element

of Ŷ, with a maximum of 30 discarded elements for the

swing of the Left Hind leg at time around 10 s. The average

computation time for a complete iteration of the ContactNet,

i.e. computation of 3 subsequent actions/footholds, is 1.6

ms, which is much faster than the trajectory optimizer.

This scenario is particularly challenging for contact implicit

MPC [6] since the morphology of the terrain should be

considered in the formulation. Similarly, a sampling-based

approach as [14] would suffer from the exponential increase

of computation time.

To demonstrate that the ContactNet can be generalized

to any stepping stones scenario we considered a second

terrain with three rectangles of different sizes, see Fig. 5. The

terrain is designed to make the stepping stones narrow and

spaced unevenly with the last stepping stone farthest from

the previous. Crossing this terrain would require optimal

foot location planning. Additionally, we use this terrain

to evaluate the impact of online gait selection along with

pure foot location adaptation. We modified the evaluation

procedure of the ContactNet in order to be able to find

the corresponding optimal safe foothold for a specific leg.

In such a case ContactNet only adapts foot location as

it happens in approaches such as [24], using a fixed gait

sequence. We initialize Solo12 with the same initial state

and let it traverse the terrain twice, once with the original

ContactNet able to choose both the footholds and the gait

sequence (optimized acyclic gait), and then using ContactNet

with fixed cyclic gait, In this case, when none of the

discretized options for a leg are coherent with the terrain, a

swing in place is forced. Fig 5 shows frames of the behaviour

of Solo12 in the two scenarios. Solo12 fails to traverse the

terrain when it is not allowed to adapt the gait online. In the

case where Solo12 chooses gait and foothold it is able to

navigate safely across the terrain by finding a feasible and

stable contact plan. This is an example that demonstrates the

need for both acyclic gait and foot location selection (as it

is done by the ContactNet) to navigate complex terrain.

C. Randomly generated terrain

In this section, we evaluate the reliability of our MPC

scheme to navigate unstructured environments with various

terrain constraints. We generate a terrain of 1.5x0.5 m by

placing 300 squares 5x5 cm. Starting from a number of n
= 50 till n = 100 (17 % - 33 %), we randomly remove n
terrain patches and evaluate the success rate for both the

walk and trot setups (see Fig. 1) with a reference velocity of

0.05 m/s in the X direction. For each n we performed 100

different attempts, changing the terrain configuration. A trial

is considered successful if the robot reaches the last terrain

patch. In addition we also repeat the navigation task for the

two gaits with Gaussian noise (zero mean, 0.01 variance)

applied to joint velocity measurement. This is performed to

validate the robustness of the approach in conditions closer

to the real robot. The results are shown in Fig. 6.

The ContactNet has a high rate of success for both gaits,

while, as expected, the walk guarantees better performance

due to its intrinsic stability. The addition of noise does not

cause a significant reduction in performance. This suggests

that our framework would reliably work on a real robot. Note

that the ContactNet remains robust to noise even though it

was not trained for it, as is commonly done using domain

randomizing techniques [31]. Further, no assumptions are

made on how terrain patches are removed to guarantee that

a real feasible path exists.

Another important element of our analysis is the solve

time of the ContactNet. We consider the total solve time

to be 3 evaluations of the network, i.e., the time needed

to generate the contact plan for our trajectory optimization.

Table I reports the mean value of the computational time

of ContactNet for each value of n during one attempt. We

highlight that the time is low, around 1 ms, and does not

change with the complexity of the terrain. This contrasts

with other approaches, such as MIP and MCTS, where

the computational time suffers from the dimension of the

solution space. For example, the MIP of [23] takes 55789.3

ms an average for a full walking cycle thus requiring to be

solved offline; the MCTS of [14] requires an average of 400



Fig. 5. A comparison between fixed cyclic and optimized acyclic gait selection: Solo12 fails to traverse a narrow stepping stone scenario when ContactNet
is only allowed to adapt foot locations. Solo12 traverses the terrain when adapting both footholds and gaits online.

Fig. 6. Successful attempts of both walk and trot motions over the number
of terrain patches removed with. For each number of terrain patches we
execute 100 trajectories with and without noise (Gaussian noise with zero
mean and 0.01 variance).

ms to obtain a sequence of 6 steps, given the high number of

possibilities and it is already 2.72 faster than a MICP similar

to the one presented [21]. In addition, the non-convexity

of the star stones is hard to be considered in an analytic

constraint. Furthermore, ContactNet takes into account the

morphology of the terrain, differently from the online contact

implicit MPCs such as [6]. The ContactNet, indeed, only has

to query the terrain map until the first safe action is found.

TABLE I

AVERAGE COMPUTATIONAL TIME OF CONTACTNET IN ONE ATTEMPT IN

RANDOMLY GENERATED TERRAIN

Number of terrain patches removed Walk [ms] Trot [ms]

50 1.272 1.507
60 0.938 7.950
70 0.944 0.803
80 1.152 0.785
90 1.0584 0.874
100 0.9167 0.7899

As done for the stepping stones scenario (Sec. IV-B) we

analyzed the difference between changing online the gait

sequence and using a fixed gait during the walk. Table II

reports the result of 300 attempts when n = 110 blocks have

been removed. To achieve a fair comparison, the scenario was

created randomly, but both approaches were run on the exact

same test scenarios. The success rate for ContactNet with

optimized acyclic gait is 93.6% (only 19 attempts failed),

while when using a fixed cyclic gait the robot is able to

accomplish the task only in 85.3% of the cases (44 fails, more

than twice than the previous case). This result confirms that

an online acyclic gait planner has better performance than a

foothold adaptation algorithm with a fixed gait.

TABLE II

COMPARISON OF SUCCESS RATE OF FIXED AND ACYCLIC GATE IN

RANDOMLY GENERATED TERRAIN WITH N=110 PATCHES REMOVED

Type of gait Attempts Successful attempts Success rate

optimized acyclic 300 281 93.6 %
fixed cyclic 300 256 85.3 %

D. Push Recovery

As a final result, we tested the robustness of the Con-

tactNet pushing the robot for 1 s with external forces in

the range of ± 5 N (25% of the weight of Solo12) in

both directions while tracking a forward velocity. In addition

some terrain patches of 10x10 cm are randomly removed.

While being pushed, the Contact Planner adjusts footholds

to counteract the external disturbance and avoid holes. Once

the push is removed, the robot automatically recovers a

stable configuration, for example by first moving a leg which

resulted to being close to the kinematic limits.

V. LIMITATIONS

In this paper we have presented preliminary results in sim-

ulation of an online multi-contact planning framework that

can be easily integrated with existing trajectory optimization

approaches. Our analysis of terrain and sensor noise shows

that the results have the potential to be transferred to the real

robot. Even though the cost function (2) does not consider

torque limits, the joint space impedance controller guarantees

that torques sent to the robot satisfy the torque limits by

saturating them. Furthermore, the current formulation has



been shown only on flat terrain. The ContactNet can be

extended to uneven terrain by discretizing the 3D stepping

region and retraining the network. While the trajectory

generator could handle uneven terrains [2], we did not pursue

this direction because uneven terrain locomotion requires

additional components, such as a collision-free swing tra-

jectory, which was not readily available and goes beyond

the scope of the contact planning problem. Currently, the

ContactNet does not update the foothold during the swing

phase. Throughout our experiments, we found this replanning

frequency to be sufficiently robust to uncertainties in the

environment. However, if the need arises for faster updates,

the trajectory optimizer has been demonstrated to be able to

compute the optimal trajectories with arbitrary initial contact

configurations. The same cost function (2) can be used to

rank footholds during the swing phase as well. Finally,

ContactNet can choose small steps in a row with the same

leg, especially for the trot. An energy-based cost term could

be added to the cost function (2) to prevent ”useless” swings

and facilitate natural motions.

VI. CONCLUSION

In conclusion, we proposed a multi-contact planner, Con-

tactNet, capable of generating acyclic gaits, i.e., without a

predefined leg sequence, in a few milliseconds, even in the

presence of unstructured terrains. Simulations with Solo12

robot are performed with walk and trot motion. Robustness is

demonstrated by inferring measurement noise and applying

external disturbance. We demonstrated that an acyclic gait

planner performs better than a planner that chooses only the

foot locations with a fixed gait. Future work will consider

the transfer of the approach to the real hardware.
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