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Abstract. We introduce a population-based approach to solving pa-
rameterized graph problems for which the goal is to identify a small
set of vertices subject to a feasibility criterion. The idea is to evolve
a population of individuals where each individual corresponds to an
optimal solution to a subgraph of the original problem. The crossover
operation then combines both solutions and subgraphs with the hope
to generate an optimal solution for a slightly larger graph. In order to
correctly combine solutions and subgraphs, we propose a new crossover
operator called generalized allelic crossover which generalizes uniform
crossover by associating a probability at each locus depending on the
combined alleles of the parents. We prove for graphs with n vertices and
m edges, the approach solves the k-vertex cover problem in expected
time O(4km +m*log n) using a simple RLS-style mutation. This bound
can be improved to O(4km + m?nklog n) by using standard mutation
constrained to the vertices of the graph.

1 Introduction

Many combinatorial problems involving graphs require finding a small set of
components (e.g., vertices or edges) subject to some feasibility criterion. Exam-
ples include the k-vertex cover problem, where a solution is a set of vertices of
size at most k that includes at least one endpoint of every edge in the graph,
and the k-edge dominating set problem in which a solution is a set of edges of
size at most k such that each edge not in the set is adjacent to at least one edge
in the set.

When applying methods from evolutionary computation to solve such prob-
lems, a popular approach to handle infeasibility is to add a penalty term into
the fitness function to ensure feasible solutions are preferred over infeasible so-
lutions. A somewhat orthogonal approach is to employ some kind of constraint
repair operation that repairs infeasible solutions that may have been produced
by mutation or crossover. Recently, Branson and Sutton [1] introduced a focused
jump-and-repair operation that tries to repair infeasible solutions by taking a fo-
cused jump in the fitness landscape and subsequently invokes a domain-specific
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repair operator to transform offspring rendered infeasible by mutation into fea-
sible individuals.

An open question from [1] is whether populations and crossover might be
used together with constraint repair to efficiently solve parameterized problems.
We address that question in this paper by developing a new population-based
approach in which the population consists of feasible solutions to subgraphs of
the original graph. We introduce a generalization of uniform crossover, called
generalized allelic crossover, and show that this crossover together with mu-
tation and constraint repair results in fixed-parameter tractable runtime for
the k-vertex cover problem. In particular, on graphs with n vertices and m
edges, our approach finds a vertex cover of size at most & (if one exists) within
O(4%m +m*logn) generations using RLS mutation. This bound can be im-
proved to O(4%m + m?nklogn) using standard mutation that only affects the
segment of the bitstring corresponding to the vertices. Ignoring polynomial fac-
tors, these bounds are not as tight as the FPT bounds for (1+1) EA on the same
problem [1], but are interesting for a number of reasons. First, the population-
based approach can be easily parallelized to incur runtime speedups. Further-
more, even without parallelization we found the approach to be significantly more
efficient than the (1+1) EA variant on empirical studies of randomly generated
graphs (reported in Section.

1.1 Background

Constraint repair is one of the main techniques employed to address constrained
optimization by randomized search heuristics |2]|. Repair-based crossover op-
erators were initially developed in the context of permutation-based encod-
ings |7}/13}/15]. A repair mechanism based on local search was applied to ver-
tex cover problems and examined empirically by Pelikan, Kalapala and Hart-
mann [19] for hierarchical Bayesian optimization (hBOA) and the simple genetic
algorithm (SGA). The authors showed that these approaches (along with simu-
lated annealing) produced optimal vertex covers on Erdgs-Rényi random graphs
significantly faster than branch-and-bound.

Finding minimal vertex covers has been an intense subject of research for
evolutionary algorithms. Khuri and Béck [10] investigated handling infeasible so-
lutions by adding a penalty term to the fitness function that strongly discounts
candidate solutions that are not vertex covers. They demonstrated that a ge-
netic algorithm significantly outperforms the well-known 2-approximation based
on maximal matching on random graphs and structured graphs introduced by
Papadimitriou and Steiglitz [18|. This promising empirical performance of evolu-
tionary methods on vertex cover influenced the development of theoretical work
on the problem [5)8)17].

From a parameterized complexity perspective, the vertex cover problem was
the first problem for which a fixed-parameter tractable evolutionary algorithm
was developed in the work of Kratsch and Neumann [11|. They proved that
Global SEMO using a tailored mutation operator has an expected optimization
time bounded by O(OPT - n* + n - 20PT*+OPTY on any graph G where OPT is
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the size of a minimum vertex cover of G. When the objective function also uses
cost of an optimal fractional cover (obtained by linear programming) the bound
is improved to O(n?logn + OPT -n? + 49FTy).

Branson and Sutton |1] recently showed that a focused jump-and-repair oper-
ation can probabilistically simulate iterative compression, which is an algorithm
design technique for efficiently compressing a feasible solution into a slightly
smaller solution. They proved that the (14+1) EA employing focused jump-and-
repair and using a restarting framework results in a fixed-parameter tractable
0(2°PTn?logn) runtime bound on k-vertex cover problems. They also give
fixed-parameter tractable bounds for the FEEDBACKVERTEXSET and OpDDCY-
CLETRANSVERSAL problems.

In this paper, we show how a carefully designed crossover operator can also
leverage populations based on subgraphs to probabilistically simulate iterative
compression. The effect of crossover on parameterized complexity has also been
studied on the closest string problem [22].

2 Preliminaries

We consider undirected graphs G = (V, E) where V = {v1,...,v,} is a set of
n vertices and E = {e1,...,en} C (4) is a family of m 2-element sets of V
called edges. Given a vertex set S, C V and an edge set Sg C F, we take the

intersection to be the set of vertices that appear in both sets (i.e., the edge set
is “Aattened”): Sy N Sg = Sy N (U{u’v}esE{u,v}). The set difference Sy \ Sg
is defined analogously.

We construct subgraphs of G = (V| E) using subsets of E. Specifically, for
any edge set Sgp C F, the unique subgraph of G corresponding to Sg is the graph
(VNSg, Sg). The neighborhood of v € V is the set N(v) :== {u € V | {u,v} € E}.

A wertex cover of G = (V,E) is a set S C V such that for every e € E,
eN S # (. The problem of deciding if a graph has a vertex cover of a given size
is NP-complete [9], and thus finding a minimum size vertex cover is NP-hard.

Large instances of NP-hard problems can often be solved in practice because
real-world instances usually exhibit some kind of structure that can be leveraged
by solvers. In these settings, worst-case complexity as a function of problem size
alone is not as useful. Parameterized complexity theory |3l/4] refines classical
complexity theory by factoring the running time of an algorithm into more than
one parameter of the input. The aim is to extract the hardness of a problem
class by isolating the superpolynomial contribution to the running time to a
parameter independent of the problem size.

Formally, a parameterized problem is expressed as a language L C X* x IN
for a finite alphabet X. A problem L is fized-parameter tractable if (x, k) € L can
be decided in time g(k) - |z|?™") for some function g that depends only on k. The
complexity class of fixed-parameter tractable problems is FPT. An algorithm
is a Monte Carlo FPT algorithm for a parameterized problem L if it accepts
(z,k) € L with probability at least 1/2 in time g(k) - |#|°(") and accepts = & L
with probability zero.
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Parameterized complexity theory is especially relevant to the analysis of evo-
lutionary algorithms in the context of understanding the influence of problem
structure on the running time of NP-hard optimization problems [16/22|. Assume
(z,k) € L and let T be the optimization time of a randomized search heuristic
(measured, e.g., by the number of calls to the fitness function) until it certifies
(z,k) € L. Any randomized search heuristic with a bound E[T] < g(k) - |2|°(™")
on L can be transformed into a Monte Carlo FPT algorithm by stopping its exe-
cution after 2g(k)-|x|°™) fitness function evaluations. We thus say a randomized
search heuristic runs in randomized FPT time on a parameterized problem of
size n when E[T] < g(k) - n®1). The parameterized k-vertex cover problem is,
given a graph G and an integer k, decide whether there is a vertex cover of size
at most k.

2.1 Generalized Allelic Crossover

Let z,y € {0,1}™. With each locus ¢ € [n], we associate three probabilities
pgo)’ pgl) and pl(?). The generalized allelic crossover operator (GAC) produces
an offspring z from two parents x and y by setting for each i € [n]

~_J1 with probability plrityd)

’ 0 otherwise.

Standard uniform crossover [23| can be considered a special case of GAC

when pgo) =0, pgl) =1/2, and pl@) =1 for all ¢ € [n]. Moreover, GAC can also

implement deterministic set operations such as union (pgo) =0, pgl) = 52) =1)
and intersection (pgo) = pz(-l) = 0, pl(.Q) = 1). Keeping pz('O) = 0 and pz(?) =1

but varying pgl) recovers the “parameterized uniform crossover” of Spears and
De Jong [21] (if Y :pgl) for all 4,5 € [n]).

3

We note that GAC is allowed to deviate from common crossover design
philosophies. Specifically, when pl(-z) <1 (or pl(-o) > 0), it becomes possible for
GAC to produce offspring that lie outside the smallest hyperplane containing
both parents. Thus, with such settings, GAC is not a forma-respecting opera-
tor (also called inheritance-respectful by Friedrich et al. [6]), nor does it always
strictly transmit in the sense of Radcliffe [20]. Similarly, it is not necessarily a
geometric crossover operator in the sense of Moraglio |14], as it can, with certain
settings, produce offspring that do not lie in the convex hull described by the
parents.

One may argue that such allowances in some sense perverts the original
philosophy of crossover, which is meant to share information possessed by all
parents. Nevertheless, we show in this paper how it can be leveraged to achieve
good results, at least on the vertex cover problem.
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3 A Population-based Subgraph GA for k-Vertex Cover

The philosophy of our approach is to start with a large population of feasible
solutions to small subgraphs of G, and allow these subgraphs to produce offspring
that correspond to feasible solutions of slightly larger subgraphs. This process
continues until a feasible solution is found for the entire graph G.

In the context of the k-vertex cover problem, a population of feasible solutions
to subgraphs corresponds to a set of subgraphs, each with a valid vertex cover
of size at most k. We represent each individual as a bit string of length n + m
in which the first n elements encode a candidate vertex cover and the last m
elements encode a candidate subgraph. Given a bit string x € {0,1}"t™, we
define the operators S(z) and E(z) that extract the candidate cover and the
candidate edge set, respectively. In particular,

S(z) ={v; e V:i€[n] and z; =1}
E(z) ={e;€ E:i€[m]and x,y; =1}

Using these operators, we can define the concept of feasibility as follows.

Definition 1. Let G = (V, E) be a graph. An individual z € {0,1}"T™ is fea-
sible when the vertex set S(xz) N E(x) corresponds to a feasible k-vertex cover in
the subgraph of G selected by E(x), i.e., when

1. for each e € E(x), enN S(x) # 0, and
2. |S(z)NE(x)] < k.

Throughout the paper, we will assume that we are given a graph G that is
guaranteed to have a vertex cover of size k. This is not strictly a limitation, since
the runtime bounds provided can be used to design a search for the smallest &
with probabilistic guarantees on the success of each run (cf the restart framework
in [1]).

In each generation, an offspring is created via crossover or mutation. Survival
selection proceeds similar to the Global SEMO algorithm from evolutionary mul-
tiobjective optimization: if the offspring is not dominated or tied by any individ-
uals in the current population, it is included in the next population. Moreover,
any individual in the current population that is dominated by the offspring does
not survive.

Definition 2. A solution x is dominated by a solution y, written as x < y, if
and only if at least one of the following conditions holds.

1. x is infeasible but y is feasible,
2. E(z) C E(y), or
3. BE(z) = E(y) and |S(x)| > |S(y)].

If E(x) = E(y) and |S(z)| = |S(y)|, then = and y are tied. If y dominates
x or x and y are tied, we write x = y. If x and y are not tied and x does not
dominate y (and vice versa), then x and y are incomparable.
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Algorithm 1: Population-based subgraph GA
Input: A graph G = (V, E) and a crossover probability p.

1 Initialize Po;

2 t <+ 0

3 while P, does not contain an optimal solution do
4 Choose parents x,y € P; uniformly at random,;
5 with probability p. do

6 z < CROSSOVER(%,y);

7 L z < CONSTRAINTREPAIR(2,7,y,G);

8 else

9

z <+ CorY(x);
10

z < MUTATE(z);

11 if Aw € P; s.t. z X w then

12 | Py ={weP|wAztu{z}
13 t+—t+1;

With probability p., in line |§| an offspring is created from two parents by
applying a crossover operator, and in line [7| the constraint-repair operation is
called that attempts to repair an offspring that was possibly made infeasible
by crossover. Otherwise, with probability 1 — p., in line @ NO Crossover occurs
and an arbitrary parent is copied to the offspring and is varied according to a
mutation operator in line Finally, in line the offspring is added to the
population if it is not dominated or tied by any element of the population, and
all elements of the population dominated by the offspring are removed.

3.1 Variation Operators and Controlling Population Growth

The crossover operation in Algorithm [1]|is implemented as generalized allelic
crossover (defined in Section|2.1) on bitstrings of length n+m with the following

probabilities. For all 1 < i < n 4+ m, we set pl(-o) = 0. Otherwise,

W (2 J1/2 for1<i<mn
b =h= 1 forn+1<i<n-+m.

We may thus think of bitstrings as separated into a length-n verter segment con-
sisting of the first n elements, and a length-m edge segment consisting of elements
n+1 to n+m. The crossover probabilities are designed so that vertex segments
are combined probabilistically and edge segments are combined deterministi-
cally. In particular, given the offspring z of two parents x and y, it always holds
that S(z) is a uniform random subset of S(z) U S(y) and E(z) = E(x) U E(y).

We consider two separate approaches to mutation. For RLS-MUTATION, an
index 7 is chosen uniformly at random in {1,...,n + m} and the single bit x;
is flipped. For VERTEX-MUTATION, we flip each bit in z; with probability 1/n,
but only for indexes in {1,...,n} that correspond to the vertices of G.
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We do not consider standard bit mutation on the entire bit string for the
following reasons. We will require that crossover and mutation always create
offspring that dominates its parent(s), or is always dominated by a parent. En-
forcing this constraint ensures that the population size cannot increase during
the execution of the algorithm (captured in Lemma (1| below). The VERTEX-
MUTATION operator clearly creates an offspring with a subgraph equal to the
one of its parent. The RLS-MUTATION operator may add or delete exactly one
edge (or none), in which case one subgraph contains the other. Using standard
bit mutation on the entire bitstring allows for the chance to create an offspring
with an edge set that is incomparable with respect to subset inclusion to the
edge set of its parent. This offspring would also be incomparable to its parent in
the sense of Deﬁnition Allowing such incomparable offspring could cause un-
controlled population growth during the execution of the algorithm. While there
may be specific techniques to mitigate this growth, in this paper we will restrict
ourselves to the above defined mutation operators that guarantee a population
size that does not grow.

Lemma 1. Consider the execution of Algorithm using either RLS-MUTATION
or VERTEX-MUTATION for its mutation operation. Let P; denote the population
in generation t. If all individuals in P, are feasible, it holds that (1) all individuals
in Piy1 are feasible, and (2) |Piy1| < |Pl.

Proof. In lineof Algorithm an offspring z is only added to Py, if it is not
dominated nor tied by any individual P;. The first condition trivially holds, as
all infeasible solutions are automatically dominated by feasible solutions.

Let x,y € P; be the parents selected in line[4]of Algorithm[I] We argue that
either x < z, 2 < x, or z and z are tied. If z is not feasible, then the z < x
clearly holds, since x is feasible. Thus, assume that z is also feasible. It suffices
to show that either F(z) C E(z) or E(z) C E(z). If one graph is a proper subset
of the other, then we have dominance (of the superset graph). Otherwise, when
E(z) = E(z), then z and z are either tied (if |S(z)| = |S(2)|) or one dominates
the other.

If z was created by crossover, then since pz(-l) = pl@) = 1 for all indexes
i€ {n+1,...,n+m}, it follows that E(z) = E(x)UE(y), and therefore E(x) C
E(z). If z was created by RLS-MUTATION, then either E(z) = E(z) (when the
flipped bit index is at most n), otherwise F(z) has gained (respectively, lost)
exactly one edge compared to E(x). This means that E(z) C E(z) (respectively,
E(z) C E(z)). Finally, since VERTEX-MUTATION does not affect the indexes
corresponding to the edges, we would have E(z) = E(z).

Since z is added to the population only if it is not dominated or tied, it
follows that z € P;y1 <= « € P41 and thus we have |Piyq| < | Pyl O

3.2 Constraint Repair Operator

Crossover can produce infeasible solutions. We employ a constraint repair op-
eration inspired by the iterative compression procedure that attempts to repair
any crossover offspring that does not correspond to a vertex cover.
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In particular, if crossover removes a vertex from S(z) U S(y), then any un-
covered edge can be repaired by adding the neighbors of that vertex back into
the offspring’s vertex set. The resulting offspring is guaranteed to be a vertex
cover. However, it is not necessarily feasible in the sense of the k-vertex cover
problem, as it may return a cover of size greater than k. We formalize the vertex
cover repair operator in Algorithm

Algorithm 2: CONSTRAINTREPAIRVC (z,z,y, G)
Input: An offspring z, parents z,y and a graph G = (V, E)

1 if S(z) is a feasible cover for E(z) then return z;
// Store vertices that were removed from S(z)U S(y)
A (S(@)uSE)\S(2);
foreach v € A do
L S(z) « S(z) UN(v);

return z;

T N

The intuition behind this procedure is that since S(z) is a feasible cover for
E(z) and S(y) is a feasible cover for E(y), if v belongs to one of them, but not
S(z), then the neighbors of v in G may need to be added to potentially cover
the edges in E(z) = E(z) U E(y).

4 Runtime Analysis

Given an individual z € {0,1}"™, since S(z) is interpreted to be a candidate
solution in the subgraph defined by E(x), any v € S(z)\ E(x) does not contribute
to the solution. This motivates the following definition.

Definition 3. We say an individual z € {0,1}"T™ is efficient when S(x) \
E(z) = 0. We call a population efficient when all of its individuals are efficient.

We are interested in bounding the total expected number of generations that
Algorithmspends on populations that are not efficient. The mutation operator
together with the fitness domination criteria listed above ensures that there is
always selective pressure toward efficient populations, but in some cases the
“inefficiency” of a population can increase. However, we show in the following
theorem that efficiency is lost only in cases where we are in some sense making
overall progress, and thus the number of times this occurs can be bounded.

Theorem 1. Let G = (V, E) be a graph. We assume that G is connected. Let
Py be any set of feasible solutions with |Py| = poly(n) and U,cp, E(z) = E. Let
pe € (0,1) be a constant. The expected number of generations of Algorithm in
which the population is not efficient is bounded above by O(|P0|2m2 log n) uSing
RLS-MUTATION and O(|Po|?knlogn) using VERTEX-MUTATION.
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Proof. We design a nonnegative drift potential ¢ over populations as follows.

P) =) |S()\E()|

xr€ Py

. Clearly, p(P;) =0 if and only if P; is efficient.

This drift function can fluctuate during the course of the execution of Algo-
rithm [1} However, we will later show that the number of times it can increase
is strictly bounded. Thus we are able to bound the total time (in expectation)
that the algorithm spends waiting for the potential to decrease to zero. Since
the remainder of the time the potential would be at zero, the population must
be efficient during those generations.

Let A = {¢(Pi11) > ©(P:)} be the event that the offspring created from
population P; survives into P, and results in a strict increase in potential. We
first bound the conditional drift of ¢ on the complementary event A, namely,
the potential of P,,1 is not strictly greater than the potential of P;. A sufficient
event to decrease the potential is to (1) perform mutation on a single parent
with probability 1 — p., (2) select € P, with probability 1/|P;|, and (3) flip
exactly one bit in S(z) \ E(z). Summing the probability of these disjoint events
over all possible individuals « € P;, for RLS-MUTATION the conditional drift
can be bounded as

—p)|S(@) \ E(z)| (1—pc)
E [p(P;) — p(P, P, Al > > - o(P,
A etbe LA Zp P tm) = Rl P
since |P;| < |Py], by Lemma Similarly, for VERTEX- MUTATION, the probability
of flipping exactly one particular bit is (1/n)(1 —1/n)"~! > 1/e, so we have

B [e(P) ~ o(Pear) | P = G (),

The expected time until ¢ hits zero (or increases, if sooner) can be bounded above
using multiplicative drift [12] as O(|Py|(n + m)log(|Po|n)) = O(|Py|mlogn) for
RLS-MuTATION and O(|Py|nlogn) for VERTEX-MUTATION.

We now argue that the total number of times that this potential can increase
is strictly bounded for the entire run. We consider two further events in the
offspring creation process. Let B denote the event that z is created by muta-
tion from parent x € P, and survives into P;y1, necessarily replacing x in the
population. Let C' denote the event that z is created by a successful crossover
between parents x and y, again necessarily replacing x and y in the population.

Note that event C' must reduce the population size by at least one because a
new feasible subgraph is created from two parents, and those two parents would
be dominated by the offspring. Thus the event ANC can happen at most |Py|—
times during the entire run.

Under RLS-MUTATION, a necessary condition for the event AN B is that the
mutation occurs in the edge segment of the bitstring (indexes larger than n) and
particularly, when a bit is flipped from zero to one. If the mutation producing
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z had occurred in the vertex segment (indexes at most n) then the potential
cannot increase, as this would imply S(z) > S(z) and E(z) = E(x), thereby z
would be dominated by x. Similarly, if the mutation occurs in the edge segment
and changes a one to a zero, then E(z) C E(x) and again z would not survive to
be included in P;;;. Since edges can be added to a subgraph in the population
at most |Py|m times, the event A N B occurs at most |Py|m times during the
entire run.

Under VERTEX-MUTATION, event A N B only occurs when x is replaced by
offspring z where F(z) = E(z), and to compensate for the fact |S(z) \ E(z)| >
|S(z) \ E(z)|, it must be true that [S(z) N E(z)| < |S(z) N E(x)|. However, both
x and z are necessarily feasible, so |S(z) N E(x)| < k and thus for any given
subgraph in the population, event AN B can occur at most k times. Since BUC
is necessary for A, it follows that AN B and A N C partition A, and thus the
potential can only increase during these events.

Therefore, in the case of RLS-MUTATION, the potential can reset at most
| Py|(m~+1)—1 times, and for VERTEX-MUTATION, the potential can reset at most
| Py|(k+1)—1 times. The claimed bounds thus follow from the multiplicative drift
arguments above, and by pessimistically assuming the potential always resets to
the highest possible value and all possible resets occur. a

To bound the runtime of Algorithm it remains only to estimate the total
time spent on efficient populations. The proof of the following theorem estab-
lishes this bound by determining the probability that crossover successfully pro-
duces a dominating offspring from any parents in an efficient population. Such
an event strictly reduces the population size by combining two solved subgraphs
into a larger solved subgraph. The total waiting time for these events together
with the time spent on inefficient populations yields the claimed bounds.

Theorem 2. Let G = (V, E) be a connected graph and let Py be any polynomial-
size set of feasible individuals such that E = J,.p E(x).

Setting p. € (0,1) to be a constant, Algorithmﬁnds a k vertex cover of G
(if one eists) in O(4%|Py| + |Py|*m?logn) generations using RLS-MUTATION
and in O(4%|Py| + |Py|?nklogn) generations using VERTEX-MUTATION.

Proof. By Theorem the expected number of generations the algorithm spends
on populations that are not efficient is at most O(|Py|*m?logn) using RLS-
MUTATION and at most O(|Py|*knlogn) using VERTEX-MUTATION.

We thus seek to bound the number of generations spent on efficient popu-
lations until an optimal solution is found. Suppose that P, is efficient and let
x,y € P with E(z) # E(y). Since both = and y must be feasible, S(x) is a
cover of the subgraph F(z) and S(y) is a cover of the subgraph FE(y). More-
over, the feasibility of x and y together with the efficiency of P; guarantees that
|S(z)],1S(y)| < k. Thus S(z)US(y) is a valid cover of the subgraph E(x)U E(y)
with [S(z) U S(y)| < 2k. We have also assumed there is a k-cover of the entire
graph G, namely S* C V where |S*| < k. Then S* N (E(x) U E(y)) is also
a cover of the subgraph E(z) U E(y). Let R = (S(z) U S(y)) \ S* denote the
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set of vertices that belong to S(z) U S(y), but not to the optimal cover. Let
T = (S(xz)US(y)) N S* be the set of vertices that belong to both covers.

We consider the application of generalized allelic crossover using x and y as
parents to produce an offspring z. Note that F(z) = E(x) U E(y) since Y =

pEQ) =1foralln+1 <1i < n+min the edge segment of the bitstring. Similarly,

for all 1 < < nin the vertex segment of the bitstring, we have pgl) = pgz) =1/2,
so every vertex v € S(z) U S(y) belongs to to S(z) with probability 1/2. Since
pl(-o) = 0 for all 7, any vertex (respectively, edge) not in S(z)US(y) (respectively,
E(x) U E(y)) will not belong to S(z) (respectively, E(z)).

Note that since T' C (S(z)US(y)), we have S(z) = T with probability exactly
2-15@)USWI > 9-2k We condition on this event for the remainder of the proof.
Every edge in the subgraph E(z) U E(y) = E(z) that is not covered by S(z)
must have one endpoint in S* and one endpoint in R because both S* and
(S(z) U S(y)) are valid vertex covers of E(x)U E(y).

After crossover, the repair operation listed in Algorithmidentiﬁes the set of
vertices removed from S(z)US(y), which in this csea corresponds exactly to the
set R, and then add the neighbor set N(R). This results in a repaired offspring
2 with S(z') = TUN(R) C S* which must cover E(z) U E(y) = E(%).

The fact S(z') C S* implies |[S(z’)] < k and so it follows that x,y < 2/,
and since z’ would not be dominated by any other element of the population, z’
replaces x and y in Py, 1. This event, which occurs with probability at least 4=,
results in a strictly smaller population |Pyyq| < |Pl.

A feasible, efficient population containing more than one individual can al-
ways shrink with probability 2(4~%) under the above sequence of events. It
follows that the waiting time until an efficient population shrinks in this way
is bounded above by O(4%). The population can shrink at most |Py| — 1 times
before it consists of a single feasible individual z*. As GAC always composes
subgraphs by union, it holds that E(z*) = E, and since feasibility is maintained
S(z*) is a vertex cover of size at most k for G.

Before generating x*, the algorithm can spend at most O(4%|Py|) generations
on efficient populations and the total time spent on inefficient populations is
bounded by Theorem [1] which yields the claimed result. O

Theorem [2| requires only an initial population of feasible subgraphs that
compose into G. For specific graphs, this could be constructed by including
promising subgraphs that are hoped to be “close” to an optimal cover. However,
every graph at least has a natural initial population of size m in which each
subgraph consists of a single unique edge from G (together with a cover that
contains at least one vertex incident on that edge). This yields the following
general bound.

Corollary 1. Let G = (V, E) be a graph on n vertices and m edges. Algorithm|1|
finds a vertex cover of size at most k of G (if one exists) in O(4km +m*logn
generations using RLS-MUTATION and O(4km + m?2nklog n) generations using
VERTEX-MUTATION.
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Proof. Construct Py from G as follows. For each edge {u,v} € E, let = be any
string in {0,1}"*™ such that z, = 1 and E(x) = {{uv}}. Then P, satisfies the
conditions for Theorem [2] O

5 Experiments

To investigate the concrete running time of Algorithm |[1| and to compare it
with the similar repair-based (1+1) EA*™ introduced in [1], we performed a
number of experiments on the planted vertex cover instances from |1]. Each of
these instances were generated by randomly selecting a subset of k vertices and
including an edge with probability p subject to having at least one end point in
the subset.

The number of vertices n varies from 20 to 100 by 10, planted cover size k
varies from 3 to 10, and edge probabilities are p € {5, 1,4, 2}. On each graph
we ran each algorithm for 50 trials and measured the run time as the number
of calls to the fitness function until a vertex cover of size at most k is found.
For Algorithm we set p. = 0.8, and experimented with both RLS-MUTATION
and VERTEX-MUTATION. The median run times for & = 10 as a function of
n are reported in Figure [1] We omit results for other k-values due to space
constraints, but mention that the trend is identical. Note that after generating
a random graph for a given n, we remove isolated vertices and the figures report
the true n after removal. This explains the variability in n at low edge densities.
In Figure we plot the median run times as a function of k fixing n = 100. The
bottom right plot shows the median as a function of k£ taken over all p and n.
We also provide box plots of the running time of all three algorithms on graphs
with n = 100,k = 10 over all edge densities in Figure

Despite the fact that runtime bound of the (1+1) EA]™™ from |1] is exponen-
tially smaller in k than the one derived in Corollary [T] we see that Algorithm [I]
with VERTEX-MUTATION scales better with both n and k on this class of graphs,
and has smaller variability as measured by interquartile range. Not surprisingly,
the variant using RLS-MUTATION is strongly affected by the number of edges,
and performs poorly on denser graphs, as can be seen in Figure

Khuri and Béck [10] conducted experiments on hard vertex cover instances
using a GA with two-point crossover and proportional selection. In addition to
(nonplanted) random graphs, they investigated two structured graph instances
originally defined by Papadimitriou and Steiglitz 18| to demonstrate that greedy
degree-heuristics fail to approximate minimum vertex covers. These instances
(PS100 and PS202) have vertex counts n = 100, 202, edge counts m = 1122, 4556,
and minimum vertex covers of size k = 34, 68. We also report the success rates
of the population subgraph algorithm on these instances for different runtime
budgets in Tablealong with the success rates reported in [10]. Note that the
minimum covers for these graphs are comparatively large. Nevertheless, we still
observe surprisingly high success rates, even at runtime budgets much smaller
than 4%.
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Fig.1: Median run times of Algorithm |1/ and the (1+1) EAJ™ on random
planted k = 10 vertex cover instances of varying edge density p as a function of

n. Error bars denote interquartile range.
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Khuri & Béck GA |10 GA RLS-MuTATION GA VERTEX- MUTATION
budget  PS100 PS202 PS100 PS202 PS100 PS202
2-10*  65% — 18% 0% 9% 0%
4-100  — 60% 63% 0% 9%  29%
100 — — 100%  96% 100% 100%

Table 1: Success rates on Papadimitriou-Steiglitz instances PS100 and PS202
from |10] for different runtime budgets.

6 Conclusion

We have introduced a population-based technique designed to solve feasible
component-selection problems in graphs. In this technique, one begins with a
large population of solutions to small subgraphs, e.g., single edges or vertices.
We showed that if a suitable constraint repair operation is used, the approach can
achieve fixed-parameter tractable running time bounds on the NP-hard k vertex
cover problem. Our results give insight into how crossover can be leveraged to
exploit structure in hard combinatorial optimization problems. Moreover, exper-
imental results suggest that the population-based approach can be more efficient
than the (1+1) EA on certain classes of graphs.

There are a number of potential directions for future work. As yet, no lower
bounds exist for FPT evolutionary algorithms on the k-vertex cover problem.
This is rather difficult, as the structure of different kinds of graphs have varying
and unpredictable degrees of influence on the assorted modules of evolution-
ary algorithms. Nevertheless, it would be interesting to obtain lower bounds
in terms of k for certain graph categories. Moreover, the proposed subgraph
approach leverages only a suitable constraint repair operations, so it could be
easily extended to similar problems in which a small set of vertices or edges need
to be selected subject to some feasibility criterion.
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