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1 | INTRODUCTION

| Cheng Wang*® | Changjian Xie®

A second-order accurate, linear numerical method is analyzed for the
Landau-Lifshitz equation with large damping parameters. This equation
describes the dynamics of magnetization, with a non-convexity constraint of unit
length of the magnetization. The numerical method is based on the second-order
backward differentiation formula in time, combined with an implicit treatment
for the linear diffusion term from the harmonic mapping part and explicit
extrapolation for the nonlinear terms. Afterward, a projection step is applied to
normalize the numerical solution at a point-wise level. This numerical scheme
has shown extensive advantages in the practical computations for the physical
model with large damping parameters, which comes from the fact that only a lin-
ear system with constant coefficients (independent of both time and the updated
magnetization) needs to be solved at each time step, and has greatly improved
the numerical efficiency. Meanwhile, a theoretical analysis for this linear numer-
ical scheme has not been available. In this paper, we provide a rigorous error
estimate of the numerical scheme, in the discrete (0, T;#2) n £(0, T; H,)
norm, under suitable regularity assumptions and reasonable ratio between the
time step size and the spatial mesh size. In particular, the projection opera-
tion is nonlinear, and a stability estimate for the projection step turns out to be
highly challenging. Such a stability estimate is derived in details, which will play
an essential role in the convergence analysis for the numerical scheme, if the

damping parameter is greater than 3.
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The Landau-Lifshitz (LL) equation [1], with quasilinearity and the constraint of unit length of magnetization,
describes the evolution of the magnetization in ferromagnetic materials with applications of information storage in the
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magnetic-based recording devices [2]. The nonlinear conservative term of the LL equation preserves the unit length of
magnetization and drives the system. The remaining nonlinear part related to the harmonic mapping of the LL equation
is dissipated by a factor of damping parameters. Such a parameter plays an important role for energy evolution, which
can be calculated [3].

There have been extensive numerical works for the LL equation [3-6]. One of the most popular temporal discretization
is the semi-implicit method [7-9], which turns out to remarkably relax restrictions of temporal step size. For example,
the linearly implicit backward Euler approach has been well studied in previous studies [7, 9-11]. A combination of this
numerical idea with a high-order non-conforming finite element discretization in space has been proposed and analyzed
in Alouges and Jaisson [11], in which a projection is applied to an approximate tangent space to the normality constraint.
Moreover, a convergence analysis in both space and time has been established in Akrivis et al. [10], by evaluating the
approximated error of time derivative term which is orthogonal to the magnetization. The error estimates for linearly
implicit schemes, based on either backward Euler or Crank-Nicolson method, combined with finite element/finite dif-
ference spatial discretization, have been obtained in previous studies [9, 12, 13]. The backward differentiation formula
(BDF)-based linearly implicit methods have been analyzed in Chen et al. [7] and Akrivis et al. [10], and a second-order
accuracy has been rigorously proved under the same condition that the temporal step-size proportional to the spatial
mesh size in both space and time.

Meanwhile, it is noticed that all these existing numerical methods lead to an asymmetric linear system of equations with
the coefficients dependent of the updated magnetization. An efficient numerical solver for such an asymmetric linear sys-
tem is highly non-trivial, which usually results in a very expensive computation cost in the three-dimensional simulation.
Therefore, a numerical scheme only involved with a constant-coefficient linear system, so that the coefficients are inde-
pendent of the updated magnetization, is highly desirable. In fact, such a linear numerical scheme has been proposed and
studied in a recent work [14]. In more details, the second-order BDF stencil is used in the temporal discretization, and the
perfect Laplace term (in the harmonic mapping part) is treated implicitly, while the nonlinear terms are approximated by
explicit extrapolation formulas. After an intermediate magnetization vector is obtained by this linear algorithm, a projec-
tion of magnetization onto the unit sphere is applied, to satisfy the non-convex constraint of unit length. Of course, this
numerical approach leads to a linear system with constant coefficients independent of the updated magnetization at each
time step. The complexity of this method is comparable to that of solving the heat flow of harmonic maps. Because of this
subtle fact, the linear numerical scheme has demonstrated great advantages in the simulation of ferromagnetic materi-
als for large damping parameters [14]. Furthermore, extensive simulation experiments have indicated that the proposed
linear numerical method preserves better stability property as the damping parameter takes large values, in comparison
with all the existing works [7, 10, 11, 13, 15].

On the other hand, a theoretical analysis of the proposed linear numerical scheme has not been available, in spite of its
extensive advantages in the practical computations for large damping parameters. Recently, a linearly implicit renormal-
ized lumped mass finite element method has been considered for solving the equations describing heat flow of harmonic
maps, with the renormalized constraint at the point-wise level [16]. The analysis of such a renormalized finite element
method is based on a geometric relation between the auxiliary and renormalized numerical solutions. This relation
enables one to obtain optimal-order error estimates under the mild condition that the time step size is comparable to the
power of the spatial grid size (larger than two). The nonlinear terms in the LL equation pose more difficulties than those
in the heat flow model. The key theoretical difficulty is associated with the fact that a fully explicit treatment of the non-
linear gyromagnetic term (by an extrapolation formula) breaks its (energetic) conservative feature at the numerical level,
so that a direct control of this nonlinear term becomes a very challenging issue. The only hopeful approach is to control
this term by the linear diffusion term in the harmonic mapping part, while the fact that the nonlinear gyromagnetic term
and the linear diffusion term are updated by different temporal discretization makes this estimate highly non-trivial. In
this article, we provide the convergence analysis and the optimal rate error estimate for the proposed linear numerical
scheme, in the discrete £ (0, T, ¢ 2) n¢? (0, T; H}ll) norm, if the damping parameter is greater than 3. To overcome the
above-mentioned difficulties, we build the stability estimate of the projection step, which will play a crucial role in the
rigorous error estimate for the original error function. In particular, a standard £ stability estimate for the projection
step is not sufficient to recover the convergence analysis, and an H;11 stability estimate turns out to be necessary at the
projection step, which comes from the technique of controlling the nonlinear gyromagnetic term by the linear diffusion
term. In more details, the a priori W;"’" estimate for the numerical solution and a priori H pll estimate for the intermediate
numerical error function at the previous time step are needed in the error analysis. Meanwhile, the a priori H; estimate
for the numerical error for the magnetization vector can be controlled by a growth factor 1 + é acting on the H; esti-
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mate of the intermediate magnetization error function, with é being arbitrary positive number. Such a W;"’" bound for
numerical solution and H }1! estimate for the intermediate numerical error function can be recovered at the next time step,
with the help of the inverse inequality and a mild temporal constraint and large damping parameter (larger than 3). In
turn, an estimate for numerical error function becomes a straightforward consequence of an application of discrete Gron-
wall inequality, combined with the fine estimate of a growth factor 1 + § acting on the H ; estimate of the intermediate
error function.

The rest of this paper is organized as follows. In Section 2, we review the fully discrete numerical schemes and state the
main theoretical result of convergence. The detailed proof is provided in Section 3. Finally, some concluding remarks are
made in Section 4.

2 | THE MATHEMATICAL MODEL AND THE NUMERICAL SCHEME

2.1 | The LL equation

The LL equation is formulated as

omx,t) = —mx Am+ aAm+ a|Vm|>m, x € Q, t > 0,
Onm(x, )9 = 0, xX€eo t>0, 2.1)
m(x’ 0) = m()(x)9 X € Q,

where x and t are the variables of space and time, respectively, Q@ ¢ R? (d = 1, 2, 3, with d being the spatial dimension) is a
bounded domain and n is the unit outward normal vector along 0Q, m : = m(x, t) = (m;, my, my)T 1 Qc RY - 82 repre-
sents the magnetization vector field with [m| = 1, Vx € Q, and a > 0 is the damping parameter. The notations o;, V, and
A represent the temporal derivative, the gradient, and the Laplacian, respectively. The homogeneous Neumann boundary
condition is considered. The first term on the right-hand side of (2.1) is the gyromagnetic term, and the remaining term
related to « is the damping term. In comparison with the ferromagnetic model [1], (2.1) only includes the exchange term
which poses the main difficulties in numerical analysis, as done in the literature [9, 17, 18]. To simplify the presentation,
we set Q = [0, 1]¢ and consider the 3D case in this paper, while the results hold for the 1D and 2D models.

2.2 | Finite difference discretization and the numerical method
We set the temporal step size as k > 0, so that the time step instant becomes t" = nk (n < l%J with T being the

final time, |-| being the floor operator). The spatial mesh size is given by h, = h, = L. h, = Ai[ with Ny, N,, and

ot = ke =

N, being the number of grid points of uniform partition along x, y, and z directions, respectively. We use the half grid
points (xi_;,yj_l,zf_;> (also written as (%, §;,2)), with x,_1 = (i - %) he, yj_1 = <j - %) h,andz, 1 = <f - %) h,

2 2 2 2 2 2

(i=01,---,Ny+1;j=0,1,--- ,Ny+1;¢ = 0,1,-- - N + 1). The numerical domain becomes Q;, = { (%, §;.2) |i =
0,1,-+-,Ny+1;j=0,1,---,Ny+1;£ =0,1,-- - ,N; + 1}, and the interior domain is Q) = { (&, 9;.2¢) li=1,- -+ ,Nx3j =
1,---,Ny¢ =1,---,Ng}, and Q /QZ is the set of boundary (ghost) points. We introduce the notation of the discrete
vector grid function my,(x) € R? defined for x € Q, with m;;, =my (J%i, 95, 2;) (similar notations for the scalar functions
), and the discrete homogeneous Neumann boundary condition reads for iy = 0,Ny, j, = O,N,, £; = 0,N;and 0 < i <
Ny+1,0<j<N,+1,0<7 <N;+1,

M jr=Mi1jr, Mij =M e, Mijr =Mije.. (2.2)

Let X = {fu(x) € R,x € Qy, fysatisfies boundary condition(2.2)} be the scalar function space and X = {m;(x) €
R*,x € Qj, mysatisfies boundary condition(2.2)} be the vector-valued function space. The corresponding continuous
version is denoted by X,,X,. The standard second-order centered difference approximation for the Laplace operator
results in
Mty —2Mjp + My

h3

2 2 2 2
Apmjp = 6xMijp + 6yMijr + 0 Mijp,  OyMyjp =

H
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where 62, 52 for the approximation of d,,, d,; could be similarly defined. The forward finite difference operators Dy, Dy,
and D, are defined for f, € X:

1t — fije 1l — fije a1 — fiie

Difijr = M D,fijc = M Difije = M
hx hy hZ

These finite difference operators could be applied to the scalar or vector grid functions in the same way. The discrete

gradient operator (forward) V,my, with my, = (uy, vy, wp)" € X reads as

Dyu;j s Dyvijr Dyw;j s
Vim s =| Dyuijr Dyvij e Dywij e
Deuije Dyvije DeWij e

A semi-implicit numerical scheme has been proposed in Xie et al. [19] and used in the numerical simulation for small
damping parameter models. In more details, semi-implicit approximations are applied to the two nonlinear terms, namely,
mx Am and m X (m X Am), in which Am is treated implicitly, while the coefficient variables are explicitly updated via an
extrapolation formula. The theoretical convergence analysis has been established in a more recent work [7]. However, this
numerical scheme involves a large linear system with time-dependent coefficients, related to the updated magnetization
at each time step, and the symmetry is not available in the linear system, due to the nonlinear structure. To overcome this
subtle difficulty, which leads to significant computational costs (especially in the 3D case), we make use of the alternate
PDE formulation (2.1) and treat the linear diffusion term a Am implicitly, while the two nonlinear terms, namely, —mxAm
and a|Vm|?m, are discretized in a fully explicit way. Subsequently, a point-wise projection is applied to the intermediate
field, so that the numerical solution of m has a unit length at the point-wise level. In more details, the algorithm is proposed

by Cai et al. [14], namely, for given m;, m ”“ € X, denote m "+2 = 2m"Jr1 m;, and find m"Jr2 7 "+2 € X by solving
3~ n+2 n+1 1. n
2 e(x) - 2ml T (x) + -ml(x)
2 * . 2T o X A 4 ab i
+ a|Athm"+2 i xeq, (2.3)
7 n+2
n+2 _ h
m, |mn+2| 2.4

where the extrapolation formula is defined by m"Jr2 = ZmZJrl — mj and A, V), (second approximation to the gradient

operator) is an average gradient operator defined for the grid function my, = (up, vn, w)T € X as A, Vymy, = Vi Aymy,
and Apmy, = (Axlp, AyVh, A;Wp):

Uijr + Ui-1j,¢ Vije +Vij-1r Wiz +Wijr-1

A jr = ) yAWije = : , AWij e = :

Remark 2.1. The initial data are given by m?l = P,m, € X, where P, : [C(Q)]*> — X is the point-wise interpolation as
Pumy(x) = my(x), x € Q). (2.5)

In addition, the first-order semi-implicit projection scheme could be applied to obtain m}ll, so that the two-step
numerical method could be jump started. Such a single-step first-order algorithm will preserve the overall
second-order accuracy in time; see the detailed analysis in the related works [20, 21] for the Cahn-Hilliard equation,
in which a single step, first-order semi-implicit algorithm creates a second-order accurate numerical solution in the
first step.

Remark 2.2. Extensive numerical experiments have demonstrated that the proposed method with the previous pro-
jected values provides a much better stability than the method by intermediate approximate magnetization in the
simulation of the realistic ferromagnetic material with large damping parameters, as reported in Cai et al. [14]. In this
article, we present a theoretical justification of the stability and convergence analysis for the proposed method.
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2.3 | Main theoretical results

For simplicity of presentation, we make an assumption that Ny = N, = N, = N (withd = 3)so that hy = h, = h, = h.
An extension to the general case is straightforward. For the grid function f,,g, € X, the discrete #? inner product (-),
discrete || - ||, norm and discrete || - || norm are defined as

Fro8n) =1 Y, F1) - 8,0, 1Full = Vo Fa)s ) Ifillo = max o).

xeQ)

In addition, the discrete H}-norm is given by ||fh||?{; := [Ifull3 + IVAf,lI2, and the discrete 7 (1 < p < o0) norm is

defined as || f h||§ = h32x692 [f,)|P. Such norms induce the discrete spaces

2 ={f, €X | Ifully <o), 0<p<oo,
H ={f,eX| Il ullm < oo},
WES = {fy €X | [ fulleo + 1IVifulleo < 0},
W, = {fr € X 1 Ifplla + IVaflla < o0},

£=(0.1:2%) = {f1 e X | max|lfjlz < oo, ne 0. | ]|}
220, T:HY) ={frex | <,,21::‘)”le|§12>5 <w.ne [o, [%”

Meanwhile, we define the continuous spaces for the function f(x, t) = (f1, f2, f3) as follows:
3
c? ([o, T]; [c°(s2)]3) = {f(x, nex,| ‘3—3f1~ € C[0.T)). fi € C%Q), i =1,2, 3} :

¢ (10.7; [CZ(Q)]3> = {f(x, HeX,| dt2

fl e C°([o, T]) fl eC'(Q), i=1,2, 3}

L ([0, T); [C4(Q)]3> - { Fx,t) € X, | ess suptema‘)7 fiec©), i=1,2, 3} :

where C°(Q) is the space of continuous function.
The unique solvability of scheme (2.3)-(2.4) follows from the equivalent form of (2.3):

2 2 0
(57— ati) iy = g2, xeQ,

2mn+1 1.n

where fi)*? € X and ¢} := Tim" — it X Apiin + a| Ay Vi T 2™, The left-hand side corresponds to a
positive- deﬁmte symmetric matrix, and the unique solvablhty of the proposed scheme (2.3)-(2.4) is obvious. With the fast
discrete cosine transform, the above linear system can be efficiently solved.

The theoretical results concerning the convergence analysis is stated below under the regularity assumption of analyt-
ical solutions. The 2D and 3D arbitrarily smooth strong solutions could be assumed; see the related reference [22] and
therein.

Theorem 2.1. Assume that the exact solution of (2.1) has the regularity m, € C? ([0, TI; [CO(Q)]3> N

o ([o, T); [CZ(Q)]3) N Lo ([o, T); [c4(§z)]3>. Denote m! =

from (2.3)-(2.4) with the initial error satisfying ||73hme( p) —m ” +“Vh Prm,(-, t,) — H —(9 k2+h2) p=0,1

In addition, we make the technical assumption a > 3, and k = O(h). Then, the followmg convergence result holds for
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2<n< l%J ash,k — 0*:

“the(-, tr) —m!

L+ (k Z Vi (Pame, ) - ) “2) <C(i2+1), (2.6)
p=1

in which the constant C > 0 is independent of k and h.

2.4 | A few preliminary estimates

In this section, some preliminary inequalities are derived, which will be useful in the error analysis presented in the next
section. In addition, we have to build a stability estimate of the projection step in the numerical algorithm.

The proof of the standard inverse inequality and discrete Gronwall inequality can be obtained in existing textbooks and
references; we just cite the results here. In the sequel, for simplicity of notation, we will use the uniform constant C to
denote all the controllable constants.

Lemma 2.1 (Inverse inequality [23-25]). For each vector-valued grid function e, € X, we have

n
h

erf|  <vn 2 (| , @.7)
[so]

2

-3/4
T

, |IVRe?
2> Hhh

+||V e’
2 "Eh

in which constant y depends on Q, as well as the form of the discrete || - ||, norm.

The following estimate will be utilized in the convergence analysis. A rough version has been provided in a recent article
[7]; here, we give a further refined estimate.

Lemma 2.2 (Discrete gradient acting on cross product). For grid functions f;,, g,. Fn € X, we have for any 6 > 0

<fh X Ahgh’Fh> = (Fh X fi> Ahgh) , (2.8)

VR X 8113 < A+ OIS,ll% - IVagyll3 + Csllgyllz - IVaf - (2.9)

Proof. Equality (2.8) has been proved in Chen et al. [7], so that we only focus on the proof of (2.9).
At each numerical mesh cell, from (fci, Vi, 2{) to (Xi1, §;,2¢), the following expansion identity is valid:

Di(fr X 8nij.r = AxSije X (Dx8p)ij.e + (Ax8n)ije X (Dxf1)ijes

. 1 (2.10)
with (Acfy)i)r = 5((fh)i,j,f + (Frisrje)-
In turn, we get the following expansion, over each mesh cell:

Di(fy, X 84) = (Acf) X (Dxgy) + (Def ) X (Ascgy). (211)

Subsequently, a careful application of discrete Holder inequality reveals that
(A f1) X (Dxgllz < 1Axfplloo - IDx&hl2 < I fplleo - [1Dx8pll2, (2.12)
I(Dxfp) X (Axgll2 < IDxfylla - 1Axgxlla < [IDx Sl - 118145 (2.13)

in which the fact that ||Ax f)llcc < |Fnllcos [[Ax811l4 < 1|8, ]l4 has been applied. Then, we get

IDx(fr X 82 < I Fnlleo - 11Dx8pll2 + IIDxfpll4 - 118 la- (2.14)
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The corresponding estimates in the y and z directions can be similarly derived, and the technical details are skipped
for the sake of brevity. A combination of (2.14) and its counterparts in y and z directions leads to

IVi(Fr X I3 < I1Fulls - IVrgull3 + 3NV fylls - 11gull3
+ 6l Fnlloo - IVRghllz - VL plla - l1gpla (2.15)
< @+ Fulle - 1Vagll + (3+9571) IV full} - llgnllz,

for any 6 > 0, in which the Cauchy inequality has been applied in the last step. Therefore, the nonlinear cross product
estimate (2.9) has been derived. This finishes the proof of Lemma 2.2. O

The following discrete Sobolev inequality has been derived in the existing works [26, 27], for the discrete grid function
with periodic boundary condition; an extension to the discrete homogeneous Neumann boundary condition can be made
in a similar manner.

Lemma 2.3 (Discrete Sobolev inequality [26, 27]). For a grid function f,, € X, we have the following discrete Sobolev
inequality:

1 ills < CIFIS -1l <€ (ufhuz + I - ||vhfh||§> : (2.16)

in which the positive constant C only depends on the domain €.

The following stability estimates of the point-wise projection (2.4) are crucial for the error analysis, and the proof could
be found in Appendix A.

Lemma 2.4. Assume the continuous vector function m, € [C(Q)]? satisfies a regularity requirement ||m.||y1~ < C*
(with C* being a positive constant) and the point-wise constraint |m,| = 1. Denoting m, = Pym, € X, for any grid
function my, € X, we define the projected grid function my, € X as my, = IZ_ZI and introduce the error functions as
en(x) = m,(x) — mp(x), e,(x) = m, (X) — Ay(x) (x € Q). Under the a priori assumptions on ey, or equivalently on the
profile my,:

~ 1 ~ 1, 1
llenll2 < 2k, [[Vienllz < Ek 5, (2.17)
the following estimates hold for sufficiently small k and h satisfying k = O(h):

5 1
e3> (1=K ) el + (11 ) 12 — e, (2.18)

IVienlls < @ +6) IVrenll; + Csllénll3, forany 6> 0. (2.19)

In addition, for the analysis of the BDF2 temporal stencil at the projection stage, a further refined error estimate is
needed.

Lemma 2.5. Consider mg),mf) ex <|m;q)(x)‘ =1,x€Qy,q= 1,2) with the Whl’oo bound ||ml(1q)|| + ”th;q)” <
o0 (s8]

PAC
, , . @ _ m
€ X, we define the projected grid functions m,” = |m£‘”|

the error functions as eﬁlq) (%) = m;q)(x) - mglq)(x) e X é;q)(x) = m;q)(x) - rhilq)(x) € X, ¢ = 1,2. Under the a priori

C* (q = 1,2). For any grid functions rh;ll), rh;lz)

and introduce

assumptions for é;lq) (@=1,2):

R o

and the assumptions for m;q) (q=1,2):

i < 36 aan

1
4
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the following estimate is valid for sufficiently small k and h satisfying k = O(h):

- D @ So@|? L 2t |z Lo _
’(eh —el.e! >‘3k4 e! ||2+k4 eV — el H2 g=1,2. (2.22)

We leave the proof of Lemma 2.5 to Appendix B. Lemmas 2.4 and 2.5 essentially establish the stability of the projection
step (2.4) under the assumptions that the previous numerical solution at " and ¢"*! is sufficiently close to the exact
solution.

3 | THE OPTIMAL RATE CONVERGENCE ANALYSIS: PROOF OF THEOREM
2.1
Denote m, (x,t) = Ppm,(x,t) € X (x € Q) and my(x) = m,(x,t") (n > 0). Around the boundary section z = 0, we
setZp = —%h, Z1 = %h, and we can extend the profile m to the numerical “ghost” points, according to the extrapolation
formula (2.2):

m',j,o = mi,j,l’ mi,j,NzH = mi,ijz’ (3.1)

and the extrapolation for other boundaries can be formulated in the same manner. The proof of such an extrapolation,
which yields a higher order O (h°) approximation instead of the standard O(h*) accuracy, has been applied in Chen et al.
[7]. Also see the related works [28-30] in the existing literature.

Performing a careful Taylor expansion for the exact solution around the boundary section z = 0, combined with the
mesh point values: Zy = —%h, 21 = %h, we get

3
m. (X, 9;,20) = me (%, 9;,21) — ho;me (%, ;,0) — %agme (%.9,,0) + O (n°)

3
= m, (2 9,.2) — %agme (%, 5.0) + O (1), (3.2)

in which the homogenous boundary condition has been applied in the second step. It remains to determine o7 m, (fcl-, Vi 0) ,
for which we use information from the rewritten PDE (2.1) and its derivatives. Applying 9, to the first evolutionary
equation in (2.1) along the boundary section I, : z = 0 gives

(M1)ye — 2a (M1 (Vmy - V(my), + Vi, - V(my), + Vimsz - V(ms),))
- a|Vm,|*(my), — a ((ml)zx:x + (M1)gyy + 0z3m1) (3.3)
= (m3);Amy + m3 ((mz)zxx + (M2)zyy + 0§mz) .

— (M) Amz — my ((M3)go + (M3)gyy + 03m3), on Ty

The first and third terms and the first two parts in the fourth term on the left-hand side of (3.3) disappear, due to the
homogeneous Neumann boundary condition for m;. For the second term on the left-hand side, we observe that

m, - V(ml)z = (My)x - (ml)zx + (ml)y . (ml)zy + (ml)z . (ml)zz =0, on Fz, (3-4)
since (m;), = 0 on the boundary section. Similar derivations could be made to the two other terms on the left-hand side:
Vm, - V(my), =0, Vmz - V(ms), =0, only. 3.5)

Meanwhile, on the right-hand side of (3.3), we see that the first and third terms, as well as the first two parts in the
second and fourth terms, disappear, which comes from the homogeneous Neumann boundary condition for m, and ms.
Then, we arrive at

adim; = —mzd;m, + mydims, only. (3.6)
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Similarly, we are able to derive the following equalities:

adimy = mydims — mzdimy, only, 37)

3 3 3
ad;m3 = My0;my — md;m,, only.

o ms —my
In turn, for any @ > 0, we observe that the matrix | —m3; a my has a positive determinant, so that the linear
m, —m; o
system (3.6)-(3.7) has only one trivial solution:

o;my = o;my = d3mz =0, onl,. (3.8)
As aresult, an O ( h5) consistency accuracy for the symmetric extrapolation is obtained:
m(%, 9;.20) = m, (2. 9;.21) + O (h°) . mRi.9;.20) = m (%.9;.21) + O (B°) . (3.9

In other words, the extrapolation formula (3.1) is indeed @ (hs) accurate.
Subsequently, a detailed calculation of Taylor expansion, in both time and space, leads to the following truncation error
estimate:

3 nt2 n+1 1. .n
_mh (x) - th (x) + Emh(x)

2 > _ _mzﬂ % Ahﬁzﬂ RS +aAhm”+2 +alAhvhmn+2 mZ xe QO (3.10)
where mZ” =2m* —m} € X, t"? € X and ||z"*?||; < C (k*+h?). Introducing the numerical error functions
eh = mh — m € X eZ = mZ - mZ € X, and subtracting (2.3)-(2.4) from the consistency estimate (3.10), we have the

error evolutionary equation at the interior points x € Q%, for0 < n < |T/k| — 2:

3~
_en+2 zel'H—l + Ze

2" h
k

h N N A
— m2+2 X A n+2 (2€Z+1 ) X A n+2

w2t (3.11)

+ ocAhe”Jr2 + a’Athm eh + ¢1+2

+a (AnVi (B + ™) - ARV ReT?) i),

with &)™ = =2e}"! — e} € X.
Before proceeding into the formal error estimate, we state the bound for the exact solution m and the numerical solution
my,. Since the exact solution m, € L*([0, T]; [C*(Q)]?), the following bound is available, for some positive constant C:

|[Vom,c.0||,» [Vpm, 0| _sc r=01230<i<T (3.12)

In addition, we make the following a priori assumption for the numerical error function:

n
a1p)

31 - 1,1u
e <k, eZ 5 ,n<qg+1. (3.13)

) ~
R <2k¥, thez

Such an assumption will be recovered by the convergence analysis at time step 4*2. Based on this a priori assumption,
we see that (2.17) is satisfied, so that we are able to apply Lemma 2.4 and the estimate (2.19) to get

“Vhez B < k%, n<qg+1. (3.14)

5 -
< =||Vpe!
2_4” hehz
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In turn, an application of inverse inequality implies the || - ||, and || - ||;;24 bounds of the numerical error function e,
h
(n<g+1)
Clle? 2}
éZ < fzsc.l:mSCkllﬁSki,
e h (3.15)
C“Vhe" u
[vier], < ——2 < ST <o ki< 1
hi hi 3

Subsequently, the triangle inequality yields the desired Whl’4 bound for the numerical solutions mj and m,, (n < q+1):

1
|[Vamy|, = || Vi - Vael|, < || vams], : (3.16)
Furthermore, we need a sharper || - || bound for 7 Z“ 2mZJrl —mj, which will be needed in the later error analysis.
The following extrapolation estimate is valid, due to the C3([0, T]; [C°()]) regularity of the exact solution m(:, t):
m? =2mt — m) + O®K). (3.17)
Meanwhile, since |m(x, t)| = 1 (x € Q), we conclude that
||2m"Jrl ml|l <1+Ck’ n<gq. (3.18)
o0
e || <k+h,forn<q+1(asgiven by 3.15), implies that
o0
2| <o - ] [om -]+ o -]
1 (3.19)
<1+CK2+3ki <ap = (346”")2, n<gq,

provided that k and h are sufficiently small. In addition, we denote yo := a« — 3 > 0, so that af =1+ %yo.

Next, we perform a discrete #2 error estimate at t*2 using the mathematical induction. Taking a discrete inner product
with the numerical error equation (3.11) by é;’“ € X (n < q) gives that

RH.S. = < (2mn+1 ) X A en+2, ~n+2>
- <(2€:+1 — eh) X AhmZ'*'Z’ é;ll+2> + <Tn+27 én+2>
- ”Vhém”z ta <|A’1V‘@Z+2 A éZ+2> (3.20)

+ a<(Ath ( n+2 + m2+2) Ahv An+2) m;+2’ ~n+2

:h+L+L-a ”vhé;+2H2 +I+1.

Then, all the terms are accordingly analyzed. For the term I, a combination of the summation by parts and Cauchy
inequality results in

< mn+2 x A en+2, n+2> - <é"+2 X mz+2, A An+2>
= (v [ n+2 ><mn+2] v én+2> <3 ”V e ><mn+2 ” ”V o2 (3.21)
h h h 5 h 3

|2'
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Meanwhile, an application of the cross product gradient estimate (2.9) implies that, for any 6 > 0, the following
inequality is valid:
e

2

casolr ool e o
< (1+6)a ||V,,~"+2 ’ +Cs éZ””i,

where C; isa positive constant dependent on §, in which the a priori bound estimates (3.15) and (3.19) have been applied.

The term ”V;ﬂ"”” can be analyzed as follows:

v ie;””2 = || Vi (2t - ) ‘<6 | Vier? |2 +3|Vie ’
, , (3.23)
S(1+6)< |)vh~"+1| +3]|vie; )+ca< e[+ e 2),

in which the estimate (2.19) (in Lemma 2.4) has been repeatedly applied, due to the a priori assumption (3.13).
Combining (3.22), (3.23), and (3.21), we get

2 2
F n+2 An+2 An+2
B3 [[v e om ) [+ 2 e
2
<(1+5)< “V ”+2|| +”V "+1|| 4= “Vhéz 2) (3.24)
+C < én+2|| + én+1| én 2)
S\[[*r 4 nllz)

For the term I,, by the preliminary estimate (3.12) for the exact solution, we have

(e"“xAh 2 ~n+2> <1 [ n+2” + An+2”2 HAh@Z” ’2]
2 2 % (3.25)
Sn+2 +1
SC(eZ ||2+ h | € 2)'
For the term I3, an application of Cauchy inequality gives
2
T = ("2 a2\ < ~n+2H 4 4y 2
s= (" gy <clle) 2+C(k +h*) (3.26)

In terms of I5, based on the W2’°° bound (3.12) for the exact solution, an application of discrete Holder inequality gives

H|Ahvh i éZ+z ||Vh . n+2|| An+2|| <clle An+2||2’ (3.27)
and
~ A n+2 2An+2 ~n+2 A N+2 An+2 Sn+2
Is =a |Athmh e ".e <a |Ahvhmh e, e “
2
; ) ! (3.28)
An+2 ~n+2 n+1 Sn+2
sCaje ”2 €h ”2$C< €h | hily T || ||2>
For the term I, an application of discrete Holder inequality gives
16 a((Ath( n+2 + mz+2) Ahthn+2) mz+2’ ~n+2
e e AR I M e e |
2
<C0{”v en+zH2_ ~n+2| < Ca?yi! ~n+2” e ”V An+2“z (3.29)
~ 1+6 . 2 o2
<C e”Jr2 + ﬂ Vet + Vel ) +Cs ( ||ert! el ),
h 4 24 h h 2
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in which the W;"‘ bounds (3.12) and (3.16), for the exact and numerical solutions, as well as the preliminary error
estimate (3.23), have been applied. On the other hand, the inner product of the left-hand side of (3.11) with éZ+2 turns
out to be

LHS. = é"+2 2 en+1 2 + 2é"+2 _ en+1 2 _ zen+1 —e" 2 é"+2 _ zen+1 + e 2
= 4k 2 no |l h nol, h ks h h nlly )
Its combination with Equations (3.24) to (3.26), (3.28), (3.29), and (3.20) leads to
1 < é"+2” n+1 | + ||2en+2 en+1|| ||2en+1 en 2)
4k 2 h |2

rarviee],-a+a (14 2) (e[ + 3 mal) (30

n+2
2 2 2 2
5 n+1 ~n+2 4 4
<C5<Z”ei”2+ ¢ | nil, ™ 1|k H4>+C<k +h)’
p=n
where a; = <a — —a2(1 + 5)> Meanwhile, for the || - ||4 error estimate for e’”r2 an application of the discrete Sobolev

inequality (2.16) (1n Lemma 2.3) gives

c, éZ“IIi“&( & : s vag 2> .
el B
in which the Young's inequality has been applied. Then, we get
ﬁ < én+2||z _ n+1|| + ||2en+2 e];::+1 | ||2en+1 e]:l z)
(oo 2 [ o (1 ) (g o 3 ) a2
<6 (el + e [+ el + e[+ enll) + ¢ (et + 1)

In particular, we observe that

(a——(xl(1+5) —)—§(1+5)(1+%)

1 1 (3.33)
>a —3a;(1+6) = (3+J/o)—3<1+6y0>(1+6)2 270
if § > 0 is chosen with (1 + éy()) 1+6) <1+ iyo_
Moreover, an application of the a priori assumption (3.13) into (3.32) yields
L_e) el (§ < &) @) sni2?
(4k Cs ) ®h ” AT TPy ”Vheh ||2
1 1 1] sn+2||?
<1 +9) (1 + —) (”V &’ ” 3 2 ” 2) + ak ( e ”2 + | 28, “2)
i > 1 4 4

+C<ez+| il ”+| ]’1’2>+C(k +h*) (3.34)

%(1+5)( g)-%k% +C<k§ ks +k4+h4>
Yo

<( (1+5)(1+I—°2)+§).—k7, n<q,
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provided that k and h are sufficiently small, and under the linear refinement requirement, C1h < k < C,h. As a matter of
fact, we can choose yy > 0 and § > 0 and make k sufficiently small so that

3 Y0 70 1 1
—(1+56 (1+—>+—§2, — —C5 > —. 3.35
;1 +9) 12/78 4k °T 6k (3.35)
As a result, by (3.34), we arrive at
P PLae < 1, u
gl =55 v, < 3%,

ie., “éi“”z < \/gkg < zkg, HV ~q+2‘ 2 < %kl?l, (3.36)

so that the a priori assumption is valid for m?*2.
With the recovery of the a priori estimate (3.36) at time step t9*2, we are able to apply estimates (2.18) and (2.22) (in
Lemmas 2.4 and 2.5), respectively:

2 2 2
6z (=) el (-4 o - . Gan
2 2
|<é2+2—e2+2,ei>| Ski eZ||2+k}t éz+2—ez+2”2,p= n+1l,n+2. (3.38)

Moreover, the following inequality becomes available for n < g:

2
sn+2 _ i+l —
223 e, = [

2

An+3 n+2 n+2 n+3 5
“ +a(e? - et ) +4|e

n+2 _ ,n+2
h h “2

2 2
e e e e |
201 112 2 | zn+2 +2]|? ) +2)?
—4k+|le, T |3 — 4k (et — e ’2+4 e —e, ’2 (3.39)
2 2
2 1 2 1112
2 [pey = =k (e, + i)
2
+2 +2
+(4-12k0) e - e
Going back (3.32), we arrive at the following estimate, for n < g:
1 en+2 n+1 + 2en+2 en+1 Zen+1 e’ 2
4k 2 h 2
1
5 —13k% |I5n42 n+2||2 ( Yo ) ” 2|2
S e =g () o
+ P e, e + | o e, ||, a0
2 3.40
-0 (14 Z) (e, + 3 [el)
n+2 5 3
~ 4 4
<6 2, ([&] + letl,) + e e+ ).
p=n
2
Meanwhile, for the terms ”éZHZ p =n,n+1,n+2,an application of Cauchy inequality gives
2 2L 2
ol <2 (Je - 4). p=nnrnea a)
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Its substitution into (3.40) leads to the following inequality for n < q:

e
1
i

+(w-35) [vier

SC(s(

n+22
ko2

2
équl+2 _ ez+2||2 _ Cg <

2
n+2 _ pn+l
|2 + ||2eh e

2 n+1 n
i R B

h
)
2
- axo (e ) (v [+ 5 veeh
)+ +ht).

)

n+1
€,

n

én+1 _ en+1 2 +
h h 2 h

5n
eh e

(3.42)

)

n+2 2 n+1 2 2
e || +||e || +
ko l2 kol 2

n
€,

In turn, an application of discrete Gronwall inequality [31], combined with the fact (3.33), yields the desired convergence
estimate at 192 :

n

€,

i ”‘)ki [V <cret (k + ), wn<gr2<|T].
- (3.43)

ie.,

n
€,

- (yok 3 ||vhé;;||j>5 cc@sn).
p=0

The convergence estimate (2.6) has been proved at 42, In addition, we see that the a priori assumption (3.13) has also
been validated at the next time step t4+2, provided that k and h are sufficiently small. By mathematical induction, this
completes the proof of Theorem 2.1.

Remark3.1. The condition a > 3 is a relatively strong constraint. In fact, such a condition is used in the estimate (3.24)
for I, since we need a > 3 to control these Laplace terms, due to the explicit treatment of Ahth”. Meanwhile, such
an inequality only stands for a theoretical difficulty, and the practical computations may not need that large value of
a. In most practical simulation examples, a value of « > 1 would be sufficient to ensure the numerical stability of the
proposed numerical scheme (2.3)-(2.4).

In addition, the explicit treatment of the Laplace term, namely, AhmZ” = Ay (ZmZJr1 - mZ) will greatly improve
the numerical efficiency, since only a constant-coefficient Poisson solver is needed at each step. This crucial fact

enables one to produce very robust simulation results at a much-reduced computational cost.

Remark 3.2. In a recent work [14], a rough stability estimate for the projection step, namely, ||ep||2 < 2||&x||2 + Oh?),
IVrenllz2 < C(llenllz + || Vrenll2) + O(h?), has been proved. These inequalities are sufficient to establish the stabil-

ity and convergence analysis for a semi-implicit numerical scheme, if the BDF2 temporal stencil is formulated as

1 (3 ~n+2 ~n+l ; 1~n : 1 (3 ~n+2 ntl , 1
i <zmh - th + Emh>. However, for the BDF2 temporal stencil formulated as i <zmh - 2mh + th>’ such

a stability estimate are not sufficient to derive the stability and convergence analysis, due to the singular coefficient %
Instead, a much more refined stability estimate, as given by (2.18) and (2.19) (in Lemma 2.4), is needed to pass through
the convergence analysis. The proof of these two refined inequalities has to be based on a more precise geometric
analysis of the corresponding vectors, and the details will be presented in Appendix A.

4 | CONCLUSIONS

In this paper, we have presented an optimal rate convergence analysis and error estimate for a second-order accurate, lin-
ear numerical scheme to the LL equation. The second-order BDF is applied in the temporal discretization, and the linear
diffusion term is treated implicitly, while the nonlinear terms are updated by a fully explicit extrapolation formula. After-
ward, a point-wise projection is applied to normalize the magnetization vector. In turn, only a linear system independent
of the updated magnetization needs to be solved at each time step, which has greatly improved the computational effi-
ciency, and many great advantages of this numerical scheme have been reported in the numerical simulation with large
damping parameters. The error estimate has been theoretically established in the discrete £*(0, T'; ¢ n£2(0,T; H }11) norm,
under suitable regularity assumptions and reasonable ratio between the time step size and the spatial mesh size. The key
difficulty of the theoretical analysis is associated with the fact that the projection step is highly nonlinear and non-convex.
To overcome this subtle difficulty, we build a stability estimate for the projection step, which plays a crucial role in the
derivation of the convergence analysis for the numerical scheme.
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APPENDIX A: PROOF OF LEMMA 2.4

Proof. Firstofall, an || - ||, bound for the numerical error &, can be derived, by the a priori estimate (2.17):
~ Lo - _1 oo 1.3
llenllo < vh™z(ll€nll2 + IVierll2) <vh™2 ks < Zk4’ (A1)

provided that k and h are sufficiently small, and under the linear refinement requirement k = ©(h). Notice that the
inverse inequality (2.7) has been applied in the first step. In turn, we observe that the following bounds are available
for the numerical profile ry,:

1- %ki <|my| <1+ %kf, at a point-wise level, (A2)
- _3 - _3 1,n 1

IVienlla < yh™#||Vnenlla < yh ™4 - Eks <k2, (A3)

IVimnlla < IVimylla + [|Vienlls <C*+1 := M. (A4)

Again, the inverse inequality (2.7) has been applied in the derivation.
A careful calculation indicates that

_ _ m - m -
eh:mh_mh=mh_mh+mh_—~h =eh+—,,h (Jmy| — 1), so that
[y | |y, |
_ (A5)
~ ~ ~ . my ~
ép=ep+ e, e :=——(~1-|iy).

|y, |

Meanwhile, at a fixed grid point (fcl-, Vi 2;) € Q‘;l, we look at the triangle formed by the vectors: my, &,, and m,.In
particular, we denote the angle between my, and m, as 6. Since the lengths of these three vectors have the following
estimates:

1 1k§<|~|<1 1ké |~|<1k§ lm | =1
— ks <|m + =k, |ey| < ki, Im,| =1,
g = TR=0TY hE=g0 15
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a careful application of sine law indicates that
. 1,3
0<sinf < Zk4. (A6)

And also, we look at the triangle formed by the vectors: my, e,, and m, . Two sides have equal lengths: [my,| = |m, | =1,
and the angle between m;, and m, is exactly 6, since m; = % is in the same direction as #1;,. In turn, the angle
between vectors my, and ey, is given by ¢’ = % + %. Because of this fact, the angle between vectors iy, and ey, is the
same as ¢’ = g + g

Subsequently, we denote the angle between vectors &, and ey, as ¢. In fact, this angle has the following represen-
tation:

, T 0 ... , T 0 .. .
=¢' ==+, if|m| <1; =g—¢ ==—-—=, if|m,| > 1. A7
p=¢ ==+ A, | p=r-—¢ =27 || (A7)
In either case, the following estimate is valid:
.0 . 1,:3
| cos | = smz §s1n9§Zk4. (A8)

Consequently, the definition of the point-wise inner product implies the following estimate:

n] = |en + encl® = lenl? + |@ncl” + 2ep - ne

= |en|® + |ncl® + 2|en| - |@nc| - cos @

> lenl? + [@nel® — 2len] - [enel - ki = lenl? + [@nel? — 2k len] - |2ne]
’ <4 2 ’ (A9)

2, 15 |2 3o, Lo
> lel® + (el = (K lenl® + 2K [2ncl?)

> (1 —ki) len|? + (1—k%) |2, — en]’.

Notice that this estimate is valid at a point-wise level, for any fixed mesh point (i, j, ). Therefore, a summation in
space leads to the first inequality (2.18).

To derive the second inequality (2.19), we will focus on the Dy part in the discrete gradient; the analysis for the D,
and D, parts can be performed in a similar manner. We begin with the following expansion:

m m m m
Dxeh:Dxmh_Dx h :Dx[ Nh - ~h:|+Dx [mh_~_h
|| || ||

|y, |

é [ m, _
=Dyt — Dy | =2 (1 — |1ip))

|y, | | |1,

F [ m, (m,_+my)-(m, —my)
=D, _p, | = —h

|y, | | |1, 1+ ||

. o (A10)

éh (mh+mh)'eh
=Dy—— — Dy m,————

|y, | | " |my,| + |1y

e [ Cmm, —éey) - ey,
=Dx~—h — Dy mh~h—~2]

|my, | |my,| + ||

P 2m, - e e, |2

e L h e
=Dx~—h — Dy <mh~h—~2> + Dy <mh~|+l~2> s

[, | || + || || + ||

in which the identity 7z, = m, — &, has been applied at the last two steps. Meanwhile, at each numerical mesh cell,

from (i, j,£) to (i+1, j, £), the identity (2.10) is valid, so that the following expansions are able to be made at the center
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location (i + 1/2, j, £) over the numerical cell:

e 2m, -é
é m, - &
B, ()
h " |my| + |, |?

1 - - 1
=Ay <~_> D,éy, + Ax(é,)Dy <~_>
|| [

th - e th - e
-Dx|\ ——— |Am, - Dim, - Ay | ————

|| + [, |? || + |1, |2
m 'éh
= Ay (é)Dxéh—Axéh-AE? (%)Dﬂﬁm —2D,m, - Ay (LZ)
|| || || + ||
—am D (—2— Vamm e +A (—2— ) Dum, - &)
e BN RN ITAEY e AN I A7) e R
11
= h+hL+L+04+ s, ( )
J1=A L D.e, —Am A 2z (Axm, - D,éy)
1 X |"hh| x€h x ML, Ax |mh| n lmhlz xm, x€h),
L= (A? () D) Aen. T3 = —2(Dom)A Myl
2 X |mh|2 X h x€hs 3 xM, )Ax |ﬁ1h| n |ﬁlh|2 B
2
o = (Axm, A (m,, - &)A (—)
TR TR (g + g2
. (Dx|ﬁlh| + 2A.my, 'Dxﬁlh),
2 ~
Js=—-Am A, | ————— | (Dxm, - A.ep),
5 xM, Ax <|mh| I |ﬁlh|2>( x, - Ax )
where we have used
1 1 ~
Dy <~—> = —Aiz) <~—2> Dy [my|
|mh| |mh|
Dy <~;~2> = -AY <~;~“> - (Dx|fiy| + 2A iy, - Dyfiny)
|, | + || (| + [m,|?)
Dx(mh “ey) = Dx(mh)Axéh + Ax(mh)Dxéh,
in which the nonlinear average operator A2 is introduced as
;2)< ! > = ;, for scalar grid function fy,. (A12)
) ije Unije(fndise
Moreover, by the point-wise a priori estimate (A2) for i1y, the following bounds are available:
1+ 1k mnl )1~ L
1- 3k < Ay % Sl+§k‘§‘,
2 [P, | + |, |2 2
< 1 (A13)

1 2 1
1,3 ZSAX <|'hh|2> 1,32 2’
<1+Zk4> (1—Zk4>

1 < ;2)< _ 2 > < 1 .
(regid) NIy
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For the term J;, we make the following decomposition J; = Jy; + Ji2 + J13 to facilitate the analysis:

- - 1 -
Ji1 =Dyey —Axmh(Axmh -Dyep), Jin= <Ax (W) - 1) Dyep,
h

5 (A14)
Js=—-Am (A, | ———— | -1 ) (Am, - D.é&,).
13 x_h< x(lmh|+|mh|2> >( xMy X h)
For the quantity Ji;, we see that
V| = [De&n|* + |Axm, |*(Axm,, - Di&n)’ — 2(Acm, - Di&y)’ (A15)

< IDxéhI2 - (Axmh 'Dxéh)z, so that |Jy1| < |Dyéyl,

in which the last step comes from the fact that |A,m, |2 < 1. For the quantity J1,, the a priori bounds (A13) imply that

Ax<_} >_1
|my |

Similarly, the quantity J;3 can be analyzed as

- 1,:3 -
[J12| = - |Dyep| < Ek“leehl- (A16)

2 ~
[J13| = |Axmh| - |Ax <~—~2> -1y |Axmh| - | Dxén|
|mh| + |mh| (A17)
by 13 33
<1+ Ch%*- §k4 |Dyéy| < Zk4|Dxeh|,
since
Acm 2<1<(1+Ch2)2
X2 %h — — l
1,3 . 1,3
1- Zk4 <|my| <1+ Zk4’ (by A2), so that
2= 2K < P + i < 24 11,
1—l ES%SI‘Flk;‘,
2 |my| + A, | 2
Ax <~;~2> -1 < 1k%,
|| + || 2
provided that k and h are sufficiently small. Consequently, a combination of (A15)-(A17) leads to
5,3 ~
Vil < Wil + Wizl + Vsl < (14 367 IDs&l. (A18)
which turns out to be a point-wise inequality. In turn, a summation in space implies that
5,3 ~
Millz < (1+ k5 ) ID:@allo (A19)

For the term J,, we make use of the a priori bounds (A13), as well as the fact that |Dy|m|| < |Dyfy|, so that an
application of discrete Hélder inequality gives

1
4@
T\ A ?

212 <

_ ~ 33 _
‘ - || Dxfitp|4 - ||€nlla < (1 + Zk4)MllehII4, (A20)
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WILEY—22

in which the a priori W;A bound (A4) for the numerical profile 7z, has been applied. The other terms in the

expansion (A11) can be analyzed in a similar manner.

2

sz < IDgm, || - max <—
—he e

) M, o - 1l
y 3,3 - 3.3 -
<C (1426) 1l < (1+ 2K ) Mileall,

- 2
1z < llm, 1% - 2yl - max (—)
= (Il + [ [)?
. - 3 3,3 ~
(L + 20yl IDstglls < 5 (1+ 5k ) Ml

2

——— | - ||Dxm : éh 2
Imh|+lmhI2> IDxm, || - [lenll

U512 < |lm, || - max (
3.3 ~ 3.3 ~
< (1+3Kk1) Clignll < (143K ) Mzl
Therefore, a substitution of (A19), (A20), and (A21) into (A11) leads to

P 2m, - e

é m, - e,
Dx~_h — Dy (mh~h—~2>

|1y, | |my,| + |1y

2
5,3 ~ o <
< (14 265 ) ID:allz + 3MC2allz + l12allo):

(A21)

(A22)

The analysis for the last term on the right-hand side of (A10) can be similarly carried out; some technical details are

skipped for the sake of brevity.

5 12
e
D, <mh~|+|~2>
|| + | |* /|,

2 < ~
<C (Ilmhllm - max <—) “1€nlle - IDxexll2

|An, | + |, |?

1 ~ ~
+ [1Dxm, || -maX( 2) “[1@nll - ll€nll2

|my| + |my|
1

m) (1 + 2|[my || o) || Dty |4

+ llm, |l ~maX<

llenllos - Iléhll4>

ED y . ER . .
< Cka(|[Dxepll2 + llenll2 + llenlls) < ks (|[Dxenll2 + llenll2 + [1€nll4).

Finally, a substitution of (A22) and (A23) into (A10) yields

5
ID<enll> < (1+2K3 ) ID:@alla + (3M + D(I84ll2 + I1ealls), s that

5
IDcenllz < (1+5K3 ) D@2 + M + 17@allz + 12alls)?
+4G3M + DIID:2all(124]1> + 12alls)

3 ~ ~ ~
< (145K ) D@l + 2GM + 12 (1@l + l12l13)

0.1 5 115 -
+ ZID<Bll3 + 16G3M + 1*5 (l12ull2 + l12nll4)*

o ~ - ~ ~
< (14+5) ID@IE + (3267 +2)6M + 12 (el + l13)

(A23)

(A24)
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for any 6 > 0, provided that k is sufficiently small. Similar estimates can be derived for the gradient in the y and z
directions; the technical details are skipped for the sake of brevity.

0 ~ - ~ ~
IDsenl3 < (1+ ) ID,@ll3 + (3267 +2GM + 17 (I120l13 + 12l13)

s (A25)
IDcenl} < (145 ) D22 + (3257 +2)3M + 12 ([1@ll3 + 1enl)
Then, we arrive at
) ~ _ ~ ~
IVienl? < (1+ 5) IVrenll2 + 332671 + 2)3M + 1) (|[exll2 + llenll?) . (A26)
Meanwhile, by the discrete Sobolev inequality (2.16) (in Lemma 2.3), we get
1 3
llenlls < C (Iléhllz + llexll; - IIVhéhII§> , (A27)
so that
332671 + 2)(3M + 1)*|| &3
<3(3267' +2)BM + 1)°C (lléhlli + 1@l - ||vhéh||§> (A28)
- 6o s
<Csllexll; + EIIVhehlli, Vé >0,
in which Young's inequality has been applied in the last step. Referring to (A26), we obtain
1) ~ 0 ~ o ~ ~
1Vhenll> < (1435 ) 195l + SUVA@all2 + Csllanll> < (1+ D) Vil + Cole (A29)
provided that k is sufficiently small. This finishes the proof of Lemma 2.4. O
APPENDIX B: PROOF OF LEMMA 2.5
Proof. Here, m;ll) and mf) serve as the exact solution at different time steps and rh;ll), rhf) € X are the corresponding
numerical solutions.
The || - || bounds for the error functions é;q) can be derived, with the help of the a priori estimate (2.20):
], <t () [, ot < e
S 2 2 4 (B1)

so that1 — %ki < |rh§lq)| <1+ %ki at a point-wise level,q = 1, 2.

FIGURE B1 TIllustration for the triangles formed by the vectors m;”, mzl) eV

01,0,,0", yWand ¢*.

and m?, mf) , ef) and the predefined angles

>"h h
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For the numerical error functions at different time steps, the decomposition (A5) is still valid:

m(‘])
+ ;q) PCI h (1 _ |m(q>|>‘ (B2)
c’ hc |ﬁl(q)| h

~@ _ @
¢, =e,

At a fixed grid point (%;, §;, 2), we look at the triangle formed by the vectors: ;q) é;q), _f), and denote the angle
@ @

between m," and m," as 6,. In turn, the estimate (A6) is laid for each 0g:

é(q)| < lki, |m(q)' =1,
4 —h

(B3)

@ e(q)

Similarly, in the triangle formed by the vectors: m,", e,”,

@

(q) , two sides have equal lengths: |m(q)| = |m(q)| =1, and

and m(q) is exactly ;. In turn, the angle between vectors mh " and e(q)

%
x.

the angle between m, is given by @ = E + Eq

@ (D
Also the angle between vectors m,” and e,” is given by y@ = g

Meanwhile, we denote the angle between mﬁ) and mf) as 6*. By the a priori assumption and the fact that | m;1)| =
| mf)l = 1, we have an estimate for 6*:
* 7
2sin % < %kE, (B4)
since that
2 2 2
@ @17 _ |4, 1" _ @ . 2)
R e
* 7\ 2
=2-2 ’m(l)) - ’m(z)’ cos 0% = 4sin® <6—> < <1k§) )
—h | 1=h 2 4

1) (1

Subsequently, we denote the angle between (1) and e(z) as ¢" and note that the angle between 77, ” and e,  is exactly

h
@, The sketch for the triangles formed by the vectors mill), m;ll), es) and m(z) m;lz), 2 is presented in Flgure B1.

In addition, for small k, the angles 6, 6,, and 6* are close to 0, and by trlangle 1nequahty, we have

|e<2>.m(1>|
[cos¢™| =
‘e(2)| |m(1>|
h
2 2 2 1 2 2 1 1
|e;).m§1)| |() (m()_m;,))l |() (m()_m;l))l
< +
- 1,3 (2) (2) (2)
1- 3k Ie | €7 A
B5)
1 o* (
<—- sm +2 sm( >+|e(1)|
1— 143 2
4
3
s% lk4+ ks+ k4> Ekz,
1- ks 4 4
4

= lsin 2| <sing, < 1kt < 3k5.
2 4 4
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As a consequence, the definition of the point-wise inner product implies the following estimate:
0 _ ) @ _ [z0 _ 0] |,®]. .
(eh e, ) e |= |eh e, | |eh | | cos ¢*|
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< -] 3¢
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Again, this estimate is valid at a point-wise level for x € QZ Therefore, a summation in space leads to the first

inequality (2.22).
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