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ABSTRACT

When instructors want to design programming assignments to
motivate their students, a common design choice is to have those
students write code to make an artifact (e.g. apps, games, music,
or images). The goal of this study is to understand the impacts
of including artifact creation in a programming assignment on
students’ motivation, time on task, and cognitive load. To do so,
we conducted a controlled lab study with seventy-three students
from an introductory engineering course. The experimental group
created a simulation they could interact with — thus having the
full experience of artifact creation — while the control group wrote
the exact same code, but evaluated it only with test cases. We hy-
pothesized that students who could interact with the simulation
they were programming would be more motivated to complete the
assignment and report higher intrinsic motivation. However, we
found no significant difference in motivation or cognitive load be-
tween the groups. Additionally, the experimental group spent more
time completing the assignment than the control group. Our results
suggest that artifact creation may not be necessary for motivating
students in all contexts, and that artifact creation may have other
effects such as increased time on task. Additionally, instructors and
researchers should consider when, and in what contexts, artifact
creation is beneficial and when it may not be.
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1 INTRODUCTION

Many computer science instructors try to design programming
assignments that will be motivating to their students. When as-
signments successfully motivate students, this can bring many
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Figure 1: Example code and output for the experimental
group (left) and control group (right)

benefits, such as increased academic performance [4] and academic
engagement [3]. Computing education research venues host many
examples of motivating assignments. These include experience re-
ports [1, 9, 42] and the SIGCSE Nifty Assignments collection [30]
where instructors describe assignments they believe were effec-
tive at motivating students. They also include whole curricula, like
media computation [10] and the beauty and joy of computing cur-
riculum [8] which emphasize interesting assignments as a valuable
way to teach novice programmers. Research studying the impact
of these curricula has found them to be successful at improving
student grades [35, 36] and increasing retention of students [27].
However, while examples of motivating assignments are important,
it is also important to understand why they work — what specific
instructional design choices influence motivation?

There are many choices an instructor makes when designing an
assignment (e.g., what narrative context to provide, what scaffolding
to provide, how it will be assessed, etc.). This paper focuses on one
specific design choice that is common to many nifty assignments
and motivating curricula: having students write code to create
an artifact that they can experience and interact with, such as a
game, story or simulation — what we call artifact creation. For
example an assignment could involve designing a game that the
student can then play and share [14], developing a creative story
in a block-based programming environment [15], manipulating
images using programming [10], using programming to produce
music [17], or designing programs to produce simulations [31]. All
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of these assignments have, as their output, artifacts which motivates
students to complete the assignment because of increased intrinsic
motivation from interest in the artifact [24] or increased ownership
from the agency of making an artifact [34].

Despite the prevalence of artifact creation in CS assignments,
there is little work investigating the effectiveness of this specific
design decision in isolation, using a controlled experiment, to better
understand the role it plays in motivation. There exists evidence
that courses and curricula which use assignments with artifact cre-
ation lead to increased motivation [7], retention [27], and grades
[35, 36]. However, these studies examine the effect of many design
decisions simultaneously in the context of changing curricula; there-
fore, it is difficult to attribute the assignment’s effectiveness to the
presence of artifact creation specifically. While it seems likely that
artifact creation can increase student motivation, it is important
to understand when this design choice is beneficial, and for whom,
since it may not be important in every context. One could imagine
in such cases it may be better for instructors to have students write
code without artifacts. Additionally, it is important to understand
if this choice has additional impacts on student outcomes, beyond
just motivation. Similar controlled experiments have played an
important role in guiding how best to design instructional content,
and in aggregate these experiments can build to larger theories,
such as multimedia learning theory [37].

In this work we investigate the impact of the artifact creation
design choice in isolation, to better understand its impact for one
student population on motivation (RQ1), time on task (RQ2), and
cognitive load (RQ3). We did so through a controlled lab study of
73 students enrolled in an introductory engineering course, most of
whom go on to take an introductory programming course. We iso-
lated the impact of artifact creation by comparing student outcomes
on two versions of the same assignment. In the assignment, both
groups used the coding interface in Figure 1 to code elements, such
as oil and gas, for use in a simulation modeling the interaction of
those elements. However, only students in the experimental group
could see and interact with the simulation — central properties of an
artifact creation assignment. Students in the control group saw a
series of test cases evaluating their code, but did not experience the
simulation in any way. Our hypothesis is that students in the exper-
imental condition would find the assignment with the artifact to be
motivating. We additionally measure cognitive load, as changes in
design of instructional content often affect cognitive load [39], and
time on task, to determine how active time is affected by artifact
creation.

We found that both groups were motivated to complete the as-
signment and that there were no significant differences in their
motivation and cognitive load. However, students in the exper-
imental group spent significantly more time on the assignment.
Our results suggest that artifact creation may not be necessary to
motivate our students, and our survey data supports the idea that
students in the control group may have been motivated by other
factors such as an interest in programming or problem solving. Ad-
ditionally, artifact creation in assignments may impact the amount
of time students need to complete an assignment. Our work demon-
strates the potential for investigating individual design decisions
in novice programming assignments. This study emphasizes the
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importance of considering population and context when design-
ing assignments, and suggests that artifact creation may be less
motivating in certain contexts.

2 RELATED WORK

2.1 Motivation

In education motivation is a drive that moves students to engage
with educational content [13]. Motivation can come from exter-
nal rewards, a sense of value, or a goal the student has that ed-
ucation helps them achieve [29]. One theory of motivation, self-
determination theory, recognizes two distinct kinds of motivation,
intrinsic and extrinsic motivation [34]. Intrinsic motivation is the
drive of an individual to do an activity because of an existing in-
terest or an internal desire to do the activity. Extrinsic motivation,
in self-determination theory, is motivation from factors other than
intrinsic motivation, and includes things like social pressure to do
well or anxiety [34]. Artifact creation could increase a student’s
intrinsic motivation either by increasing the value the student sees
in the assignment or the interest they have in the assignment.

2.2 Instructional Design & Motivation

When making curricula, assignments, and learning activities, mo-
tivation is an important goal as research on various theories of
motivation have found that motivation is associated with higher
achievement [29]. Linnenbrink-Garcia et al. reviewed existing lit-
erature on instructional design for motivation and extracted five
design principles for supporting different motivation with one prin-
ciple being making lessons personally relevant to students [21]
which is one goal of artifact creation assignments. One key step in
instructional design for motivation is the evaluation of the results of
the motivational content [29], further it is suggested that a formal
evaluation process is essential for best understanding the effects
on motivation [16].

One successful method for evaluation is controlled experiments,
which have played an important role in guiding how best to de-
sign instructional content, and in aggregate these experiments can
build to larger theories, such as multimedia learning theory [37].
Previous work in multimedia learning theory has investigated the
impact of various individual design decisions including whether
the medium of the multimedia representation matters [23], whether
assignments that evoke positive emotions are more effective [41],
and whether decorative illustrations lead to situational interest
or distract students [22] . These decisions were evaluated using
controlled experiments that only varied the individual decision in
question, thus allowing educators to select the best approach for
their context.

2.3 Cognitive Load Theory

Cognitive load is the burden imposed on a student’s working mem-
ory to process information as it is transferred to long term memory
during the learning process [40]. Cognitive Load Theory (CLT)
identifies that a student’s working memory is limited, and work-
ing memory must be spent on various tasks during learning. CLT
identifies three types of cognitive load: intrinsic, extraneous, and
germane [20, 38]. Intrinsic Load is the cognitive load associated
with the difficulty of an individual task or assignment. Intrinsic load
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is largely immune to instructional intervention [39]. Extraneous
load describes cognitive load generated by the learning activity
based on the way information is presented or instructions are orga-
nized [20]. Extraneous load is the cognitive load instructors have
the most control over [39], and modifying assignments to reduce
complexity in instructions is key to reducing extraneous load. Ger-
mane load is the type of cognitive load associated with learning
as germane load is the excess cognitive load that is allocated for
intrinsic cognitive load, not extraneous cognitive load [39].

3 METHODOLOGY

We conducted a controlled lab study, approved by our institution’s
ethics board, where students were required to complete an introduc-
tory programming assignment aimed at having students practice
conditional programming logic and learn to create a simulation
in Snap!. Students were assigned randomly into two groups: the
experimental group with artifact creation and the control group
without artifact creation. Both groups were provided with the same
narrative context in the task description - simulating how elements
interact — but only the experimental group could interact with
(and, we hypothesize, be motivated by) the simulation they created.
By evaluating how students performed on quantitative measures
in the two groups, and by qualitatively analyzing responses to
open-ended questions, we investigated how artifact creation affects
student motivation, time on task, and cognitive load.

3.1 Population

We recruited 73 undergraduate students from an introductory engi-
neering course focused on teaching students how to use technology
that is used throughout their degree program like UNIX, HTML,
spreadsheet programming, and some computer hardware. We re-
cruited students from this course because they included students
who had the ability to major in computer science, but who had
not yet selected a major — a time at which motivation is particu-
larly important. Students also self-reported their prior program-
ming experience and the vast majority (61/73) of students in our
study indicated that they had some prior programming experience
(e.g. taking a programming course, using programming for class,
completing an independent tutorial, or using programming for a
personal project). Students in the course were emailed information
about our study, and those that participated were provided a small
amount of extra credit. Of those recruited, 34 students identified as
White, 23 identified as Asian, 5 identified as Hispanic or Latino, 5
identified as Black or African-American, and 6 identified as other
or did not specify. Additionally, 53 students identified as male, 18
identified as female, and 2 did not specify.

3.2 Materials

We searched the SIGCSE Nifty assignments repository for an as-
signment that should be motivating for our population of students
to create and we selected the Falling Sands’ artifact [32]. We chose
from SIGCSE Nifty assignments because they are assignments de-
signed by practitioners with the goal to motivate students, and
many involve artifact creation. We implemented Falling Sands in
Snap! [8], a block-based programming environment. The original
version of the Falling Sand assignment focuses on teaching loops
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and two-dimensional arrays. Given our goal of assessing the impact
of artifact creation assignments on student motivation it was im-
portant that all our participants, regardless of prior programming
experience, could complete the assignment. Therefore, we modified
the programming tasks of the original Falling Sands assignment to
focus on conditional logic as we expected this topic to be accessible
to students regardless of their prior programming experience. How-
ever, the output of the program — simulated elements interacting — is
the same as the original assignment, and it is that artifact creation
element of the assignment that we are investigating in this work.
Our modified version requested students to build the simulation
by coding the behavior of different elements (e.g. sand, oil, gas)
represented using custom blocks, akin to functions, in Snap! using
conditionals. In our modified version of the assignment, students
only implemented the behavior of each element (e.g. sand falls, oil
floats on water), and the rest of the simulation was provided as
starter code. For example, students were required to write code,
seen in Figure 1 that caused oil to move left, if the variable left is
empty, or right if the variable right is empty. This simplification
and scaffolding was necessary to allow novices to create the com-
plex simulation, and we discuss possible implications in Section 5.1.

3.3 Conditions

Students were randomly assigned to a condition upon agreeing to
participate in this study. In the experimental condition, students
were provided access to the simulation to test their code. In the
control group, the portion of the code that renders the simulation
was removed and instead replaced with a series of test cases that
students used to test their implementation. The test cases were
displayed to the user using Snap!’s ‘say’ function. The correct solu-
tions and the instructions were the same between the conditions;
therefore, the only difference is whether the student had access
to the simulation or test cases. Removing the simulation reduces
the potential increase in motivation from student interest in the
simulation or from the ownership of creating the artifact, while
also changing the way that students test their code. Test cases are
often not provided to students programming artifacts as students
are expected to use the artifact to test their code.

3.4 Procedure

Before any procedures began, students were provided with an
overview of the research and a consent form that they completed
prior to taking part in this research and a short tutorial on how to
use Snap!. This tutorial demonstrated how to implement the sand
element and the students were also shown how to test their code.
The tutorial was followed by a short demographics survey and a
pre-test.

There were four tasks that the students must complete. Students
were provided with the implementation of the “sand” element as a
reference. In the first task, the students implemented behavior for
oil so that it is affected by gravity and falls to the ground; therefore,
mimicking the behavior of sand. The second task required students
to build on the first by implementing behavior in oil so that it flows
to the left and right, filling up a volume like a liquid. In the third
task, students implemented gas which behaves the exact same as
oil, except that it floats rather than sinks.
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In the fourth task, we provided students with three options.
We added a choice in task four as another metric for potentially
evaluating student motivation based on the assumption that more
motivated students might select a choice that required more work.
Choice in the assignment could also lead to increased motivation
[21]. The first choice required the least amount of work, one to
three blocks, and required students to implement behavior so that
oil sinks below the sand. The second required four to eight blocks,
and required students to have oil turn into gas when it touches
sand. The final task required ten to twelve blocks and required
the students to implement a new element, water, and create an
interaction between sand and water.

After completing all tasks, students were asked to complete
a post-survey, which asked students about their motivation and
cognitive load as well as a post-test. These measures are explained
in Section 3.5. The survey took about fifteen minutes to complete.

3.5 Measures

Students completed a pre/post-test and two surveys. The pre-survey
was focused on demographic information. The post-survey con-
sisted of three measures: To measure motivation (RQ1), we used
the Intrinsic Motivation Inventory (IMI) [33] asks students to an-
swer likert scale questions regarding their motivation in working
on the assignment they just completed. This measure consists of six
subscales that relate to different factors that contribute to an indi-
vidual’s motivation (shown in Table 1). The IMI is task-specific and
is validated as a measure of motivation on a specific task [5, 25] and
has been used previously in education [6]. To measure cognitive
load (RQ3), we used the Cognitive Load Component Survey (CLCS)
[26], which assesses a student’s intrinsic, extraneous and germane
cognitive load with subscales for each during an assignment [26].

To measure time on task (RQ2), we used log data gathered
from each student during the programming task. Each student did
eventually complete the programming task successfully, as verified
by a researcher during the study, so time on task serves as our best
measure of the impact of artifact creation on students’ programming
experience. We note that increased time on task can be considered
a positive outcome (e.g., if additional learning occurs during that
time) or a negative one (if the student is struggling or demotivated),
as we discuss in Section 5.2. Specifically, we measure a student’s
active time, as in prior work [19, 28], which only includes time when
students have taken an action in the past 3 minutes (e.g., modifying
code).

Students also took a short isomorphic pre/post-test, which as-
sessed students” knowledge of variables, conditionals, and loops.
The pretest was included to verify that the control and experimental
groups had similar levels of prior knowledge; therefore, the pre-test
included eleven questions: three questions on variables, four on
conditionals, four on loops in Snap/. Our results, shown in Table 1,
confirm this assumption (control mean 86.67; experimental mean
89.87; no significant difference). Since our primary research interest
was students’ motivation, and we would not expect to see much
learning given students’ high pretest scores and the short duration
of the assignment, our analysis does not focus on these tests, but
we report them for completeness.
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We added a set of five open-ended questions, listed below, after
the first fourteen students in order to better understand student
perception of the assignment. As a result of including this measure
late only fifty-nine students saw these questions. We added the
open-ended questions to provide better insight into student mo-
tivation on this assignment with the goal of understanding what
parts of the assignment led to student interest.

(1) What was your favorite part of this assignment?

(2) What was your least favorite part of this assignment?

(3) Think of a moment in this session where you were unsure
what to do. Describe what happened.

(4) Think of a moment in this session where you were excited.
Describe what happened.

(5) Think of a moment in this session where you were frustrated.
Describe what happened.

3.6 Analysis

For the IMI we analyzed the results by summing each question in
a subscale to determine the student’s motivation. We additionally
average each subscale by the number of questions related to that
subscale in the IMI given that subscales varied in the total number
of questions from five to seven. The resulting score indicates how
motivating each factor was on this specific assignment for the
student. The CLCS consists of three subscales for three kinds of
cognitive load and we summed the values on those subscales to
create a single value representing that subscale. Similar to the IMI,
we averaged each subscale total by the number of questions in
that subscale given that there are three questions for intrinsic and
extraneous, and four questions for germane. For the pre- and post-
test we report the average percentage of questions the students
answered correctly. For each measure, and for each subscale in a
measure, we divided the students by condition and performed a
one-way analysis of variance to determine if there are significant
differences in motivation and cognitive load.

For the open-ended questions we focused our analysis on the re-
sponse of each student to questions one and four as both questions
focused on parts of the assignment that may interest or motivate
students, and therefore could help provide context for RQ1. As
a result, the coding process focused on answering the question:
what did the student find exciting during the assignment. Two
researchers engaged in an adapted thematic analysis process [2]
beginning with an open coding phase where each researcher read
the same five responses and identified sentences from students that
indicated their interest. The researchers each assigned a candidate
code to the sentence and then met and discussed their codes. This
process was repeated until no new codes appeared. The researchers
then discussed the existing codes and constructed a closed list of
codes. Researchers then identified similar codes and merged those
codes into a closed codebook which we discuss in Section 4.4. Us-
ing the closed list of codes, each researcher coded every response,
given the short length of many of the responses, and discussed
any conflicts that arose during the closed coding process. The re-
searchers reached consensus for each response, so we do not report
inter-rater reliability.
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l Instrument ‘ Max ‘ Exp. Mean (SD) ‘ Ctrl. Mean (SD) ‘ Exp. Median! | Ctrl. Median | Cohen’s d | p-Value
IMI Interest 7 4.16 (0.61) 4.05 (0.72) 4.14 4.00 0.17 0.50
IMI Effort 7 3.83 (0.65) 3.79 (0.52) 3.80 3.90 0.07 0.67
IMI Choice 7 2.97 (0.68) 3.04 (0.62) 2.71 2.71 -0.11 0.52
IMI Competence | 7 4.57 (0.96) 4.36 (0.85) 483 450 0.23 0.25
IMI Pressure 7 3.27 (0.64) 3.46 (0.54) 3.40 3.40 -0.33 0.22
IMI Value 7 5.11 (1.25) 5.04 (1.21) 5.08 4.83 0.05 0.827F
Pre-Test 100 86.67 (16.01) 89.89 (15.76) 90.91 100 -0.01 0.72
Post-Test 100 92.79 (12.86) 91.72 (12.21) 100 100 0.08 0.78
Assignment Time | N/A | 26.92 (11.26) 22.08 (7.68) 26.35 20.79 0.49 0.04F
CLCS Intrinsic 10 1.82 (1.06) 2.20 (1.57) 1.83 2.00 -0.30 0.39
CLCS Extraneous | 10 8.22 (1.25) 7.96 (1.49) 1.33 2.00 -0.27 0.25
CLCS Germane 10 1.52 (2.42) 1.83 (2.45) 6.13 6.25 0.10 0.697

Table 1: Comparison of outcomes for the experimental and control groups across measures, with effect size of differences and
significance of statistical test. All measures are non-normally distributed and a Mann-Whitney U test was used to calculated p,

except for those marked with {, where a t-test was used.

4 RESULTS
4.1 RQ1: Motivation

Student responses to the IMI are our primary measure of motivation.
The results of our analysis for the IMI are presented in Table 1.
Starting with the interest subscale, we see there is marginally higher
motivation in the experimental group over the control group, but
the effect size is quite small, and the difference is not significant.
The results are not significant for all other subscales in the IMI. The
effort, perceived competence, and value scale are slightly higher in
the experimental group, while the perceived choice and pressure
scales are higher in the control group. For each subscale, the effect
sizes are quite small. We therefore see little evidence that the artifact
creation impacted students’ self-reported intrinsic motivation.

Student selection on Task 4 is another potential indicator of
motivation, as students who are more motivated may be more
likely to select more challenging, but more interesting tasks. The
proportion of students who selected either of the more difficult
choices for Task 4 was slightly higher in the experimental group
(13/34 = 38%) than the control group (11/39 = 28%), but a y? test
shows that this difference was not significant (y? = 0.83; p = 0.36).
Overall, most students opted for the easiest choice (49/73 = 67.12%).
Together these results do not strongly support our hypothesis for
RQ1, and we cannot reject the null hypothesis.

4.2 RQ2: Time on Task

We also examined the amount of active time that students spent
during each task. This helps us understand whether artifact creation
may affect students as they are programming. As shown in Table 1
the experimental group took more time on average (26.9 minutes)
than the control group (22.1 minutes), and this effect is significant,
with a medium effect size (d = 0.49), suggesting that having access
to the artifact may have caused students to complete the assignment
more slowly.

4.3 RQ3: Cognitive Load

Responses on the CLCS indicate slightly lower intrinsic and extra-
neous cognitive load (negatively associated with learning) for the
experimental group while there was slightly higher germane load
(positively associated with learning) for the control group. There
were no significant differences between the two groups on any of
the subscales, and effect sizes for each subscale were quite small.
Given the consistency of these results across subscales, our results
may suggest the potential for artifact creation to reduce cognitive
load, but if so the effect is relatively small.

4.4 Qualitative Analysis

We found evidence that the experimental group found the artifact
itself to be motivating in their answers mentioning the output of the
assignment (Exp.: 18/27, Ctrl.: 6/32). One student in the experimen-
tal group expressed that, “getting to watch the particles move after
I completed my code,” was enjoyable, while another wrote “I was
excited during the water and sand portion when I completed the
code and got to play with the simulation to make sure it works cor-
rectly” Students in the control were less likely to mention outputs,
but were more likely to mention coding (Exp.: 9/27, Ctrl.: 12/32)
and problem solving (Exp.: 7/27, Ctrl.: 15/32) in the absence of an
interesting output. One student in the control group explained that
it was exciting “being able to actually perform coding myself,” while
another expressed that they enjoyed “visualizing the walkthroughs
of how the code works.” Additionally, students in the control group
were more likely to mention the completion (Exp.: 7/27, Ctrl.: 18/32)
of the assignment, or completing specific tasks, as motivating. One
student in the control group wrote “whenever I passed the test
cases, I was happy.” Finally, a small number of students in both
groups mentioned choice (Exp.: 4/27, Ctrl.: 4/32) as motivating. One
student in the control group expressed that they, “enjoyed getting
to choose which of the next tasks I'd work on for that one part,”
while another in the experimental group wrote, “my favorite part
of the assignment was the final task, in which we could choose
what task to pursue”
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5 DISCUSSION

5.1 Research Question 1: Motivation

We hypothesized that students in the experimental group would
report higher intrinsic motivation to complete the assignment on
the IMI due to their ability to see and interact with the artifact
they were creating. Contrary to our hypothesis, we found little
evidence that the ability to see and interact with the artifact in-
creased student motivation. There are a few potential reasons for
this. First, it is possible that students in the experimental group
did not find the Falling Sands simulation itself to be interesting,
so interacting with the artifact did not increase motivation. We
did not measure this directly as the IMI asked about the whole
programming activity, not the artifact itself; however, the results
from the qualitative analysis suggest that students in the exper-
imental group did find the artifact interesting. As mentioned in
Section 4.4, students in the experimental group expressed a variety
of interest in the output of the program, for example, “I did enjoy
watching the sand change to gas when it hit the oil and actually all
the other visual displays of the tasks and watching the elements
move throughout the display area” Second, it is possible that stu-
dents found the simulation to be interesting, but did not feel a sense
of ownership [34] when “creating,” the artifact, either because they
did not feel like the code they wrote meaningfully contributed to
the simulation or the simulation itself was prescribed to them and
therefore not their own design. It is possible that lack of ownership
may limit the impact of artifacts on students’ motivation. Third, it
is possible that both groups were motivated by the coding task ei-
ther because programming was relevant for the student or because
of their interest in critical thinking and problem solving, and this
programming-related motivation eclipsed any differences between
the groups due to the experimental manipulation. This may explain
the small, non-significant effect we did observe. This is supported
by the control groups’ free responses where they identified an in-
terest in programming and problem solving as contributing to their
interest in the assignment (Section 4.4). As we discuss below, our
results for RQ2 and RQ3 leave open the possibility that artifact
creation could bring benefits — and also costs — even in the absence
of increased motivation.

5.2 Research Question 2: Time on Task

Our results show that the time students spent on the assignment
was significantly higher in the experimental group; however, due to
our many comparisons in this study, it is important to interpret this
result with caution, and we do not make strong claims about this
effect. In our study, students in the experimental group needed on
average about 5 minutes (22%) longer to complete the assignment
(including all four tasks). Students in the experimental condition
may have had increased time as they had to come up with their
own strategy for testing the correctness of their code using the
simulation and interpret the results of the simulation, which could
also contribute to the amount of time spent on the assignment.
Increased time on task can be beneficial if there is an increase in
student learning; however, we did not observe this effect in our
results. This suggests that, in some situations, assignments without
artifact creation may require less student time and lead to similar
student outcomes. Future work should explore how students spend
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their time during artifact creation assignments, and also investigate
the relationship between the time spent and the effects on learning.

5.3 Research Question 3: Cognitive Load

While we found a pattern of lower intrinsic and extraneous cog-
nitive load across each subscale in the experimental group, these
differences were not significant, and our results remain inconclu-
sive as to whether artifact creation affects cognitive load. If so,
the effect appears to be small. If the effect is real, one potential
explanation for why we might observe lower extraneous cognitive
load for students who are creating artifacts is that students can use
their own prior knowledge (e.g., of how simulated materials should
behave) to guide program development decreasing cognitive load.
This interpretation aligns with constructionist [12] and discovery
learning [11] theories of learning, in which students use what they
already know to acquire more knowledge. However, there is evi-
dence from cognitive load research that changes in instructional
design, such as including an artifact, even when all else is equal can
lead to an increase in extraneous load [39]. While inconclusive, our
results raise the possibility that artifact creation may have benefits
beyond motivation.

5.4 Implications

The primary implication of our study for instructors is that artifact
creation is not a silver bullet that can provide motivation equally
for all students in all contexts. For populations such as ours that
already express high interest in programming itself, the added
benefit of artifact creation may not outweigh the instructor effort
required to design and grade such an assignment, or potential
tradeoffs in terms of time on task or cognitive load. However, prior
work [7, 17], suggests that there are likely many contexts where
artifact creation will be motivating, and our results do not contradict
these findings. For researchers, our work suggests the importance
of further investigation to understand what differentiates these
contexts; where is artifact creation most beneficial? Our findings
emphasize the value of investigating domain specific instructional
design choices in CS, and the need to better understand what factors
facilitate or mediate motivation from assignment design decisions.

5.5 Limitations

One key limitation of our work is that we focused on only one
artifact (a simulation) that may not have been the best choice for
every student in our population; however, it was based on a popular
SIGSCE Nifty assignment [32], and we argue it well represents the
affordances of artifact creation, which is supported by students’
open-ended comments. Additionally, for our population of engi-
neering majors, simulations are highly relevant. Another limitation
is that our assignment was relatively short and focused on only a
few programming tasks. While it is possible that a longer assign-
ment could lead to more changes in motivation previous work has
identified that even a fifteen minute intervention is enough to affect
student motivation [18].

6 ACKNOWLEDGEMENT

This material is based upon work supported by the National Science
Foundation under Grant #1917885



Are Engineering Students Motivated by Interacting With Simulations They Program? A Controlled Study

REFERENCES

(1]

&

[10]

(1]

[12]
[13]

[14

=
A

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Bhavya, Assma Boughoula, Aaron Green, and ChengXiang Zhai. 2020. Collective
Development of Large Scale Data Science Products via Modularized Assignments:
An Experience Report. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (SIGCSE "20). ACM. https://doi.org/10.1145/3328778.
3366961

Victoria Clarke, Virginia Braun, and Nikki Hayfield. 2015. Thematic analysis.
Qualitative psychology: A practical guide to research methods 3 (2015), 222-248.
Lyn Corno and Eric M. Anderman. 2015. Handbook of Educational Psychology.
Routledge, 91-103.

Luc G. Pelletier Edward L. Deci, Robert J. Vallerand and Richard M. Ryan. 1991.
Motivation and Education: The Self-Determination Perspective. Educational Psy-
chologist 26, 3-4 (1991), 325-346. https://doi.org/10.1080/00461520.1991.9653137
arXiv:https://doi.org/10.1080/00461520.1991.9653137

Terry Duncan Edward McAuley and Vance V. Tammen. 1989. Psychometric
Properties of the Intrinsic Motivation Inventory in a Competitive Sport Set-
ting: A Confirmatory Factor Analysis. Research Quarterly for Exercise and
Sport 60, 1 (1989), 48-58. https://doi.org/10.1080/02701367.1989.10607413
arXiv:https://doi.org/10.1080/02701367.1989.10607413 PMID: 2489825.

Lisa Facey-Shaw, Marcus Specht, Peter van Rosmalen, and Jeanette Bartley-
Bryan. 2020. Do badges affect intrinsic motivation in introductory programming
students? Simulation & Gaming 51, 1 (2020), 33-54.

A. Forte and M. Guzdial. 2005. Motivation and nonmajors in computer science:
identifying discrete audiences for introductory courses. IEEE Transactions on
Education 48, 2 (2005), 248-253. https://doi.org/10.1109/TE.2004.842924

Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

Nasser Giacaman, Partha Roop, and Valerio Terragni. 2023. Evolving a Program-
ming CS2 Course: A Decade-Long Experience Report. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023).
ACM. https://doi.org/10.1145/3545945.3569831

Mark Guzdial. 2003. A Media Computation Course for Non-Majors. In Proceed-
ings of the 8th Annual Conference on Innovation and Technology in Computer
Science Education (Thessaloniki, Greece) (ITiCSE '03). Association for Computing
Machinery, New York, NY, USA, 104-108. https://doi.org/10.1145/961511.961542
David Hammer. 1997. Discovery learning and discovery teaching. Cognition and
instruction 15, 4 (1997), 485-529.

Idit Ed Harel and Seymour Ed Papert. 1991. Constructionism. Ablex Publishing.
Suzanne E. Hidi, K. Ann Renninger, K. Ann Renninger, and Suzanne E. Hidi. 2019.
The Cambridge Handbook of Motivation and Learning. Cambridge University
Press, 1-12.

Yasmin B Kafai and Quinn Burke. 2015. Constructionist gaming: Understanding
the benefits of making games for learning. Educational psychologist 50, 4 (2015),
313-334.

Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling Alice Mo-
tivates Middle School Girls to Learn Computer Programming. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’07). Association for Computing Machinery, New York, NY,
USA, 1455-1464. https://doi.org/10.1145/1240624.1240844

John M. Keller. 2010. Integrating Motivational and Instructional Strategies. Springer
US, Boston, MA, 255-265. https://doi.org/10.1007/978-1-4419-1250-3_10
Christian Koppe. 2020. Program a Hit — Using Music as Motivator for Introducing
Programming Concepts. In Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE °20).
Association for Computing Machinery, New York, NY, USA, 266-272. https:
//doi.org/10.1145/3341525.3387377

Jeff J Kosovich, Chris S Hulleman, and Kenneth E Barron. 2017. Measuring
motivation in educational settings: A Case for pragmatic measurement. The
Cambridge handbook on motivation and learning (2017), 39-60.

Juho Leinonen, Leo Leppanen, Petri Thantola, and Arto Hellas. 2017. Comparison
of time metrics in programming. In Proceedings of the 2017 acm conference on
international computing education research. 200-208.

Jimmie Leppink, Fred Paas, Cees P. M. Van der Vleuten, Tamara Van Gog, and
Jeroen J. G. Van Merriénboer. 2013. Development of an instrument for measuring
different types of cognitive load. Behavior Research Methods 45, 4 (2013), 1058—
1072.

Lisa Linnenbrink-Garcia, Erika A. Patall, and Reinhard Pekrun. 2016. Adap-
tive Motivation and Emotion in Education: Research and Principles for
Instructional Design.  Policy Insights from the Behavioral and Brain Sci-
ences 3, 2 (2016), 228-236. https://doi.org/10.1177/2372732216644450
arXiv:https://doi.org/10.1177/2372732216644450

Ulrike L.E. Magner, Rolf Schwonke, Vincent Aleven, Octav Popescu, and Alexander
Renkl. 2014. Triggering situational interest by decorative illustrations both fosters
and hinders learning in computer-based learning environments. Learning and
Instruction 29 (2014), 141-152. https://doi.org/10.1016/j.learninstruc.2012.07.002
Richard E Mayer. 1997. Multimedia learning: Are we asking the right questions?
Educational psychologist 32, 1 (1997), 1-19.

[24]

[25]

[26

~
=

[28

[29]

[30

(31

@
&,

[33

[34

[36

[37

[38

[39

(41

[42]

SIGCSE Virtual "24, ,

Joseph E Michaelis and David Weintrop. 2022. Interest development theory in
computing education: a framework and toolkit for researchers and designers.
ACM Transactions on Computing Education 22, 4 (2022), 1-27.

Vera Monteiro, Lourdes Mata, and Francisco Peixoto. 2015. Intrinsic motiva-
tion inventory: Psychometric properties in the context of first language and
mathematics learning. Psicologia: Reflexdo e Critica 28 (2015), 434-443.

Briana B. Morrison, Brian Dorn, and Mark Guzdial. 2014. Measuring Cognitive
Load in Introductory CS: Adaptation of an Instrument. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (Glasgow,
Scotland, United Kingdom) (ICER ’14). Association for Computing Machinery,
New York, NY, USA, 131-138. https://doi.org/10.1145/2632320.2632348
Barbara Moskal, Deborah Lurie, and Stephen Cooper. 2004. Evaluating the
Effectiveness of a New Instructional Approach. SIGCSE Bull. 36, 1 (mar 2004),
75-79. https://doi.org/10.1145/1028174.971328

Jonathan P Munson. 2017. Metrics for timely assessment of novice programmers.
Journal of Computing Sciences in Colleges 32, 3 (2017), 136-148.

S Won Park. 2017. Motivation theories and instructional design. Foundations of
learning and instructional design technology (2017).

Nick Parlante. 2024. Nifty assignments. http://nifty.standford.edu Accessed:
2024-05-26.

Nick Parlante, Julie Zelenski, Dave Feinberg, Kunal Mishra, Josh Hug, Kevin
Wayne, Michael Guerzhoy, Jackie Chi Kit Cheung, and Francois Pitt. 2017. Nifty
Assignments. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 695-696. https://doi.org/10.
1145/3017680.3028255

Nick Parlante, Julie Zelenski, Dave Feinberg, Kunal Mishra, Josh Hug, Kevin
Wayne, Michael Guerzhoy, Jackie Chi Kit Cheung, and Francois Pitt. 2017. Nifty
Assignments. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 695-696. https://doi.org/10.
1145/3017680.3028255

Richard M. Ryan. 1982. Control and information in the intrapersonal sphere:
An extension of cognitive evaluation theory. Journal of personality and social
psychology 43, 3 (1982), 450-461.

Richard M Ryan and Edward L Deci. 2020. Intrinsic and extrinsic motivation
from a self-determination theory perspective: Definitions, theory, practices, and
future directions. Contemporary educational psychology 61 (2020), 101860.

Beth Simon, Piivi Kinnunen, Leo Porter, and Dov Zazkis. 2010. Experience
Report: CS1 for Majors with Media Computation. In Proceedings of the Fifteenth
Annual Conference on Innovation and Technology in Computer Science Education
(Bilkent, Ankara, Turkey) (ITiCSE ’10). Association for Computing Machinery,
New York, NY, USA, 214-218. https://doi.org/10.1145/1822090.1822151

Robert H. Sloan and Patrick Troy. 2008. CS 0.5: A Better Approach to Introductory
Computer Science for Majors. SIGCSE Bull. 40, 1 (mar 2008), 271-275. https:
//doi.org/10.1145/1352322.1352230

Stephen D Sorden. 2012. The cognitive theory of multimedia learning. Handbook
of educational theories 1, 2012 (2012), 1-22.

John Sweller. 2010. Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational psychology review 22 (2010), 123-138.

John Sweller, Jeroen JG van Merriénboer, and Fred Paas. 2019. Cognitive archi-
tecture and instructional design: 20 years later. Educational Psychology Review
31 (2019), 261-292.

John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review (1998),
251-296.

Eunjoon Um, Jan L Plass, Elizabeth O Hayward, Bruce D Homer, et al. 2012.
Emotional design in multimedia learning. Journal of educational psychology 104,
2(2012), 485

Tammy VanDeGrift. 2020. Applying the Design Process to Life Goals: An Ex-
perience Report from a Capstone Course. In Proceedings of the 51st ACM Tech-
nical Symposium on Computer Science Education (SIGCSE "20). ACM. https:
//doi.org/10.1145/3328778.3366895


https://doi.org/10.1145/3328778.3366961
https://doi.org/10.1145/3328778.3366961
https://doi.org/10.1080/00461520.1991.9653137
https://arxiv.org/abs/https://doi.org/10.1080/00461520.1991.9653137
https://doi.org/10.1080/02701367.1989.10607413
https://arxiv.org/abs/https://doi.org/10.1080/02701367.1989.10607413
https://doi.org/10.1109/TE.2004.842924
https://doi.org/10.1145/3545945.3569831
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/1240624.1240844
https://doi.org/10.1007/978-1-4419-1250-3_10
https://doi.org/10.1145/3341525.3387377
https://doi.org/10.1145/3341525.3387377
https://doi.org/10.1177/2372732216644450
https://arxiv.org/abs/https://doi.org/10.1177/2372732216644450
https://doi.org/10.1016/j.learninstruc.2012.07.002
https://doi.org/10.1145/2632320.2632348
https://doi.org/10.1145/1028174.971328
http://nifty.standford.edu
https://doi.org/10.1145/3017680.3028255
https://doi.org/10.1145/3017680.3028255
https://doi.org/10.1145/3017680.3028255
https://doi.org/10.1145/3017680.3028255
https://doi.org/10.1145/1822090.1822151
https://doi.org/10.1145/1352322.1352230
https://doi.org/10.1145/1352322.1352230
https://doi.org/10.1145/3328778.3366895
https://doi.org/10.1145/3328778.3366895

	Abstract
	1 Introduction
	2 Related Work
	2.1 Motivation
	2.2 Instructional Design & Motivation
	2.3 Cognitive Load Theory

	3 Methodology
	3.1 Population
	3.2 Materials
	3.3 Conditions
	3.4 Procedure
	3.5 Measures
	3.6 Analysis

	4 Results
	4.1 RQ1: Motivation
	4.2 RQ2: Time on Task
	4.3 RQ3: Cognitive Load
	4.4 Qualitative Analysis

	5 Discussion
	5.1 Research Question 1: Motivation
	5.2 Research Question 2: Time on Task
	5.3 Research Question 3: Cognitive Load
	5.4 Implications
	5.5 Limitations

	6 Acknowledgement
	References

