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Abstract

A seller is pricing identical copies of a good to a stream of unit-demand buyers. Each buyer has a
value on the good as his private information. The seller only knows the empirical value distribution of
the buyer population and chooses the revenue-optimal price. We consider a widely studied third-degree price
discrimination model where an information intermediary with perfect knowledge of the arriving buyer’s value
sends a signal to the seller, hence changing the seller’s posterior and inducing the seller to set a personalized
posted price. Prior work of Bergemann, Brooks, and Morris (American Economic Review, 2015) has shown the
existence of a signaling scheme that preserves seller revenue, while always selling the item, hence maximizing
consumer surplus. In a departure from prior work, we ask whether the consumer surplus generated is fairly
distributed among buyers with different values. To this end, we aim to maximize functions of buyers’ welfare
that reward more balanced surplus allocations.

Our main result is the surprising existence of a novel signaling scheme that simultaneously 8-approximates
all welfare functions that are non-negative, monotonically increasing, symmetric, and concave, compared with
any other signaling scheme. Classical examples of such welfare functions include the utilitarian social welfare,
the Nash welfare, and the max-min welfare. Such a guarantee cannot be given by consumer-surplus-maximizing
schemes – which are the ones typically studied in the literature. In addition, our scheme is socially efficient,
and has the fairness property that buyers with higher values enjoy higher expected surplus, which is not always
the case for existing schemes.

1 Introduction

Imagine a seller with infinite supply of a good. The seller wishes to sell the good to a population of unit-demand
buyers with standard quasi-linear utilities. The seller knows the empirical distribution D of the buyer valuations
and chooses a revenue-maximizing price to sell the good. In this paper, we consider this simple setting, but
with a twist: there is an additional information intermediary who can segment the market and help the seller
price-discriminate. Information intermediaries for price discrimination were first considered by [4] and our work
proposes and studies new desiderata for them.

Such intermediaries are becoming ubiquitous in modern two-sided e-commerce platforms. Consider for
example ad exchanges [15, 49, 40, 42], where the platform acts as an intermediary between buyers (in this
case advertisers) and sellers (in this case, publishers controlling the ad slot). The intermediary wants the best
for both sides; however, as in classical auctions, the seller – not the intermediary – controls the price at which
trade happens. Other examples include retail platforms such as Amazon marketplace, who also effectively serve
as intermediaries – they merely facilitate the trade, but do not control the prices.

In such settings, the platform can use machine learning and its vast trove of data on buyer behavior to
accurately predict the value of buyers. It can then choose to reveal information about the current buyer to
the seller in order to influence the trade. This information (or signal) leads to the seller updating its prior
D over buyer values to a posterior distribution over values given the signal. The seller now posts the optimal
(revenue-maximizing) price for this posterior. Such information revelation is termed signaling or third-degree
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price discrimination1 and is a special case of Bayesian persuasion [31]. Note that in practice, the seller and the
intermediary could be the same entity, such as a retail or ride-share platform that wants to use buyer information
to segment the market and perform price discrimination.

To understand this setting better, consider two extremes: At one extreme, the intermediary can choose to
reveal no information to the seller, in which case the seller’s posterior remains D. Therefore, the seller posts
the Myerson price [41] pMy = argmaxp p · Prv∼D[v g p] on D and collects revenue RMy = pMy · Prv∼D[v g pMy].

Since trade does not happen if the buyer’s private value v is below pMy, this scheme is generally inefficient –
the consumer (buyer) surplus Ev∼D[(v − pMy)+] plus seller revenue RMy is less than the maximum possible total
surplus, Ev∼D[v].

At another extreme is full information revelation or first-degree price discrimination, where the intermediary
reveals the actual buyer value v to the seller. In this case, the seller’s posterior collapses to the deterministic
value v. The seller can now post price slightly below v, so that trade always happens. However, this efficiency
comes at a cost – the buyer now obtains zero surplus (their value minus price paid), while the seller’s revenue
becomes equal to the total surplus, Ev∼D[v]. Note that in the no-signaling case discussed above, the consumer
surplus Ev∼D[(v − pMy)+] could be positive – thus between these two schemes, from a utilitarian point of view,
no-signaling is better for the buyers, while full-revelation is better overall.

1.1 Optimal Signaling and Fairness Signaling clearly helps the seller since they can always obtain at least
as much revenue RMy as in no-signaling (e.g. by ignoring the signal). What is less clear is whether signaling can
improve consumer surplus at all. In a remarkable result, [4] showed the existence of “buyer-optimal” signaling
schemes in the following sense: The seller’s expected revenue remains the same as in no-signaling (i.e., RMy, which
is the minimum possible under any signaling scheme), while trade is always efficient (i.e., the item always sells),
which means that the sum of the consumer surplus and the seller revenue is the maximum possible total surplus,
Ev∼D[v]. Hence, the consumer surplus must be as large as it could possibly be.

This is a beautiful result, but is unsatisfying upon closer inspection. Note that while the proposed scheme
maximizes consumer surplus, it is not the unique such scheme [4, 14, 35]. Are all ways of splitting this aggregate
surplus among buyers equal, even if this gain in surplus is “subsidized” more by a particular group of buyers? We
think not – maximizing the utilitarian total consumer surplus should not be the sole consideration; it is natural to
also desire that price discrimination is fair at the level of individual buyers – but how should we formalize this?

A first idea is to require some form of monotonicity in the surplus split. Let CSv be the expected consumer
surplus that a signaling scheme provides to a buyer of value v; we could now require that CSv f CSv′ whenever
v < v′. This is true in the absence of signaling (as fixed pricing is monotone), and so should perhaps be expected
to hold in the presence of signaling. It also captures some sense of envy in price discrimination – a buyer with
larger value should not envy the surplus seen by a buyer with smaller value. We show via examples in Section 2.2
that even this very natural constraint rules out some existing buyer-optimal schemes.2

An alternative and more wide-reaching fairness requirement is given by the following paradigm:
Universal Welfare Maximization (and Majorization). Consider the surplus vector where its jth

dimension is the expected surplus of the jth buyer. Note that the surplus vector is not the vector of different
surplus values. Instead, each dimension represents the expected surplus of a single buyer. For example, if there
is 1 buyer with expected surplus 1 and 9 buyers with expected surplus 2, we are transforming the surplus into
a 10-dimension vector rather than a 2-dimension vector. A general welfare function3 takes the surplus vector
as input, and outputs a non-negative real number (higher is better). We restrict to welfare functions that are
symmetric, non-decreasing, and concave: Symmetry ensures equal treatment to all buyers; non-decreasing ensures
that Pareto improvements are desirable; and concavity is a common fairness consideration favoring balanced
allocations. Common examples of such welfare functions include the utilitarian social welfare function, the Nash

1It is termed “third-degree” price discrimination because the seller or intermediary divides the market into segments, each with its
own price. In contrast, in first-degree price discrimination, the seller has perfect information and charges buyers exactly their value,
while in second-degree price discrimination, the seller sells similar yet ‘different’ goods (differing in quality/quantity) at different
prices.

2We note that the scheme for continuous priors in [4] is both monotone and buyer-optimal.
3Our welfare notion is based only on each buyer’s expected surplus, and does not consider the seller’s surplus. We can easily

extend our welfare notion to also take into account the seller’s surplus and obtain similar results, by mixing our schemes with the
seller-optimal one.
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welfare function, and the max-min welfare function. A fair signaling scheme could be defined as one which
maximizes such a welfare function; however, it is unclear how to unambiguously pick one welfare function among
the numerous possibilities.

What would be ideal is if there is a universal scheme that is optimal (or at least, approximately optimal) for all
such welfare functions. This universal maximization of concave functions is closely related to majorization [32, 27]
and its approximate form: ³-majorization (see e.g. [24, 23]).

1.2 Our Results The main question we ask is:

In third-degree price discrimination, how close can we get to a universally-fair signaling scheme, i.e.,
one which is (monotone and) near-optimal for any welfare function?

At the outset, one might be pessimistic: For resource allocation and stochastic optimization problems [24, 37, 9],
typically ³ = É(1), where ³ is the approximation factor for majorization (and hence for universal welfare
maximization). Indeed, as we show in Section 4, any buyer-optimal signaling scheme in the sense of [4] cannot
be ³-majorized for any given constant ³. Given this, one may wonder if universal welfare maximization is too
strong a condition to expect.

Our main result is a surprising new signaling scheme that shows the following theorem:

Theorem 1.1. (formally stated as Theorem 3.1) For any prior D, there is a signaling scheme that is 8-
majorized, and hence it simultaneously 8-approximates all non-negative, increasing, symmetric and concave welfare
functions, compared with any other signaling scheme. Further, this scheme is monotone and efficient, and can be
computed in time polynomial in the size of the support of D.

Our main theorem therefore shows that we can be (near)-universally-fair (i.e., near-optimal for any welfare
function). This signaling scheme sacrifices some consumer surplus to achieve this guarantee; however, as mentioned
above, this sacrifice is necessary – as we show in Section 4, any exactly buyer-optimal scheme is not ³-majorized
for any constant ³. Further note that by definition, our scheme is also 8-approximately buyer-optimal. We
complement our 8-approximation with a lower bound of 1.5 in Section 4: There is no signaling scheme that is
³-majorized by every other signaling scheme for ³ < 1.5.

At a technical level, the proof of Theorem 1.1 constructs a very different signaling scheme from prior work
on price discrimination. The scheme is composed of signals such that each of them induces a posterior as a
distribution over at most two values. We first decompose the prior D into a collection of such signals, and show
that this collection 4-approximates prefix sums of consumer surplus when sorted on buyer value. We then apply
a novel ironing procedure to modify the signals so that the resulting scheme is approximately majorized, while
losing an additional factor of 2. Both steps are non-trivial, and together yields an 8-majorized scheme that is also
monotone (and socially efficient).

1.3 Related Work Our model of third-degree price discrimination is a special case of information design
(see [7]) where an information mediator provides information to impact the behavior of agents. This has also
been termed signaling or persuasion in literature. (See [16].) In Bayesian persuasion first proposed by [31], there
is one agent called the receiver who receives additional information from a better-informed sender. Given the
signal, the receiver computes their posterior over the state of nature and chooses an action to maximize their own
utility. The sender can design the signals so that the receiver, acting in her own interest, maximizes some utility
function the sender cares about. This problem has been widely studied in various contexts [17, 18, 2, 4, 10, 47, 26].

In the setting we consider, the sender is the intermediary, while the receiver is the seller that maximizes
their revenue given the signal. This was first considered by [4], who showed buyer-optimal signaling schemes
that preserve seller revenue while transferring the rest of the surplus to the buyers. Subsequently, it was
shown by [14] that the set of all buyer-optimal signaling schemes can be specified by a linear program.
Several works [45, 8, 39, 6, 1, 35] consider various extensions to the basic single seller/buyer setting, and show
exact/approximate buyer-optimality under various assumptions.

The concept of majorized vectors has existed for a long time [32, 27], and is equivalent to solutions that
simultaneously maximize symmetric concave functions of the coordinates. In the context of resource allocation
and routing problems, an approximate version of this concept was defined by [24], and subsequently shown by [23]
to be equivalent to solutions that simultaneously approximately maximize every symmetric concave function of
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the coordinates; see also [37, 9]. It was shown by [24] that the best approximation factor is the solution of a linear
program. However, the approximation factor is problem-dependent and typically logarithmic in the number of
coordinates for general routing problems. The surprising aspect of our paper is that this factor is only a constant
for the price discrimination problem, and is achieved by a very simple signaling scheme. This is similar in spirit
to recent results in metric distortion of voting rules, where the Copeland rule is 5-majorized [22], and a novel rule
of [21] is 3-majorized, by any other rule.

Apart from approximate majorization, researchers have proposed other fairness notions in advertising
auctions, such as enforcing similar position allocations for similar bids [11, 12, 20], and similar assignment of
ads [30] or payoffs [46] for similar users.

[48] consider fairness in price discrimination by imposing a bound on the ratio or difference in prices that the
seller is allowed to charge to different buyers (akin to monotonicity). They assume a perfectly informed seller (first-
degree price discrimimation) and derive a unique optimal pricing strategy as well as characterize the tradeoffs for
different buyer value distributions. Our work in contrast focuses on the more involved objective of majorization,
and furthermore, we do not assume the seller is perfectly informed (third-degree price discrimination).

Our work connects to the larger body of work on fairness in machine learning, where again, optimality in the
sense of overall risk minimization (ERM) can lead to systematic unfairness [33, 34, 29, 19, 36]. Much of this work
focuses on the tradeoffs between efficiency and fairness. As machine learning systems become more pervasive,
it becomes important to consider not just their direct impact, but also their impact to downstream applications
when they are embedded in a larger system. In our case, the larger system is a marketplace platform that
uses machine learning to predict buyer values and help sellers price-discriminate. Our results show that näıvely
maximizing surplus can be unfair, while different mechanisms can achieve good tradeoffs between efficiency and
fairness.

2 Preliminaries

2.1 Basic Setting
Seller and Buyers. A monopolistic seller of a good has infinite supply, and wants to price them so as to

maximize her revenue. There are a finite number of buyers in the market. Each buyer is interested in buying
at most one copy of the good, and has a value for the good given by a positive real number. A buyer chooses
to buy if and only if the price is at most his value. We henceforth focus on discrete empirical distributions over
buyer valuations; in particular, we consider distributions with support size n over values v1 < v2 < · · · < vn. (We
write v0 := 0 to simplify notation.) For any distribution P, we use fP(v) to denote the probability mass function:
fP(v) := Prv′∼P [v

′ = v], and define the cumulative distribution function (CDF) FP(v) := Prv′∼P [v
′ f v] and

complementary CDF GP(v) := Prv′∼P [v
′ g v].

Let D denote the empirical distribution of buyer valuations. The seller knows the distribution D, but not the
actual value of each buyer. Consequently, without additional information, the seller chooses a common price pMy

(sometimes called the Myerson price [41]) for all buyers such that p = pMy maximizes p ·GD(p).
Price Discrimination via an Information Intermediary. The main idea in the work of [4] is that in this

setting, one can model the effects of price discrimination by considering an exogenous intermediary who provides
some additional signal to the seller about each buyer, enabling the seller to modify the price offered to that buyer.
We now formalize this as a game among the intermediary, the seller and the buyers.

We assume the information intermediary knows D as well as the exact value of each buyer. Independently,
for each buyer, the intermediary sends a signal about the buyer’s value to the seller via some chosen signaling
scheme: a (potentially randomized) mapping from a value in {v1, v2, . . . , vn} to some set of signals [Q]. Crucially,
the intermediary commits to a scheme upfront, and the scheme is known to the seller.

From the perspective of the seller, since all agents are a priori indistinguishable, the effect of receiving a
signal is to update the seller’s belief over the buyer’s value from D to some new distribution Sq (q ∈ [Q]) over
possible values. Consequently, with a slight abuse of notation, instead of defining a signaling scheme in terms
of the mapping from value to signal, we directly define it in terms of the resulting posterior distributions Sq
corresponding to each q, as well as the resulting distribution over these signals. Formally:

Definition 2.1. (Signal; Signaling Scheme) A signal S updates the seller’s belief over a buyer’s value from
D to some new distribution S. A signaling scheme Z = {(Sq, µq)}q∈[Q] is a collection of Q signals {Sq}q∈[Q] with
weights {µq}q∈[Q] that satisfy: (1) µq g 0 and

∑

q∈[Q] µq = 1; and moreover (2)
∑

q∈[Q] µqSq = D.
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We note again that Sq denotes both the qth signal in the signaling scheme, and the posterior of the seller after
receiving the qth signal. The constraints in Definition 2.1 ensure that the signaling scheme Z is Bayes plausible [31],
i.e., that the expected posterior is equal to the prior. Given a signaling scheme as defined above, it is easy to
construct the random mapping from values to signals: each v is mapped to Sq with probability µqfSq (v)/fD(v).

Outcomes under Signaling. After receiving signal Sq from the intermediary, the seller offers the buyer a
new price p∗Sq based on the new posterior Sq satisfying

p∗Sq = argmax
v

v ·GSq (v).

The resulting expected gains from trade are split between the buyer and the seller as:

• Producer surplus (or revenue) of the seller: R(Sq) = maxv v ·GSq (v) = p∗Sq ·GSq (p
∗
Sq
).

• Consumer surplus of the buyer with value v: CSv(Sq) = 1[v g p∗Sq ] · (v − p∗Sq ).

In the event that v · GSq (v) are maximized at multiple points, we assume the seller breaks ties by choosing
the lowest tied price.4 Furthermore, we can now define the expected outcomes under a given signaling scheme:
The expected consumer surplus of a buyer with value v is the expectation of that buyer’s surplus on all signals
that the seller might receive from the intermediary. Similarly we can define the expected seller revenue.

Definition 2.2. (Expected Outcomes under Signaling) Given a signaling scheme Z = {(Sq, µq)}q∈[Q],
the expected consumer surplus of a buyer with value v under Z is:

(2.1) CSv(Z) =
∑

q∈[Q]

CSv(Sq) ·
µq · fSq (v)

fD(v)
.

Moreover, the overall expected consumer surplus under Z is CS(Z) =
∑

v fD(v) · CSv(Z).
Similarly, the seller’s expected revenue is given by:

(2.2) R(Z) =
∑

q

R(Sq) · µq.

We illustrate our setting, signaling schemes, and the above metrics with the following running example; Figs. 1
and 2 show different signaling schemes for this setting.

Example. [Running example] The buyer values are given by ï1, 2, 5, 6ð with distribution on this support being
D = ï0.25, 0.25, 0.25, 0.25ð. The revenue under each of the posted prices is ï1, 1.5, 2.5, 1.5ð, and thus 5 is the
Myerson price under D, resulting in revenue RMy = 2.5.

Fig. 1 illustrates one particular signaling scheme ZEx
1 for this setting (based on the construction of [4]).

Here, it is easy to check that 5 is an optimal price in all the signals, resulting in (seller-optimal) revenue of
R(ZEx

1 ) = 5 · (fD(5) + fD(6)) = 2.5. To compute the consumer surplus, take v3 = 5 as an example: the expected
consumer surplus of a buyer with value 5 is

CS5(Z
Ex
1 ) =

(

1

60
· (5− 1) +

1

90
· (5− 2)

)

/

(

1

4

)

= 0.4.

2.2 Global and Per-Agent Performance Metrics of Signaling Schemes

4Note that we can avoid ties by slightly perturbing each signal, without changing the message of our results.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2683

D
o
w

n
lo

ad
ed

 0
7
/3

1
/2

4
 t

o
 1

2
8
.8

4
.1

2
4
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



fD(1) =
1

4

S1

S2

S3

S4

fD(2) =
1

4
fD(5) =

1

4
fD(6) =

1

4

1

4

3

20

1

10

1

60

1

90

1

45

1

5

1

12

1

18

1

9

Figure 1: Signaling scheme in Section 2.1: The distribution ZEx
1 is drawn as rectangles in the first row. Each subsequent

row corresponds to a signal under Z. The rectangles under each vi’s column indicate the mass γqfSq (vi) placed on vi
in each signal. We can recover each signal and its weight by normalizing; for example, signal S1 satisfies fS1(1) = 1

2
,

fS1(2) =
3

10
, fS1(5) =

1

30
, fS1(6) =

1

6
and has weight γ1 = 1

2
.

fD(1) =
1

4

S1

S2

S3

fD(2) =
1

4
fD(5) =

1

4
fD(6) =

1

4

1

4

1

28

1

28

1

28

1

14

1

14

3

14

1

7

1

7

Figure 2: A completely different signaling scheme ZEx
2 for the instance given in Section 2.1: The notations are the same

as those in Fig. 1. Note that while the two schemes are very different, they both are efficient (i.e., the item is always sold),
and have the same revenue and same overall consumer surplus (although the distribution of the overall surplus between
different values is different; see Section 2.2).

Utilitarian Metrics (Efficiency and Consumer Surplus). For a signaling scheme Z to be efficient (i.e.,
to maximize the gains from trade), it needs to ensure the item is always sold. This corresponds to requiring
that for each signal q ∈ [Q], the optimal price posted by the seller under Sq is the smallest value with non-zero
probability in the support of Sq. If this holds, then any buyer will always accept the posted price and the item
is always sold.

Given any discrete distribution P, the lowest value in the support of P is defined as vP := min{v | fP(v) > 0}.
Note that since we focus on distributions over a finite support, the minimum exists. Now we can formally define
the condition for a signaling scheme to be efficient:

Definition 2.3. (Efficient Signaling Scheme) A signaling scheme Z = {(Sq, µq)}q∈[Q] is efficient if

vSq = argmax
v

v ·GSq (v) ∀ q ∈ [Q].

While efficiency ensures that a signaling scheme maximizes the overall gains-from-trade, it does not specify
how the surplus is divided. In particular, revealing the buyer’s true value to the seller is an efficient scheme, but
results in the seller getting the full surplus. An alternative is to maximize the overall consumer surplus CS(Z).
From the above definitions, it is easy to see that given D one can write the problem of constructing a signaling
scheme Z that maximizes CS(Z) via a linear program; it is not clear however what guarantees such a scheme
has, or even, if it is efficient. The surprising result of [4] is that this is indeed the case:

Proposition 2.1. (From [4]) For any given D, let RMy = maxv v · GD(v) denote the optimal revenue without
signaling (i.e., the “Myerson revenue”). Then there exist efficient signaling schemes Z under which R(Z) = RMy.

Note that since the seller can always get RMy under any signaling scheme (by ignoring the signal and posting
pMy), and since the signaling scheme is efficient, it must have maximized CS(Z). We also note that [4] in fact
construct an explicit signaling scheme that achieves this result; since then, alternative constructions have been
found [14, 35] which also maximize CS(Z), with other additional desirable properties; moreover, any convex
mixture of such schemes leads to new signaling schemes which all maximize CS(Z).
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Example. Continuing our running example from Section 2.1, note that under the signaling scheme ZEx
1 , the item

is always sold, meaning that ZEx
1 is efficient. Moreover, since R(ZEx

1 ) = RMy, we have that ZEx
1 maximizes CS(Z),

and the maximum surplus consumer is 1.
Fig. 2 illustrates an alternative efficient signaling scheme ZEx

2 (based on the construction of [35]), which we
call “remove from bottom”. Again, we can check that CS(ZEx

2 ) = 1 and the item always sells, so that this scheme
is buyer-optimal.

Fairness Metrics (Monotonicity and Equitable Welfare Functions). The main problem with focusing
on utilitarian metrics alone is that they do not give good guarantees for each individual agent’s surplus. To
understand how fair a given signaling scheme is, we need to consider additional performance metrics. The
simplest of these is monotonicity: we say a signaling scheme Z is monotone if buyers with larger values gain
larger expected surplus from Z:

Definition 2.4. (Monotonicity) A signaling scheme Z is monotone if for any ordered pair of values vi < vj,
we have CSvi(Z) f CSvj (Z).

Our running example shows that not all schemes satisfying Proposition 2.1 (i.e., efficient and consumer surplus
maximizing) are monotone.

Example. In Section 2.2 under ZEx
2 , the expected consumer surplus of buyers with values ï1, 2, 5, 6ð are respectively

ï0, 1
7 ,

10
7 , 17

7 ð. This vector is monotone; however, ZEx
1 in Section 2.1 has surplus vector ï0, 0.6, 0.4, 3ð, which is not

monotone since CS2(Z
Ex
1 ) = 0.6 > 0.4 = CS5(Z

Ex
1 ).

What can we say about what a fair signaling scheme is, beyond the above metrics (efficiency, maximizing
consumer surplus, monotonicity)? One option that is often used is to maximize an alternative equitable welfare
function – one which promotes a more balanced solution. Such a welfare function W takes as input the surplus
vector u⃗ containing the expected surplus under each value, and outputs a real number; moreover, W satisfies the
following natural properties:

• (Symmetry) For any u⃗ and any permutation Ã, W(Ã(u⃗)) = W(u⃗). In other words, it treats the buyers
equally.

• (Non-decreasing) For any u⃗1 f u⃗2,W(u⃗1) f W(u⃗2). In other words, it weakly prefers Pareto improvements.

• (Concavity) W is concave. In other words, it weakly prefers a balanced allocation to a convex combination
of extremes with the same expected allocation.

• (Normalization) W (⃗0) = 0. (It also suffices to alternatively require non-negativity: W(u⃗) g 0 for any
u⃗ g 0.)

This definition captures many common welfare functions, such as the utilitarian social welfare function that
outputs the sum, the Nash welfare function that outputs the geometric mean, and the max-min (a.k.a. egalitarian)
welfare function that outputs the minimum. It will be clear that we cannot hope for similar results if we drop
any of these four conditions.

We will show the surprising existence of a universal scheme – we do not need to know W in order to
approximately optimize it. Our technical tool to deal with the unknown W is majorization.5 Below we define it
with the related notions which we will need later.

Majorization. Given a signaling scheme Z, we define its surplus-mass function to be a step function over
(0, 1] taking value CSvi(Z) on the interval (FD(vi−1), FD(vi)]. Formally, we have:

Definition 2.5. (Surplus-Mass Function) Given a signaling scheme Z, the surplus-mass function induced
from Z is a step function sZ : (0, 1]→ Rg0 that satisfies ∀x ∈ (0, 1] and i ∈ [n]:

sZ(x) = CSvi(Z), ∀x ∈ (FD(vi−1), FD(vi)] .

5More accurately, we use the notion of majorization from above, a.k.a. supermajorization. For simplicity, we use the term
majorization throughout this paper.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2685

D
o
w

n
lo

ad
ed

 0
7
/3

1
/2

4
 t

o
 1

2
8
.8

4
.1

2
4
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



That is, the surplus-mass function maps a quantile in the value distribution to the expected surplus of the buyer
with that value.

Definition 2.6. (Integration Prefix Sum) Given a function f : (0, 1] → Rg0 and m ∈ (0, 1]. The m-
integration prefix sum of f is

IPrefix(f,m) =

∫ m

0

f(x) dx.

Next, we define the sorted m-prefix sum of any step function f as the area under the curve over the leftmost
m-length interval of the “sorted function” obtained by sorting the segments of f .

Definition 2.7. (Sorted Prefix Sum) Given a step function f : (0, 1] → Rg0 with finite steps and a real
number m ∈ (0, 1], define a new sorted function fsorted(x) by rearranging the segments in f in the ascending
order of f(x) (while keeping the domain (0, 1] unchanged). The sorted m-prefix sum of f is

SPrefix(f,m) =

∫ m

0

fsorted(x) dx.

In other words, the sorted m-prefix sum outputs the minimum possible (over S) integral of f(x) on x ∈ S, where
S ¦ [0, 1] is a finite union of disjoint intervals with total length of m.

We now define the majorization relation between two signaling schemes as follows:

Definition 2.8. (Majorization Relation) A signaling scheme Z1 is majorized by another signaling scheme
Z2 if

∀m ∈ (0, 1] , SPrefix(sZ1
,m) g SPrefix(sZ2

,m),

where sZ1
, sZ2

are the surplus-mass functions induced under schemes Z1 and Z2 respectively. A signaling scheme
is said to be majorized if it is majorized by every other signaling scheme.

Example. In our running example, the expected consumer surplus under ZEx
1 (resp. ZEx

2 ) is ï0, 0.6, 0.4, 3ð (resp.
ï0, 1

7 ,
10
7 , 17

7 ð). Each of these surplus values occupies mass of 1/4. Thus,

SPrefix
(

ZEx
2 ,

1

2

)

=

∑

v∈{1,2} CSv(Z
Ex
2 )

4
=

1

28
<

1

10
=

∑

v∈{1,3} CSv(Z
Ex
1 )

4
= SPrefix

(

ZEx
1 ,

1

2

)

;

SPrefix
(

ZEx
1 ,

3

4

)

=

∑

v∈{1,2,3} CSv(Z
Ex
1 )

4
=

1

4
<

11

28
=

∑

v∈{1,2,3} CSv(Z
Ex
2 )

4
= SPrefix

(

ZEx
2 ,

3

4

)

.

Thus ZEx
2 is not majorized by ZEx

1 and ZEx
1 is not majorized by ZEx

2 , and hence neither ZEx
1 nor ZEx

2 can be
majorized by every other signaling scheme.

Indeed, in Section 4, we show that (exact) majorization is unattainable – there are instances where no signaling
scheme is majorized by every other signaling scheme. Given this, we define the following approximation version
of majorization.

Definition 2.9. (³-Majorization) A signaling scheme Z1 is ³-majorized by another signaling scheme Z2 if
∀m ∈ (0, 1], we have:

³ · SPrefix(sZ1
,m) g SPrefix(sZ2

,m).

Further, we say a signaling scheme Z is ³-majorized if it is ³-majorized by every other signaling scheme Z ′.

The following established fact [27, 23] is crucial in our universal maximization of well-behaved welfare
functions. We include a proof for completeness.

Proposition 2.2. (Proved in Appendix A) Any ³-majorized signaling scheme Z gives an ³-approximation
to the welfare under any signaling scheme, as long as the welfare function is symmetric, weakly increasing,
concave, and normalized (or non-negative). Conversely, if a signaling scheme Z gives an ³-approximation to all
such welfare functions, it must be ³-majorized.
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3 Finding an 8-Majorized Signaling Scheme

In this section, we construct an 8-majorized signaling scheme. In more detail, in Section 3.1, we present our
Split-and-MatchAlgorithm (Algorithm 1) that given any empirical distribution D constructs a signaling scheme
Z0 that approximates the m-integration prefix sum of any other signaling scheme:

Lemma 3.1. Given D, let Z0 denote the signaling scheme returned by Split-and-MatchAlgorithm (Algorithm 1).
Then, for any signaling scheme Z ′ and any m ∈ (0, 1], we have

4 · IPrefix(sZ0
,m) g IPrefix(sZ′ ,m).

However, in order to achieve ³-majorization, we need to approximate the optimal sorted prefix sum (rather
than the optimal integration prefix sum). In Section 3.3, we show an ironing process that transforms the surplus-
mass function sZ0

(x) into a monotonically increasing step function s̃(x), while preserving the integration prefix
sum of sZ0

at any point of discontinuity. Based on Z0, we then construct a monotone signaling scheme Z1 such
that the surplus-mass function of Z1 is exactly half of s̃:

Lemma 3.2. ∀x ∈ (0, 1], sZ1
(x) = 1

2 · s̃(x).

Combining Lemmas 3.1 and 3.2 leads to our main result:

Theorem 3.1. Z1 is efficient, monotone, and 8-majorized.

3.1 Construction of Z0 In this section, we construct the signaling scheme Z0. The main idea is to decompose
any given D into only two types of posterior distributions, which we refer to as singleton and equal-revenue binary
signals, while achieving the property mentioned in Lemma 3.1. Such decomposition helps simplify the structure
of the signaling scheme (since each signal has support size of at most 2), making it easier for us to conduct further
manipulations on the signaling scheme.

Definition 3.1. (Singleton Signal) A signal S = S1vi is said to be a singleton signal on vi if it satisfies
fS(v) = 1[v = vi].

Definition 3.2. (Equal-Revenue Binary Signal) A signal S = SEvi,vj is said to be an equal-revenue binary
signal on vi < vj if it satisfies:

fS(v) =











1− vi
vj

v = vi;
vi
vj

v = vj ;

0 v /∈ {vi, vj}.

Note that if the seller receives SEvi,vj , then posting a price of either vi and vj leads to the same revenue (hence
“equal-revenue”). We assume that the equal-revenue binary signals are indexed from 1 to Q1, where for each
q ∈ [Q1], we have the signal Sq = SEv1q ,v2q

. We call the higher value v2q taker and the lower value v1q giver. The

masses on them (i.e. µqfSq (v
2
q ) and µqfSq (v

1
q ) respectively) are called taker mass and giver mass respectively.

Using these definitions, we can describe our Split-and-MatchAlgorithm in Algorithm 1.
To understand this construction, first note that by the Bayes plausibility of a signaling scheme, we have the

following set of linear constraints on any equal-revenue binary signal:

(3.3) ∀ i ∈ [n],
∑

q∈Q1:v1q=vi

(

1−
vi
vj

)

· µq +
∑

q∈Q1:v2q=vi

( vi
vj

)

· µq f fD(vi).

In the construction of Z0, we strengthen these constraints into the following:

∀ i ∈ [n],
∑

q∈Q1:v1q=vi

(

1−
vi
vj

)

· µq f
1

2
· fD(vi);(3.4)

∀ i ∈ [n],
∑

q∈Q1:v2q=vi

( vi
vj

)

· µq f
1

2
· fD(vi).(3.5)
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Algorithm 1 Split-and-MatchAlgorithm

Input: Distribution D = {vi, fD(vi)}i∈[n].
Output: A signaling scheme Z0 = {Sq, µq}q∈[Q].

1: Initialize: Z0 ← ∅; q ← 0; (mG
i ,m

T
i )←

(

1
2 · fD(vi),

1
2 · fD(vi)

)

∀ i ∈ [n];
2: repeat
3: q ← q + 1;
4: Find the smallest s ∈ [n] such that mG

s > 0;
5: Find the smallest ℓ > s such that mT

ℓ > 0;
6: Set Sq = S

E
vs,vℓ

and µq = min{mG
s

/(

1− vs
vℓ

)

,mT
ℓ

/(

vs
vℓ

)

};

7: Add signal (Sq, µq) to Z0;
8: Update mG

s ← mG
s − µq · (1−

vs
vℓ
); mT

ℓ ← mT
ℓ − µq ·

vs
vℓ
;

9: until no such (s, l) exists;
10: Cover all remaining masses using singleton signals and add them to Z0.

We conduct a greedy process to find a solution satisfying the strengthened constraints. We iteratively find the
smallest index s such that Eq. (3.4) is slack for s and the smallest index ℓ (ℓ > s) such that Eq. (3.5) is slack for ℓ.
We add a maximal equal-revenue binary signal with supports vs and vℓ so that one of the two constraints becomes
tight. We iterate until no such pair of (is, iℓ) exists. Fig. 3 illustrates the construction of our signaling scheme Z0

obtained by running Algorithm 1 on some given D. The intuition of this greedy-style matching comes from the
following observation: Consider an equal-revenue binary signal S with giver a and taker b. The probability on b

is thus fS(b) =
a
b
, and we also have CSb(S)

fS(b) = b− a. For a fixed b, on the one hand, we want to make a as small

as possible to have the most surplus per unit mass usage of b; on the other hand, setting a too small will lead to
a large b

a
and hence will exhaust the mass of a too quickly. We want to balance this trade-off between gaining

surplus and using low-value giver masses. This leads us to the idea of first splitting each probability mass into
two halves and then choosing the smallest a and the smallest b to match.

fD(1) = 0.1 fD(2) = 0.3 fD(3) = 0.3 fD(4) = 0.1 fD(6) = 0.2

S1

S2

S3

S4

S5

G

G

G

G

G

T

T

T

T

T

0.05

0.05

0.0125

0.1375

0.15

0.05

0.075

0.05

0.025

0.1375

Figure 3: Illustrating the construction of Z0 using Algorithm 1: The buyer values are ï1, 2, 3, 4, 6ð with distribution
D = ï0.1, 0.3, 0.3, 0.1, 0.2ð, indicated using scaled rectangles in the first row. Each subsequent row corresponds to an equal-
revenue binary signal Sq = SE

vi,vj
with weight γq. The letters G and T together with the blue and red rectangles represent the

giver and the taker corresponding to each signal, while the blue and red numbers on the far right of each row are the giver
and taker masses (γqfSq (vi), γqfSq (vj)); these are also illustrated by the lengths of the rectangles in that row. (Again, we
can recover each signal and its weight by normalizing the numbers. For example, signal S1 satisfies fS1(1) = fS1(2) = 0.5
and has weight γ1 = 0.1.)

3.2 Approximating IPrefix via Split-and-Match (Proof of Lemma 3.1) Recall for any k, FD(vk) =
∑k
i=1 fD(vi) denotes the total population of buyers with value at most vk. We now prove Lemma 3.1 in two steps:

First, in Section 3.2.1, we show an upper bound on IPrefix
(

sZ′ , FD(vk)
)

for any signal Z ′. This generalizes the
corresponding bound of [4] to a sub-population. Next, in Section 3.2.2, we show that the IPrefix values of Z0

approximately achieve this upper bound.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2688

D
o
w

n
lo

ad
ed

 0
7
/3

1
/2

4
 t

o
 1

2
8
.8

4
.1

2
4
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



3.2.1 Bounding IPrefix via the Surplus of Truncated Distributions As a thought experiment, we
restrict our attention to the subset of buyers with the smallest k values. What is the maximum possible consumer
surplus on this sub-population? In Lemma 3.3, we show that it is upper bounded by the total values in the
sub-population, minus the revenue extractable from this sub-population without signaling. We need the following
definitions to present the proof.

Definition 3.3. (Truncated Distribution) Given distribution D with finite support S ¢ Rg0 and any x ∈ S,
the truncated distribution of D on x, denoted by D(x), satisfies:

fD(x)(v) =

{

fD(v)
FD(x) v ∈ S and v f x;

0 Otherwise.

Definition 3.4. (Surplus Prefix Sum) Given any k ∈ [n], the k-surplus prefix sum of the buyers is

Vk =

k
∑

i=1

vi · fD(vi).

Lemma 3.3. For any k ∈ [n] and any signaling scheme Z ′, we have

IPrefix
(

sZ′ , FD(vk)
)

f Vk −max
i∈[k]







vi ·

k
∑

j=i

fD(vj)







.

Proof. Suppose that Z ′ = {(Sq, µq)}q∈[Q]. We have

IPrefix
(

sZ′ , FD(vk)
)

=

k
∑

i=1

fD(vi) ·

(

Q
∑

q=1

µq · fSq (vi)

fD(vi)
· 1[vi g p∗Sq ] · (vi − p∗Sq )

)

.

Let Ŝq = Sq(vk) be the truncated distribution on the buyers with value at most vk. Denote the optimal price

of Ŝq by p∗
Ŝq
. We now claim that p∗

Ŝq
f p∗Sq . First assume p∗Sq f vk, otherwise the statement is trivial. Next, to

find the optimal price, we can ignore the scaling factor 1/FD(vk) (since it scales up the revenue for each price by
the same amount). Thus, when we truncate at vk, we can view it as removing some probability mass µk beyond
vk. Note that for any price p, the decrease in revenue is p · µk. This means larger prices suffer larger drops in
revenue, i.e., the new optimal price p∗

Ŝq
cannot be larger.

Moreover, since (vi − p) is monotonically decreasing as a function of p, substituting p∗
Ŝq

for p∗Sq in the above

equality, we have:

IPrefix
(

sZ′ , FD(vk)
)

f

Q
∑

q=1







∑

i∈[k]:vigp∗
Ŝq

µq · fSq (vi) · (vi − p∗
Ŝq
)







f

Q
∑

q=1





∑

i∈[k]

µq · fSq (vi) · vi



−

Q
∑

q=1

µq ·







∑

i∈[k]:vigp∗
Ŝq

fSq (vi) · p
∗
Ŝq






.

Let i∗k = argmaxi∈[k]

{

vi ·
∑k
i′=i fD(vi′)

}

. Since p∗
Ŝq

is the optimal price on Ŝq, we have

pŜ∗
q

∑

i∈[k]:vigp∗
Ŝq

fSq (vi) g vi∗
k

∑

i∈[k]:vigvi∗
k

fSq (vi)
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for any q ∈ [Q]. Plugging this into the previous inequality, we finally have:

IPrefix
(

sZ′ , FD(vk)
)

f

k
∑

i=1

(

vi ·

Q
∑

q=1

µq · fSq (vi)

)

−

Q
∑

q=1

µq ·







∑

i∈[k]:vigvi∗
k

fSq (vi) · vi∗k







=

k
∑

i=1

vi · fD(vi)− vi∗
k
·

k
∑

i=i∗
k

fD(vi)

= Vk −max
i∈[k]

{

vi ·

k
∑

i′=i

fD(vi′)

}

,

completing the proof.

3.2.2 Approximating Prefix Sums via the Split-and-MatchAlgorithm By Definition 2.5, for any
signaling scheme Z and any k ∈ [n], sZ is constant on the interval (FD(vk−1), FD(vk)]. Therefore, IPrefix(Z,m)
is a linear function of m on the interval (FD(vk−1), FD(vk)]. Therefore, to prove Lemma 3.1, it suffices to show it
when m = FD(vk) for k ∈ [n]. Moreover, we can further replace IPrefix(sZ′ , FD(vk)) with the upper bound we
obtained Lemma 3.3 (i.e, with the maximum consumer surplus of truncated distributions). Thus we can obtain
Lemma 3.1 as an immediate consequence of the following lemma.

Lemma 3.4. Let Z0 be the signaling scheme returned by Algorithm 1 for a given D. Then for any signaling
scheme Z ′ and any k ∈ [n], we have

4 · IPrefix(sZ0
, FD(vk)) g Vk −max

i∈[k]

{

vi ·

k
∑

i′=i

fD(vi′)

}

.

Consider the first point in time in Algorithm 1 when ℓ = k + 1; if k = n, this is the stopping time of the
algorithm. Let i∗ be the smallest index such that Eq. (3.4) is still slack. This means Eq. (3.4) is tight for all
i ∈ [i∗ − 1] and Eq. (3.5) is tight for all i ∈ [i∗ + 1, k] at this point in time. Note that i∗ = min{i | mG

i > 0}.
We now establish two lower bounds for IPrefix(sZ0

, FD(vk)), based on the definition of Vk in Definition 3.4.

Proposition 3.1. We have the following two inequalities.

• 2 · IPrefix(sZ0
, FD(vk)) g Vi∗−1.

• 2 · IPrefix(sZ0
, FD(vk)) g Vk − Vi∗−1 −maxi∈[k]

{

vi ·
∑k
i′=i fD(vi′)

}

.

Proof. Assume that the jth equal-revenue binary signal added to Z0 during Algorithm 1 is Sj = SE
vG
j
,vT
j

with

weight µj . Let t
G
j = fSj (v

G
j ) · µj and tTj = fSj (v

T
j ) · µj . By Definition 3.2, we have

(3.6) tTj · v
T
j = (tGj + tTj ) · v

G
j .

Therefore,

2 · IPrefix(sZ0
, FD(vk)) = 2 ·

k
∑

i=1





∑

j: vT
j
=vi

(vTj − vGj ) · t
T
j



(By definition of buyers’ surplus)

= 2 ·

k
∑

i=1





∑

j: vT
j
=vi

vGj · t
G
j



 .(By Eq. (3.6))

Since Eq. (3.4) is tight for any i < i∗, we have

∀ i ∈ [i∗ − 1],
∑

j: vG
j
=vi,vTj fvk

tGj =
1

2
· fD(vi).
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Since
∑k
i=1

(

∑

j: vT
j
=vi

vGj · t
G
j

)

g
∑i∗−1
i=1

(

vi ·
∑

j: vG
j
=vi,vTj fvk

tGj

)

, we further have

(3.7) 2 · IPrefix(sZ0
, FD(vk)) g

i∗−1
∑

i=1

vi · fD(vi) = Vi∗−1.

This completes the proof of the first inequality. To show the second inequality, we have

2 · IPrefix(sZ0
, FD(vk)) g 2 ·

k
∑

i=i∗+1

(

∑

j: vT
j
=vi

(vTj − vGj ) · t
T
j

)

g 2 ·

k
∑

i=i∗+1

(

∑

j: vT
j
=vi

(vTj − vi∗) · t
T
j

)

(Since all the giver values are at most vi∗)

= 2 ·
k
∑

i=i∗+1

(

∑

j: vT
j
=vi

vTj · t
T
j

)

− 2 · vi∗ ·

k
∑

i=i∗+1

(

∑

j: vT
j
=vi

tTj

)

.

Since Eq. (3.5) is tight for any i ∈ [i∗ + 1, k], this means

∀i ∈ [i∗ + 1, k],
∑

j: vT
j
=vi

tTj =
1

2
· fD(vi).

Using this in the above derivation, we have:

2 · IPrefix(sZ0
, FD(vk)) g

k
∑

i=i∗+1

fD(vi) · vi − vi∗ ·

k
∑

i=i∗+1

fD(vi)

=

k
∑

i=i∗

fD(vi) · vi − vi∗ ·

k
∑

i=i∗

fD(vi)

g Vk − Vi∗−1 −max
i∈[k]

{

vi ·

k
∑

i′=i

fD(vi′)

}

.

This completes the proof of the second inequality.

Proof. [Proof of Lemma 3.4] Adding the inequalities in the proposition above, we have

4 · IPrefix(sZ0
, FD(vk)) g Vi∗−1 + Vk − Vi∗−1 − vi∗ ·

k
∑

i=i∗

fD(vi)

g Vk −max
i∈[k]

vi ·

k
∑

i′=i

fD(vi′)

g IPrefix(sZ′ , FD(vk)),(By Lemma 3.3)

completing the proof of Lemma 3.4 and hence that of Lemma 3.1.

3.3 Extending to Sorted Prefix Sums via Ironing and Smoothing We will now prove Lemma 3.2.
In Section 3.3.1, we introduce the (classical) ironing process that transforms the surplus-mass function sZ0

(x)
into s̃(x). After that, in Section 3.3.2, we conduct a smoothing process to obtain a signaling scheme Z ′

0 whose
induced surplus-mass function is at least half of s̃(x) (see Lemma 3.7). The ironing process can be intuitively
viewed as moving surplus from some high-surplus but lower-value buyers to some high-value but low-surplus
buyers, so that the ironed function is monotone. It makes the surplus-mass function more “even”. The smoothing
process describes what specific modification we should operate on the signaling scheme (or signals) to achieve
the ironing purpose on the surplus-mass function. This will show Lemma 3.2. Denote the final signaling scheme
after decomposition by Z1. In Section 3.3.4, we show that Z1 simultaneously guarantees 8-majorization and
monotonicity, thus completing the proof of Theorem 3.1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2691

D
o
w

n
lo

ad
ed

 0
7
/3

1
/2

4
 t

o
 1

2
8
.8

4
.1

2
4
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



3.3.1 Ironing So far, we have approximated the optimal integration prefix sum of consumer surplus. We need
to transform the approximation on integration prefix sum into the approximation on sorted prefix sum, which will
yield the bound on approximate majorization. Our first step is to process the surplus-mass function via ironing.
Ironing is a standard process on functions to achieve monotonicity. It is first applied in the auction scenario by
[41]. For the completeness of our paper, we also include a description of the ironing process in this section.

Consider the surplus-mass function sZ0
(x). We operate the ironing process as follows:

1. Compute the integral of sZ0
(x) as F (x).

2. Compute the lower convex envelope of F (x), denoted as F̃ (x).

3. Compute the derivative of F̃ (x) as the ironed function s̃(x). Define the value at any point of discontinuity
as its left limit.

We have the following properties of s̃(x).

Lemma 3.5. The ironed function s̃(x) satisfies:

1. s̃(x) is weakly increasing;

2. For any m ∈ (0, 1], we have IPrefix(s̃,m) f IPrefix(sZ0
,m).

Proof. Since F̃ is convex, we have its derivative s̃ is weakly increasing. Moreover, since the convex envelope
has property that F̃ (x) f F (x) and the IPrefix is defined by the integration from 0, we have ∀m ∈ (0, 1],
IPrefix(s̃,m) f IPrefix(sZ0

,m).

Since both s̃(x) and sZ0
(x) are step functions, the range of x where F (x) and F̃ (x) are different consists of

a collection of open intervals. On the graph depicting F (x) and F̃ (x), each interval represents a region of x such
that F̃ (x) falls below F (x).

We call these open intervals “ironing intervals” and denote them by I1, I2, . . . , IT . Within each interval It,
F̃ (x) is a linear function, and thus s̃(x) is a constant. We denote this constant by s̃t.

x(mass)

y(surplus)

I1

I2

sZ0
(x)

s̃(x)

a+1 a+2 a+3

a−1

a+4

a−2 a−3 a−4

Figure 4: The solid line denotes the function sZ0
(x). After ironing, the dashed line denotes the function s̃(x).

The masses are sorted in ascending order of the values. The four pairs of rectangles with the same colour share
the same area respectively. The first two ironing intervals are shown as I1 and I2.
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Fix an ironing interval It = (ℓt, rt). By the definition of ironing intervals, we have that for any x0 ∈ {ℓt, rt},
F (x0) =

∫ x0

0
sZ0

(x) dx =
∫ x0

0
s̃(x) dx = F̃ (x0), thus

∫ rt

ℓt
sZ0

(x) dx =
∫ rt

ℓt
s̃(x) dx. Equivalently, we have

∫

x∈It:s̃(x)>sZ0
(x)

(s̃(x)− sZ0
(x)) dx =

∫

x∈It:s̃(x)fsZ0
(x)

(sZ0
(x)− s̃(x)) dx.

This means
∫

x∈It
[sZ0

(x)− s̃t]
+ dx =

∫

x∈It
[s̃t − sZ0

(x)]+ dx. Moreover, by the second property in Lemma 3.5, we
have

∀x0 ∈ (ℓt, rt],

∫ x0

ℓt

[sZ0
(x)− s̃t]

+ dx g

∫ x0

ℓt

[s̃t − sZ0
(x)]+ dx.

Based on these two observations, we can split the area above y = s̃t while below sZ0
(x) into Yt rectangles

{a+1 , a
+
2 , . . . , a

+
Yt
}, as well as the area below y = s̃t while above sZ0

(x) into the same number of rectangles

{a−1 , a
−
2 , . . . , a

−
Yt
}. Algorithm 2 describes the process of constructing such pairs of rectangles. For any y ∈ [Yt],

the pair of rectangles (a+y , a
−
y ) satisfies the following conditions:

1. They have the same area;

2. a+y is on the left of a−y ;

3. Each rectangle a+y (resp. a−y ) corresponds to a single buyer value v+y (resp. v−y ).

Figure 4 shows an example of ironing and pairing of rectangles within the interval I1. The four rectangles
above y = s̃t (i.e. {a

+
1 , a

+
2 , a

+
3 , a

+
4 }) have the same areas as the four rectangles below y = s̃t (i.e. {a

−
1 , a

−
2 , a

−
3 , a

−
4 })

respectively.

Algorithm 2 Construct a rectangle pairing on It
Input: sZ0

(x), It = (ℓt, rt], s̃t (ironed surplus on It).
Output: A set of rectangle pairs {(a+y , a

−
y )}y∈[Yt].

1: Let vi+1
< · · · < vi+g be the buyer values whose occupied interval in It satisfies sZ0

(x) > s̃t;

2: Let vi−1
< · · · < vi−

h
be the buyer values whose occupied interval in It satisfies sZ0

(x) < s̃t;

3: x+ ← FD(vi+1 −1); x− ← FD(vi−1 −1);

4: y ← 0; R← ∅;
5: repeat
6: Find the smallest ℓ ∈ [g] such that FD(vi+

ℓ
) > x+; x+ = max{x+, FD(vi+

ℓ
−1)};

7: Find the smallest r ∈ [h] such that FD(vi−r ) > x−; x− = max{x−, FD(vi−r −1)};

8: A← min
{

(FD(vi+
ℓ
)− x+) · (sZ0

(vi+
ℓ
)− s̃t), (FD(vi−r )− x−) · (s̃t − sZ0

(vi−r ))
}

;

9: y ← y + 1;
10: Let a+y be the rectangle with bottom-left corner coordinate at (x+, s̃t) with width w+

y = A
v
i
+
ℓ

−s̃t
and height

h+
y = vi+

ℓ
− s̃t;

11: Let a−y be the rectangle with top-left corner coordinate at (x−, s̃t) with width w−
y = A

s̃t−v
i
−
r

and height

h−
y = s̃t − vi−r ;

12: Add the rectangle pair (a+y , a
−
y ) to R;

13: x+ ← x+ + w+
y ; x− ← x− + w−

y ;
14: until no such (ℓ, r) exists.

3.3.2 Smoothing We now present the smoothing process. Consider the ironed interval It. Our goal is to make
all buyers with expected consumer surplus less than s̃t/2 in Z0 (call them poor buyers) have expected consumer
surplus at least s̃t/2 after smoothing. We do so by collecting a portion of giver masses from all the equal-revenue
binary signals that contribute to the surplus of carefully chosen high-surplus (or rich) buyers. We use the collected
masses as giver masses of these signals to construct new equal-revenue binary signals with the poor buyers’ values
as the taker value, hence bringing their expected surplus to at least s̃t/2.
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We now describe the process in more detail. By applying Algorithm 2, we obtain a set of pairs of rectangles
{(a+y , a

−
y )}y∈[Yt]. Suppose that the x-coordinates of a

+
y and a−y correspond to buyer values v+y and v−y respectively.

Denote the widths of a+y and a−y by w+
y and w−

y , and the heights by h+
y and h−

y respectively. Note that for a−y ,
the expected consumer surplus is s̃t − h−

y , while for a+y it is s̃t + h+
y .

For each pair of rectangles (a+y , a
−
y ), if h

−
y > s̃t/2 (i.e. a buyer with value v−y is poor), we apply the following

three steps on Z0:

1. Remove
w−

y

fD(v−y )
fraction of the weight from all the singleton signals on v−y and all the equal-revenue binary

signals where v−y is the taker. For this removed weight, collect their taker masses, and discard their giver
masses. (Intuitively, we collect the rectangle a−y .)

2. Remove
w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

fraction of weight from all equal-revenue binary signals where v+y is the taker. For

the removed weight, collect their giver masses and discard their taker masses. (Intuitively, we collect the
givers to the rectangle a+y .)

3. Build equal-revenue binary signals using the masses collected in Step 2 as giver masses and the masses
collected in Step 1 as taker masses.

Algorithm 3 Smoothing Algorithm

Input: Z0 = {(Sq, µq)}q∈[Q], ironed surplus-mass function s̃(x), ironing intervals {It}t∈[T ].
Output: Smoothed signaling scheme Z ′

0 = {(S ′q′ , µ
′
q′)}q′∈[Q′].

1: Z ′
0 ← Z0; q

′ ← Q; ▷ Initialize Z ′
0 to Z0. Denote current Z ′

0 by {S ′q, µ
′
q}q∈[Q];

2: for t = 1 to T do
3: Apply Algorithm 2 to find rectangle pairs Rt = {(a

+
y , a

−
y )}y∈[Yt] on ironing interval It;

4: Width and height of a+y (resp. a−y ) are w+
y and h+

y (resp. w−
y and h−

y ); a
+
y (resp. a−y ) are occupied by

buyers with value v+y (resp. v−y );
5: for each rectangle pair (a+y , a

−
y ) in Rt with h−

y > s̃t/2 do
6: for each Sq in Z0 that is an equal-revenue binary signal with taker v−y , or a singleton signal on v−y do

7: µ′
q ← µ′

q − µq ·
w−

y

fD(v−y )
; ▷ Step 1: Collect µq ·

w−

y

fD(v−y )
· fSq (v

−
y ) taker mass from value v−y

8: end for
9: for each Sq in Z0 that is an equal-revenue binary signal with taker v+y and some giver v′ do

10: µ′
q ← µ′

q − µq ·
w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

;

▷ Step 2: Collect µq ·
w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

· fSq (v
′) giver mass from value v′

11: q′ ← q′ + 1;

12: µ′
q′ = µq ·

w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

·
(

1− v′

v
+
y

)/(

1− v′

v
−
y

)

;

13: Add equal-revenue binary signal S ′q′ = S
E
v′,v

−
y

with weight µ′
q′ to Z

′
0;

▷ Step 3: Build equal-revenue binary signal on (v′, v−y ) with collected mass
14: end for
15: end for
16: end for
17: Make all the remaining masses singleton signals and add them to Z ′

0.

We formally present the smoothing process in Algorithm 3. Denote its output by Z ′
0 = {(S ′q′ , µ

′
q′)}q′∈[Q′].

3.3.3 Analysis: Proof of Lemma 3.2 We show that Z ′
0 is feasible in Lemma 3.6. In other words, we prove

that the outcome of the algorithm satisfies Bayes plausibility as in Eq. (3.3).

Lemma 3.6. ∀ i ∈ [n],
∑

q′∈[Q′] fS′

q′
(vi) · µ

′
q′ = fD(vi).
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Proof. Since Algorithm 3 makes all the remaining masses into singleton signals and adds them to Z ′
0 at the end,

we simply need to show that the sum of masses in the equal-revenue binary signals does not exceed the mass of
the prior for each value. Since we only add new signals in Line 13, it suffices to argue that there is always enough
mass on v′ and v−y to build equal-revenue binary signals.

We first argue that the total mass at v′ is preserved. Consider a single run of Line 10 to Line 13 with fixed
(t, y, q). In Line 10, the mass on v′ is reduced by

fSq (v
′) · µq ·

w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

=

(

1−
v′

v+y

)

· µq ·
w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

.

This is exactly the mass added to v′ on the newly constructed signal (i.e. µ′
q′ ·
(

1− v′

v
−
y

)

), thus the mass on v′ is

preserved.
We next argue the mass collected from v−y is enough for the new equal-revenue binary signals. Consider a

single run of Line 6 to Line 14 with fixed (t, y). In Z0, at least 1
2 · fD(v

−
y ) mass from value v−y is devoted to

singletons signals on v−y or binary signals where v−y is a taker. Therefore, the mass collected from v−y in Line 7 is
at least

1

2
· fD(v

−
y ) ·

w−
y

fD(v
−
y )

= w−
y /2.

Let r(t, y) =
w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

. Consider the new equal-revenue signals added in Line 13 with v−y as taker. We

assume that the jth equal-revenue binary signal added to Z0 during Algorithm 1 is Sj = S
E
vG
j
,vT
j

with weight µj .

Let tGj = fSj (v
G
j ) · µj and tTj = fSj (v

T
j ) · µj . Denote the sum of their taker masses by m−

y . We have:

m−
y =

∑

j: vT
j
=v+y

µj · r(t, y) ·
vGj

v−y
·

(

1−
vGj
vTj

)

/

(

1−
vGj

v−y

)

=
∑

j: vT
j
=v+y

r(t, y) · tTj ·
vTj − vGj

v−y − vGj
.(Since Sj is an equal-revenue binary signal, fSj (v

T
j ) =

vGj
vT
j

)

Since vTj = v+y < v−y and since at most 1
2 · fD(v

+
y ) mass from v+y is used as taker mass in equal-revenue binary

signals in Z0, the above simplifies to:

m−
y f

∑

j: vT
j
=v+y

r(t, y) · tTj f
fD(v

+
y )

2
·

w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

f
w+
y

2
·
h+
y

s̃t
.

Since we have w+
y · h

+
y = w−

y · h
−
y (paired rectangles have the same area) and since h−

y > s̃t/2, it follows that m
−
y

is upper bounded by w−
y /2. Therefore, the mass on v−y collected in Line 7 is enough for constructing all the new

binary signals. The outcome of Algorithm 3 is therefore a feasible signaling scheme.

We now show the following lemma that lower bounds each buyer’s expected consumer surplus in Z ′
0 by half

of the ironed expected consumer surplus:

Lemma 3.7. For any x ∈ (0, 1], sZ′

0
(x) g s̃(x)/2.

Proof. Consider a single iteration of the loop Line 6 to Line 14, with fixed (t, y). For each equal-revenue binary

signal Sj in Z0 with v+y as taker, we have collected
w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

fraction of the giver mass from it in Line 10.

When we combine this giver mass (denoted by MG
j ) with taker mass on value v−y to form an equal-revenue binary

signal S ′q′ = S
E
vG
j
,v

−
y
, the taker mass in this binary signal (denoted by MT

j ) is thus

MT
j = MG

j ·
vGj

v−y − vGj
=

w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

· tTj ·
vTj − vGj

vGj
·

vGj

v−y − vGj

=
w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

· tTj ·
vTj − vGj

v−y − vGj
.
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Since buyers with value v−y gain surplus (v−y − vGj ) in this binary signal, the contribution from this signal to the
total surplus of the buyers with value v−y is

MT
j · (v

−
y − vGj ) =

w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

· tTj · (v
T
j − vGj ).

Again assume the jth equal-revenue binary signal added to Z0 during Algorithm 1 is Sj = S
E
vG
j
,vT
j

with weight

µj . Let tGj = fSj (v
G
j ) · µj and tTj = fSj (v

T
j ) · µj . Thus the total surplus of buyers with value v−y in the newly

constructed signals (S ′q′) is:

∑

j: vT
j
=v+y

w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

· tTj · (v
T
j − vGj ) =

w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

·
∑

j: vT
j
=v+y

tTj · (v
T
j − vGj )

=
w+
y

fD(v
+
y )
·

h+
y

s̃t + h+
y

· (s̃t + h+
y ) · fD(v

+
y )(By the definition of buyer surplus)

= w−
y · h

−
y .(Since paired rectangles have the same area)

We now argue that, after the smoothing process, the expected consumer surplus of buyers with any value in
the ironing interval It is at least s̃t/2. We consider three cases based on the expected surplus value of the buyer
in Z0:

1. Suppose that before the smoothing process, buyers with value vi have surplus strictly less than s̃t/2. The
corresponding area below s̃t (on the mass coordinates of these buyers) consists of rectangles a−y1 to a−yÈ .
Since all these rectangles participate in the smoothing process, we can sum up the surplus after smoothing
from y = y1 to y = yÈ as

(Since
∑yÈ
y=y1

w−
y = mi and h−

y > s̃t/2)

yÈ
∑

y=y1

w−
y · h

−
y = mi · h

−
y > mi · s̃t/2.

Dividing by total mass mi, the expected surplus of these buyers is at least s̃t/2.

2. On the buyers with value vi who originally have surplus less than s̃t but at least s̃t/2, we have not changed
any equal-revenue signal which contains vi as taker value in the process. Their expected surplus does not
change and is at least s̃t/2.

3. On the buyers with value vi who originally gain surplus more than s̃t. Suppose their corresponding area

above s̃t is split into rectangles a+y1 to a+yÀ . We have extracted at most
∑yÀ
y=y1

w+
y

fD(v+y )
·

h+
y

s̃t+h
+
y

=
h+
y1

s̃t+h
+
y1

fraction of the weight of their original signals. After the smoothing process, their expected surplus is still
at least s̃t

s̃t+h
+
y1

· (s̃t + h+
y1
) = s̃t.

Combining the above three cases, on each ironing interval It, in all buyers have surplus at least s̃t/2 in Z ′
0. This

completes the proof.

Finally, we make the scheme monotone. Suppose that sZ′

0
(x) > s̃(x)/2 for some x corresponding to buyers of

value v. For each equal-revenue binary signal in Z ′
0 where v is the taker value, we remove

2s
Z′
0
(x)−s̃(x)

2s
Z′
0
(x) fraction of

the weight of the signal into two singleton signals. Denote the signaling scheme after the decomposition by Z1.
Since the singleton signals do not provide buyer surplus, we have

CSv(Z1) = sZ′

0
(x) ·

(

1−
2sZ′

0
(x)− s̃(x)

2sZ′

0
(x)

)

= s̃(x)/2.

The surplus-mass function of buyers in Z1 is exactly s̃(x)/2, completing the proof of Lemma 3.2.
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3.3.4 Proof of Theorem 3.1 Based on the construction of Z0,Z
′
0, and Z1, we prove our main theorem: Z1

is efficient, monotone, and 8-majorized.

Proof. (Proof of Theorem 3.1) In the whole construction process of Z0 and Z1, we only include equal-revenue
binary signals (signals where the induced posterior only has two supports and they yield the same revenue for the
seller, see Definition 3.2 as a formal definition) or singleton signals (signals where the induced posterior only has
one support). The seller will always select the lowest support in the posterior as the price in these two types of
signals. Therefore, the item is always sold, and Z1 is efficient. Further, the surplus-mass function of Z1 is s̃/2,
which is monotonically increasing.

Finally, we show that Z is 8-majorized. Consider an arbitrary scheme Z ′ and any value m ∈ (0, 1]. Note
that s̃ is a step function and it preserves the prefix sum of sZ0

at break-point coordinates m0,m1, . . . ,mÄ (i.e.
∀ i ∈ [Ä ], IPrefix(s̃,mi) = IPrefix(sZ0

,mi)) in ascending order. We havem0 = 0 andmÄ = 1. Since 0 < m f 1,
there exists a unique k ∈ [Ä + 1] such that

mk−1 < m f mk.

By setting ¼ = m−mk−1

mk−mk−1
, we have

m = (1− ¼) ·mk−1 + ¼ ·mk.

Consider the sorted m-prefix sum of sZ′ , we have

SPrefix(sZ′ ,m) f SPrefix(sZ′ ,mk−1) + ¼ · (SPrefix(sZ′ ,mk)− SPrefix(sZ′ ,mk−1))
(By convexity of SPrefix as a function of m)

= (1− ¼) · SPrefix(sZ′ ,mk−1) + ¼ · SPrefix(sZ′ ,mk)

f (1− ¼) · IPrefix(sZ′ ,mk−1) + ¼ · IPrefix(sZ′ ,mk)
(Prefix sum is at least sorted prefix sum)

f 4 · [(1− ¼) · IPrefix(sZ0
,mk−1) + ¼ · IPrefix(sZ0

,mk)](By Lemma 3.1)

= 4 · [(1− ¼) · IPrefix(s̃,mk−1) + ¼ · IPrefix(s̃,mk)]
(Since s̃ preserves the prefix sum of sZ0

at mk−1 and mk)

= 4 · [(1− ¼) · SPrefix(s̃,mk−1) + ¼ · SPrefix(s̃,mk)](Since s̃ is monotone)

f 4 · SPrefix(s̃,m)(Since s̃ is constant on (mk−1,mk])

= 8 · SPrefix(sZ1
,m).(By Lemma 3.2)

Therefore, by Definition 2.9, Z1 is 8-majorized.

4 Lower Bounds

Finally, we complement our 8-majorized signaling scheme with two lower bounds for finding ³-majorized signaling
schemes. Our first bound shows the impossibility of ³-majorization for any constant ³ if we restrict to buyer-
optimal signaling schemes, and the second shows the impossibility of ³-majorization for ³ < 1.5. (Recall that
³-majorization is equivalent to simultaneous ³-approximation to all symmetric, weakly increasing, concave, and
normalized welfare functions (Proposition 2.2).) Both our hard instances are, in a sense, the simplest possible –
they involve distributions D over only three different values. (For distributions over two values, there is an exactly
majorized scheme, since agents with the lower value always get surplus 0.) Additionally, our lower bounds hold
even for just two welfare functions: One is the utilitarian welfare that maximizes the sum of buyers’ utilities, and
the other is the “max-min” welfare that maximizes the minimum utility after excluding the buyers who cannot
get positive utilities in any signaling scheme.

4.1 Incompatibility of Approximate Majorization and Buyer Optimality We now show that no buyer-
optimal scheme (i.e., one that maximizes CS(Z)) can yield our guarantees; in particular, no buyer-optimal scheme
can be ³-majorized, for any constant ³ ∈ R

+. This also shows that exact majorization is impossible since exact
majorization implies buyer optimality. This motivates the need for approximations and the need for looking
beyond buyer-optimal schemes.
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Recall that a signaling scheme Z is buyer-optimal if
∑n
i=1 fD(vi) · CSvi(Z) =

∑n
i=1 fD(vi) · vi − R

My(D),
where RMy(D) = maxv v · GD(v) is the optimal (Myerson) revenue under D (i.e. without signaling). The
following observation is immediate.

Lemma 4.1. If a scheme is buyer-optimal, any optimal price for the original distribution will remain optimal in
any signal of the scheme.

Proof. Since the scheme is buyer-optimal, the item is always sold. The buyers’ total surplus is thus the expected
value of the buyer minus the seller’s revenue. Suppose that pMy is an optimal price in the original distribution D.
The seller gets revenue RMy = pMy ·GD(p

My) without signaling.
Note that the seller can still gain RMy in the scheme if they nevertheless post pMy for all the signals. Suppose

for contradiction that in some signal, pMy is not an optimal price, the seller must gain strictly more revenue
from posting price p′ than that from posting pMy. Since in all other signals, the seller gains revenue at least as
much as by posting price pMy, the seller’s overall revenue is strictly greater than RMy. Therefore, Z0 cannot be
buyer-optimal, leading to a contradiction.

To prove the lower bounds for any signaling scheme, we need the following lemma to narrow the space of
signaling schemes we are considering. The lemma says that, for any signaling scheme, we can always transform it
into an equivalent scheme (by which we mean that the expected consumer surplus of any buyer remains unchanged)
with a simple form. []DBLP:conf/soda/CummingsD0W20 have a similar observation, but we need the following
lemma that provides finer structural characterizations.

Lemma 4.2. For any signaling scheme Z, there exists an efficient signaling scheme ZE, such that:

1. ZE generates the same expected consumer surplus as Z for any buyer;

2. ZE includes at most n signals, all of which have different lowest-supports (i.e. smallest value with non-zero
mass).

Proof. We conduct two operations on Z to construct Z ′. First, for each signal in Z, we discard all masses on
values strictly less than the optimal price. Then we put all the discarded masses into at most n singleton signals.
Each singleton signal includes all the discarded masses on a different value vi (i ∈ [n]). Consider any signal in Z
before this operation. Since any buyer with the discarded values does not gain surplus from this signal and after
discarding the optimal price remains the same, the expected consumer surplus of any buyer does not change.

Second, we combine all groups of signals with the same smallest value in support into one signal by adding up
the masses on each value. Let Z ′ be the signaling scheme with all the signals after the combinations. After each
combination operation, the optimal price remains the same at the smallest support. Therefore, this combination
process again does not change the expected consumer surplus of any buyer. Since there are in total n different
values, there are at most n signals in Z ′, each corresponding to a different smallest support.

Since the optimal price for each signal remains the lowest support after combination, the item is always sold.
Therefore, Z ′ is efficient.

Theorem 4.1. For any given ³ g 1, there exist instances under which no buyer-optimal scheme is ³-majorized.

Proof. Consider the instance where there are three buyer values: v1 = 1, v2 = N , v3 = N +1, and the probability
masses of these values are

fD(v1) =
N2 − 1

N3 + 2N2 +N
, fD(v2) =

N2 + 1

N3 + 2N2 +N
, fD(v3) =

N3 +N

N3 + 2N2 +N
.

We will show that no buyer-optimal scheme can be ³-majorized on this instance for ³ < N . Suppose for the
purpose of contradiction that Z is ³-majorized where ³ < N .

Notice that v2 and v3 are both optimal prices for the seller. By Lemma 4.2, we can transform Z into a
signaling scheme Z ′ with at most three signals, each with a different smallest support. Since the transformation
preserves any buyer’s expected consumer surplus, Z ′ is still buyer-optimal.

By Lemma 4.1, in Z ′, we must include both v2 and v3 as the optimal prices. Therefore, there is no signal with
v3 as the smallest support. Since the signaling scheme is efficient (by buyer optimality), the smallest support in
any signal must also be the optimal price. Therefore, we conclude that in Z ′, there are only two signals S1 and
S2:
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1. The first signal S1 includes all three values. Each value is an optimal price on the signal. Since each value
as price provides the same revenue to the seller, the probability masses of S1 on the three values must be

fS1
(v1) =

N2 − 1

N2 +N
; fS1

(v2) =
1

N2 +N
; fS1

(v3) =
N

N2 +N
.

Since only S1 include v1, we have µ1 = fD(v1)
/(

N2−1
N2+N

)

= 1
N+1 .

2. The second signal includes only two values v2 and v3. Both of them are optimal prices. It is also an
equal-revenue signal. The probability masses of S2 on the three values are

fS1
(v1) = 0; fS1

(v2) =
1

N + 1
; fS1

(v3) =
N

N + 1
.

Since µ2 + µ1 = 1, we have µ2 = N
N+1 .

The expected consumer surplus from Z ′ of any buyer with value v2 = N is

CSv2(Z
′) =

µ1 · fS1
(v2) · (N − 1)

fD(v2)
=

N − 1

N2 + 1
.

The expected consumer surplus from Z ′ of any buyer with value v3 = N + 1 is

CSv3(Z
′) =

µ1 · fS1
(v3) ·N + µ2 · fS2

(v3) · 1

fD(v3)
=

N +N2

N2 + 1
.

We consider another scheme Z2 consisting of three signals S ′1, S
′
2 and S ′3:

fS1
(v1) =

N2 − 1

N2 +N
; fS1

(v2) =
N + 1

N2 +N
; fS1

(v3) = 0; µ1 =
1

N + 1
;

fS2
(v1) = 0; fS2

(v2) =
N2 −N

N3 −N
; fS2

(v3) =
N3 −N2

N3 −N
; µ2 =

N − 1

N + 1
;

fS3
(v1) = 0; fS3

(v2) = 0; fS3
(v3) = 1; µ3 =

1

N + 1
.

In Z2, the expected consumer surplus of any buyer with value v2 = N is

CSv2(Z2) =
(N + 1) · (N − 1)

N2 + 1
=

N2 − 1

N2 + 1
;

The expected consumer surplus of any buyer with value v3 = N + 1 is

CSv3(Z2) =
(N3 −N2) · 1

N3 +N
=

N2 −N

N2 + 1
;

Therefore, the smallest non-zero expected consumer surplus of a buyer in any buyer-optimal scheme is
N−1
N2+1 and the smallest non-zero expected consumer surplus of a buyer in Z2 is N2−N

N2+1 . Since we have
(

N2−N
N2+1

)

/
(

N−1
N2+1

)

= N > ³, Z is not ³-majorized by Z2, leading to a contradiction.

4.2 Lower Bound for Approximate Majorization Finally we provide a lower bound on approximate
majorization under general signaling schemes. The following theorem shows that no scheme can be better than
1.5-majorized. This complements our upper bound of 8-majorization.

Theorem 4.2. For any ³ < 1.5, there exist instances where no signaling scheme is ³-majorized.

Proof. Suppose that there exists a signaling scheme Z that is ³-majorized. Let ³ = 1.5− ¶, where ¶ > 0. Set ε
such that 0 < εj ¶. There are three buyer values ïv1, v2, v3ð = ï1, 1 + ε, 2 + εð. The probability masses of D on
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these values are fD(v1) = ε2 + 2ε, fD(v2) = 1 + (1 + ε)2, fD(v3) = (1 + ε) + (1 + ε)3. For simplicity, we omit the
multiplicative factor of normalizing the whole population to 1.

First, we compute the largest expected consumer surplus of the smallest-surplus buyer. By Lemma 4.2, we
can transform Z into Z ′ without changing any buyer’s expected consumer surplus. Assume Z ′ consists of the
following three signals, each represented by the mass vector µq · Sq:

µ1 · S1 = ïx, y, zð; µ2 · S2 = ï0, y′, z′ð; µ3 · S3 = ï0, 0, z′′ð.

The expected consumer surplus of a buyer with value v2 is y·ε
fD(v2)

. The expected consumer surplus of a buyer

with value v3 is z·(1+ε)+z′·1
fD(v3)

. The maximum of the smallest expected consumer surplus of a buyer with value v2
or v3 can be solved by the following LP:

Maximize smin, s.t.
y · ε

fD(v2)
g smin;(4.8)

z · (1 + ε) + z′ · 1

fD(v3)
g smin;(4.9)

1 · (x+ y + z) g (1 + ε) · (y + z);(4.10)

1 · (x+ y + z) g (2 + ε) · z;(4.11)

(1 + ε) · (y′ + z′) g (2 + ε) · z′;(4.12)

0 f x f fD(v1);(4.13)

y + y′ f fD(v2);(4.14)

z + z′ + z′′ f fD(v3);(4.15)

y, z, y′, z′, z′′ g 0.

Eq. (4.8) and Eq. (4.9) mean that the minimum expected consumer surplus of any buyer with value v2 or v3
is at least the objective function. Eq. (4.10) and Eq. (4.11) are constraints on the masses of the first signal so
that 1 is the optimal price. Similarly, Eq. (4.12) ensures that v2 = 1+ ϵ is the optimal price in the second signal.
Eqs. (4.13) to (4.15) ensures that for any i ∈ [3], the sum of the masses on a value vi in all three signals does not
exceed the total mass mi.

One feasible solution of the LP has value

s∗min =
4 + 3ε+ ε2

2 + ε
·

ε

fD(v2)
>

2ε

fD(v2)
,

and is obtained when

x = fD(v1) = ε2 + 2ε;

y =
4 + 3ε+ ε2

2 + ε
;

z =
ε

2 + ε
;

y′ = fD(v2)− y =
ε3 + 3ε2 + 3ε

2 + ε
;

z′ = y′ · (1 + ε) =
(1 + ε) · (ε3 + 3ε2 + 3ε)

2 + ε
.

If Z ′ is ³-majorized (and recall that ³ = 1.5 − ¶), the smallest positive expected consumer surplus of any
buyer is at least

s∗min

³
= s∗min ·

1

1.5− ¶
>

2ε

fD(v2)
·

1

1.5− ¶
g

2ε

fD(v2)
·

(

2

3
+

4

9
¶

)

.
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Therefore, we have that the expected consumer surplus of any buyer with value v2 from Z ′ is at least
s∗min

³
:

CSv2(Z
′) =

y · ε

fD(v2)
g

s∗min

³
g

2ε

fD(v2)
·

(

2

3
+

4

9
¶

)

,

and thus,

(4.16) y g
4

3
+

8

9
¶.

By Eq. (4.14): y + y′ f fD(v2) = 2 + 2ε+ ε2, and we have

(4.17) y′ f 2 + 2ε+ ε2 −
4

3
−

8

9
¶ =

2

3
+ 2ε+ ε2 −

8

9
¶.

By Eq. (4.10): x+y+z g (1+ε) ·(y+z), we have x g ε ·(y+z). Since x f fD(v1) = ε2+2ε, we have y+z f 2+ε
and thus

z f 2 + ε− y f 2 + ε−

(

4

3
+

8

9
¶

)

=
2

3
+ ε−

8

9
¶.

By Eq. (4.17) and Eq. (4.12), we have

z′ f (1 + ε) · y′ f (1 + ε) ·

(

2

3
+ 2ε+ ε2 −

8

9
¶

)

.

Consider the overall surplus of all buyers from Z ′ (i.e. SPrefix(Z ′,
∑

i∈[3] fD(vi)). We have:

SPrefix
(

Z ′,
∑

i∈[3]

fD(vi)
)

= CSv2(Z
′) · fD(v2) + CSv3(Z

′) · fD(v3)

= y · ε+ z · (1 + ε) + z′ · 1

f (2 + 2ε+ ε2) · ε+

(

2

3
+ ε−

8

9
¶

)

· (1 + ε) + (1 + ε) ·

(

2

3
+ 2ε+ ε2 −

8

9
¶

)

=
4

3
−

16

9
¶ + o(¶)(Since ε j ¶)

<
4

3
.

Since v3 is the optimal price on the original distribution, the optimal overall consumer surplus is:

fD(v1) · v1 + fD(v2) · v2 + fD(v3) · v3 − fD(v3) · v3 = fD(v1) + (1 + ε) · fD(v2)

= (ε2 + 2ε) + (1 + ε)(2 + 2ε+ ε2)

> 2.

Since
(

4
3

) /

2 < 1
1.5−¶ , Z

′ cannot achieve ³-approximation on the optimal overall consumer surplus. Therefore, Z
is not ³-majorized, leading to a contradiction.

5 Conclusion

In our work, we investigate fairness in a third-degree price discrimination model, focusing on achieving an equitable
distribution of consumer surplus among buyers. We introduce a novel signaling scheme that simultaneously
approximates all non-negative, monotonically increasing, symmetric, and concave welfare functions by a factor of
8. It is an open direction to future improve our approximation upper bound of 8 or our lower bound of 1.5.

In our definition, a welfare function computes an aggregation of the expected consumer surplus of each
consumer. It is intriguing to explore other fairness notions in this setting. For example, one can aim for fairness
on ex-post surplus allocations. We leave these questions for future work.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2701

D
o
w

n
lo

ad
ed

 0
7
/3

1
/2

4
 t

o
 1

2
8
.8

4
.1

2
4
.8

3
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



A Omitted Proofs

Proof. [Proof of Proposition 2.2] Let u⃗ be the vector of expected utilities of Z. Let w⃗ be that vector of any
signaling scheme. We wish to show W(u⃗) g 1

³
· W(w⃗).

By normalization (or non-negativity) and concavity, W(u⃗) g 1
³
· W(³u⃗). There exists a u⃗′ (by starting from

³u⃗ and gradually decreasing its largest elements) such that u⃗′ f ³u⃗, ∥u⃗′∥1 = ∥w⃗∥1, and u⃗′ is majorized by w⃗.
Therefore, W(u⃗) g 1

³
· W(³u⃗) g 1

³
· W(u⃗′) g 1

³
· W(w⃗), where the penultimate inequality is because the welfare

function is weakly increasing, and the last inequality is from Schur-concavity (see e.g. [43, p. 258]) of W, implied
by symmetry and concavity.

For the converse, notice that for any m ∈ [0, 1], the sorted m-prefix sum is welfare function that is symmetric,
non-decreasing, concave and normalized (or non-negative).
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