Hindsight Learning for MDPs with Exogenous Inputs

Sean R. Sinclair ' Felipe Frujeri’> Ching-An Cheng? Luke Marshall> Hugo Barbalho? Jingling Li*
Jennifer Neville? Ishai Menache? Adith Swaminathan >

Abstract

Many resource management problems require
sequential decision-making under uncertainty,
where the only uncertainty affecting the decision
outcomes are exogenous variables outside the con-
trol of the decision-maker. We model these prob-
lems as Exo-MDPs (Markov Decision Processes
with Exogenous Inputs) and design a class of data-
efficient algorithms for them termed Hindsight
Learning (HL). Our HL algorithms achieve data
efficiency by leveraging a key insight: having
samples of the exogenous variables, past deci-
sions can be revisited in hindsight to infer coun-
terfactual consequences that can accelerate policy
improvements. We compare HL against classic
baselines in the multi-secretary and airline rev-
enue management problems. We also scale our
algorithms to a business-critical cloud resource
management problem — allocating Virtual Ma-
chines (VMs) to physical machines, and simulate
their performance with real datasets from a large
public cloud provider. We find that HL algorithms
outperform domain-specific heuristics, as well as
state-of-the-art reinforcement learning methods.

1. Introduction

Many aspects of our physical and digital infrastructure —
like data centers, power grids, and supply chains — can
become more adaptive and efficient through data-driven
decision-making. For instance, in a world-wide cloud ser-
vice, even 1% lower resource fragmentation can reduce
energy use and save approximately $100M per year (Hadary
et al., 2020). This type of improvement could be achieved
by examining historical patterns of compute demands and

'School of Operations Research and Information Engineering,
Cornell University “Microsoft Research, Redmond *Department
of Computer Science, University of Maryland. Correspondence
to: Sean Sinclair <srs429@cornell.edu>, Adith Swaminathan
<adswamin @microsoft.com>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

using machine learning (ML) to allocate future demands
more efficiently.

In this work, we make the key observation that in re-
source management applications the system is often par-
tially known and the only uncertainty is due to exogenous
variables like resource requests — that are (to a first-order
approximation) independent of an agent’s decisions (Powell,
2022). For example, a cloud operator deciding to place a
virtual machine (VM) on a specific server rack does not
directly affect future VM requests, but future demands can
strongly affect the eventual quality of their allocation deci-
sions (Hadary et al., 2020). We define these problems as
Exo-MDPs (Markov Decision Processes with Exogenous
Inputs), which are a subclass of Input-Driven MDPs (Mao
et al., 2019b). In Input-Driven MDPs the minimal state de-
scribing the system dynamics decompose into (i) exogenous
inputs, which evolve independently of the agent’s actions,
and (ii) endogenous factors that are impacted by the agent’s
actions and the exogenous inputs. Exo-MDPs make the
additional assumption that the only unknowns are the distri-
bution of future exogenous inputs (see §3).

ML has been applied in several resource management ap-
plications, which we will show are Exo-MDPs, and found
to outperform domain-specific heuristics (Lykouris & Vas-
silvitskii, 2021; Kumar et al., 2018; Gollapudi & Panigrahi,
2019). The ML approaches often follow the Predict-Then-
Optimize (PTO) paradigm (Elmachtoub & Grigas, 2022),
using ML to forecast the future exogenous inputs (e.g., de-
mands). However, when the future is highly stochastic,
forecasting is challenging. For example, VM requests from
real-world data-centers (Hadary et al., 2020) show long-
term regularity of diurnal and weekly patterns but extreme
short-term fluctuations (see Figure 4).

Reinforcement Learning (RL) is an alternative to PTO. RL
directly optimizes decision quality (Chen et al., 2021; Fang
et al., 2019; Mao et al., 2016) by replaying historical sam-
ples of the exogenous inputs through the known dynamics
of endogenous factors to learn good policies (Madeka et al.,
2022). RL methods applied to Exo-MDPs must, however,
learn by trial-and-error that their actions can never affect
the exogenous inputs. RL is thus sensitive to variance in the
outcomes introduced by the exogenous inputs and requires

Hindsight Learning for Exo-MDPs

- -
- |
wa Dataset ~—
- -—
o Planner ; .
e U
ai-=:gh
> el -
g; Simulator (a) PTO

- - N

e 1o e .

IRy 7 &=
(b) RL (c) HL

Figure 1: Conceptual view of different ML approaches to solving Exo-MDPs ((a) and (b) are detailed in Appendix E).
Arrows in the figure indicate the flow of information from one component to the other. In (a) Predict-Then-Optimize
(PTO) uses the dataset to train an ML forecasting model, uses the model to predict future exogenous inputs, and uses the
forecasted inputs online for planning optimal actions. In (b) RL replays the dataset through the simulator to evaluate an ML
policy’s performance, and tunes policy parameters using the collected rewards as the training signal. In (c) our Hindsight
Learning (HL) approach uses the dataset directly with the planner (top arrow) to identify hindsight-optimal values, and
trains the ML policy using state trajectories from the simulator annotated with the hindsight optimal values.

more data to learn an optimal policy when the variance is
high (Foster et al., 2021) (see §4).

Recent works have proposed to use hindsight control vari-
ates to reduce the variance of RL for input-driven MDPs
(which include Exo-MDPs) (Mao et al., 2019b; Mesnard
et al., 2021). They derive unbiased policy gradients by sub-
tracting from the observed outcomes a function that depends
additionally on hindsight information. However, we find
that for many resource management scenarios, the variance
reduction from hindsight control variates is not enough for
data-efficient learning in practical regimes (see Table 2).

We argue that hindsight information can be more effectively
used to improve learning, as it can largely reduce the vari-
ance of exogenous inputs at the cost of a small amount
of asymptotic bias in many cases. Based on this insight,
we develop a family of algorithms called Hindsight Learn-
ing (HL), which uses hindsight planners during learning
to lessen the variance from exogenous inputs. A hindsight
planner (Chong et al., 2000; Gopalan et al., 2010; Conforti
et al., 2014) is an optimization algorithm that provides com-
putationally tractable approximations to hindsight-optimal
decisions, which is the optimal action specialized to a fixed
sequence of future demands and thus is not affected by
the exogenous variability. Therefore, by using hindsight
planners during learning, HL can more efficiently identify
decisions critical to future performance under high-variance
exogenous inputs. Figure 1 contrasts the HL algorithm
schematic with PTO and RL.

We theoretically characterize when HL succeeds using a
novel quantity called hindsight bias (which arises due to
the mismatch between truly optimal and hindsight-optimal
decisions). Remarkably, we find that hindsight bias is small
for many resource management problems, so HL can learn
with extremely limited data for them. To prove this, we
use recent advances in prophet inequalities (Dutting et al.,
2020; Vera & Banerjee, 2021) with novel adaptations for

the Exo-MDP setting. We empirically test HL in several
domains: Multi-Secretary problems, Airline Revenue Man-
agement (ARM) benchmarks, and Virtual Machine (VM)
allocation. We find that HL is significantly better than both
domain heuristics and RL (with and without hindsight con-
trol variates), illustrating that HL indeed strikes a better
bias-variance trade-off. Notably, our VM allocation exper-
iments use real historical traces from a large public cloud
provider, where HL is the only approach that consistently
beats the currently used heuristics (0.1% — 5% better). Re-
call that even a 1% better allocator can yield massive savings
in practice (Hadary et al., 2020).

2. Related Work

Here we include a brief discussion of salient related work.
Please see Appendix B for more details.

Recent studies have exploited causal structure in MDPs for
better decision-making (Lattimore et al., 2016; Lu et al.,
2022). Their causal graphs however do not capture Exo-
MDPs (e.g., Figure 2). When the exogenous process is only
partially observed, HL may additionally need causal RL
techniques (Zhang et al., 2020b); this is left for future work.

Input-Driven MDPs have been specialized before with ad-
ditional assumptions that either the rewards or the transi-
tions factorize so that the exogenous process can be filtered
out (Dietterich et al., 2018; Efroni et al., 2022). However,
they are not suited for Exo-MDPs because filtering out the
exogenous process yields demand-agnostic policies, which
are highly sub-optimal for resource management problems.

Hindsight optimization has been previously at-
tempted (Chong et al., 2000; Feng et al., 2021), and
it is well known that these values are over-optimistic.
Mercier & Van Hentenryck (2007) show that despite the
over-optimism, the regret for hindsight optimization policies
in several network scheduling and caching problems is

Hindsight Learning for Exo-MDPs

a constant. The Progressive Hedging (PH) algorithm in
Rockafellar & Wets (1991) attempts to eliminate the over-
optimism by iteratively refining the hindsight optimization
solution by adding non-anticipative constraints. PH has
weak guarantees for convergence in non-convex problems
(like our settings) and is intractable for the large problem
sizes that we consider. Information relaxation (Brown
& Smith, 2022) extends PH to non-convex rewards and
arbitrary action spaces and allows for imperfect penalization
of the non-anticipative constraint violations. These schemes
require hand-crafted penalties as well as tractable hindsight
planning with those penalized objectives. Instead, Mercier
& Van Hentenryck (2007) foregoes solving for the optimal
policy of the MDP and instead produces a potentially
sub-optimal non-anticipatory policy. We provide a tighter
regret analysis for their surrogate policy (Lemma 13) and
additionally describe an imitation learning algorithm to
avoid unnecessary computation in large-scale problems.

3. Problem Setting and Definitions
3.1. MDPs with Exogenous Inputs (Exo-MDPs)

We consider a subclass of finite horizon Markov De-
cision Processes (MDPs). An MDP is defined by
(S, A, T, P,R,s1) with horizon T, state space S, action
space A, reward distribution R, state transition distribution
P, and starting state s; (Puterman, 2014). An Exo-MDP
further specializes an MDP by separating the process into
endogenous and endogenous parts: a state s € S factor-
izes into endogenous/system state x € X and exogenous
inputs £ = (&1,...,¢7) € ET (namely, S == X x ZT).
The state transition distribution P also factors into an en-
dogenous part f and exogenous part P= as follows. At
time ¢, the agent selects action a; € A based on the current
state s; = (xy,&<;) where €4 = (&1,...,&—1) is the
observed exogenous inputs thus far, and then &, is sampled
from an unknown distribution P= (- | £<), independently of
the agent’s action a,. With &, the endogenous state evolves
according to xy11 = f(s¢,at, &) and the reward earned is
r(st,at,&) € [0,1]. Note & is only observed when the
agent makes the decision at time ¢ + 1, not at time . We
restrict our attention to policies 7; : X x 271 — A(A)
and let IT denote the policy class of the agent. The endoge-
nous dynamics f and reward function r are assumed to be
known to the agentl; the only unknown in the Exo-MDP
is P=. For notational convenience, we also assume that
f and r are deterministic; all of our insights carry over to
stochastic rewards and transitions. These assumptions of
Exo-MDPs are well-motivated for resource management
problems, and we list the state decomposition along with f
and r for several examples in Appendix C.

Thus, Exo-MDPs are a subclass of Input-Driven MDPs (Mao
et al., 2019b) which more generally have unknown f, r.

3.2. Value Decomposition in Exo-MDPs

Since the only unknown in an Exo-MDP is P=, a policy’s
performance can be written as expectations over P=. This
motivates the use of historical samples & ~ Pz to evaluate
any policy and find optimal policies for the Exo-MDP.

For 7 € 1, the values and action-values are defined as:

V;SW(S) = E&"Ztﬂf[z T(ST70’T7£T) | s¢ = S]a

T>1

Q?(Sva) = Eﬁzuﬂ[z T(ST70‘T7£T) | St = S, Q¢ = a]7

T>t

where the expectation is taken over the randomness in 7
and the exogenous inputs £&. We denote 7* as the op-
timal policy, i.e. the policy that maximizes V;"(s) in
each state s, and denote Q*, V* for Q™ , V™ respectively.
Our goal is to find a policy with near-optimal returns,
argmax, oy {V{" = V{"(s1)}. Or equivalently, mini-
mize REGRET(7) where REGRET(7) = V* — V/". For
convenience we assume that 7* € II. We introduce value

functions for fixed € = {&1,...,&r} as
Q?(‘g?a@ 5225) = Eﬂ'[g T(sTva’T7£T)|St = S,a¢ = a’]» (1)
T2>t
‘/;W(Saézt) = Z?T(G|S)Q?(S7 a, Ezt) (2)

a

Note that the expectation is not over P= because £ is fixed.
The &-specific values are related to policy values as follows.

Lemma 1. Foreveryt € [T],(s,a) € S x A, policy m € 11
we have that

Q7 (s,a) = Ee., [QF (s,a,€54)], 3
Vi (s) = Ee., [Vi" (5, €1)]- 4

In particular Vi = E¢ [V (51, €)).

We relegate complete proofs to Appendix F. Since the tran-
sition dynamics f and reward function r are known and
the unknown P= does not depend on the agent’s actions,
an immediate consequence is that action exploration is not
needed. Given any policy 7 and exogenous trace £ we can
simulate with f and r to calculate its return in Equation 1.

Suppose we collected traces D = {£!, ..., &€V} where each
trace £" = {{}..., &} } is sampled independently from
P=. Finding a near-optimal policy using this historical
dataset is known as the offfine RL problem (Fujimoto et al.,
2019; Liu et al., 2020; Rashidinejad et al., 2021; Cheng
et al., 2022), but this is much simpler in Exo-MDPs. We
do not face support mismatch wherein trajectories from
a data-collection policy may not cover the scenarios that
the learner policy would encounter. Here D (collected by
a behavior policy) can be safely replayed to evaluate any
learner policy. This fact also implies that model selection

Hindsight Learning for Exo-MDPs

and hyper-parameter tuning can be safely done using a held-
out D akin to supervised learning. Our goal finally is to
learn policies that generalize from D to the unknown Pz,
which can be challenging because the exogenous inputs &
introduce variance in a policy’s return estimation.

3.3. Hindsight Planner

Exo-MDPs not only allow easy policy evaluation using a
dataset of traces, but they also allow computing valuable
hindsight information like the hindsight-optimal decisions
for a trace €. This hindsight information can be stable even
when Pz is highly stochastic. We now make a computa-
tional assumption for calculating hindsight-optimal deci-
sions that will enable tractable algorithms for Exo-MDPs.

Assumption 1. Given any trace >, = (&, ...,&r) and
state s = (x4, E<1) we can tractably solve:
T
max >, r(sr,ar, &) ®)

QAty...,aT
st xrp1 = f(8rya0,87), fort=t,...,T
Sr=(xr,&<r), forT=1,...,T.

We denote the optimal objective value to this problem as
HINDSIGHT(, £>¢, §).

The optimization community has developed computation-
ally efficient implementations for the HINDSIGHT (¢, £>¢, 5)
oracle; with tight bounds on the optimal value even when
Equation (5) is intractable. For example, online knapsack for
a fixed input sequence can be solved in pseudo-polynomial
time (Gopalan et al., 2010). In many instances, Equation 5
can be represented as an integer program and solved via
heuristics (Conforti et al., 2014). Recently RLCO (RL for
Combinatorial Optimization) has proved to be an effective
heuristic for hindsight planning (Anthony et al., 2017; Fang
et al., 2021). Note that Assumption 1 or RLCO cannot be
used directly as a non-anticipatory policy for the Exo-MDP,
since the whole sequence £ ~ Pz is not observed upfront
when making decisions. We discuss several examples of
hindsight planners in Appendix D and assess the impact of
approximate planning empirically in §7.3.2.

4. Using Hindsight In Exo-MDPs: An Example

In an Exo-MDP, the only uncertainty is due to unknown Px=.
When Pz introduces substantial variability in outcomes, the
natural question is whether generic MDP algorithms can
learn effectively? When 7" = 1, Exo-MDPs are isomorphic
to a multi-armed bandit and so general bandit algorithms
are optimal for the Exo-MDP. However, we will see in the
next example with 7" > 1 that the answer is in general no.

Consider the sailing example in Figure 2 which is an Exo-
MDP where the decision is to pick between one of two

routes prior to observing wind with hopes of minimiz-
ing the trip duration. By direct calculation, Q* (route2) —
Q*(routel) = —48. Hence, the optimal non-anticipative
policy will always pick route?2.

@ @ Wind (Pr(£)) | routel route2
East (0.49) | 100 1
West (0.51) 50 51

Q7 (-a) 745 26.5

Figure 2: An Exo-MDP for sailing in uncertain winds: £ =
{Wind}, A = {Route},r = {Duration} and X = {). First,
the agent picks a Route. Then Wind conditions are observed
during the trip and the agent receives a cost with respect to
Duration. Values in the table denote average trip duration
r(a) (accounting for random fluctuations in wind).

RL: If a classic RL approach was applied to this problem, it
would estimate the average duration for each route using ob-
served samples, include exploration bonuses to account for
uncertainty, and compare the averages to pick future routes.
This requires many £ samples because wind introduces large
variance in the (J-estimates, and requires sufficient data to
be collected across both the routes.

Hindsight Learning: In hindsight, we can instead use all
observed samples (leveraging known f and r), with no
exploration bonuses, and use paired comparisons to identify
the optimal route. Variability due to wind means the routes’
durations are typically positively correlated and thus a paired
sample between routes will be more statistically efficient.

5. Hindsight Learning

We introduce Hindsight Learning (HL) to incorporate hind-
sight information in a principled manner, so as to reduce the
exogenous variability and thereby speed-up learning. HL
first uses a hindsight planner (Assumption 1) to derive a
surrogate policy 7':

T

7, (s) = arg max Q (s, a), (6)
acA

Qg (57 a’) = EEZt [T(Sa a, gt)+
HINDSIGHT(t + 1, &4, f(8,a,&))], (7)
V,'(s) := B¢, [HINDSIGHT(t, £y, 5)]. (8)

We define Q) (s,a,&>;) and V,"(s,€>¢) as the terms in-
side of the respective expectations. Note that 7' is a non-
anticipatory policy, which considers expectation over future
exogenous &> rather than being defined for a fixed trace.
m' is called “Bayes Selector” in the literature (Vera & Baner-
jee, 2021; Mercier & Van Hentenryck, 2007) and has been
used for applications like bin packing and refugee resettle-

Hindsight Learning for Exo-MDPs

ment (Bansak & Paulson, 2022; Ahani et al., 2021; Banerjee
& Freund, 2020). Intuitively 7' uses the returns accumu-
lated by hindsight-optimal actions to score and rank good de-
cisions, instead of mimicking the hindsight-optimal actions
directly. However, it is always the case that V,'(s) > V*(s)
and Q] (s,a) > Q*(s,a) (Chong et al., 2000), and so 7'
can be a sub-optimal surrogate for 7*. In §6 we will bound
its gap to 7* with a novel quantity called hindsight bias and
discuss the implications for learning.

5.1. Imitating the “Bayes Selector”

Executing 7' requires frequent calls to the hindsight plan-
ner online to evaluate QI (St, a) on every observed state.
Therefore running this fabular policy (i.e., considering ev-
ery state separately) can be prohibitively costly when policy
execution must also satisfy latency constraints (e.g., in VM
allocation). Additionally, in resource allocation domains it
is infeasible to enumerate all possible states. We describe a
family of algorithms in Algorithm 1 that offloads the hind-
sight planner invocations to an offline training phase and
distills 7" into a computationally feasible policy of neural
networks that can extrapolate to unseen states.

Algorithm 1 Hindsight Learning
1: Input: An empty buffer B, simulator for f and r, initial
policy 7, dataset D, number of epochs K.
2: fork=1,2,...,K do
3: Sample a trace £ from D
4: Sample trajectory {s; ... sp} from 7 using the f, r, &
5. Label sampled states from the trajectory with
{Qi (s, 0,65) ra € At € [T])
Aggregate the labeled data into the buffer 5
7. Optimize 7 on B either with Hindsight MAC (Equa-
tion 9) or Hindsight Q-Distillation (Equation 10)
8: end for

=)

We use online imitation learning (IL) with 7" as the expert
policy, specifically, the AggreVaTE algorithm (Ross & Bag-
nell, 2014) with expert Q' (s, a) values from the hindsight
planner. By interleaving the trajectory sampling and pol-
icy updates we avoid querying Q' (s, a) (and hence solving
hindsight planning problems) in uninformative states. We
note that all of this interactive querying of the expert occurs
during offline training, and hence the planning is not needed
online during test time. Since we allow £ to be arbitrarily
correlated across ¢, in Algorithm 1 we sample an entire trace
&' from D. However, if £ is iid across time-steps ¢ we can
enhance step 3 by resampling a single &; at each .

Many popular RL algorithms (Konda & Tsitsiklis, 2000;
Van Hasselt et al., 2016; Schulman et al., 2017) compute
(Q-values or advantages via Monte Carlo estimation. HL can
be easily incorporated in them by replacing the Monte Carlo
estimates (e.g., Q™ (s, a)) with Step 5 of Algorithm 1 (i.e.,

Q7 (s,a)). We outline two such modifications below, one
using a policy network and the other using a critic network.
Since we can simulate Q; (s, a, £€>;) for any action, we use
the common random numbers insight (Ng & Jordan, 2000)
for variance reduction and sum across all actions in both
instantiations. This additional sum over actions trick is not
critical, and is used in our experiments only because the
action spaces are relatively small.

Hindsight MAC: We modify Mean Actor Critic (Allen
et al., 2017) by incorporating Q" into differentiable imita-
tion learning (Sun et al., 2017). For the policy represented
with a neural network 7y, consider the loss function:

T
U(mo) = Be[> Esmrey > mola] Si)Q: (St,a,€>0)]. (9)
t=1

acA

Hindsight Q-Distillation: We can represent Q' values
directly using a neural network critic Q?. The policy is
defined implicitly w.r.t. Q7 as mp = argmax,c 4 Q% (s, a).
The loss function £(7g) to fit Q7 is:

(o) =Ee[Y Esmrer [(QF(St,a) — Qf (Si,a,€>1))°]l.

acA
(10
We optimize a sample approximation of Equation 9 or 10
using the dataset D. The current policy defines the state
sampling distribution, while Q' gives the long-term reward
signal for each action.

6. Theoretical Guarantees

Compared with RL, HL uses the known dynamics f and
rewards r of an Exo-MDP, the hindsight planner of Assump-
tion 1, and the dataset D to trade-off a small asymptotic bias
(which we define in Equation (11)) for a large reduction in
the variance from exogenous inputs. To prove this, we first
characterize the regret of 7' in terms of a novel quantity,
called the hindsight bias, and show that it is negligible in
many resource management problems. Next we show that
HL is sample efficient, and can imitate the 7' policy with
faster optimization than RL. Finally, even if hindsight bias
is large in an application, there are techniques to reduce it,
including combinations of HL and RL in the future.

Definition 1. The hindsight bias of T versus ©' at time t
in state s is defined as

Al(s) = Q[(s, 7] (s)) — Qr (s, 7/ (s))+
Qi (s, 77 (5)) — Qf (s, 77 (5))- (11)

Consider the over-estimation error of the hindsight planner
Q4 (s,a) == Q] (s,a) — Qr(s,a) (referred to as local loss in
Mercier & Van Hentenryck (2007)). Equation (11) subtracts
the over-estimation of 7*(s) from the over-estimation of

Hindsight Learning for Exo-MDPs

7' (s) and so the hindsight bias can be small even if the over-
estimation is large; as an extreme example consider the case
when the argmax of Q' and Q* coincide (see Lemma 12).
We show that A/ (s) bounds the regret of 7.

Theorem 2. REGRET(n") < Zthl Estwprgr[Ag(St)],

.
where Pr] denotes the state distribution of ©' at step t
induced by the exogenous process. In particular, if Al (s) <
A for some constant A then we have: REGRET(m') <

A 23:1 Es,NPrg’ [Pr(ﬂ'tf(st) S W*(St))]-

Regret bounds of this form appear in the prophet inequality
literature (Dutting et al., 2020; Vera et al., 2021) however
against a much stronger benchmark of the hindsight planner,
where the regret is defined as V' (s1) — V{"(s1). Mercier
& Van Hentenryck (2007) (Theorem 1) show that regret
is bounded by the worst-case hindsight bias on the states
visited by any decision policy. However, there are examples
(see Lemma 13) where their bound is large and one could
incorrectly conclude that hindsight optimization should not
be applied. In contrast, Theorem 2 is tighter, requiring that
the hindsight bias be small only on states visited by 7.

As corollaries of Theorem 2, the regret of ' is constant for
many resource management Exo-MDPs, such as stochastic
online bin packing with i.i.d. arrivals. See Appendix G.1
(Lemma 18) for a formal statement of the result, and a
discussion of related results from the literature.

Finally, we show that the performance of the best policy
produced by Algorithm 1 will converge to that of 7' under
standard assumptions for online imitation learning (Sun
et al., 2017; Ross et al., 2011; Yan et al., 2021). We use
the overline notation to denote quantities for an empirical
MDP whose exogenous distribution Pz is replaced with the
empirical one Pz ~ D.

Theorem 3. Let 7' denote the hindsight planning surrogate
policy for the empirical Exo-MDP w.r.t. D. Assume 7' € TI
and Algorithm 1 achieves no-regret in the optimization prob-
lem of Equation 9. Let 7 be the best policy from Algorithm 1.
Then, for any § € (0, 1), with probability 1 — ¢,

REGRET(7) < 2T %Z\‘IH'/(S)JF

T
DByt [BIS)] +0(1),
t=1

_ =t
for AI the sample average of (11), and PrZr is the state
probability of @t in the empirical MDP.

In Appendix E we also derive sample complexity results
for PTO and RL when applied to Exo-MDPs. In PTO (see
Theorem 6) the guarantees scale quadratically in 7" and de-
pend on the complexity of P= (which in the worst case can

scale by |Z|7"if the &; are strongly correlated across t). In
contrast, Theorem 3 scales linearly in 7" and is only affected
by the randomness over the induced Q' values and not di-
rectly by the complexity of P=. Unlike guarantees for RL
(see Theorem 7), Theorem 3 is not asymptotically consis-
tent due to the hindsight bias. However, RL methods have
asymptotic consistency only if they converge to the optimal
policy in the empirical MDP. This convergence is an ideal-
ized computation assumption that hides optimization issues
when studying statistical guarantees and is incomparable to
Assumption 1 for the hindsight planner (for which we show
several examples in Appendix D).

Although hindsight bias is small for many practical Exo-
MDPs, this is not universally true as we now show. Since
hindsight bias bounds the regret of 7' (Theorem 2), Exo-
MDPs with large regret must also have large hindsight bias.

Theorem 4. There exists a set of Exo-MDPs such that
REGRET(7 ") > Q(T).

Hence, for an arbitrary Exo-MDP the hindsight bias needs
to be properly controlled to successfully leverage hindsight
planning (Chong et al., 2000). The information relaxation
literature (Brown & Smith, 2014; El Shar & Jiang, 2020)
subtracts a carefully chosen baseline b(s, a, £) in special
cases of Equation (7); viewed through our results, this pro-
cedure essentially reduces the hindsight bias of the eventual
7', Building on this technique, we anticipate future works
to design HL variants that are more robust to hindsight bias.

7. Experiments

We evaluate Hindsight Learning on three resource man-
agement domains with different characteristics (our code
is available at https://github.com/seanrsinclair/hindsight-
learning). First, Multi-Secretary, where the exogenous
inputs are the arriving candidates’ qualities and the hind-
sight bias is negligible (see Theorem 4.2 of Banerjee et al.
(2020)). Next we consider Airline Revenue Management
where the exogenous inputs are the current request’s (re-
source demands, revenue) and the hindsight bias is small
(see Lemma 18). Lastly, we consider VM Allocation where
the exogenous inputs are VM requests and the hindsight
bias is unknown. In Appendices C.2 and D we show ex-
plicit constructions of the Exo-MDP and hindsight planner
for each domain. For the first two domains, we use traces
drawn from benchmark distributions and evaluate 7' using
Monte-Carlo rollouts. For the VM allocation domain we
use real-world historical traces extracted from a large public
cloud provider.

7.1. Multi-Secretary Problems

Multi-secretary is the generalization of the classic secretary
problem (Buchbinder et al., 2009), where T' candidates ar-

https://github.com/seanrsinclair/hindsight-learning
https://github.com/seanrsinclair/hindsight-learning

Hindsight Learning for Exo-MDPs

Table 1: Performance of heuristics, 7', RL and HL algorithms on multi-secretary and ARM problems benchmarked against
the optimal policy. Values are V'™, the performance of the compared policy evaluated using the Bellman equations, and error
bars computed via a standard normal approximation averaging over the randomly sampled dataset. Since these are tabular
problems, HINDSIGHT MAC and HINDSIGHT Q-DISTILLATION are identical, so we report the performance of both as
HINDSIGHT MAC. Relative performance compared against V™ is shown in parenthesis.

Multi-Secretary T=5 T=10 T =100

T 2.22 5.09 49.9

mt 2.21 (—0.5%) 4.95 (—2.7%) 49.85 (—0.2%)
Greedy 1.67 (—24.8%) 3.81 (—25.1%) 38.76 (—22.4%)
Tabular Q-learning ~ 1.67 +0.0032 (—24.8%) 3.8140.0037 (—25.1%) 48.10+0.027 (=3.7%)
Hindsight MAC 2.17+0.0040 (—2.4%) 4.98+0.0035 (—2.1%) 48.65+0.022 (—2.6%)
ARM T=5 T =10 T =100

* 1.89 3.72 39.03

mt 1.88 (—0.3%) 3.61 (—2.9%) 37.27 (—4.5%)
Greedy 1.39 (—26.5%) 2.50 (—32.9%) 31.54 (—19.2%)
Tabular Q-learning ~ 1.28 £0.015 (—32.2%) 2.75+£0.064 (—26.0%) 32.59+0.25 (—16.5%)
Hindsight MAC 1.814+0.032 (—4.0%) 3.304+0.095 (—11.4%) 33.844+0.37 (-13.3%)

rive sequentially but only B can be selected. An arriving
candidate at time ¢ has ability r; € (0, 1] drawn i.i.d. from
a finite set of K levels of expertise. At each round, if the
decision-maker has remaining budget (i.e., has chosen less
than B candidates thus far), they can accept a candidate and
collect the reward r;, or reject the candidate. The goal is to
maximize the expected cumulative reward.

When T is large relative to N, we can expect historical
traces to provide sufficient information about P=. Re-
cent results in Banerjee et al. (2020) use the “Bayes Se-
lector” with a single exogenous trace to derive a policy
with constant regret for a sufficiently large 7. This sug-
gests that the hindsight bias is negligible in this regime.
Our experiment setup is identical to Banerjee et al. (2020)
and is included in the supplementary material. We use
T = {5,10,100}, B = 2T,K = 4and N = 1. The
Greedy heuristic accepts the first B candidates regardless
of their quality. ML methods use a single trace sampled
from the non-stationary candidate arrival process, and use
a policy that maps a 3-dim state (the rounds and budget
remaining, and the current candidate ability) to an accept
probability. For the hindsight planner, we use Equation 2
from Banerjee et al. (2020) which implements a linear pro-
gram with 2K variables. The Bayes Selector 7' solves the
LP with the historical trace in every possible state, and is
only feasible for problems with small LPs and state spaces.
We evaluate each policy using dynamic programming with
the true arrivals distribution.

In Table 1 (Top) we see that the HL algorithm (Hindsight
MAC) is competitive with the optimal policy (which de-
pends on the unknown Pz distribution) using just a single

exogenous trace. RL (implemented via Tabular Q-learning)
however is very sample inefficient; for small 7' < 10 it
performs no better than the sub-optimal Greedy heuristic.

7.2. Airline Revenue Management

Airline Revenue Management (Littlewood, 1972) is a spe-
cial case of the multi-dimensional Online Bin Packing
(OBP) problem (OBP exhibits vanishing hindsight bias via
Lemma 18). The agent has capacity By for K different
resources. At each round, the decision-maker observes a
request A; € Rf (the consumed capacity in each resource
dimension), alongside a revenue f;. The algorithm can ei-
ther accept the request (obtaining revenue f; and updating
remaining capacity according to A;), or reject it (note that
partial acceptance is not allowed). The goal of the decision-
maker is to maximize the expected revenue.

We use ORSuite (Archer et al., 2022) as an ARM simu-
lator with fixed capacity, i.i.d. request types and job distri-
bution, using a setting from Vera & Banerjee (2021) which
shows large regret for existing heuristics. We vary T' from
5 to 100, and compute 7* through dynamic programming.
Both RL (Tabular Q-learning) and HL (Hindsight MAC)
were trained on the same dataset of NV = 100 traces.

In Table 1 (Bottom) we see that HL outperforms RL but
is not as good as the Bayes Selector 7'. Since the state
space is much larger in ARM, HL has not sampled all the
relevant states for imitating 7" and so its performance suf-
fers. Moreover, as 1" increases the performance of RL again
approaches HL, highlighting that HL strikes a better bias-
variance trade-off to perform better with limited data.

Hindsight Learning for Exo-MDPs

7.3. VM Allocation

Arguably, our experiments thus far have been advantageous
to HL because the hindsight bias is known to be small. We
next examine HL on a large-scale allocation problem: al-
locating virtual machines (VMs) to physical servers. In
contrast to previous experiments, in this problem, the bias
can be arbitrary, and enumerating all states or solving the
Bellman equations is infeasible. From an algorithmic per-
spective, the allocation problem is a multi-dimensional vari-
ant of OBP with stochastic (not i.i.d.) arrivals and departures
(hence, the bound on hindsight bias does not apply). Due
to problem scale we cannot compute 7* exactly with dy-
namic programming, so we instead benchmark a policy’s
performance with respect to a BestFit heuristic.

In the VM allocation problem we have K physical machines
(PM), each with a fixed capacity limit for both CPU and
memory. VM requests arrive over time, each with an associ-
ated CPU, memory requirement, and a lifetime (or duration);
the lifetime is in principle unknown to the provider, but it
can be predicted (Cortez et al., 2017). Accordingly, we
study below two variants where lifetime information is ei-
ther available (§7.3.1) or not (§7.3.2). The decision-maker
must assign a feasible PM for the VM or reject the request
(incurring a large penalty). A PM is considered active when
one or more VMs are assigned to it. The objective is to
minimize the total time that the machines remain active,
normalized by the time horizon T’ (i.e., the average number
of active PMs per unit time). This objective is critical for
cloud efficiency; see Buchbinder et al. (2021) for a longer
discussion.

7.3.1. STYLIZED ENVIRONMENT

To gain insights into the problem domain, we consider first a
stylized setting where the VMs arrive at discrete time steps
(in practice, time is continuous, and VMs may arrive at any
point in time); furthermore, the VM lifetime is perfectly
predicted upon arrival. To carry out the experiments, we
use the MARO simulator (Jiang et al., 2020) with K = 80
PMs and T = 288 (reflecting one day period discretized
into time steps, each of which represents 5 minutes of actual
time). MARO replays the VM requests in the Azure Public
Dataset (Cortez et al., 2017)” as follows: all VM requests
arriving within a time step (i.e., 5 minutes of actual time)
are buffered and instead arrive simultaneously at the next
discrete time step. The first half of the resulting trace is used
for training and the remaining trace for testing. To evaluate
any policy, we sampled 50 different one-day traces from the
held-out portion and report the average value of the objective
function. For the hindsight planner, we implemented the
integer program of Appendix D.5 in Gurobi and solved its

’This dataset contains a uniform sample of VM requests re-
ceived in a real data center over a one month period in 2019.

Table 2: Performance of heuristics, RL, and HL algorithms
on VM allocation benchmarked against the Best Fit baseline.
* indicate significant improvement and o indicate significant
decrease, over BestFit by Welch’s t-test.

Algorithm PMs Saved
Performance Upper Bound (Oracle) 4.96*
Best Fit 0.0
Bin Packing —1.05°
DQN —0.64
MAC —0.51°
PPO —0.50
PG with Hindsight Baseline (Mao et al., 2019b) —0.057
HINDSIGHT MAC 4.33*
HINDSIGHT Q-DISTILLATION 3.71*

linear relaxation. We used a modified objective function
(inverse packing density) which is linear in the decision
variables for computational feasibility (see discussion in
Appendix G).

We compare four allocation approaches. (1) Heuristics:
We consider several heuristics that have been widely used
for different bin packing problems (round robin, first fit,
load balance, etc.). We report here the results for the best
performing heuristic BestFit, which has been widely ap-
plied in practice (Panigrahy et al., 2011), in particular for
VM allocation (Hadary et al., 2020); in a nutshell BestFit
chooses the machine which leaves less amount of unused
resources (see (Panigrahy et al., 2011) for details). (2) RL:
We benchmark several popular RL algorithms including
Double-DQN (Van Hasselt et al., 2016), MAC (Allen et al.,
2017) and PPO (Schulman et al., 2017). (3) Hindsight
approaches: We test Hindsight MAC (Equation 9) and
Hindsight Q-Distillation (Equation 10). In addition, we test
Mao et al. (2019b) which uses hindsight-aware control vari-
ates to reduce the variance of policy gradient (PG) methods.
(4) Oracle: We report the HINDSIGHT(1, €, s1) (objective
of the relaxed IP) evaluated on the test traces, and use the
experiment outcome as a performance upper bound.

All the ML methods use a 4-layer neural net to map fea-
tures describing a PM and the VM request to a score. In
Appendix G, we detail the network design, state features
and the hyper-parameter ranges we used. Table 2 reports
the PMs Saved which is the regret for the objective function
relative to BestFit, averaged across the evaluation traces.
We created realistic starting state distributions by executing
the BestFit heuristic for a random duration (greater than one
day). Error bars are computed by (¢) training each algorithm
over 20 random seeds (neural network parameters and the
offline dataset) and (i¢) evaluating each algorithm on 50

Hindsight Learning for Exo-MDPs

one-day traces sampled from the hold-out set. We then com-
pared its performance to Best Fit on each evaluation trace
with a paired ¢-test of value p = 0.05. We observe that HL
outperforms all the heuristics and RL methods, requiring
4 fewer PMs on average (or a 5% improvement in relative
terms, since /X = 80).

7.3.2. REAL-WORLD RESOURCE ALLOCATION

We now consider a more realistic setting where VM arrivals
are in continuous time and the allocation agent has no in-
formation about VM lifetimes. In real-world settings, the
scale of clusters can be much larger than the one considered
in §7.3.1, see Hadary et al. (2020); scaling ML algorithms
to larger inventory sizes is an ongoing research direction.
Furthermore, each VM arrival or departure is modeled as a
step in the Exo-MDP, resulting in much larger time horizon
T (order of 100k). Our total trace period was 88 days, and
we used the exact methodology as in §7.3.1 to obtain the
training and test datasets. Due to the large scale, even the
linear relaxation of the integer program was not tractable.
Consequently, we carefully designed a hindsight heuristic
(Algorithm 3) to derive HINDSIGHT(¢, £, s). The heuristic
prioritizes VMs according to both their size and lifetime
(see Appendix G.6.3).

Table 3: Average number of PMs saved by RL and HL poli-
cies across b clusters, calculated over 44 days and bench-
marked against the production BestFit heuristic. * indi-
cate significant improvement and o indicate a significant
decrease, over BestFit by Welch’s ¢-test.

Cluster A B C D E
RL -0.14 -0.35 —0.27° 1.34* —0.37
HL 3.20* 1.35 1.13* 2.27* 0.02

We adapt HINDSIGHT MAC (HL) and compare it with
MAC (Allen et al., 2017) (RL), where both used the same
network architecture, which embeds VM-specific and PM-
specific features using a 6-layer GNN. The resulting archi-
tecture is rich enough to represent the BestFit heuristic, but
can also express more flexible policies. The Bayes Selector
m' is infeasible to run within the latency requirements for
VM allocation, and so is not compared.

Table 3 summarizes the results over five different clusters.
Unlike §7.3.1 where we sampled many 1-day periods from
the test trace, the demands on the real clusters were non-
stationary throughout the test period. Hence we report re-
sults on the entire 44-day test trace. We trained each al-
gorithm over 3 random seeds and evaluated 5 rollouts to
capture the variation in the cluster state at the start of the
evaluation trace. Unlike the other experiments, we cannot
account for the randomness in exogenous samples because

we only have one evaluation trace for each cluster. Error
metrics are computed with a paired ¢-test of value p = 0.05.

We observe that RL exhibits unreliable performance: in
fact, it is sometimes worse than BestFit, intuitively this can
happen because it overfits to the request patterns seen during
training. In contrast, HL always improved over BestFit,
with relative improvements of 0.1% — 1.6% over RL and
0.1%—0.7% over BestFit (note cluster sizes are much larger
here than §7.3.1). As noted earlier, any percent-point (or
even fractions of a percent) improvement implies millions of
dollars in savings. The relative gains obtained here are more
modest than in the stylized setting due to a combination
of reasons. First, intuitively, every packing “mistake” is
more costly in a smaller cluster, meaning that algorithms
have more room to shine in smaller-scale problems. Second,
using a heuristic for hindsight learning is inherently sub-
optimal. Lastly, we have not used any information about
VM lifetime; an interesting direction for future work is
incorporating lifetime predictions to HL.

8. Conclusion

In this paper, we introduced Hindsight Learning (HL) as a
family of algorithms that solve a subclass of MDPs with
exogenous inputs, termed Exo-MDPs. Exo-MDPs capture a
variety of important resource management problems, such as
VM allocation. We show that the HL algorithms outperform
both heuristics and RL methods. One direction for future
work is to blend RL with HL using reward shaping (Cheng
etal., 2021) for solving Exo-MDPs with large hindsight bias.
Intuitively, combining pessimistic value estimates from RL
with optimistic estimates from HL can provide finer-grained
control for trading-off hindsight bias and variance from
exogenous inputs. Another direction is designing hindsight
learning algorithms in “nearly Exo-MDP” environments
where the action can have a limited impact on the exogenous
variables, such as using recent results from Liu et al. (2021).

Acknowledgements

‘We thank Janardhan Kulkarni, Beibin Li, Connor Lawless,
Siddhartha Banerjee, and Christina Yu for inspiring discus-
sions. We thank Dhivya Eswaran, Tara Safavi, and Tobias
Schnabel for reviewing early drafts. Part of this work was
done while Sean Sinclair and Jingling Li were research
interns at Microsoft Research, and while Sean Sinclair
was a visitor at Simons Institute for the semester on Data-
Driven Decision Processes program. We gratefully acknowl-
edge funding from the National Science Foundation un-
der grants ECCS-1847393, DMS-1839346, CCF-1948256,
CNS-195599, and CNS-1955997, the Air Force Office of
Scientific Research under grant FA9550-23-1-0068, and
the Army Research Laboratory under grants W911NF-19-1-
0217 and W911NF-17-1-0094.

Hindsight Learning for Exo-MDPs

References

Abbeel, P. and Ng, A. Y. Exploration and apprenticeship
learning in reinforcement learning. In ICML, pp. 1-8,
2005.

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-
forcement Learning: Theory and Algorithms. Technical
report, University of Washington, 2019. Available from
https://rltheorybook.github.io.

Agrawal, S. and Jia, R. Learning in structured mdps with
convex cost functions: Improved regret bounds for in-
ventory management. Operations Research, 70(3):1646—
1664, 2022.

Ahani, N., Golz, P, Procaccia, A. D., Teytelboym, A., and
Trapp, A. C. Dynamic placement in refugee resettle-
ment. In Proceedings of the 22nd ACM Conference on
Economics and Computation, pp. 5-5, 2021.

Allen, C., Asadi, K., Roderick, M., Mohamed, A.-r.,
Konidaris, G., and Littman, M. Mean actor critic. arXiv
preprint arXiv:1709.00503, 2017.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and slow
with deep learning and tree search. Advances in neural
information processing systems, 30, 2017.

Archer, C., Banerjee, S., Cortez, M., Rucker, C., Sinclair,
S. R., Solberg, M., Xie, Q., and Lee Yu, C. Orsuite:
Benchmarking suite for sequential operations models.
ACM SIGMETRICS Performance Evaluation Review, 49
(2), 2022.

Balseiro, S. R. and Brown, D. B. Approximations to stochas-
tic dynamic programs via information relaxation duality.
Operations Research, 67(2), 2019.

Banerjee, S. and Freund, D. Uniform loss algorithms for
online stochastic decision-making with applications to
bin packing. In SIGMETRICS, 2020.

Banerjee, S., Gurvich, 1., and Vera, A. Constant regret in
online allocation: On the sufficiency of a single historical
trace, 2020.

Bansak, K. and Paulson, E. Outcome-driven dynamic
refugee assignment with allocation balancing. In EC,
2022.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. In ICLR, 2017.

Bertsimas, D. and Tsitsiklis, J. N. Introduction to linear
optimization, volume 6. Athena, 1997.

10

Borgs, C., Chayes, J. T., Lovész, L., S6s, V. T., and Veszter-
gombi, K. Convergent sequences of dense graphs I: Sub-
graph frequencies, metric properties and testing. Ad-
vances in Mathematics, 219(6), 2008.

Brown, D. B. and Haugh, M. B. Information relaxation
bounds for infinite horizon markov decision processes.
Operations Research, 65(5), 2017.

Brown, D. B. and Smith, J. E. Information relaxations, dual-
ity, and convex stochastic dynamic programs. Operations
Research, 62(6), 2014.

Brown, D. B. and Smith, J. E. Information relaxations and
duality in stochastic dynamic programs:: A review and
tutorial. Foundations and Trends in Optimization, 5(3),
2022.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foun-
dations and Trends in Machine Learning, 5(1), 2012.

Buchbinder, N., Jain, K., and Singh, M. Secretary problems
and incentives via linear programming. ACM SIGecom
Exchanges, 8(2), 2009.

Buchbinder, N., Fairstein, Y., Mellou, K., Menache, 1., and
Naor, J. Online virtual machine allocation with lifetime
and load predictions. ACM SIGMETRICS Performance
Evaluation Review, 49(1), 2021.

Chen, D., Chen, K., Li, Z., Chu, T,, Yao, R., Qiu, F,, and Lin,
K. PowerNet: Multi-agent deep reinforcement learning
for scalable powergrid control. IEEE Transactions on
Power Systems, 37(2), 2021.

Cheng, C.-A., Kolobov, A., and Swaminathan, A. Heuristic-
guided reinforcement learning. In NeurIPS, 2021.

Cheng, C.-A., Xie, T., Jiang, N., and Agarwal, A. Adversar-
ially trained actor critic for offline reinforcement learning.
In International Conference on Machine Learning, pp.
3852-3878. PMLR, 2022.

Chitnis, R. and Lozano-Pérez, T. Learning compact models
for planning with exogenous processes. In Conference
on Robot Learning, pp. 813-822. PMLR, 2020.

Chong, E. K., Givan, R. L., and Chang, H. S. A frame-
work for simulation-based network control via hindsight
optimization. In CDC, volume 2, 2000.

Conforti, M., Cornuéjols, G., and Zambelli, G. Integer
programming, volume 271. Springer, 2014.

Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fon-
toura, M., and Bianchini, R. Resource central: Under-
standing and predicting workloads for improved resource
management in large cloud platforms. In SOSP, 2017.

https://rltheorybook.github.io

Hindsight Learning for Exo-MDPs

Dai, J. G. and Gluzman, M. Queueing network controls via
deep reinforcement learning. Stochastic Systems, 2021.

Dietterich, T., Trimponias, G., and Chen, Z. Discovering
and Removing Exogenous State Variables and Rewards
for Reinforcement Learning. In ICML, 2018.

Domingues, O. D., Ménard, P., Kaufmann, E., and Valko, M.
Episodic reinforcement learning in finite mdps: Minimax
lower bounds revisited. In ALT, 2021.

Dutting, P., Feldman, M., Kesselheim, T., and Lucier, B.
Prophet inequalities made easy: Stochastic optimization
by pricing nonstochastic inputs. SIAM Journal on Com-
puting, 49(3), 2020.

Efroni, Y., Foster, D. J., Misra, D., Krishnamurthy, A., and
Langford, J. Sample-efficient reinforcement learning in
the presence of exogenous information. In Conference
on Learning Theory, pp. 5062-5127. PMLR, 2022.

El Shar, I. and Jiang, D. Lookahead-bounded g-learning. In
ICML, 2020.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. Management Science, 68(1), 2022.

Fang, J., Ellis, M., Li, B., Liu, S., Hosseinkashi, Y., Revow,
M., Sadovnikov, A., Liu, Z., Cheng, P, Ashok, S.,
Zhao, D., Cutler, R., Lu, Y., and Gehrke, J. Reinforce-
ment learning for bandwidth estimation and congestion

control in real-time communications. arXiv preprint
arXiv:1912.02222, 2019.

Fang, Y., Ren, K., Liu, W., Zhou, D., Zhang, W., Bian, J., Yu,
Y., and Liu, T.-Y. Universal trading for order execution
with oracle policy distillation. In AAAI, 2021.

Feinberg, E. A. Optimality conditions for inventory control.
In Optimization Challenges in Complex, Networked and
Risky Systems. INFORMS, 2016.

Feng, J., Gluzman, M., and Dai, J. G. Scalable deep rein-
forcement learning for ride-hailing. In American Control
Conference, 2021.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A.
The statistical complexity of interactive decision mak-
ing. arXiv preprint arXiv:2112.13487, 2021.

Freund, D. and Banerjee, S. Good prophets know when the
end is near. SSRN Scholarly Paper ID 3479189, Social
Science Research Network, 2019.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052-2062.
PMLR, 2019.

11

Ghaderi, J., Zhong, Y., and Srikant, R. Asymptotic optimal-
ity of bestfit for stochastic bin packing. ACM SIGMET-
RICS Performance Evaluation Review, 42(2), 2014.

Goldberg, D. A., Reiman, M. L., and Wang, Q. A Survey of
Recent Progress in the Asymptotic Analysis of Inventory
Systems. Production and Operations Management, 30
(6), 2021.

Gollapudi, S. and Panigrahi, D. Online algorithms for rent-
or-buy with expert advice. In ICML, 2019.

Gopalan, P., Klivans, A., and Meka, R. Polynomial-time
approximation schemes for knapsack and related count-
ing problems using branching programs. arXiv preprint
arXiv:1008.3187, 2010.

Gupta, V. and Radovanovic, A. Online stochastic bin pack-
ing. arXiv preprint arXiv:1211.2687, 2012.

Hadary, O., Marshall, L., Menache, 1., Pan, A., Greeff, E. E.,
Dion, D., Dorminey, S., Joshi, S., Chen, Y., Russinovich,
M., and Moscibroda, T. Protean:VM allocation service at
scale. In OSDI, 2020.

Harsha, P., Jagmohan, A., Kalagnanam, J., Quanz, B., and
Singhvi, D. Math programming based reinforcement
learning for multi-echelon inventory management. In
NeurIPS Deep RL Workshop, 2021.

Hart, P. E., Stork, D. G., and Duda, R. O. Pattern classifica-
tion. John Wiley & Sons, 2000.

Hu, H., Zhang, X., Yan, X., Wang, L., and Xu, Y. Solving
a new 3d bin packing problem with deep reinforcement
learning method. arXiv preprint arXiv:1708.05930, 2017.

Hubbs, C. D., Perez, H. D., Sarwar, O., Sahinidis, N. V.,
Grossmann, I. E., and Wassick, J. M. Or-gym: A rein-
forcement learning library for operations research prob-
lems. arXiv preprint arXiv:2008.06319, 2020.

Jiang, A., Zhang, J., Yu, P., Huang, L., Qiu, Y., Wang, J.,
Shi, W., Li, K., Wang, Z., Zhang, C., Sun, T., Chen, M.,
Yu, K., Wei, X., Li, M., Shang, N., Meng, Q., Li, S.,
Bian, J., Cheng, B., and Liu, T.-Y. Maro: A multi-agent
resource optimization platform, 2020. URL https:
//github.com/microsoft/maro.

Kallus, N. and Zhou, A. Stateful offline contextual policy
evaluation and learning. In AISTATS, 2022.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms.
In NeurIPS, 2000.

Kumar, R., Purohit, M., and Svitkina, Z. Improving online
algorithms via ml predictions. In NeurIPS, 2018.

https://github.com/microsoft/maro
https://github.com/microsoft/maro

Hindsight Learning for Exo-MDPs

Langford, J. and Zhang, T. The epoch-greedy algorithm for
contextual multi-armed bandits. In NeurIPS, 2007.

Lattimore, F., Lattimore, T., and Reid, M. D. Causal ban-
dits: learning good interventions via causal inference. In
NeurlPS, 2016.

Li, Y., Tang, X., and Cai, W. Dynamic bin packing for
on-demand cloud resource allocation. IEEE Transactions
on Parallel and Distributed Systems, 27(1), 2015.

Littlewood, K. Forecasting and control of passenger book-
ings. In Airline Group International Federation of Oper-
ational Research Societies, 1972.

Liu, V., Wright, J., and White, M. Exploiting action impact
regularity and partially known models for offline rein-
forcement learning. arXiv preprint arXiv:2111.08066,
2021.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Provably good batch off-policy reinforcement learning

without great exploration. Advances in neural information
processing systems, 33:1264—1274, 2020.

Lovész, L. and Szegedy, B. Limits of dense graph sequences.
Journal of Combinatorial Theory, Series B, 96(6), 2006.

Lu, Y., Meisami, A., and Tewari, A. Efficient reinforcement
learning with prior causal knowledge. In Conference on
Causal Learning and Reasoning, 2022.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. Journal of the ACM (JACM), 68
(4):1-25, 2021.

Madeka, D., Torkkola, K., Eisenach, C., Foster, D., and
Luo, A. Deep inventory management. arXiv preprint
arXiv:2210.03137,2022.

Mao, H., Alizadeh, M., Menache, 1., and Kandula, S. Re-
source management with deep reinforcement learning. In
HotNets, 2016.

Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng,
Z., and Alizadeh, M. Learning scheduling algorithms for
data processing clusters. In ACM Special Interest Group
on Data Communication, 2019a.

Mao, H., Venkatakrishnan, S. B., Schwarzkopf, M., and Al-
izadeh, M. Variance reduction for reinforcement learning
in input-driven environments. In ICLR, 2019b.

Mercier, L. and Van Hentenryck, P. Performance analysis
of online anticipatory algorithms for large multistage
stochastic integer programs. In IJCAI, pp. 1979-1984,
2007.

12

Mesnard, T., Weber, T., Viola, F., Thakoor, S., Saade, A.,
Harutyunyan, A., Dabney, W., Stepleton, T. S., Heess,
N., Guez, A., Moulines, E., Hutter, M., Buesing, L., and
Munos, R. Counterfactual credit assignment in model-
free reinforcement learning. In ICML, 2021.

Ng, A. Y. and Jordan, M. Pegasus: a policy search method
for large mdps and pomdps. In UAI, 2000.

Panigrahy, R., Talwar, K., Uyeda, L., and Wieder,
U. Heuristics for vector bin packing. Techni-
cal report, Microsoft Research, 2011. Available
from https://www.microsoft.com/en-us/
research/wp-content/uploads/2011/01/
VBPackingESAll.pdf.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS,
2019.

Perboli, G., Tadei, R., and Baldi, M. M. The stochastic
generalized bin packing problem. Discrete Applied Math-
ematics, 160(7-8), 2012.

Powell, W. Reinforcement Learning and Stochastic Opti-
mization: A unified framework for sequential decisions.
John Wiley & Sons, 2022.

Puterman, M. L. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell,
S. Bridging offline reinforcement learning and imita-
tion learning: A tale of pessimism. Advances in Neural
Information Processing Systems, 34:11702-11716, 2021.

Rockafellar, R. T. and Wets, R. J.-B. Scenarios and policy
aggregation in optimization under uncertainty. Mathemat-
ics of operations research, 16(1):119-147, 1991.

Ross, S. and Bagnell, J. A. Reinforcement and imitation
learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In AISTATS, 2011.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, 1., and
Wen, Z. A tutorial on thompson sampling. Foundations
and Trends in Machine Learning, 11(1), 2018.

https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.pdf

Hindsight Learning for Exo-MDPs

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sheng, J., Cai, S., Cui, H., Li, W., Hua, Y., Jin, B., Zhou, W.,
Hu, Y., Zhu, L., Peng, Q., Zha, H., and Wang, X. VMA-
gent: Scheduling simulator for reinforcement learning.
arXiv preprint arXiv:2112.04785, 2021.

Sheng, J., Hu, Y., Zhou, W., Zhu, L., Jin, B., Wang, J., and
Wang, X. Learning to schedule multi-NUMA virtual ma-
chines via reinforcement learning. Pattern Recognition,
121, 2022.

Slivkins, A. Introduction to multi-armed bandits. Founda-
tions and Trends in Machine Learning, 12(1-2), 2019.

Song, J., Lanka, R., Zhao, A., Bhatnagar, A., Yue, Y., and
Ono, M. Learning to search via retrospective imitation.
arXiv preprint arXiv:1804.00846, 2018.

Stolyar, A. L. An infinite server system with general packing
constraints. Operations Research, 61(5), 2013.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply aggrevated: Differentiable imita-
tion learning for sequential prediction. In /ICML, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tang, Y., Agrawal, S., and Faenza, Y. Reinforcement learn-
ing for integer programming: Learning to cut. In /ICML,
2020.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double g-learning. In AAAI 2016.

Venuto, D., Lau, E., Precup, D., and Nachum, O. Policy
gradients incorporating the future. In /CLR, 2022.

Vera, A. and Banerjee, S. The bayesian prophet: A low-
regret framework for online decision making. Manage-
ment Science, 67(3), 2021.

Vera, A., Banerjee, S., and Gurvich, I. Online allocation
and pricing: Constant regret via bellman inequalities.
Operations Research, 69(3), 2021.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In NeurIPS, 2015.

Warrington, A., Lavington, J. W., Scibior, A., Schmidt, M.,
and Wood, F. Robust asymmetric learning in POMDPs.
In ICML, 2021.

Weitzman, M. L. Optimal search for the best alternative.
Econometrica: Journal of the Econometric Society, 1979.

13

Xin, L. and Goldberg, D. A. Distributionally robust inven-
tory control when demand is a martingale. Mathematics
of Operations Research, 47(3), 2022.

Yan, X., Boots, B., and Cheng, C.-A. Explaining fast im-
provement in online imitation learning. In UAI, 2021.

Zhang, H., Geng, X., and Ma, H. Learning-driven
interference-aware workload parallelization for streaming
applications in heterogeneous cluster. IEEE Transactions
on Parallel and Distributed Systems, 32(1), 2020a.

Zhang, J., Kumor, D., and Bareinboim, E. Causal imita-
tion learning with unobserved confounders. In NeurIPS,
2020b.

Hindsight Learning for Exo-MDPs

A. Table of Notation
Symbol | Definition
Problem Setting Specification
S, AT, s1,R,P MDP primitives: state and action space, time horizon, starting state,
reward function and transition probabilities
X Endogenous space for the system
= Exogenous input space
P= Distribution over exogenous inputs
f(s,a,8),r(s,a,€) Underlying deterministic transition and reward as function of exogenous input
Sy MDP state space primitive, (x¢, £<;) for shorthand
Sty ag, &t State, action, and exogenous input for time step ¢
I3 An exogenous input trace (&1, ..., &)
&>t Component of an exogenous input trace (&, ..., &r)
11 Set of all admissible policies

QF (s,a), Vi (s)

T, Q?(S, a)a V%*(S)

Pry

D

HINDSIGHT(Z, 8, €1, f)

Q:&T(Sa a, SZt)a ‘/tﬂ—(sv a, 521‘)

(2-Function and value function for policy 7 at time step ¢

Optimal policy and the @ and value function for the optimal policy
State-visitation distribution for policy 7 at time step ¢

Dataset containing IV traces of exogenous inputs {£!,..., &N}
Hindsight optimal cumulative reward r starting in state s at time ¢

with exogenous inputs dictated by £>+ and dynamics f (see Equation (5))
Q@ and V functions for policy 7 starting from s

where exogenous inputs are given by £>; (see Lemma 1)

E[] Empirical expectation taken where £ is sampled uniformly from D

™ Policy obtained by ERM, i.e. solving arg max, c; E[V{"(s1, £)].

P=,Q,, Vi, 7 Estimated exogenous distribution using D, Q}, V;* estimates
using the estimated distribution, and the resulting policy

Hindsight Planner
QI (50, €>1) (5, &) HINDSIGHT(E + 1, €=, 75, 0, €1))
V' (s,€>¢1) HINDSIGHT(t, €>¢, 5)
1 (s,a),V, (s,a) Expectations of Q] (s, a,€>¢) and V,' (s, €>¢) over €>¢

't Greedy policy with respect to Q"

Al(s) Hindsight bias for state s at time step ¢ (see Equation (11))

A Absolute bound on A/ (s)

P= Empirical distribution over £ from D

7wt Greedy policy with respect to QT where true expectation
over P= replaced with P=

Al(s) Value of A/ (s) where expectation over Pz replaced with Pz

ﬁ: State visitation distribution of 7 at time step ¢ with exogenous dynamics P=

Table 4: List of common notation

B. Detailed Related Work

There is an extensive literature on reinforcement learning and its connection to tasks in operations management; below, we
highlight the work which is closest to ours, but for more extensive references, see Sutton & Barto (2018); Agarwal et al.
(2019); Powell (2022) for RL, and Bubeck & Cesa-Bianchi (2012); Slivkins (2019) for background on multi-armed bandits.

Information Relaxation for MDP Control: Information relaxation as an approach for calculating performance bounds on
the optimal Q* function has been developed recently using rich connections to convex duality (Vera & Banerjee, 2021; Brown
& Smith, 2022; Balseiro & Brown, 2019; Brown & Haugh, 2017; Kallus & Zhou, 2022; Mercier & Van Hentenryck, 2007).
As discussed in the main paper, for general problems, using hindsight planning oracles as in Assumption 1 creates estimates
for the Q* value which are overly optimistic of their true value. These differences can be rectified by introducing a control
variate, coined information penalties, to penalize the planner’s access to future information that a truly non-anticipatory

14

Hindsight Learning for Exo-MDPs

policy would not have. The goal is to construct penalties which ensure that the estimates of Q™ are truly consistent for the
underlying value. This work has been developed explicitly in the context of infinite horizon MDPs (Brown & Haugh, 2017)
where constructions are given for penalty functions as a function of the future randomness of the & process. Moreover,
concrete algorithmic implementations using hindsight planners and information penalties has been developed in the tabular
setting with no finite sample guarantees (El Shar & Jiang, 2020). Constructing these penalties in practice using suitable
functions for arbitrary £ is unknown. Our work differs by foregoing consistency of the estimates to instead focus on showing
that in problem domains of interest, the policy which is greedy with respect to the hindsight planner is indeed consistent.

Behaviour Cloning: One approach for using hindsight information is behavior cloning. This will compute the hindsight-
optimal actions for every £ ~ D, and learn to imitate these actions using a feasible non-anticipatory policy (Fang et al.,
2021). This is an instance of the probability matching principle which is widely used in Thompson sampling (Russo et al.,
2018; Hart et al., 2000). Unfortunately, this value-agnostic approach is uncontrollably biased. Consider the example in
§4. Since the winds in D will be west 51% of the time, the hindsight-optimal distribution (marginalizing over wind) is
Pr(routel) = 0.51; Pr(route2) = 0.49. A non-anticipatory learner policy trained via behavior cloning will converge either
to this distribution (if learning a stochastic policy) or its mode (using a deterministic policy). Both these policies are very
sub-optimal compared to the optimal policy.

Policy Based Methods with Control Variates: Recent work has developed black box tools to modify policy gradient
algorithms with control variates that depend on the exogenous trace. Recall that a typical policy-based algorithm uses either
on-policy data (or off-policy with re-weighted importance sampling strategies), and estimates the gradient in the return via

VV™ = Eg pyo ann, [VIogmo(A | $)Q™ (S, A)).

From here, most methods subtract an appropriate baseline (commonly taken to be an estimate of the value function) as a
form of Rao-Blackwellization to reduce the variance of the estimator while incurring no additional bias. In particular, for
any function b : § — R we can instead take

VV™ = Egprro amm, [V10g7m0(A | $)(Qnr, (S, A) = b(S))]

while remaining unbiased. However, due to the exogenous input structure on the MDP any function b : X x Z7 — R also
results in an unbiased gradient. Through this, the existing literature has taken different approaches for constructing these
input driven baselines. In Mao et al. (2019b) they consider directly using a baseline of the form b(z, £). As an architecture
to learn a network representation of this baseline the authors propose either using a multi-value network or meta learning. In
Mesnard et al. (2021) they consider using future conditional value estimates for the policy gradient baseline. In particular,
they use W, as a new statistic to calculate new information from the rest of the trajectory and learn value functions which are
conditioned on the additional hindsight information contained in W;. They provide a family of estimators, but do not specify
which form of W, to use in generating an algorithm.

Recurrent Neural Network Policy Design: A related line of work modifies black box policy gradient methods by using a
recurrent neural network (RNN) explicitly in policy design. In Venuto et al. (2022) they augment the state space to include &
while simultaneously limiting information flow in the neural network to ensure that the algorithm is not overly relying on
this privileged information. This approach, named policy gradients incorporating the future, is easy to implement as it just
augments the network using an LSTM and adds a new loss term to account for the information bottleneck.

Learning to Search: The Exo-MDP model is closely related to the learning-to-search model. Expert iteration (Anthony et al.,
2017) separates planning and generalization when learning to search, and provides an alternative approach to implement the
HINDSIGHT oracle. Retrospective imitation (Song et al., 2018) faces a similar challenge as us: a given & defines a fixed
search space and we seek search policies that generalize across P=(&). However, retrospective imitation reduces to realizable
imitation problems because the learner witnesses & beforehand whereas in Exo-MDPs, &>, is privileged information and
imitating HINDSIGHT is typically unrealizable. Asymmetric Imitation Learning (Warrington et al., 2021) studies problems
when imitating an expert with privileged information but essentially use RNN policies to ameliorate unrealizability.

RL for OR: In our work we primarily consider simulations on dynamic Virtual Machine (VM) scheduling. On the
theoretical side, variants of greedy algorithms have been usually proposed to solve the dynamic VM scheduling problems
with competitive ratio analysis. In Stolyar (2013) they assume the VM creation requests can be modeled as a Poisson process
with lifetimes as an exponential distribution and show that the greedy algorithm achieves the asymptotically optimal policy.
In Li et al. (2015) they develop a hybrid FIRSTFIT algorithm with an improvement on the competitive ratio. On the more
practical side using deep reinforcement learning techniques, in Mao et al. (2016) they develop a DeepRM system which can

15

Hindsight Learning for Exo-MDPs

Figure 3: Causal diagram for an Exo-MDP where k& = 1. Here the dotted line indicates the influence of (¢, a, &;) on the
immediate reward r; via r(z¢, at, &) and the dashed line on the transition evolution as x;11 = f(st, as, &;). The key facet
to notice is the lack of influence on the £ process from the current endogenous state x; and action a;.

pack tasks with multiple resource demands via a policy gradient method. They also built a job scheduler named DECIMA
by modifying actor critic algorithms with input driven baselines (Mao et al., 2019a). In Zhang et al. (2020a) they solved
the heterogeneous scheduling problem with deep () learning. Lastly, in Sheng et al. (2022) they developed SchedRL, a
modification of Deep Q Learning with reward shaping to develop a VM scheduling policy. All of these algorithms modify
existing RL algorithms and show empirical gains on variations of the VM scheduling problem. Our work differs from two
perspectives: 1) we consider using hindsight planning explicitly during training time, 2) our algorithms can be applied to
any Exo-MDP problems.

We also note that existing deep reinforcement learning has also been applied in other systems applications (without exploiting
their exo-MDP structure) including ride-sharing systems (Feng et al., 2021), stochastic queueing networks (Dai & Gluzman,
2021), power grid systems (Chen et al., 2021), jitter buffers (Fang et al., 2019), and inventory control (Harsha et al., 2021).

RL for Combinatorial Optimization: A crucial assumption underpinning our algorithmic framework is the implementation
of hindsight planners as in Assumption 1. Our framework is well motivated for problems where hindsight planning is
efficient, building on the existing optimization literature on solving planning problems (Conforti et al., 2014; Bertsimas
& Tsitsiklis, 1997). However, in general these problems as a function of a fixed exogenous input trace can be written as
combinatorial optimization problems. While we consider using hindsight planners for RL problems, a dual lens is using
machine learning techniques for combinatorial optimization, as has been explored in recent years (Vinyals et al., 2015; Bello
et al., 2017; Chitnis & Lozano-Pérez, 2020). In particular, in Vinyals et al. (2015) they designed a new network architecture
and trained using supervised learning for traveling salesman problems. Similarly in Hu et al. (2017) they solve variants of
online bin packing problems using policy gradient algorithms. In Tang et al. (2020) they design novel heuristic branch and
bound algorithms using machine learning for integer programming optimization.

Exo-MDPs: Exo-MDPs, as highlighted in §3 were described in Powell (2022). They characterize sequential decision
making problems as an evolution of information, decision, information sequence represented mathematically as the sequence
(s1,a1,&1, 82,a9,&2,. .., s7). Here, the state variable s; is written explicitly to capture the information available to the
decision maker to make a decision a,, followed by the information we learn after making a decision, i.e. the exogenous
information &;. Similar models have been outlined in (Mao et al., 2019b; Dietterich et al., 2018; Efroni et al., 2022).

C. MDPs with Exogenous Inputs

In this section we further discuss the definition of Exo-MDPs and its relations to contextual bandits and MDPs and highlight
some examples in the operations management literature.

C.1. Generality of MDPs with Exogenous Inputs

As highlighted in §3 we consider the finite horizon reinforcement learning setting where an agent is interacting with a
Markov Decision Process (MDP) (Puterman, 2014). The underlying MDP is given by a five-tuple (S, A, T, p, R, s1) where
T is the horizon, (S,.A) denotes the set of states and actions, R is the reward distribution, p the distribution governing the
transitions of the system, and s; is the given starting state.

Definition 2. In an MDP with Exogenous Inputs (Exo-MDP) we let € = (&1, ..., &) be a trace of exogenous inputs with

16

Hindsight Learning for Exo-MDPs

each & supported on the set =. We assume that & is sampled according to an unknown distribution P=. The agent has
access to an endogenous or system state x € X. With this, the dynamics and rewards of the Markov decision process evolve
where at time t, the agent selects their action a; € A based solely on s; = (x4, €<). After, the endogenous state evolves
according to x111 = f(S¢, at, &), and the reward earned is (s, at, &), and & is observed. We assume that f and r are
known by the principal in advance.

Note that this imposes that the state space for the underlying MDP can be written as S = X x =7 where the first component
corresponds to the endogenous state and the second to the exogenous input trace observed so far. We use the shorthand s; to
refer to (¢, E<¢).

As written, the distribution Pz can be arbitrarily correlated across time. We can relax this setting to assume that £ evolves
according to a k-Markov chain. More formally, that at each step ¢, &; | (&—k, &—k+1, - - -, &—1) is conditionally independent
of (&1,...,&_r_1). This allows the state space to be represented as S = X’ x =¥, Lastly, the dataset D contains a series of
N traces sampled independently according to Pz as D = {¢!,..., &V} where each &' = {¢1,... &0}

For more intuition, consider the model under various values of k:

 Case k = T: Here we assume that £ is an arbitrarily correlated process and S = X x =7 so that s; = (24,£-¢). An
example of this is VM allocation, where exogenous VM requests are highly correlated across time (Hadary et al., 2020).

* Case k = 1: Here we assume that £ process evolves according to a 1-Markov chain. The state space factorizes as X' x =
where X is the endogenous space and Z is the exogenous space. The current state is s; = (2, 1), and the state updates
to (f(st, at, &), &) where & is drawn from the conditional distribution given ;1. A representation of the causal diagram
under this setting is in Figure 3. An example of this is bin-packing, where it is typically assumed that jobs arrive according
to a Markov chain.

 Case k = 0: Here we have that S = X'. After taking an action a; based solely on xz; we transition to x;11 = f(x, at, &)
with &; sampled independently from an unknown distribution PZ. The previous variable &; can be either observed or
unobserved. An example of this is inventory control or newsvendor models, where the demand is typically assumed to be
i.i.d. across periods.

Relation between Contextual Bandits, MDPs, and Exo-MDPs We first notice that Exo-MDPs are a bridge Between
Contextual Bandit and MDPs. When X is empty or a singleton, an Exo-MDP describes several variants of the contextual
bandit introduced in Langford & Zhang (2007). They can be solved efficiently independent of the horizon (Foster et al.,
2021), unlike MDPs. If |=| < 1, an Exo-MDP is simply an MDP whose complexity scales with |X'|. When both |X| > 1
and |Z| > 1 the complexity of learning an Exo-MDP is not known in general, to the best of our knowledge. When the
exogenous inputs are iid, an Exo-MDP is equivalent to an MDP with state space X much smaller than S.

Difference in Dataset Assumptions We next focus briefly on the case when k = 0, showing that the key difference
between Exo-MDPs and the typical MDP models is the assumptions on the historical dataset provided. The typical
assumptions in an MDP involve that s;11 ~ P(- | s, a;) where the underlying distribution P is unknown. This can
be written equivalently as s;11 = f(s¢, at, &) where & is sampled uniformly in [0, 1] and the underlying function f is
unknown. As such, typically in an MDP we consider:

* Unknown structure of the dynamics and rewards (i.e. unknown f and r)
* Known distribution on the underlying exogenous inputs where each &; is uniform over [0, 1]

* Access to a logged dataset of (s¢, at, r¢, S¢11) pairs
In Exo-MDPs we instead assume:

» Known structure of the dynamics and rewards (i.e. known f and r)
* Unknown distribution on the exogenous inputs Pz

» Access to a dataset of exogenous traces &1, ..., &

17

Hindsight Learning for Exo-MDPs

These types of assumptions (where the form of the randomness is known but the true underlying distribution is unknown) is
common in the graphon literature (Borgs et al., 2008; Lovasz & Szegedy, 2006). In the following lemma we show that these
two models are equivalent, in that any MDP can be written as an MDP with exogenous inputs and £ = 0 using the uniform
random number trick. However, the assumptions are not equivalent since in Exo-MDPs we assume access to a dataset of
historical exogenous traces rather than trajectories under a fixed behavior policy.

Lemma 5. Any MDP of the form (S, A, T,p, R, s1) where the distribution on p and R are unknown has an equivalent
Exo-MDP form with k = 0, and vice-versa.

Proof. Without loss of generality we will assume that both = and S are either discrete or one dimensional (where higher
dimensions follow via the same chain of reasoning).

Exo-MDP — MDP: Suppose that s;11 = f(s¢, at, &) where & is sampled from Pz and f is known.

We can write this of the form where f is unknown and P= is known by setting & ~ Ul0,1] and f(st,at,gt) =
f(st,at, Pz (&)). Here the form of f is unknown as we cannot evaluate Pz ', but the distribution on the underlying

randomness & is known.

MDP — Exo-MDP: Suppose that s, 1 ~ P(- | s¢, a;) where the distribution is unknown. We can write this as s;41 =
f(st,as, &) with aknown f and unknown distribution Pz as follows.

First set = = A(S)S*4 x [0, 1]. Given any ¢ € = we define the transition kernel f(s;, ay, £) as follows:

* Set p € A(S) to be the component of £ indexed via s, a;

* Letting z be the last component of &, set ;41 = p~ ().

The distribution over = is then defined as an indicator variable over the first S x .4 components indicating the true unknown
distribution p, and the last component over [0, 1] being Uniform[0, 1]. O

C.2. Examples of Exo-MDPs

We now give several examples of Exo-MDPs alongside with their exogenous decomposition of the transition distribution.
We also highlight the underlying Markovian assumption on the exogenous inputs &.

C.2.1. INVENTORY CONTROL WITH LEAD TIMES AND LOST SALES (k = 0)

This models a single product stochastic inventory control problem with lost sales and lead times (Agrawal & Jia, 2022;
Goldberg et al., 2021; Xin & Goldberg, 2022; Feinberg, 2016). In the beginning of every time step ¢, the inventory manager
observes the current inventory level Invy and L previous unfulfilled orders in the pipeline, denoted oy, . . ., 01 for a product.
L denotes the lead time or delay in the number of time steps between placing an order and receiving it. The next inventory is
obtained as follows. First, o1 arrives and the on-hand inventory rises to I; = Inv; + o1. Then, an exogenous demand £ is
drawn independently from the unknown demand distribution P=. The cost to the inventory manager is

h(ly = &)F +p(E—L)"

where h is the holding cost for remaining inventory and p is the lost sales penalty. The on-hand inventory then finishes at
level (I; — &)™

This can be formulated as an Exo-MDP by letting X = [n]**! denote the current inventory level and previous orders,
E = [n] as the exogenous demand, and A = [n] for the amount to order where n is some maximum order amount. The
reward function is highlighted above, and the state transition updates as z’ = f(zy, as, £) where ITnv,y1 = (Invi+01—&)7,
0 = op—1 forall 1 < k < L and o7, = a. This model can also be expanded to include multiple suppliers with different
lead times.

C.2.2. ONLINE STOCHASTIC BIN PACKING (k = 1)

Here we consider a typical online stochastic bin packing model (Gupta & Radovanovic, 2012; Ghaderi et al., 2014; Perboli
et al., 2012) where a principal has access to an infinite supply of bins with maximum bin size B. Items u; arrive over a

18

Hindsight Learning for Exo-MDPs

sequence of rounds ¢ = 1, ..., T where each u; € [B] denotes the item size. At every time step, the principal decides on a
bin to allocate the item to, either allocating it to a previously opened bin or creating a new bin. The goal is to allocate all of
the items using the smallest number of bins.

This can be modeled in the framework as follows. Here we let ¥ = RZ, = = [B] and A = [B]. Each vector € X has
components =y, ...,z g as the current number of bins opened with current utilization of one up to B, with = corresponding
to the current item arrival’s size. Hence the state space is S = X’ x = where s; = (2, &;—1) corresponds to the current bin
capacity and current item arrival. Actions a € A correspond to either 0, for opening up a new bin, or 1,. .., B to be adding
the current item to an existing bin with current utilization one up to B. The reward is:

-1 a=0
r(thtflaaﬁgt) = 0 a > 0; Sq > 07 and a + gt—l S B
—100 otherwise

where —1 corresponds to the cost for opening a new bin, and the condition on zero reward verifies whether or not there is
currently an open bin at level a and the action is feasible (i.e. allocating the current item to the bin at size a is smaller than
the maximum bin capacity).

The transition distribution is updated similarly. Let £; be drawn from the conditional distribution given &;_. If a = 0 then
' = x except x’&il is incremented by one (for opening up a new bin at the level of the size of the current item). If @ > 0
and the action is feasible (i.e. s, > 0and a + &;_; < B) then 2’ = z with :c’a 6 incremented by one and z/, decreased
by one.

We note again that this model can be extended to include different reward functions, multiple dimensions of item arrivals,
and departures, similar to the Virtual Machine allocation scenario.

C.2.3. ONLINE SECRETARY (k =1)

Multi-secretary is the generalization of the classic secretary problem (Buchbinder et al., 2009), where T" candidates arrive
sequentially but only B can be selected. Over time periods, a candidate arrives with ability r; € (0, 1] drawn i.i.d. from a
finite set of K levels of expertise. At each round, if the decision-maker has remaining budget (i.e., has chosen less than B
candidates thus far), they can accept a candidate and collect the reward r, or reject the candidate. The goal is to maximize
the expected cumulative reward.

This can be modeled as an Exo-MDP as follows. Here we let X = [B], = = [K], and A = {0, 1}. The endogenous space
X corresponds to the number of remaining candidates that can be accepted. The exogenous space = corresponds to the
ability level of the next time period’s candidate. Lastly, actions a € A correspond to either accepting or rejecting the current
candidate. Hence the state space is S = X’ x = where s; = (x4, £;—1) corresponds to the number of accepted candidates
thus far and the skill of the current candidate. The reward is:

ft,1 a=1landx; >0
0 otherwise

T(l't»gtflaaagt) = {

The transition distribution is updated similarly by accounting for whether a candidate was accepted. Indeed we have:

ry—1 a=1landz; >0
0 otherwise

f(xtvgt—lva'a gt) = {

C.2.4. AIRLINE REVENUE MANAGEMENT (k = 0)

Airline Revenue Management (Littlewood, 1972) is a special case of the multi-dimensional Online Bin Packing (OBP)
problem, but we reiterate its model here for completeness. There are a set of K € N resources, and each resource 7 has
a maximum capacity B;. Customers are segmented into M € N types. Customers of type j € [M] request A; € Rf
resources and yield a revenue of f;. Over time, the algorithm will decide whether or not to accept customers of type j.
Afterwards, a customer type j; is drawn from an independent distribution. If the algorithm decided to accept customers
of type j;, the relevant resources are consumed and revenue earned. The goal of the decision-maker is to maximize the
expected revenue.

19

Hindsight Learning for Exo-MDPs

This is modeled as an Exo-MDP where X = [0, By] % ... x [0, Bk],Z = [M], and A = {0,1}*. The system space X
corresponds to the remaining capacity of the K different resources, exogenous space = to the sampled customer type, and A
to the accept / reject decisions for each of the customer types. The reward is then defined via:

(5) f& aazlandxt—A& >0
,r. :I; b a7 = .
¢ ¢ 0 otherwise

The transition distribution is updated by accounting for consumed resources if a request is accepted:

Jit—A& ag, :1anda:t—A5t >0

f(xtaa/agt) - {

T otherwise

C.2.5. VIRTUAL MACHINE ALLOCATION (k =T

The Cloud has modified the way that users are able access computing resources (Sheng et al., 2021; Jiang et al., 2020;
Cortez et al., 2017; Hubbs et al., 2020; Hadary et al., 2020). Cloud service providers allow customers easy access to
resources while simultaneously applying efficient management techniques in order to optimize their return. One of the most
critical components is the Virtual Machine (VM) allocator, which assigns VM request to the physical hardware (henceforth
referred to as PMs). The important issue is how to allocate physical resources to service each VM efficiently by eliminating
fragmentation, performance impact and delays, and allocation failures.

These VM allocation models can be thought of as a multi-dimensional variant of bin-packing with an additional component
of arrival and departures. The typical VM scheduling scenarios models users requesting resources over time, where each
request contains the required CPU and memory uses, and its lifetime. The allocator then decides which available physical
machine to allocate the virtual machine to. To limit notational overload, we provide a high level view of the Virtual Machine
allocation scenario here, and defer concrete discussion and notation when discussing the planning oracle required for solving.

In this set-up the current system state of the model is measured by the physical resources available for each PM, including
the physical cores and memory available. Over time,

* Coming VM requests ask for a certain amount of resources (CPU and memory requirements) and their lifetime. Resource
requirements are varied based on the different VM requests.

» Based on the action selected by the algorithm, the VM will be allocated to and be created in a specified PM as long as that
PM’s remaining resources are enough.

 After a period of execution, the VM completes its tasks. The simulator will then release the resources allocated to this VM
and deallocate this VM from the PM.

At a high level, these problems can be modeled as an MDP with exogenous inputs where the exogenous space = contains
the space of possible VM requests (along with their lifetime, memory, and CPU requirements). The endogenous space X
measures the current capacity of each physical machine on the server, and action space .4 for allocation decisions for the
current VM request to a given PM. More details on the concrete experimental set-up will be in Appendix G. We also note
that the VM arrival process in practice is highly correlated so this fits under the model where k = T' (Hadary et al., 2020).

D. Hindsight Planners

Here we outline the feasibility of Assumption 1 in many operations tasks. Planning problems induced by online knapsack
problems as a function of a deterministic input sequence £ can be solved via their induced linear relaxation in pseudo-
polynomial time (as the constraint polytope is a polymatroid). Other problems, such as inventory control with lead times
have planning problems where a simple greedy control policy is optimal. More generally, Assumption 1 requires us to solve
large-scale combinatorial optimization problems. However, we note that all of these computations are done offline and
so the computational burden is not required at run-time. Moreover, it is easy to incorporate existing heuristics from the
optimization literature for efficient solutions to these problems, including linear programming or fluid relaxations (Conforti
et al., 2014). This appeals to our Hindsight Learning algorithms only relying on the objective value of the planner, instead of
the actual sequence of actions.

20

Hindsight Learning for Exo-MDPs

D.1. Inventory Control with Lead Times and Lost Sales

In inventory control, given knowledge of the exact sequence of demands & = (ds, . .., dr), the optimal open loop control
policy is trivial to write down. Indeed, setting:

diyp t<T-1L
ar =
¢ 0 otherwise

is clearly the optimal policy. This is as, for any ¢ < T' — L we ensure the current on-hand inventory is exactly equal to
that period’s demands. For the last L periods we order nothing in order to minimize the accumulated purchase costs for
inventory which will be ordered and cannot be sold.

D.2. Online Stochastic Bin Packing

We give the integer programming representation of the optimal open loop control for Bin Packing as follows. Consider a
state x with components z1, ...,z p as the current number of bins opened with a utilization of 1 up to B and a sequence
of items with sizes € = (uy,...,ur). Given (z1,...,x) we pre-process this list to a vector of length) . z; where each
component corresponds to the current utilization of any bin. For example, if B = 3 and z = (1, 0, 2) then we make a list
containing « = (1, 3, 3) for two bins with a utilization of three and one bin with a total utilization of one. Since the total
number of bins required will be), x; + T we use the variables y;, for b € >, x; + T'] to denote an indicator of whether or
not bin gy, is currently utilized. We also use variables z, ; to denote whether item v € [T] is assigned to bin b. Similarly,
denote «y, as the current utilization of a bin b. The optimization program can then be written as follows:

max — g UYb
z,y 5

s.t. Z zpp = 1forallv € [T]
b

Z Zyp + ap < By for all b

yp = 1 for any b with o, > 0

The objective corresponds to minimizing the number of utilized bins. The first constraint ensures that each item is assigned
to a bin. The second constraint enforces capacity constraints for each bin, and the last constraint ensures that bins are marked
as used if they have current utilization on them (i.e. oy > 0).

D.3. Online Secretary

In online secretary, given knowledge of the exact sequence of future candidate qualities the open loop control policy is trivial
to write down. Indeed, for any &>, we denote o as the ranking function over it such that £, (1) > &,(2) > ... > &(T — 1),
with ties broken arbitrarily. Then given a remaining number of candidates to accept x, HINDSIGHT(t, &>, «) will simply be
Zle &(i)- This corresponds to taking the best x-candidates from the future trace &>.

D.4. Airline Revenue Management

The planning oracle for the airline revenue management problem can be formulated as a so-called “knapsack” problem.
Indeed, suppose that x; is the remaining capacity for the K resources. We use variables z,, for the number of customers of
type y € [M] to accept. Then, we solve the following optimization problem:

max E fyzy
z
y

s.t. 0 < zy < Ny(§) forall y € [M]
Az < x4

where Ny (§) = >, 1¢,—,) is the number of type y customers in the exogenous dataset &.

21

Hindsight Learning for Exo-MDPs

D.5. Virtual Machine Allocation

The planning oracle for the VM allocation problem can be formulated as a large-scale mixed integer linear program. In this
section we discuss approaches which utilize this fact in developing an oracle for the hindsight planning problem.

Use = = V to denote the set of VM requests and P as the set of physical machines. We use the following constants which

depend on the current inventory of virtual and physical machines contained in the current state s, including:

* ay,p for the remaining CPU cores for physical machine p at event ¢

* B:,p for the remaining memory for physical machine p at event ¢

* CPU-CAP, and MEM-CAP,, the CPU and memory capacity of physical machine p € P

e LIFETIME,, CORE,, MEM, as the lifetime, cores, and memory utilization of VM v € V'

* 7)y,+ an indicator that the VM v is active at time ¢ (i.e. 7, ¢ is equal to one for any time starting from the time the VM v
arrives until the end of its lifetime)

With this we introduce variables z,, , for each virtual machine v and physical machine p to indicate the assignments. We

also use variables y; , which encode whether physical machine p has a VM assigned to it at time step ?.

We start by considering the various constraints in the problem:

» Assignment Constraint (Equation (13)): For every v we need Zp Zy,p = 1 indicating that each virtual machine is
assigned to a physical machine.

* CPU Capacity Constraint (Equation (14)): For every p and ¢ we need ¢ + ZU COREyNy tTyp < CPU-CAP, to
ensure CPU usage capacity constraints are satisfied.

* Memory Capacity Constraint (Equation (15)): For every p and t we need 3+ + Y, MEMy7)y + &y p < MEM-CAP), to
ensure memory capacity constraints are satisfied.

We also need additional constraints which encode the y; ,, variable as follows:

* PM Historical Utilization (Equation (16)): y;, > 1 forallpand tif oy, > 0

* PM VM Utilization (Equation (17)): xy p7y,+ < ¥¢,p for all v and p

+ PM OR Constraint (Equation (18)): > 2y p7v¢ + Lja, ,>0] = ¥t,p for all £ and p.

These constraints essentially encode that ¥, ;, is an indicator for whether y has a VM assigned to it from & (in the second
bullet), or has historical allocations on it (for when oy, > 0).

We note that there always exists a feasible solution since we are in an over provisioned regime where we have capacity to
service every VM request.

Lastly, the objective function (Equation (12)) for the packing density can be formulated via:

B Zp Yt pCPU-CAP,,
- Zp a¢p+ Y., CORE,

The numerator corresponds to the total CPU capacity of all physical machines which are in use. The denominator corresponds
to the total utilization (both from the VMs currently in service and the VMs arriving over the time horizon). This then
encodes the inverse of the core packing density, as described earlier.

The full integer program is now summarized below:

+ .CPU-CAP
max — Y Zper ez r (12)

v e > pep Qtp + Dy CORE,

22

Hindsight Learning for Exo-MDPs

s.t. Z Typ=1 YveV (13)
peP
Qpt + Z COREy 7y 12y, < CPU-CAP, Vt € [T],p€ P (14)
veV
Bpi + Z MEM, 1)y ¢, , < MEM-CAP, Vt € [T], p € P (15)
veV
Yip > N, 5o VEE[T], peP (16)
Typut <Yrp VeV, te[T],pe P (17)
Z Ty, pMo,t +]l[ozt,p>0] > Yt.p vt € [T]7 pE P (18)
veV

E. Existing Approaches to MDPs in Exo-MDPs

Here we briefly discuss existing approaches to MDPs applied in the context of Exo-MDPs to highlight the advantages and
disadvantages of our Hindsight Learning approach.

E.1. Predict Then Optimize

Given the historical trace dataset D = {¢, ..., &V}, a popular plug-in approach learns a generative model Pz (&; | €<i)to
approximate the true distribution Pz (&; | £<¢), since the exogenous process is the only unknown. Given this model P=,
estimates for the Q)7 value for the optimal policy can be obtained by solving the Bellman equation with the learned predictor

P= in place of the true distribution P=. More concretely, we denote @t as the model-based estimate of @7, which follows

Qu(s,a) =Ege_ [r(z,0,€) + Visa(f(2,0,8) | P2l

Vi(s) = r;leaj(@t(s, a)

7 (s) == argmax Q, (s, a).
acA

While intuitive, this ML forecast approach requires high-fidelity modeling of the exogenous process to guarantee good
downstream decision-making, due to the quadratic horizon multiplicative factor in regret we show below. This quadratic
factor in the horizon is due to the compounding errors of distribution shift, similar to those shown in the imitation learning
literature (Ross et al., 2011).

Theorem 6. Suppose that sup,c ¢ _,e=i-ul|P=(-[€<t) — P=(-|€<t)||rv < € where ||-||pv is the total variation distance.
Then we have that REGRET(T) < 2T2%¢. In addition, if & ~ Pz has each &; independent from € -, P= is the empirical

o . . - [108(2|Z|/9)
distribution, then ¥ € (0, 1), with probability at least 1 — 6, REGRET () < 2124/ 8521020

The T? dependence here is tight (see Domingues et al. (2021)), in contrast to the O(T") dependence in Theorem 3. Moreover,
the ML forecast approach can be impractical when the exogenous process is complex since € in the worst case can scale as
|Z|T"if the &; are strongly correlated across t. An example of this is VM allocation where researchers observed that the
VM lifetime varies substantially across time, the demand has spikes and a diurnal pattern, and that subsequent requests are
highly correlated (Hadary et al., 2020).

This discrepancy highlights an advantage of our Hindsight Learning approach. Consider a VM allocation example with two
physical machines each large enough to satisfy the entire demand. Under chaotic and unpredictable arrivals, a planner using
erroneous forecasts might spread the requests over the two machines. In contrast, the hindsight learning policy will correctly
learn that one machine is sufficient and achieve low regret, even if the total variation distance on the underlying distribution
over exogenous inputs is large.

E.2. Reinforcement Learning

Recall that our objective is to solve arg max . iy V" (s1). This can be written as arg max .y E¢[V{"(s1,£)] by Lemma 1.
Therefore, an alternative way to find approximately optimal policies for an Exo-MDP is to maximize the empirical return

23

Hindsight Learning for Exo-MDPs

directly, similar to the empirical risk minimization strategy of supervised learning: 7* = arg max, .y E[V[(51, &)] where
E[Vi(s1,€)] = & >, Vi"(s1,£™). First observe that the number of samples required to learn a near optimal policy scales
linearly with 7 in this approach. If an additive control variate ¢(&) (as in Mao et al. (2019b)) is used, the 7" term is replaced

with T — B¢ [6(€))
. . e 21og(2(T1]/6)
Theorem 7. V§ € (0, 1), with probability at least 1 — 6, REGRET(7*) < T’/ Og#‘/.

Theorem 7 highlights that model-free RL methods are a theoretically viable approach for Exo-MDPs (especially compared to
Predict-Then-Optimize in Theorem 6). Indeed, Theorem 7 shows that RL methods have asymptotic consistency guarantees
if they converge to the optimal policy in the empirical MDP. This convergence is an idealized computation assumption
that hides optimization issues when studying statistical guarantees, and is incomparable to Assumption 1 for the hindsight
planner (for which we showed several examples in Appendix D.

Moreover, Table 1 suggests that HL and RL are trading bias and variance differently. When variance is the dominating
factor, we expect an algorithm’s performance to improve with additional data. When bias is the dominating factor, however,
we expect no marginal benefit from additional data. In Table 1 we see that as 7" (and accordingly, N, the number of data
points) increases, the Tabular RL algorithm performance improves. However, hindsight learning has a stable non-zero regret
even as we increase 7.

F. Proofs of Main Results
Lemma 8 (Lemma 1 of §3). Foreveryt € [T],(s,a) € S X A, and 7 € II, we have the following:
Q7 (s,a) = Ee_ [QF (s, a,€>1)]
Vi (s) = Ee., [Vi" (5, €51)].

In particular V" (s1) = V" = E¢[V]" (51, &)].
Proof. First note that if Q7 (s, a) is as defined then we have that:
Vi (s) = Zw(a | $)QF (s, a) (by Bellman equations)
a

=" n(a| $)Ee., [QF (5,a, &)

= Ee., Z m(a| s)Qf(s,a,&>¢)| (by 7 being non-anticipatory)

a

= E£>f[‘/t (£>t)]

Now we focus on showing the result for Q7 (s, a) by backwards induction on ¢. The base case when ¢ = T is trivial as
Q?(Sv a) = EE [7”(8, a, 6)] =]EEET [Q?(Sa a, EZT)}~

Step Case: (t + 1 — t) For the step-case a simple derivation shows that

Q?(&) [T(S,) + V;:H (f(57 a’7£))]
- Ef [T(S a 6) + E§>t+1 [V:jrl(f(sﬁ a?&)7£2t+1)”
=Ee., [7’ s,a,&) + Vi1 (f(s, a7ft),§zt+1)]
@7

= Ee.[QF (5,a,&4)]-

O

Theorem 9 (Theorem 2 of §6). REGRET(w’) < Zthl Eg, pur’ [A](S;)] where Prff denotes the state distribution of

7" at step t induced by the exogenous randomness. In particular, if A](s) < A for some constant A then we have:

REGRET(r") < AY, Eg, pyr [Pr(m/ (Se) # 7 (Sh))].

24

Hindsight Learning for Exo-MDPs

Proof. First we note that via the performance difference lemma we have that for any two non-anticipatory policies 7 and 7
that

and so

Vi (s1) — V{7 (s1) ZEStNPrt [Zﬂ(a | 50)(Q(s,0) = Vi (s))

a

W (o1) =V (50) = 3 Enor [Z <ast><v,ff<s>—cz;;f<s,a>>]

Moreover, for any state s we also have Q; (s, 7*(s)) — Q7 (s, 7' (s)) < A/ (s) since:

i(5,7(s)) = Qi (s, (5)) — Aj(s)
*(5)) = Qi (s,m7()) — Qi (5,7 (5) + Q1 (5,7 (5)) — Qf (5,77 (5)) + Qi (5,7 (5))
Q

as 7' is greedy with respect to Q.

Finally, recall the definition of the regret of REGRET (7 ') via V;*(s1) — Vi (s1). However, using the previous performance
difference lemma with # = 7* and m = 7' we have that

Vi (s1) — V{‘T(sl = Z]E ~PrT’ [Q7 (St, (1)) — QF (St,m" (Sh))]
< Z]E NPr"Y St)]

The second statement follows immediately from the absolute bound on A] (s). O

Theorem 10 (Theorem 3 of §6). Let T' denote the hindsight planning surrogate policy for the empirical MDP w.r.t. D.
Assume T € I and Algorithm 1 achieves no-regret in the optimization problem. Let 7 be the best policy generated by
Algorithm 1. Then, for any § € (0, 1), with probability 1 — ¢, it holds

2log(2|IT
REGRET(7) < Ty —————— og(| 1/9) Z SNITWT Al(s1)] 4 o(1)

where AI is the SAA approximation of (11) and Pr, is the state probability of 7t in the empirical MDP.

Proof. The proof follows the standard proof technique of online IL (cf. (Yan et al., 2021)).
REGRET(7) = E[V{"(s1,£)] — E[V{" (s1,€)]
< (V7 (51, 8)] — EVF (51,)l + [E[VE (51,€)| ~ E[Vi (s1,8)])
+ (B[(s1.0)] - E[V{ (51, e] E[V (51,6)] —EVi (s1,€)))

\/W)} E[Vi (51,6)] +o(1)
W i A (50)] + o(1)
s,5~Pr7r

We use the results of Theorem 15 to bound the first terms in the second line; we invoke the no-regret optimization assumption
and the realizability assumption 771 € II for the last term of the second line. Finally, we apply Theorem 2 in the empirical
MDP w.r.t. D and recognize that the middle term is the empirical regret to derive the last step. [

Lemma 11 (Theorem 4 of §6). There exists a set of Exo-MDPs such that REGRET (7 ") > Q(T).

25

Hindsight Learning for Exo-MDPs

Proof. We first construct a three-step MDP such that REGRET(7") > Q(1). The main result then follows by replicating the
MDP across 7' periods to construct a 37" step MDP with REGRET(7") > Q(T)).

We consider a modification of the prototypical Pandora’s Box problem (Weitzman, 1979). The endogenous state space
X = {0, 1} where state 0 corresponds to “not yet accepted an item” and 1 corresponds to “accepted an item”. The action
space A = {0, 1} where a = 0 corresponds to “reject next item” and @ = 1 corresponds to “accept next item”. We consider
a modification of the typical Pandora box model where at time step ¢, the next item arrivals & value is unobserved before
deciding whether or not to accept.

The trace distribution has & ~ U[0, 1] and &, &3 ~ U0, .9]. Important to note is that E[¢;] = .5, E[&;] = 0.45,E[¢&5] =
0.45, and a straightforward calculation shows that E[max (&3, &3)] = 0.6.

The rewards and dynamics are:

r(0,0,§) =0 £(0,0,6) =0
7(0,1,€) =¢ f(0,1,6) =1
r(1,a,) =0 f(l,a,&) =1fora € {0,1}.

Lastly, the starting state s; = 0. This properly encodes the exogenous dynamics and rewards. At step ¢ in state z = 0
(i.e. not yet accepted an item) taking action 0 (do not accept) yields no return and transitions to the next state. However,
accepting the next item returns reward ¢ and transitions to state x = 1.

A straightforward calculation following the Bellman equations shows the following for)} and V;*:

5(0,0) =0 5(0,0) = E[¢3] 1(0,0) = max(E[¢2], E[¢s))-
5(0,1) = E[&] 5(0,1) = E[¢&.] 1(0,1) = E[&,]

3(1,-) =0 5(1,-) =0 Qi(1,-) =0

V3'(0) = E[&] V5 (0) = max(E[&3], E[¢2]) Vi (0) = max(E[¢1], E[¢2], E[¢s])
Vi(1) =0 vz (1) =0 V(1) =0

Using the choice of the distributions for &1, &3, &5 we have that 77 (0) = 1, as in, we will accept the first item since on
average it has larger expected return. This results in V" (s1) = E[¢;] = 0.5.

We can similarly compute @; and V" as follows:

Q3(0,0)=0 Q3(0,0) = E[&] Q1(0,0) = E[max(&2, &)]-
Q3(0,1) = E[&] Q3(0,1) = E[&] Q1(0,1) = E[¢&]

In this scenario, we see first hand the bias introduced when considered Q. In particular, Q] (0,0) = E[max(&2,&3)] >
Q7(0,0) = max(E[&2, £3]). Using the choice of distributions for £1, &2, 3 we see that the hindsight planning policy 7' is
fooled and has 7{ (0) = 0, so the policy rejects the first item thinking it will get the maximum value of the next two items.
As a result we see that V7™ (0) = 0.45.

Hence, we have that REGRET7" = 0.5 — 0.45 = 0.05 = Q(1) as needed. O

Lemma 12 (Statement in §6). Suppose that for every t and state s that maxX er]EEZt[Vt”(S,EZt)] =
Ee¢., [HINDSIGHT(Z, 8, €>)]. Then we have that Q} (s, a) = Q[(s, a) for everyt, s, and a.

Proof. First notice that max em Eg.,[Vi"(s,€>1)] = Ee.,[Vi*(s,€>¢)] by definition. Thus using the Bellman equations
and definition of Q] (s, a) we trivially have that:

Q:(S7a) = Eft [T(‘S? aagt) + t:—l(f(sa a, St))]
=]Eft [T(S’ a, ft) + E§>t [‘/t:-l (f(S, a, gt)a €>t)]]
= E¢,[r(s,a,&) + Ee. , [HINDSIGHT(t + 1, f(s,a,&:),&>¢)]]

26

Hindsight Learning for Exo-MDPs

=Qi(sa).

O

Lemma 13 (Statement in §6). Define GAG = E [maxﬂ Zle A[(Sy) | S¢ ~ Prf|. Then there exists an Exo-MDP such
that GAG = Q(T) and yet the upper bound in Theorem 2 is zero.

The “MakeDecision” function in Mercier & Van Hentenryck (2007) implements the empirical Bayes Selector policy using
the offline dataset (see Equation (6)). There are several key differences between our regret analysis and theirs. First, Mercier
& Van Hentenryck (2007) define regret with respect to the hindsight optimal policy V' '(s1), whereas our regret is with
respect to the best non-anticipatory policy V*(s1). Their main result (Theorem 1) shows that the hindsight optimal regret
is bounded by the “Global Anticipatory Gap” GAG = E [maxﬂ Zthl Q1 (Se, Ay) | (Se, Ag) ~ Prf} . However, there are
situations where the GAG can be large, and one could incorrectly conclude that hindsight optimization should not be applied
when trying to learn the true optimal non-anticipative policy 7*. In the Sailing example of §4, the GAG will be positive since
knowing the direction of the wind one can ex-post identify the optimal route compared to any non-anticipatory algorithm.
However, Q*(route) = Q' (route) and so there is no hindsight bias. Hence, our results which adjust for the difference in
benchmark to 7* is more appropriate.

Moreover, their regret bound measures a worst-case overestimation bias on the states visited by any decision policy. In
contrast, Theorem 2 requires that the hindsight bias be small only on states visited by 7'. Even if we set aside the difference
between our benchmarks for regret (adjusting the definition by V*(s1) — V' (s1) resulting in G AG defined in the statement
of Lemma 13), our analysis is much tighter which we illustrate with an example below.

Proof. We construct an Exo-MDP M as follows. Consider a starting state so with two actions A and B that deterministically
transition to two different “sub-MDPs” (which we denote as M 4 and M g respectively).

The first action, A, transitions to sub-MDP M 4 which contains an absorbing state s4 (i.e. transitions are deterministic
to the same state s 4 regardless of the action) with large rewards. Note that since this sub-MDP is deterministic it has no
hindsight bias (so A](s4) = 0).

The second action B, transitions to an MDP M g which witnesses Theorem 4, and hence has Q(T") hindsight bias. We adjust
the rewards along M p such that the value of the optimal policy in this sub-MDP is much smaller than the deterministic
reward accrued in M 4.

In this example, 7' will always select action A in the initial state and collect higher rewards (since the optimal policy
knowing the exogenous inputs in MDP M g will still collect smaller rewards than the deterministic value accrued in M 4).
Hence, our regret bound in Theorem 2 will be zero (since A'(s4) = 0 and 7" will never visit sg). However, é_/\lé will
conservatively account for the sub-optimal B decision which transitions to a state with a large anticipatory gap (2(T)),
thereby concluding a large regret bound. O

Theorem 14 (Theorem 6 of Appendix E). Suppose that sup,eipy ¢ _,czie-11 [|P=(-[€<t) — P=([€<t)|lrv < € where ||| v
is the total variation distance. Then we have that REGRET(7) < 2T?e. In addition, if € ~ P= has each & independent from
&4, Pz is the empirical distribution, then ¥ € (0, 1), with probability at least 1 — §, REGRET(T) < 2724/ w.

Proof. First note that Q, and V; refer to the () and V' values for the optimal policy in a modified MDP @where the true
exogenous input distribution P=(- | £<;) is replaced by its estimate Pz (- | €<¢). As such, denote by V: as the value

function for the policy 7 in the MDP M. Note here that V: = V; by construction. With this we have that:

REGRET(T) = V{*(s1) — V{"(s1)
= Vi (s) = V7 (s0) + 77 (s1) = Va(s1) + V(1) = Vi (52)
< 25171rp V7™ (s1) — V1 (s1)]-

However, using the finite horizon simulation lemma (see Lemma 1 in Abbeel & Ng (2005)) we have that this is bounded
from above by 272||P(- | s,a) — P)(- | s,a)| v where || P(- | s,a) — P)(- | s,a)|/7v is the total variation distance in the

27

Hindsight Learning for Exo-MDPs

induced state-transition distributions between M and M. However, by definition we have that:

F5) 1 I D
IP(-]s,a) = P(- [5,a)[rv Q/SIP(S | s,a) = P(s" | 5,a)|ds

1 _
3 /S|ﬁ1[s/:f(s,a,f)}dpg(£ | €>1) = Vo= (s,0,)dP=(§ | €>1)|ds

1 PR
§/S/EH[S’=f(s7a7é>]|d7’E(§ | €50) — dP=(€ | €50)
IP=(- | €21) = P=(- | €x0)llrv < e.

IN

Thus we get that REGRET(7) < 272%¢ as required.

Now suppose that & ~ Pz has each ¢&; independent from £_; and let P= be the empirical distribution, i.e. P=(£) =
% > ey L lei=¢]" A straightforward application of Hoeffding’s inequality shows that the event:

€= {Vt7£<t [P=(E) - P=(6)| < l‘)g%';'/‘”}

occurs with probability at least 1 — §. Under £ we then have that:

o [PEClEc) ~ PsClgcollry < s [PE(lg<r) — PeCléalh < PEAY)

telT] €< € t€[T].6<r B~ 2N
Taking this in the previous result shows the claim. O

Theorem 15 (Theorem 7 of Appendix E). Given any 6 € (0,1) then with probability at least 1 — § we have that if
7 = arg max, E[V™(§)] that

2
REGRET(T*) < %ﬂﬂ/é).

Proof. A quick calculation using Hoeffding’s inequality and a union bound shows that the event

) I T2 1082111/
E = {VW eIl: |V (s1) — E[Vi"(s1)]] < 2]\72}

occurs with probability at least 1 — . Under £ we then have that:
REGRET(T*) = V™ (s1) — V¥ (s1)
=V (s1) — B[V (51,0 + B[V (51, 6)] B[V (51, 6)| + E[V7 (51,8)] - Vi (1)

2
< 3, Vhas RBEITS)
- 2N?2

O
Theorem 16 (Lemma 18 of Appendix G.1). In stochastic online bin packing with i.i.d. arrivals we have that sup, Al(s) <
O(1), independent of the time horizon and any problem primitives. As a result, REGRET (7 ") < O(1).

We show the result by starting with the lemma, highlighting that the value functions for the planning policy and the
optimal non-anticipatory policy are “Lipschitz” with respect to the capacity of the current bins. Recall that the state space
representation s € S corresponds to s = (,&;_1) where € R? is the current number of bins at that size, and the last
component to the current arrival. We write this explicitly as containing s € R® for the bin utilization and &_1 € R for the
current arrival.

Lemma 17. For any t € [T, current bin capacity x € RIBl current arrival &1, &> € ET-t and A € R > 0 we have
that:

28

Hindsight Learning for Exo-MDPs

o Vi (@, &1,€51) > V) (@ — A &1, €51) > V) (2,821, &5¢) — || Al

© Vi@, &) 2 V(e — A G—1) = Vi (@, &-1) — 1AL
As a result for any x and x' in RE and current arrival £,_1 we have that:

« Vi(@,&-1,620) = Vi (@', 6-1,€20) < (@ —)Tt

« Vi@, &1) = V(@ &) < Iz —)Tl

Proof. First consider the top statement in terms of the optimal planning policy starting from a fixed state s = (z,&;—1) and
sequence of future exogenous variables £>+.

We have that V," (x,&1,&>¢) > V' (z — A, &1, &>+) since the sequence of actions generated by the planning oracle
starting from state (z — A, &;_1) is feasible for the same problem starting from (z,&_1). Hence, as V,"(z,&—1,€>¢)
denotes the optimal such policy, the inequality follows.

For the other direction consider the sequence of actions starting from (z, &;—1). Using at most ||Al|; bins the policy is
feasible for the same problem starting at (z — A, & _1). Indeed, suppose the sequence of actions starting from the problem
at (x, &_1) attempts to use a bin which is not available in the problem starting from (x — A, &;_1). Then by opening a new
bin instead and shifting all future references of the old bin to the newly created bin, the sequence of actions is feasible. As
there are at most ||A||; bins different in the (x, & 1) problem versus the (x — A, &) problem, the bound follows.

Now consider the second statement in terms of the optimal non-anticipatory policy starting from a fixed state (x,&—1).
First note that V;*(z,&—1) = Ee., [V (z, &—1, €>1)] and similarly for V;*(z — A, §;—1). We have that V;*(z,&,_1) >
Vi (z — A, &1) as the optimal policy starting from (z — A, &_1) is feasible on all sample paths generated by &> to the
same problem starting at (x, £;_1). Hence by optimality of 7* the inequality must follow.

For the other direction, on any sample path consider the sequence of actions generated by the optimal policy starting from
(z,&—1). By a similar argument, again using at most ||Al|; extra bins the policy is feasible for the problem starting at
(x — A, &—1). Hence by optimality, the inequality follows.

The second result follows via straightforward algebraic manipulations. Indeed, the previous statement can be thought of as
showing that for z € RP and A € R that f(z) > f(z — A) > f(z) — ||A||;. However,

fl@) = f@) = f@) = f@' + (@ =))+ f@' + (2 = 2)7) = f(2') < f(@' + (2 —2)") = f(@) < (@ = 2") |y

where the first inequality uses that 2’ + (z — z’)™ > z and the second the previous result. O
We are now ready to show the bound that A} (s) < O(1).

Proof. For a fixed time ¢ and state s consider A (s) = Q] (s,7'(s)) — Q; (s, 7' (s)) + Q; (s, 7*(s)) — Q; (s, 7*(s))

However consider Q] (s, 7" (s)) — Q] (s, 7*(s)) (with the other term dealt with similarly). On any sample path, the difference
in these terms is bounded by the immediate reward plus the difference of the value at the next states. By problem definition,
the difference in immediate rewards is bounded by one. However, consider the difference in value functions at the next state.
Their state representation has a value of ||(z — z’)"||; of at most 2 (for the two bins that were potentially modified). Hence,
this difference is bounded by 3 in total. A similar argument for Q* completes the proof. O

G. Simulation Details

In this section we provide full details on the simulations conducted, including a formal description of virtual machine
allocation scenarios along with its fidelity to the real-world cloud scenarios, training implementations, hyperparameter
tuning results, and a description of the heuristic algorithms compared.

29

Hindsight Learning for Exo-MDPs

G.1. Online Bin-Packing

In a Stochastic Online Bin Packing (OBP) problem the agent has an infinite supply of bins of size B. Each round, items
us € {0,... B} arrive sampled iid from an unknown distribution. The agent either packs the item into an opened feasible
bin or opens a new bin, with the goal to minimize the expected number of opened bins after 7" rounds.

Appendix C describes how OBP are Exo-MDPs with u; as the exogenous inputs. Lemma 3.1 from Freund & Banerjee
(2019) shows that in stochastic OBP, Pr(r; (S;) # m(S;)) < O(3%). Intuitively, as ¢ — T there is little contribution from
HINDSIGHT(t, £5¢) to the Q' of Equation 6 and so 7 is more likely to coincide with 7*. Using a novel absolute bound on
A and Theorem 2, we have:

Lemma 18. In stochastic online bin packing with i.i.d. arrivals, sup, Al (s) < O(1), independent of any problem
primitives. Hence, REGRET(7") < O(1).

To numerically validate this claim, we use ORSuite (Archer et al., 2022) as an OBP simulator with B = 5 and vary 7" from
5 to 100. For these small problem sizes, we can compute 7* by solving Bellman equations exactly. The exogenous process
P= is uniform: u; ~ Unif[B] and we generate |D| = 1000 traces, and benchmark the resulting learned policy against 7*.
The hindsight planner is represented with the integer program in Appendix D.2 (solved efficiently by linear relaxation). Any
learned policy maps a B + 2-dim state (a vector denoting number of bins open with utilization from 1 to B, the current item
and the remaining rounds) to a decision A € {0, ..., B — u;} to select a feasible bin (0 opens a new bin).

Table 5: Hindsight bias in OBP decreases as T increases. Thus, 7' becomes a better surrogate for 7*.

T MaxBias % {3s : 7} (s) # 7":(5)}
5 1.240 6.8%
10 0.646 3.4%
100 0.066 0.3%

For each OBP problem with 7' € {5,10,100} we report in Table 5 the maximum hindsight bias MaxBias =
E[maxsyt Af (s)] , where the expectation averages over 1000 sampled problem instances. We also report the percent-
age of problem instances where at least a single state witnesses 7} (s) # 7/ (s). We see that as T increases, 7' becomes a
good surrogate for 7* which bodes well for HL.

G.2. Multi-Secretary

Multi-secretary is the generalization of the classic secretary problem (Buchbinder et al., 2009), where 7" candidates arrive
sequentially but only B can be selected. An arriving candidate at time ¢ has ability r; € (0, 1] drawn i.i.d. from a finite set
of K levels of expertise. At each round, if the decision-maker has remaining budget (i.e., has chosen less than B candidates
thus far), they can accept a candidate and collect the reward r;, or reject the candidate. The goal is to maximize the expected
cumulative reward. Appendix C.2.3 shows how the multi-secretary problem can be formulated as an Exo-MDP.

Weuse T' = {5, 10,100}, B = gT , K = 4 for our experiments. With four expertise levels the corresponding abilities for
the expertise levels was chosen to be {1/4,1/2,3/4,1}. The arrival process for the ability types is non-stationary and
sinusoidal with a type-dependent shift and frequency. Denoting p§ as the arrival probability of a type j customer at timestep
t, the distribution is as follows. First, p} is chosen to be uniformly at random from [0, 27]. Next, the frequency for each j is
chosen to be uniformly from [0, 7/4]. The final arrival probabilities pg- are then chosen to be sinusoidal with that shift and
frequency value. These values are then normalized appropriately to be a valid distribution.

In Table 2 we report the performance by evaluating each policy using dynamic programming with the true arrivals distribution.
The Greedy heuristic accepts the first B candidates regardless of their quality. ML methods uses a single trace sampled from
the non-stationary candidate arrival process, and use a policy that maps a 3-dim state (the rounds and budget remaining, and
the current candidate ability) to an accept probability. For the hindsight planner, we use Equation 2 from Banerjee et al.
(2020) which implements a linear program with 2N variables.

30

Hindsight Learning for Exo-MDPs

Live VMs Over Time Histogram of VM Request Types
2600 ., 3000
3
2500 =
<
@ 2000
€ 2400 —— Core Usage E
O Core Capacity 5
2300 2 1000
2
2200
0
0 2000 4000 6000 8000 2,2 24 2,8 4,8 4,32 8,32 8,64 24,64 32,128
Time in 5 minute increments (Cores, Memory) Requested
(a) Figure A (b) Figure B

Figure 4: Sample of a thirty-day roll-out from the Azure Public Dataset. In Figure 4(b) we show a histogram of the various
VM types and their corresponding cores and memory resources requested. In Figure 4(a) we plot the used cores over time
on the observed trace, along with the capacity of the 80-node cluster simulated using MARO.

G.3. Airline Revenue Management

Airline Revenue Management (Littlewood, 1972) is a special case of the multi-dimensional Online Bin Packing (OBP)
problem (recall that OBP exhibits vanishing hindsight bias via Lemma 18). The agent has capacity By for K different
resources. At each round, the decision-maker observes a request A; € Rf (the consumed capacity in each resource
dimension), alongside a revenue f;. The algorithm can either accept the request (obtaining revenue f; and updating
remaining capacity according to A;), or reject it (note that partial acceptance is not allowed). The goal of the decision-maker
is to maximize the expected revenue.

We use ORSuite (Archer et al., 2022) as an ARM simulator with fixed capacity, iid. request types and job distribution. We
use T' = {5,10,100}, K = 3, and 2 request types. The starting capacity for the three resources set to be [8,4, 4]. The iid
arrival distribution is (1/3,1/3,1/3) (where the last category corresponds to no arrival). Job one arrivals have resource
requests [2, 3, 2] with revenue 1, and job two arrivals have resource requests [3, 0, 1] with revenue 2. This setting satisfies a
dual-degeneracy condition of the hindsight planner from Vera & Banerjee (2021) which shows large regret for existing
heuristics on these problems.

The optimal policy is computed through dynamic programming. Both RL (Tabular Q-learning) and HL. (Hindsight MAC)
were trained on the same dataset, which contained 100 traces. In Table 2 we report the performance of the policies through
Monte Carlo simulations averaged over 500 iterations.

G.4. Virtual Machine Allocation

Cloud computing has revolutionized the way that computing resources are consumed. These providers give end-users easy
access to state-of-the-art resources. One of the most crucial components to cloud computing providers is the Virtual Machine
(VM) allocator, which assigns specific VM requests to physical hardware. Improper placement of VM requests to physical
machines (henceforth referred to as PMs) can cause performance impact, service delays, and create allocation failures. The
VMs serve as the primary units of resource allocation in these models. We focus on designing allocation policies at the
cluster level, which are a homogeneous set of physical machines with the same memory and CPU cores capacity.

The cluster-specific allocator is tasked with the following:

* Coming VM requests ask for a certain amount of resources (CPU and memory requirements) along with their lifetime.
Resource requirements are varied based on the different VM requests.

» Based on the action selected by the allocator policy, the VM will be allocated to and be created in a specified PM as long
as that PM’s remaining resources are enough.

* After a period of execution, the VM completes its tasks. The simulator will then release the resources allocated to this VM
and de-allocate this VM from the PM.

31

Hindsight Learning for Exo-MDPs

Tick 70

Figure 5: Packing density for the Best Fit policy at one time-step. Each square corresponds to a specific PM and the colour
corresponds to what portion of that PMs capacity is currently utilized. Red corresponds to fully used, green is completely
empty. The packing density ignores the empty (or green) PMs on the bottom and counts the cumulative utilization ratio for
the remaining PMs.

G.S5. Stylized Environment

We use MARO, an open source package for multi-agent reinforcement learning in operations research tasks as a simulator for
the VM allocator (Jiang et al., 2020). In this scenario the VM requests are uniformly sampled from the 2019 snapshot of the
Azure Public Dataset (Cortez et al., 2017). The cluster is a fictitious one consisting of 80 PMs that we found were similarly
over-provisioned as in real-world clusters. See Figure 4(a) to highlight the demand workload against the cluster capacity for
our experiment setup.

By default, MARO provides reward metrics that can be used when specifying the objective of the algorithm. The metrics
provided include income, energy consumption, profit, number of successful and failed allocations, latency, and total number
of overloaded physical machines. However, typical cloud computing systems run in an over-provisioned regime where the
capacity of the physical machines is larger than the demand in order to ensure quality of service to its customers. As a result,
any reasonable algorithm has no failed allocations. Hence, any reasonable algorithm also has identical values for income,
energy consumption, profit, etc.

For the reward function we instead consider 7 (s, a,§) = —100«*Failed-Allocation — 1/Packing Density. The
first component, one hundred times the number of failed allocations, helps to penalize the algorithms in training to ensure
valid assignments for all of the VM requests. The second component corresponds to the Packing-Density, computed
via:

> wevm Cores Usage,

ZpEPM 1 [p is utilized | Capacityp

Packing-Density =

The numerator here is the total cumulative cores used for all of the VMs currently assigned on the system. The denominator
is the total capacity of all physical machines which are currently utilized (i.e. have a VM assigned and currently running).
The reason for picking this reward (and the inverse of it) is that:

* It allows for an easily expressible linear programming formulation (see Appendix D.5).

* For any two policies which allocate all virtual machines, packing density serves as a criteria to differentiate the policies.
An algorithm which has large packing density equivalently uses the physical machines efficiently so that unused PMs can
be re-purposed, reassigned, or potentially turned off.

* It serves as a proxy to ensure that the virtual machines are packed in as minimal number of physical machines possible.
This allows the allocator to be robust to hardware failures, where entire physical machines are potentially rendered
unusable.

32

Hindsight Learning for Exo-MDPs

Algorithm 2 Training Procedure in MARO

1: Input: number of roll-outs, number of actors, number of training iterations.

2: for each roll-out do

3: For each actor, sample a random duration uniformly at random, and execute the Best Fit heuristic on a historical
dataset of that length starting from an empty cluster

4: For each actor, sample a one-hour trace of VM requests &°
5: for each actor do
6: Collect dataset of (s¢, at, &, 4, St+1) pairs under the current policy 7y
7: end for
8: Add collected dataset to current experience buffer
9: for each training iteration do
10: Sub-sample batch from current collected dataset
11: Update policy by gradient descent along the sampled batch
12: end for
13: end for

See Figure 5 for an illustration.

G.5.1. SIMULATOR FIDELITY

Our training procedure requires a faithful simulator of Virtual Machine allocation focused at a cluster level to validate our
experimental results. We found that the MARO simulator captures all first-order effects of cloud computing environments
specifically at the cluster level. However, there are several effects not included in the simulations:

* When a virtual machine arrives to the system, they request a maximum amount of CPU and memory capacity that they can
use. However, over time, any given VM request might only use a fraction of their requested resources. Current cloud
computing systems use an over-subscription model where the requested memory and CPU cores for the VMs assigned
to a PM can surpass its capacity. However, when the total realized demand surpasses the PMs capacity, all of the VMs
assigned to that system are failed and migrated to a different PM. In contrast, MARO assumes that each VM uses exactly
its requested cores and memory over time, hence eliminating the need to model over-subscription on the cluster level.

* Typical systems involve live migration where virtual machines can be moved between physical machines without disrupting
the VM request. This is used in order to eliminate stranding which occurs when a physical machine has only a few
long-running virtual machines allocated to it. However, such an operation is costly and requires a large amount of system
overhead.

* Our neural networks explicitly use the VM’s lifetime as a feature in the state. However, in true cloud computing systems
the lifetime is unknown. Only when a user decides to cancel a VM does the system have access to that information.
As such, it is typically observed in the trace dataset but cannot be used in policy network design. We forgo this when
modelling the policy as unlike the dynamics of VM request types, lifetimes for a VM are typically easy to model and
these forecasts can be used as a replacement in the network representation (Hadary et al., 2020).

We believe that MARO serves as a high fidelity simulator of the VM allocation problem at the cluster level while providing
open source implementation for additional research experimentation. However, we complement these results in §7.3.2 with
a real-world model of cloud computing platforms.

G.5.2. TRAINING IMPLEMENTATION DETAILS

Algorithm 2 presents the pseudocode for our training procedure using MARO. We repeat the following process for five
hundred roll-outs. First, we created realistic starting state distributions by executing the BestFit heuristic for a random
duration (greater than one day). Line 4 samples one-hour traces of VM requests from the 2019 historical Microsoft Azure
dataset. Then, in line five and six, with fifteen actors in parallel we evaluate the current policy 7y on the sampled VM request
trace, adding the dataset of experience to the experience buffer. Lines 9-11 samples batches of size 256 where we update the
policy and algorithmic parameters 6 by gradient descent on the loss function evaluated on the sampled batch. This process
repeats for five thousand gradient steps.

33

Hindsight Learning for Exo-MDPs

We implemented the training framework using PyTorch (Paszke et al., 2019) along with MARO (Jiang et al., 2020), and all
experiments were conducted using the Microsoft Azure ML training platform. For hyperparameters and neural network
architectures for the Sim2Real RL and Hindsight Learning algorithms, see Appendix G.5.4. All experiments were run on
the same compute hardware and took similar runtimes to finish. Runtime was dominated by the MARO simulator executing
the roll-outs under the curent policy versus the HINDSIGHT calls or the ML model updates. As such, each algorithm was
essentially given the same computational budget.

To evaluate the trained policies we subdivided the Azure Public Dataset into a temporally contiguous and non-overlapping
training (first 15 days) and test (last 15 days) portions. For evaluation we sampled fifty different one-day traces of VM
requests from the held-out portion. For each of the different traces, we executed the policy in parallel to a greedy Best
Fit algorithm. Each deep learning algorithm was evaluated over five different random seed initializations and we tuned
hyperparameters using grid search. All metrics are reported with respect to cumulative differences against the baseline Best
Fit policy, alongside statistical significance tests. In Table 2 we evaluate the number of machines required to pack the jobs.
Negative numbers correspond to fewer required PMs on average. Asterisks correspond to statistical significance computed
with Welch’s t-test with p = 0.05. In Table 7 we provide the performance metrics on the underlying rewards as well.

G.5.3. HEURISTIC ALGORITHMS

* Random: Picks a physical machine uniformly at random from the list of physical machines which have capacity to service
the current VM request.

* Round Robin: Allocates to physical machines in a round-robin strategy by selecting a physical machine from the list of
physical machines which have capacity to service the current VM request that was least recently used.

* Best Fit: This algorithm picks a physical machine based on a variety of metric types.

Remaining Cores: Picks a valid physical machine with minimum remaining cores

Remaining Memory: Picks a valid physical machine with minimum remaining memory

Energy Consumption: Picks the valid physical machine with maximum energy consumption

Remaining Cores and Energy Consumption: Picks a valid physical machine with minimum remaining cores, breaking
ties via energy consumption

Similar heuristics to this are currently used in most large-scale cloud computing systems (Hadary et al., 2020).

* Bin Packing: Selects a valid physical machine which minimizes the resulting variance on the number of virtual machines
on each physical machine.

G.5.4. SIM2REAL RL ALGORITHMS

We also compared our Hindsight Learning approaches to existing Sim2Real RL algorithms in the literature with custom
implementation built on top of the MARO package. These include:

* Deep Q Network (DQN): Double ()-Learning algorithm from Van Hasselt et al. (2016).
* Actor Critic (AC): Actor Critic algorithm implementation from Konda & Tsitsiklis (2000).

* Mean Actor Critic (MAC): A modification of the actor critic algorithm where the actor loss is calculated along all actions
instead of just the selected actions (Allen et al., 2017).

* Policy Gradient (VPG): A modification of the vanilla policy gradient with a exogenous input dependent baseline
from Mao et al. (2019b). Instead of training a baseline explicitly, we use Q5 Fit(s, a, £>4).

G.5.5. STATE FEATURES, NETWORK ARCHITECTURE, AND HYPERPARAMETERS

The state space of the VM allocation scenario is combinatorial as we need to include the CPU and memory utilization of
each physical machine across time to account for the lifetimes of the VMs currently assigned to the PM. To rectify this, for
each of the deep RL algorithms we use action-dependent features when representing the state space. In particular, once a
VM request arrives, we consider the set of physical machines that are available to service this particular virtual machine.
Each (PM, VM) pair has associated state features, including:

34

Hindsight Learning for Exo-MDPs

* The VM’s CPU cores requirement, memory requirement, and lifetime
» The PM’s CPU cores capacity, memory capacity, and type

* The historical CPU cores allocated, utilization, energy consumption, and memory allocated over last three VM requests

The last component is serving as a proxy for the historical utilization of the PM across all time to account for all VMs
currently assigned to the PM. The final action dependent features corresponds to the concatenation of these state features for
each valid PM to service the current request.

We note that to use action-dependent features some of the algorithms required slight tweaking to their implementations. In
particular, when considering algorithms using a policy network representation (i.e. policy gradient, actor critic, or mean actor
critic) when executing the policy we take 79 = Softmax(w(s,a1),...,7(s,an)) where ay, ..., ay is the set of physical
machines that can service the current request and (s, a;) is the corresponding state-features for the physical machine a;.

For the actor and critic network representations in all algorithms we use a four layer neural network with (32, 16, 8) hidden
dimensions, an output dimension of one (due to the action-dependent features), and LeakyReLLU activation functions.
For each of the algorithms we use the RMSprop optimization algorithm. We implemented the training framework using
PyTorch (Paszke et al., 2019) and MARO. All experiments were run on the same compute hardware and took similar
runtimes to finish. Runtime was dominated by the MARO simulator executing the roll-outs, and the ML model updates and
HINDSIGHT oracle calls were quicker.

Lastly we provide a list of the hyperparameters used and which algorithm they apply to when tuning algorithm performance.

Table 6: List of hyperparameters tuned over for the Sim2Real RL and Hindsight Learning algorithms.

Hyperparameter Algorithm Values

Discount Factor DQN, AC, MAC, PG 0.9, 0.95, 0.99, 0.999
Learning Rate All Algorithms 0.05, 0.005, 0.0005, 0.00005, 0.000005
Entropy Regularization PG, AC, MAC 0,0.1,1, 10

Actor Loss Coefficient AC, MAC 0.1, 1, 10, 100

Target Update Smoothing Parameter DQN 0.0001, 0.001, 0.01, 0.1

For concrete parameters evaluated and experiment results, see the attached code-base.

G.5.6. TRAINING PERFORMANCE

In Figure 6 we include a plot of the loss curves for the various algorithms.

G.5.7. TESTING PERFORMANCE
In Table 7 we plot the performance of the algorithms on the true reward function. Here we include the true reward considered:
r(s,a,§) = =100 x Failed-Allocation — 1/Packing Density(s)

as well as simply Packing Density(s). All measures are reported with a 95% confidence interval, and computed as
differences against the Best Fit allocation policy.
G.6. Real-World VM Allocation

In this simulation we consider the more realistic setting of VM arrivals in continuous time and where the allocation agent
has no information about VM lifetimes. We avoid giving a concrete description of the reward function trained, cluster sizes,
etc. to preserve the confidentiality of the cloud operator. However, we briefly describe the training implementation details,
heuristic algorithms, as well as the hindsight heuristic used.

G.6.1. HEURISTIC ALGORITHMS

Table 3 summarizes the results of performance for three different algorithms:

35

Hindsight Learning for Exo-MDPs

Table 7: Performance of heuristics, Sim2Real RL, and Hindsight Learning algorithms on VM allocation. Here we include the true reward
metric the algorithms were trained on (negative inverse of the packing density) and the packing density improvements on average.

Algorithm Performance r = —1/Packing Density Packing Density
Performance Upper Bound 0.66 £ 0.29 .09% + 0.03%
Best Fit 0.0 0.0

Bin Packing —64.44 4 2.49 —5.34% + 0.2%
Round Robin —56.36 + 2.65 —4.67% £+ 0.22%
Random —48.94 + 2.33 —4.08% £+ 0.19%
DQN —1.00£0.41 —0.05% + 0.04%
MAC —0.38 £0.033 —0.03% =+ 0.00%
AC —2.94 +0.61 —0.21% =+ 0.06%
Policy Gradient —1.03£0.39 —0.06% =+ 0.04%
HINDSIGHT MAC 0.18 £ 0.093 0.05% + 0.00%
HINDSIGHT Q-DISTILLATION 0.08 +0.32 0.04% 4 0.029%

Algorithm 3 Hindsight Heuristic.
1: Input: A cluster state s, sequence of VM requests &;.7.
2: Sort requests in descending order of their lifetimes
3: for Each request £ do
4: Allocate to the feasible PM where £ is the only live VM on it for the least amount of time
5: end for

BestFit Performance is shown relative to a BestFit strategy used in production. This strategy follows a proprietary
implementation that prioritizes between CPU and memory depending on their scarcity.

Hindsight Learning and Sim2Real RL. We adapt HINDSIGHT MAC (HL) and compare it with MAC (Allen et al., 2017)
(RL), where both used the same network architecture, which embeds VM-specific and PM-specific features using a 6-layer
GNN. The resulting architecture is rich enough to represent the BestFit heuristic, but can also express more flexible policies.

G.6.2. TRAINING IMPLEMENTATION DETAILS

We trained each algorithm over 3 random seeds and evaluated 5 rollouts to capture the variation in the cluster state at the start
of the evaluation trace. Unlike the other experiments, we cannot account for the randomness in exogenous samples because
we only have one evaluation trace for each cluster. Error metrics are computed with a paired ¢-test of value p = 0.05.

G.6.3. HINDSIGHT HEURISTIC

Due to the large scale of the real-world scenarios, even the linear relaxation of the integer program was not tractable.
Consequently, we resort here to using a carefully designed hindsight heuristic (Algorithm 3) to derive HINDSIGHT(t, €, s).
The heuristic is based on prioritizing VMs according to both their size and duration. See Algorithm 3 for pseudocode.

In Table 8 we separately tested the accuracy of our heuristic for the hindsight planner (both by comparing to the optimal
in small instances, as well as by comparing to a lower bound given in Buchbinder et al. (2021)), and concluded that the
heuristic obtains a value that is within few percentages of the optimum. We found that the dual gap of Algorithm 3 was
typically within 4% of the optimum.

36

Hindsight Learning for Exo-MDPs

Table 8: How close to optimal is the Upper Bound (Oracle)? We measure the average UsedPMs of the Oracle’s solution and compare with
the lower bound which assumes that VMs can be fractionally split across PMs.

Cluster Upper Bound (Oracle) Lower Bound Gap (%)
A 467.42 499.625 6.89%
B 538.35 578.214 7.41%
C 383.19 391.329 2.12%
D 27.47 32.9769 20.07%
E 448.86 475.968 6.04%
F 577.97 625.083 8.15%
G 2252.65 2287.21 1.53%
H 2295.19 2332.31 1.62%
I 341.90 361.654 5.78%
J 1212.91 1239.9 2.23%
K 565.34 570.532 0.92%
L 8.23 8.85826 7.64%
M 8.77 9.3152 6.25%
N 305.10 310.096 1.64%
(0] 43.27 45.3596 4.82%
P 2528.72 2588.38 2.36%
Q 1457.37 1481.13 1.63%
R 123.04 124.866 1.49%
S 2452.25 2491.68 1.61%
T 68.68 70.0956 2.07%
8] 533.61 539.872 1.17%
v 1243.70 1260.14 1.32%
W 1678.88 1702.09 1.38%
X 158.71 171.058 7.78%
ALL 4.33%

37

Hindsight Learning for Exo-MDPs

Loss Curve for DQN
Q lel6 Loss Curve for AC
0.00
2 4
—0.251
S £ -0.501
—0.751
01, : : : , 1 —1.00i, , , , , ;
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations le6 Training Iterations le6
(a) DQN (b) AC
Loss Curve for MAC Loss Curve for Policy Gradient
-11.01 3 f [
«n —1 15 1 7]
g 82
) .
—12.01
l 4
—12.51 \,I\.,. Ki\mﬁw
T T T T T T O‘ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations le6 Training Iterations le6
(c) MAC (d) PG
Loss Curve for Hindsight Q-Distillation Loss Curve for Hindsight MAC
12.51
—11.01
10.0
B , —11.51
& 751 3
— ~12.0/
5.0
—12.51
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Training Iterations le6 Training Iterations le6

(e) HINDSIGHT Q-DISTILLATION

(f) HINDSIGHT MAC

Figure 6: Moving average of the loss curves for the Sim2Real RL and Hindsight Learning algorithms over the one million
gradient steps computed in each of the experiments. Note that some of the volatility occurs when an algorithm observes a
datapoint with a failed allocation as there is a large penalty.

38

