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We consider a class of online decision-making problems with exchangeable actions, where in each period a

controller is presented an input type drawn from some stochastic arrival process and must choose an action,

and the �nal objective depends only on the aggregate type-action counts. Such a framework encapsulates

many online stochastic variants of common optimization problems with knapsack, bin packing and generalized

assignment as canonical examples. In such settings, we study a natural model-predictive control algorithm.

We introduce general conditions under which this algorithm obtains uniform additive loss (independent

of the horizon) compared to an optimal solution with full knowledge of arrivals. Our condition builds on

the compensated coupling technique of (Vera and Banerjee 2020), providing a uni�ed view of how uniform

additive loss arises as a consequence of the geometry of the underlying decision-making problem.

Our characterization allows us to derive uniform-loss algorithms for several new settings, including the �rst

such algorithm for online stochastic bin-packing. It also lets us study the e�ect of other modeling assumptions,

including choice of horizon, batched decisions, and limited computation. In particular, we show that our

condition is ful�lled by the above-mentioned problems when the end of the time-horizon is known su�ciently

long before the end. In contrast, if at a late stage, there is still uncertainty about the end of the time horizon

we show that such uniform loss guarantees are impossible to achieve. We demonstrate the performance of our

algorithm via large-scale experiments on real and synthetic data.

1 INTRODUCTION

In this work, we focus on a class of online decision-making problems characterized by three features:
(i) Exogenous Randomness: The system dynamics are subject to exogenous stochastic �uctuations,

which we model as a random arrival of input types, conditionally independent of the system
state, which become known to the controller at the start of each period.

(ii) Exchangeable Actions: The system evolves over a (almost sure) �nite, but potentially a priori
unknown, horizon, with the objective depending only on the aggregate counts of di�erent
actions taken over the horizon in response to each arrival type (and not on the order or timing
of the actions).

(iii) Limited Distributional Knowledge: The controller has limited distributional information (e.g.
noisy mean estimates) about arrivals; these are obtained, for example, from historical traces.

These three features are present in many problems of practical interest, across various �elds. We
formally de�ne our general setting in Section 2; for the moment, however, the following canonical
examples serve to illustrate some settings of interest:

• Online resource allocation (online packing): A �nite supply of resources is allocated to arriving
demand types, with varying requirements and valuations, so as to maximize overall rewards.

• Online cloud scheduling (bin-packing): Cloud-computing jobs with di�erent resource require-
ments arrive over a �nite horizon, and the controller needs to load them onto existing host
machines with su�cient free resources, or start-up new host machines with a �xed budget of
resources, while minimizing operating costs. Jobs remain till the end of the horizon, and once
allocated to a machine, can not be re-allocated.

• Online routing in batch-processing systems (generalized assignment): Partitioning arriving
compute jobs into batches in batch-processing systems, shipments among trucks in logistics
systems, and online �nancial transactions among payment-processing �rms with di�erent
contract structures. More generally, each arriving type is mapped to an action, and the �nal
reward depends on the aggregate vector of counts of types mapped to each action.
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In all the above settings, given distributional knowledge of arrivals, including the length of the
time horizon, the underlying control problems can be formulated as Markov Decision Processes

(MDP), and corresponding optimal solutions computed via dynamic programming (Bertsekas 2011).
However, due to their combinatorial nature, these problems typically su�er from the ‘curse of
dimensionality’, which makes optimal policies computationally intractable. Furthermore, such
intractable optimal policies also do not provide easy benchmarks for evaluating the performance of
simpler heuristics.
An alternate control paradigm in such settings is that of model-predictive control, wherein the

controller makes decisions based on some o�ine benchmark. One natural class of benchmarks
are the so-called prophet benchmarks – hindsight optimal policies with full information of arrivals.
Controls based on such benchmarks are often simple and easy to interpret; moreover, the benchmark
also provides a natural way of computing performance bounds for such policies. However, under
worst-case input distributions (in particular, when the distributions can be chosen based on the
horizon length ) ), it is known that any policy must incur additive loss compared to the prophet
benchmark which grows with ) ; in particular, for the problems we study, existing algorithms
typically incur either constant-factor multiplicative losses (when the hindsight optimal reward is

small), or ¬(
√
) ) additive losses.1 Signi�cantly, several of these performance guarantees coincide

with minimax bounds for these settings, and thus hold even under adversarial arrivals.
An alternate setting of interest is one in which input distributions are �xed beforehand, and then

the problem size (horizon length ) and budgets) is made larger. This scaling regime circumvents
the pessimistic bounds of worst-case models, and is often more relevant in practice. Fixing the

input distributions upfront immediately implies $ (
√
) ) additive losses, and begs the question if

even better performance is achievable. In this context, recent work on resource allocation problems
introduced the so-called Bayesian prophet framework (Arlotto and Gurvich 2019, Vera and Banerjee
2020, Vera et al. 2019) which achieves uniform additive loss (i.e., independent of ) ) compared to the
hindsight optimal policy. In this work we extend the study of this framework to provide a simple,
uni�ed and exhaustive characterization of when uniform loss guarantees are obtainable, in terms
of assumptions on the input distributions as well as the geometry of the underlying problem. Our
characterization then allows us to extend these ideas to more general settings, and study the e�ect
of various modeling constraints, including choice of horizon, batching and computation constraints.
In summary, our contributions are as follows.

Beyond resource allocation. Our �rst contribution is to extend the Bayesian prophet framework
beyond the resource allocation problems previously studied. We obtain a simple characterization for
when uniform-loss algorithms can be obtained based on the geometry of the underlying decision-
making problem. While our condition follows from a natural extension of the ideas introduced
in (Vera and Banerjee 2020), taking this abstract view allows us to immediately extend the results
to a wide class of online decision-making problems. The most striking example of this is to the
online stochastic bin packing problem, for which we achieve the �rst instance-dependent uniform
loss guarantee for instances that are not bounded waste (see related work).

Example 1.1. Consider the following online stochastic bin packing instance from Csirik et al.
(2006): over a known time horizon with) periods, items of sizes 1,3,4,5, and 8 arrive in each period,
i.i.d., with respective probabilities ?1 = .25, ?3 = .25, ?4 = .125, ?5 = .25, ?8 = .125. Bins have size
10, and in each period an irrevocable decision is made to place an item in an existing bin or to

1The expected additive loss vis-à-vis the hindsight-optimal (see Eqn. 1) is often referred to as the regret of a policy (Gupta

and Radovanović 2020, Kleinberg 2005, Vera and Banerjee 2020) As this term is interpreted di�erently across communities,

we instead use additive loss in this work.
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place it in a new one. Figure 3 of Gupta and Radovanović (2020) displays state-of-the-art algorithms

incurring Θ(
√
) ) loss on this instance, whereas ours (see Figure 4 in Section 5) achieve $ (1).

Knowing when the end is near. Going beyond particular problem settings, our condition allows
us to study the e�ect of di�erent modeling choices on algorithmic performance. Our �rst such
exploration is on the impact of the choice of a time horizon, i.e., the number of arrivals. The existing
literature usually treats the time horizon as either known upfront2 or adversarial, i.e., the horizon
may end abruptly after any arrival. In contrast, many real-world scenarios exhibit a middle ground,
wherein the number of arrivals is a priori unknown but becomes clear signi�cantly before the last
arrival. Two real-world settings with such a feature arise in refugee resettlement3 (Ahani et al.
2021, Bansak and Paulson 2022) and budget pacing (Agarwal et al. 2014, Gaitonde et al. 2022). Our
results give a tight characterization of how early the uncertainty of the time horizon needs to be
resolved for uniform loss guarantees to be achievable, as we illustrate next.

Example 1.2. Consider a marketing campaign with a budget of $ per arriving customer. )
customers arrive sequentially, being drawn, independently, from an unknown distribution with
�nite support that dictates the cost of targeting the customer and the expected value thereof; the
value of ) is also a priori unknown. The campaign aims to maximize its expected value while

spending at most $ ×) (with some penalty for overspending). After )̂ f ) customers, the decision

is made that the campaign will be ended after) −)̂ additional customers arrive; with) −)̂ ∈ $ (
√
) )

loss guarantees must be ¬(
√
) ) (Proposition 2) whereas having) −)̂ ∈ ¬() 1

2+n ), for n > 0, ensures
that $ (1) loss can be achieved (Theorem 2.2).

Super�cially, )̂ may seem like a purely theoretical construction. We would argue though that it
represents a very real practical situation, e.g., in the context of a marketing campaign, a decision
being made on a Monday to end the campaign by Friday. Our results characterize how much time
is needed between the decision to end the campaign and the actual campaign end (relative to the
length of the campaign) for uniform loss guarantees to be attainable.

Infinite horizon approximation. A particularly interesting application of the above perspective arises
when comparing �nite (�xed) horizon settings to in�nite-horizon discounted settings. The latter is
commonly used as a simpli�cation, especially when arrivals are stationary, as it greatly reduces the
problem complexity (since the resulting problem has a one-step Bellman equation). In Proposition 3
(see also Figure 3) we show that such approximations necessarily involve an additive loss of at

least ¬(
√
) ) when compared to the hindsight optimal policy (i.e., the ‘value of information’); this

contrasts with the $ (1) loss our algorithms achieve when the time horizon is known or becomes
known su�ciently long before it ends. Thus, our results suggest that there are settings in which
in�nite-horizon discounted problems should not be used to approximate �nite-horizon problems.

We note that there is a parallel line of work on online stopping problems with freezing, pioneered
originally by (Samuel-Cahn 1996); recent papers have considered online packing with random
horizons (Alijani et al. 2020, Hajiaghayi et al. 2007) in the context of prophet inequalities (constant
factor approximations to the optimum). While our results share common features with these, the
prophet inequality settings allow for arbitrary distributions and thus always involve linear regret.

Batched Controls. The settings in Example 1.2 also immediately generalize to more common batched-
control settings. For example, suppose ) arrivals occur in batches over time where ) is initially

2This includes works with Poisson arrivals occurring over an interval of known length, e.g., (Jasin and Kumar 2012).
3In refugee resettlement the number of refugees arriving in a year can vary signi�cantly, especially when policies change,

e.g., as (Ahani et al. 2021) describe for the US in 2018; however, such a reduction is likely better modeled through an early

signal than through an adversary suddenly ending the horizon.
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unknown, but the last batch contains at least ) 1/2+n , for some n > 0, arrivals, and upon arrival of
the last batch, it is revealed that it is the last one. This would be a special case of Example 1.2. We
further illustrate the application of our results to batching settings in Section 5.2.

Lazy resolving. Our work also improves upon the existing Bayesian prophet studies with respect to
its computational requirements (see Appendix C). Whereas the work of Vera and Banerjee (2020)
solves a packing LP in each of the) time periods, we present algorithms that only require infrequent
resolving. For i.i.d. arrivals with a known distribution we show that resolving $ (log log) ) times
su�ces, which for network revenue management matches the result of (Bumpensanti and Wang
2020) for which we provide a simpler and more general proof.

Online payment routing with QoS-penalties. Our work was initially motivated by the following
application, which we term online payment routing problem. Consider online merchants that are
large enough to work with more than one credit card payment processing �rm. According to Square
(2020) “the average cost of processing payments for U.S. businesses that do between $10,000 and
$250,000 in annual payments volume is between 2.87 percent and 4.35 percent per transaction.” A
part of this transaction cost is due to credit card payment processing �rms (Square is such a �rm).
Oftentimes these �rms o�er special rates for merchants whose sales transactions ful�ll average
quality-of-service (QOS) conditions, e.g., Square (2020) suggests a transaction volume of at least
$250,000 and an average transaction value of $15. We de�ne the online payment routing problem (see
Section 2) which identi�es, among di�erent payment processing �rms, the cost-minimizing �rm
for each payment, and show that our algorithm has uniform loss guarantees for it. While we use
this speci�c application to highlight the application of our ideas to a particular real-world problem,
we note that this form of average-QOS violation penalties is common in many other long-term
contracts, and our approach may �nd use in such settings as well.

Numerical results. We complement our analytic results with a comprehensive numerical study that
illustrates the order-wise better performance of our algorithms compared to the existing ones.
We also illustrate our impossibility results numerically, showing that uncertainty on the horizon
length makes $ (1) loss unachievable for any algorithm. Finally, our numerical work includes a
data-driven case study of the online payment routing problem in which arrivals occur in batches.
Whereas most of our numerical results are based on instances with relatively few input types (up to
20), the data-driven case study is based on real data with hundreds of types (see Figure 7). For the
performance of our algorithms on less well-posed instances of the bin packing problem we refer
the reader to Sinclair et al. (2022) who have studied the performance of a variant of our algorithm
in allocating compute resources for real-world Microsoft Azure workloads.

1.1 Related Work

Our work is most similar to, and indeed, builds upon and generalizes the Bayesian prophet frame-
work of Vera and Banerjee (2020), who study multidimensional knapsack problems like network
revenue management. Previously, uniform loss guarantees for multisecretary, i.e., online knapsack
with unit weights, were obtained by Arlotto and Gurvich (2019) via a related algorithm. A follow-up
work by Vera et al. (2019) had generalized earlier results to consider more and di�erent kinds of
uncertainty, e.g., when values can be probed. In contrast, our work focuses on providing uniform
loss guarantees for problems outside of resource allocation, and on identifying the fundamental
assumptions required to achieve uniform loss.

For the multisecretary problem, Arlotto and Xie (2020) and Bray (2019) show that uniform-loss
guarantees break down when the arrival distribution is continuous; this, in a sense, shows the
necessity of our thickness assumptions on the arrivals (Assumption 1).We show similar impossibility
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results to identify further settings where uniform loss guarantees are not attainable when (i) when
there is uncertainty about the length of the time horizon (Propositions 2 and 3), (ii) arrivals of a
particular type are too rare or too rare towards the end of the time-horizon (Propositions 4 and 7).

Our algorithms combine ideas from Bumpensanti and Wang (2020) and Vera and Banerjee (2020)
to improve upon both. In contrast to Vera and Banerjee (2020) and Vera et al. (2019) we develop
algorithms that only resolve infrequently (Sun et al. (2020) highlight the complexity of resolving in
large-scale applications). In contrast to Bumpensanti and Wang (2020) our algorithms resolve at
times that are dynamically set (rather than o�ine) and thereby yield uniform loss guarantees for
network revenue management that do not depend on the relative scaling of supply and demand
(Vera and Banerjee (2020) show that the guarantee by Bumpensanti and Wang (2020) can fail when
supply and demand are scaled di�erently). We extend the techniques from both to settings beyond
resource allocation problems.

Bin Packing. The most signi�cant application of our results is to online stochastic bin packing.
In this well-studied problem, we are able to obtain an instance-dependent $ (1) suboptimality gap,
i.e., the expected di�erence between the number of bins opened by our algorithm and the o�ine
optimal number of bins is bounded by an instance-dependent constant that is independent of ) .
Traditionally, the bin packing literature has measured its objective as waste, i.e., the amount

of empty bin space across all bins opened by an algorithm. Taking bin sizes as constant sized, a
classical result by Courcoubetis andWeber (1986) states that in the case of discrete size distributions
occurring i.i.d., the amount of waste of an optimal packing (i.e., the waste the clairvoyant would

incur) scales either as $ () ),$ (
√
) ) or $ (1) over a long time horizon — these regimes are referred

to as linear waste (LW), perfectly packable (PP), and bounded waste (BW). Noticeably, even with
LW it is possible to have the additional waste of an algorithm relative to the optimal packing scale
as$ (1); this is exactly the guarantee we provide, and it holds regardless of regime. In contrast, state-
of-the-art algorithms in the literature so far have only guaranteed$ (1) loss bounds for the bounded
waste regime. In more detail: Csirik et al. (2006) studied the so-called sum-of-squares algorithm for
bin packing, and showed that when the arrival distribution is known, the algorithm can be adapted

to obtain $ (1) loss in the BW regime, and $ (
√
) ) in the other regimes. For unknown distributions,

they found that SS has no strong guarantees in the LW regime; (Gupta and Radovanović 2020)

designed a distribution-oblivious algorithm with a $ (
√
) ) guarantee that holds across all regimes.

In contrast, our results provide a single algorithm that obtains $ (1) loss across all regimes, though,
in contrast to existing work, this hides an instance-dependent constant. Moreover, our framework
also provides a $ (1) loss guarantee in the multidimensional online stochastic bin packing and
minimum cost packing with heterogeneous bin costs (referred to by Gupta and Radovanović
(2020) as the con�guration model); to the best of our knowledge, the only previous guarantee

here was $ (
√
) ), obtained by Gupta and Radovanović (2020). An important distinction to Gupta

and Radovanović (2020) is that their algorithm never requires the distribution of arrival types; in
contrast, our algorithm either knows the distribution of arrival items a priori, or learns it as items
arrive.
Prior to Csirik et al.’s analysis of the sum-of-squares algorithm, there had been a long line of

literature for di�erent heuristics, such as First Fit (e.g., Albers and Mitzenmacher (2000), Shor
(1986)), and Best Fit (e.g., Co�man Jr et al. (1991), Shor (1991)), under particular (often continuous)
distributions. As pointed out by Gupta and Radovanović (2020), these simple heuristics tend to do
badly even under very simple discrete distributions (e.g., bins of size 6 and items of size 2 and 3
with equal probability). Somewhat orthogonal to these is a packing heuristic proposed by Rhee and
Talagrand (1993) which uses the item sizes seen so far to form a bin packing LP relaxation; they
prove that when the item sizes are i.i.d. from a general distribution (the support of the distribution

Electronic copy available at: https://ssrn.com/abstract=3479189



Siddhartha Banerjee and Daniel Freund 6

can be continuous), their algorithm has a loss of$ (
√
) log() )). Subsequent to our work, Liu and Li

(2021) obtained a$ (
√
) ) guarantee that holds, when) is known, both for general i.i.d. distributions

and under the random permutation model.

Online decision-making paradigms. Before proceeding, we brie�y discuss the connections of our
approach to three alternate approaches in online decision-making – online convex optimization,
competitive analysis, and prophet inequalities. Our results on online LPs and convex programs are
closely related to work on online convex optimization (Agrawal and Devanur 2014, Agrawal et al.
2014), which considers similar settings, but with adversarial arrivals, and with a �xed set of online
benchmark policies (as opposed to our o�ine benchmarks). As a consequence, the techniques
and results with the two approaches are somewhat incomparable. We note though that a hybrid
approach similar to ours is proposed in (Devanur et al. 2019) for a similarly �avored analysis.
In contrast, competitive analysis goes beyond online convex optimization by studying the

performance of online policies for combinatorial problems compared to the o�ine optimal under
worst-case arrivals (Buchbinder et al. 2009). This literature is also connected to the work on
prophet inequalities (Düetting et al. 2017, Kleinberg and Weinberg 2012), which are concerned with
solving stochastic packing and pricing problems to obtain worst-case competitive ratio bounds
(i.e., maxmin bounds over all distributions). By focusing on the worst case, such approaches can
typically only provide constant multiplicative guarantees, which correspond to an additive loss
of ¬() ), in comparison to our uniform loss guarantees. Note though that our loss guarantees
depend on parameters of the distribution; understanding the exact dependence and interpolating
between these results remains an open question.

2 PRELIMINARIES

We now introduce the class of stochastic online decision-making problems that we study in this
work. At a high level, we consider �nite-horizon control problems, where, in each period, the
controller is presented with a random arriving type, and must choose a feasible action for that
type; crucially, we assume that the overall objective can be expressed as a function that only depends

on the �nal state-action counts. Such a setting admits a rich class of problems, including the ones
previously discussed as well as many others. Note, however, that we do not consider settings where
the order and/or timing of decisions a�ects the objective.

Throughout we use [:] for the set {1, 2, . . . , :} and write [C, C ′] = {C, C +1, . . . , C ′}. In addition, our
arguments often use the number of future periods after a given period C ; denoting the discrete-time

�nite-horizon4 by ) , the number of future periods is () − C), and we always denote it by C̄ . When
the time-horizon is unknown, the value of C̄ is unkown, and our algorithms do not rely on C̄ then.
As is commonly done, we use inequality between vectors to refer to component-wise inequalities,
and use �8=(=, ?) to denote a binomial distribution with = trials and probability ? .

Periods, Arrivals, and Types. In each time period C , the controller observes an arrival \C drawn from
an underlying �nite set of types Θ, where |Θ| = : , and must then choose an action. Throughout the
main body of the paper we assume that the types are drawn i.i.d. from an unknown distribution
over Θ, where ?\ denotes the probability for an arrival to be of type \ . We denote the number of
arrivals of type \ in [1, . . . , C] by #\ (C), and de�ne #\ as the number of type \ arrivals over the
entire horizon. Furthermore, we let #̄\ (C) denote the number of future type \ arrivals after period
C , i.e., ones in [C + 1,) ], so #\ (C) + #̄\ (C) = #\ . We make the following assumption on the arrival
thickness of each arrival type.

Assumption 1 (Arrival Thickness). For each type \ ∈ Θ, we have ?\ g V for some V > 0.

4Vera and Banerjee (2020) explain in their Appendix B.1 how a continuous Poisson process reduces to this setting.
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We often rely on a bound obtained from combining a union bound with Hoe�ding’s inequality.

Lemma 2.1. In period C , we have P
[
max\ {|#̄\ (C) − C̄?\ |} >

√
UC̄ log(C̄)

]
f 2:C̄−2U .

For completeness, we include the proof in Appendix A.1. In Appendix C we discuss new results
for a setting where the distribution is known, but arrivals may be rarer and change over time.

Actions. Each type \ ∈ Θ is associated with a constant number of actions, one of which must be
played by the controller for each arrival of that type. For example, in an online knapsack problem,
types correspond to (value, size) tuples, and actions correspond to accept/reject; for online bin
packing, types correspond to item sizes, while actions correspond to maximal bin con�gurations in
which an arriving item may be placed (see end of this section).

For notational simplicity, we assume that the number of available actions is the same regardless
of type; denoting the set of actions associated with type \ as A\ we can then write, with some
�xed ℓ , A\ = {0\1, 0\2, . . . , 0\ℓ } for each \ ; note this is w.l.o.g, as we can add dummy actions. Next,
for any C ∈ [) ], we de�ne G\ 9 (C) to be the type-action counts in periods [1, C], i.e., the number of
times action 0\ 9 is used, upon arrival of a type \ , in periods {1, . . . , C}.
Objective Function. Let ®G = {G\ 9 [1,) ];\ ∈ Θ, 9 ∈ [ℓ]} denote any vector of type-action counts; ob-
serve that for all types \ we must have taken some action for each arrival implying that

∑
9 ∈[ℓ ] G\ 9 =

#\ and
∑
\

∑
9 G\ 9 = ) . We assume that the overall objective can be expressed as minimizing a

given objective 5 ( ®G) that only depends on the �nal state-action counts, whereas the order and timing
of decisions do not a�ect the objective. We remark that, in some cases, 5 ®# ( ®G) may be a lower bound
on the objective we truly want to measure, e.g., for bin packing it is a relaxation of the number of
bins that need to be opened; proving our guarantees with respect to such a lower bound implies
them with respect to the true objective. In the main body of the paper we focus on functions 5 ®# (·),
with parameters ®21, ®22, �, � , and � of the following type:

5 ®# ( ®G) = min
®I

®21 · ®G + ®22 · ®I

s.t.
∑
9

G\ 9 = #\ ∀\

�®G − �®I f ®�
∑
\

#\

I\ 9 g 0 ∀\, 9,
where � is a non-negative matrix with at least one positive value in every row. Intuitively, ®G models

decisions and �®G , ®�∑\ #\ model constraints, which �®I relaxes at a penalty. At the end of this
section we write two of our problems in this format, which we expand on in Appendix B. More
broadly, we focus on functions that ful�ll two properties, both guaranteed for 5 ®# (·) as above.

Proposition 1. Suppose, given ®# , a function 5 ®# (·) can be written as above; then there exist

constants _, X that depend on � and � but not on ®21, ®22, � or ) =
∑
\ #\ such that

(i) 5 ®# is _-Lipschitz continuous on the set {®G :
∑
9 G\ 9 = #\ };

(ii) for any ®~, any ®# and ®# ′ with | ®# |1 = | ®# ′ |1, and any ®G ∈ argmin®Gg ®~{5 ®# }, there exists
®G ′ ∈ argmin

®G ′g ®~
{5 ®# ′} with | ®G − ®G ′ |∞ f X | ®# − ®# ′ |∞ .

The proof of the �rst part of the proposition is straightforward, the second part follows from
classical perturbation results in linear programming theory (Mangasarian and Shiau 1987); we
defer both to Appendix A.1. We �rst make a unique identi�cation assumption:
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Assumption 2. For any ®#, ®~, we are given a unique tie-breaking rule for selecting a solution ®G that

minimizes 5 ®# subject to ®G g ®~.
For the objective functions we consider this is loss of generality, as we can use a lexicographic

tie-breaking rule, or alternately, use in�nitesimal perturbations of ®21 to guarantee this without
a�ecting the constants _ and X from Proposition 1. In particular, we note that this is critically
di�erent from a ‘non-degeneracy’ assumption on the certainty-equivalent problem (i.e., the ex-ante
or deterministic linear program, which we refer to as the DLP in Section 3). This assumption is
convenient for our analysis as, under an a priori unknown time horizon, it allows our arguments to
refer to the optimal solution.

Time horizon. Most of our results assume that the time horizon ) is a priori unknown (i.e., ) refers

to an unknown quantity). However, we assume instead there exists an exogenous heads-up period )̂
at which the value of ) is revealed.

Assumption 3 (Heads-up). The true horizon ) is revealed at a heads-up time )̂ , which is a priori

unknown, and independent of past arrivals and actions. For example, )̂ may be chosen by an oblivious

adversary. However, the heads-up time and true horizon satisfy ) − )̂ > )
1
2+n for some known n > 0.

We assume without loss of generality that )̂ g ) /2 (for )̂ < ) /2, the problem is strictly easier).

Performance Benchmark. We de�ne the loss of an online algorithm as the expected di�erence
between the objective achieved by the algorithm, and the objective achieved by the optimal actions
taken by a clairvoyant algorithm on the same sample path — the clairvoyant always knows the
sample path, including its length, i.e., the time horizon. To do so, we �rst de�ne the objective of an

optimal clairvoyant algorithm, for �xed arrivals ®# , as

OPT( ®# ) = min
®G
5 ®# ( ®G).

OPT( ®# ) is a random variable which needs full information of ®# . Now, the loss of an algorithm ALG

LALG := E
[
5 ®# ( ®G

ALG) − OPT( ®# )
]
, (1)

where ®GALG denotes the algorithm’s actions. Notice that the expectation here is not only over the

number of arrivals of each type, ®# , but also over the order of the arrivals which may in�uence ®GALG.
Our goal is to design an algorithm ALG for which LALG can be bounded independently of ) , and to
understand the necessary conditions for any algorithm to have this property.

Theorem 2.2. There exists an algorithm ALG and a constant" (V, _, X, n, ℓ), independent of) , such
that LALG f " (V, X, _, n, ℓ).

In Section 4we show that the assumptionsmade in this section are aminimal set of assumptions to
achieve uniform loss guarantees, i.e., dropping Assumptions 1 or 3 or replacing 5 by a function that
does not ful�ll the properties in Proposition 1, uniform loss guarantees are, in general, unachievable.

Examples of our framework in action

Before diving into our algorithmic ideas and analyses, we present how functions 5 ®# (·) as described
before can be used to capture two of the problems we aim to solve: bin packing and online payment
routing. In this section we de�ne these problems, and describe how 5 ®# (·) can model them. In
Appendix B we discuss online packing problems like network revenue management or AdWords.

The problems in Appendix B contain budgets, which ®� in the formulation of 5 ®# is used to encode;

in contrast, both problems here set ®� = ®0.
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Bin packing. In online stochastic bin packing types are characterized by their size: an item of type
\ ∈ Θ is of size B\ , bins are of size ^, where B\ f ^ ∀\ , and ^ is assumed to be of constant size. In
period C an item of size B\Ī arrives and needs to be irrevocably packed either into an existing bin,
that contains items of combined size at most ^ − B\Ī , or into a new bin. We let J denote the set of
maximal bin con�gurations. For example, if items have sizes 2, 3, or 5, and bins have capacity 9,
then the maximal con�gurations correspond to J = {{3, 3, 3}, {2, 2, 5}, {2, 2, 2, 2}, {2, 2, 2, 3}, {3, 5}}.
Denoting by 9 a particular con�guration, we write U\ 9 for the reciprocal of the number of times
item \ �ts into a bin of con�guration 9 , e.g., with 9 = {2, 2, 5} we have U29 = 1/2; when \ is not
part of a bin con�guration, e.g., 3 is not in 9 , we let U\ 9 = 0. We de�ne the set of actions for type \
as {U\ 9 : �\ 9 > 0}, i.e., the set of (maximal) con�gurations in which an item of type \ can be
placed; thus, with G\ 9 counting the number of type-\ items in type- 9 con�gurations,

∑
9 G\ 9 = #\

ensures that each item is placed into a bin. The objective is to minimize the number of bins used,
where we allow opening a bin fractionally, meaning, e.g., that if a bin of con�guration {2, 2, 5} has
only one 2 allocated to it, we would count it as only half a bin — this fractional relaxation of the
objective is within |J |, independent of ) , of the integer optimum. To capture the objective as 5 ®#
we let ®21 = ®� = 0 and ®22 be a |J |-dimensional vector of all 1s; � and � enforce the constraints
U\ 9G\ 9 f I 9 ∀\, 9 ; then, for a given ®G , the optimal I 9 := max\ {U\ 9G\ 9 } is the (fractionally relaxed)
number of con�guration- 9 bins that �t G\ 9 items of type \ (for every \ ), and |®I |1 = 22 · ®I is the total
number of open bins. Thus, 5 ®# ( ®G) evaluates to the (relaxed) bin packing objective.

Online payment routing. In our online payment routing problem, a controller observes arrivals
of transactions that need to be processed; each transaction has a value, E\ , that characterizes its
type \ ∈ Θ. The controller needs to decide for each transaction which of ℓ di�erent payment
processing �rms to send it to (Elliott 2020). Payment processing �rm 9 charges the merchant, to
process a payment of value E\ , a base charge 1 9 per transaction sent to 9 , and a charge< 9E\ that is
proportional to the value of each transaction sent to 9 , i.e., it charges 1 9 +< 9E\ . In addition, 9 may
have a minimum average charge 0 9 across payments that enforces that the total paid to 9 is at least
the number of payments routed to 9 multiplied by 0 9 .

5 Denoting by G\ 9 the number of payments
of value E\ to be routed to �rm 9 , and by I 9 the combined charges paid to �rm 9 , the objective
can be written as

∑
9 ∈J I 9 , where � and � enforce the constraints

∑
\ G\ 9 (1 9 +< 9E\ ) f I 9 and∑

\ G\ 90 9 f I 9 ∀9 , relying, again, on ®21 = ®� = 0 and ®22 being a |J |-dimensional vector of all 1s.

3 ALGORITHMIC FRAMEWORK

In this section we present our main algorithmic ideas, guarantees, and analyses. We present
Algorithm 1, which consists of two di�erent for-loops, one for the periods before and one for the

periods after )̂ . In the periods before )̂ the main di�culty arises from ?\ and ) being unknown;

after )̂ , we know ) and we have already learned good estimates of ?\ ; the remaining di�culty
stems from the inherent stochastic �uctuations in the last periods. Lemma proofs are included in
Appendix A.2.

3.1 Periods before )̂

Suppose in a given period C , having already taken actions GALG
\ 9

(C − 1) in periods [1, C − 1], we knew
all of the remaining arrivals, i.e., we knew #\ ∀\ . Then, we would solve the hindsight-optimal
optimization in period C , denoted OPT

C , which can be written as

min
®G
5 ®# ( ®G) s.t. ®G g ®GALG (C − 1) ∀\, 9 . (OPT C )

5For �rms with a small 1 Ġ and a larger< Ġ , such 0 Ġ ensures that they do not receive exclusively small transactions.
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In an abuse of notation we will overload OPT
C to also, depending on context, refer to either the

objective or the optimal solution of this optimization. Having it refer to the objective allows us

to rewrite the loss in (1) as LALG = E

[
5 ®# ( ®GALG) − OPT( ®# )

]
= E

[
OPT

) − OPT
1
]
since ®GALG (0) = ®0.

Further, if we had access to the solution OPT
C it would be easy to identify what actions we should

take, for each arrival, in the remaining periods. Indeed, in period C , taking any action 9 that
ful�lls OPT C

\ 9
g GALG

\ 9
(C − 1) + 1 guarantees that the objective value of OPT C+1 is the same as that

of OPT C . In particular, though taking such an action leads to OPT
C+1 being more constrained, the

optimal solution to OPT C remains feasible for OPT C+1. This insight is formalized and generalized in
the next lemma.

Lemma 3.1. Consider any two periods C0 < C1 ; if, for every action 0\ 9 , we have G
ALG

\ 9
(C1 −1) f OPT

Cė
\ 9
,

then the objective values OPT Cė = OPT
CĘ .

Of course, as we do not know #\ , we cannot solve OPT
C ; however, we will see that we can

empirically construct reasonable estimates of #\ that su�ce to guarantee that the probability of an
action incurring loss is small in most periods. The key di�culty in obtaining such estimates is that,
a priori, we know neither ) nor ?\ , and even if we did know them we would not know #\ .

Unknown horizon. Suppose �rst we did know ?\ but neither the horizon ) nor the arrivals #\ . In
that case, we cannot create good estimates of #\ ; however, we can solve the following deterministic
linear program (DLP), in which ?\ , which is independent of ) , stands in for #\ .

min
®Gg®0

5®? ( ®G). (DLP)

The optimal solution – for which we again abuse notation by overloading DLP – has a natural
interpretation: DLP\ 9 denotes the relative frequency that a type \ arrives and an action 9 is taken
by an optimal policy when the number of arrivals of each type exactly matches their expectation.
Further, we can combine DLP with Lemma 2.1 and Proposition 1 to obtain a natural high-probability
lower bound on OPT\ 9 , i.e., on the number of times the clairvoyant optimal solution plays each
action. Roughly speaking, since (Lemma 2.1) arrivals of each type \ are close to ?\) with high
probability, it must be the case (Proposition 1, ii) with the same probability that, for every 0\ 9 , the
values of OPT\ 9 and DLP\ 9 are also close to each other. The next lemma formalizes this.

Lemma 3.2. With probability at least 1 − 2:)
−ĐĊ

ą2 we have for every action 0\ 9 that

OPT\ 9 g ) × DLP\ 9 − [) log() )] 1+Ċ
2 .

If we knew ?\ , Lemmas 3.1 and 3.2 would suggest a natural policy before )̂ which does not
require us to know ) : upon an arrival of type \ , take action 0\ 9 with probability DLP\ 9/?\ . Then,
by period )̂ , each action 0\ 9 has been taken �8=()̂ , DLP\ 9 ) times which is, with high probability

(for su�ciently large) ), less than) × DLP\ 9 − [) log() )] 1+Ċ
2 . Thus, with high probability, we would

�nd that OPT )̂ = OPT
1. Unfortunately, without knowing ?\ , we cannot follow this policy. We next

explore how we can form empirical estimates that allow us nonetheless to appropriately imitate it.

Unknown ?\ and empirical DLP. Though ?\ is unknown, in period C we have already observed C i.i.d.
samples. Instead of solving DLP, we can then solve the following empirical estimate of the DLP:

min
®G
5 ®# (C )/C (G). (EDLP(C))
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A convenient feature of EDLP(C) is that, with high probability in C , the optimal solution to EDLP is
approximately equal to that of DLP. Formally, we can de�ne a bad event in period C as

SC =
{
max
\

|#\ (C) − C?\ | >
[C log(C)] 1+Ċ

2

X

}
.

By Proposition 1, a bad event is necessary for the inequality |DLP\ 9 − EDLP(C)\ 9 | g [C log(C)] 1+Ċ
2 to

hold for some action 0\ 9 . We now bound the probability of bad events.

Lemma 3.3. The probability of a bad event can be bounded by P [SC ] < 2:C
− 2ĪĊ

ą2 ; as a result, with

probability at least 1 − 2:C
− 2ĪĊ

ą2 we have for every action 0\ 9 that |DLP\ 9 − EDLP(C)\ 9 | < [C log(C)] 1+Ċ
2 .

Fig. 1. Plot of 95% CIs of loss incurred in the first C f )
2 periods of a packing problem instance (arrivals have

unit demand and value of either 1 or 2 with probability 1/2,) = 104, and we may accept at most) /2 arrivals);
we plot loss for (i) blindly following EDLP, or (ii) following EDLP with thresholds as in Algorithm 1.

ALGORITHM 1:

– Initialize GALG
\ 9

(0) = 0; �\ 9 = 0 ∀\, 9
for C = 1, . . . , )̂ do

– Solve optimization problem EDLP(C) and pick any 9 ′ ∈ argmax9 {EDLP\Ī 9 (C)};

– For 9 ∈ [ℓ], 9 ≠ 9 ′, set ~\Ī 9 (C) = 0 if EDLP\Ī 9 (C) <
[log(C ) ] 1+Ċ2

C
1−Ċ
2

; otherwise ~\Ī 9 (C) = EDLP\Ī 9 (C);
– Set ~\Ī 9 ′ (C) = 1 −∑

9≠9 ′ ~\Ī 9 (C);
– In period C , use action 0\Ī 9 with probability ~\Ī 9 (C);
– Set GALG (C) by incrementing GALG

\Ī 9
(C − 1) by 1 and leaving all other values unchanged;

end

for C = )̂ + 1, . . . ,) do

if �\Ī 9 < 1 for every action 9 then

– Solve optimization problem TDLP(C);
– Set �\ 9 =

⌊
TDLP\ 9 (C) − GALG\ 9

(C) − 2C̄
3
4

√
log C̄

⌋
∀\, 9

end

– In period C , use action 0\Ī 9 for some 9 ∈ argmax9 {�\Ī 9 }; reduce �\Ī 9 by 1;

– Set GALG (C) by incrementing GALG
\Ī 9

(C − 1) by 1 and leaving all other values unchanged;

end

Given the reasoning after Lemma 3.2, it is tempting to conclude from Lemma 3.3 that, similarly
to previously randomizing based on DLP, we could now randomize based on EDLP(C) to ensure
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that OPT − OPT
)̂ ∈ $ (1) with high probability, i.e., that uniform loss is still attainable at time )̂ .

Figure 1 shows that this is not the case. Indeed, blindly following EDLP(C) can lead to ¬(
√
) )

loss; instead, we need to ensure that the actions we take are ones where DLP\ 9 > 0; to do so, we
threshold based on Lemma 3.3 by setting to 0 all values in EDLP for which we do not know, with
high probability in C , that DLP puts positive weight on them. The resulting algorithm is described
in the �rst for-loop of Algorithm 1. Relative to randomizing via DLP, the algorithm may incur loss
for two reasons:

• When solving EDLP(C) instead of DLP, we may use an action 0\ 9 — even after thresholding —
that DLP would not use at all. Intuitively, in period C , this requires SC to hold true, and the
corresponding probability of this event is summable.

• When thresholding the probability of some action 0\ 9 to 0 we increase the probability of

another, thereby risking that the latter is used too often. Intuitively, since the gap ) − )̂ ∈
¬() 1

2+n ) is much larger than the combined thresholded probabilities, roughly $ () 1+Ċ
2 ), there

should be a su�cient bu�er for these actions to not be taken too often.

We next formalize these intuitions to bound the expected loss they cause by a constant.

Lemma 3.4. Let S =
∑)̂
C=1 1{SĪ } be the count of bad events. There exists a constant )0 such that,

under Algorithm 1, for ) g )0, we have
∑
\,9 (GALG\ 9

()̂ ) − OPT\ 9 )+ f S with probability at least 1 − 1
)
.

Lemma 3.4 enables, for ) g )0, the following bound on E
[
OPT

) − OPT

]
=

E

[
OPT

) − OPT
)̂ + OPT

)̂ − OPT

]
f E

[
OPT

) − OPT
)̂
]
+ 2_

©­«
)̂P


©­«
∑
\,9

OPT
)̂
\ 9 − OPT\ 9

ª®¬
+

> S

+ E[S]ª®¬

< E

[
OPT

) − OPT
)̂
]
+ 2_

(
1 + 2: (X 2

Ċ + c2/6)
)
.

The �rst inequality uses the fact that the loss incurred in any period is bounded by 2_ since 5 (·) is
_-Lipschitz continuous; thus, we bound the loss in the �rst )̂ periods by 2_E[S] plus 2_)̂ times the
small-probability event from the lemma, i.e., in that case we bound by the maximum loss possible

over 2)̂ periods. The second line also uses that

E[S] f
∞∑
C=1

P[SC ] f
∞∑
C=1

2:C
− 2ĪĊ

ą2 f 2:
©­«
X

2
Ċ∑

C=1

1 +
∞∑
C=1

C−2
ª®¬
.

We next explore how the second for-loop in Algorithm 1 ensures that E[OPT ) − OPT
)̂ ] is constant.

3.2 Final Periods a�er )̂

We now describe the second for-loop of Algorithm 1. It is known that randomizing based on DLP

incurs ¬(
√
) ) loss over the entire time-horizon; thus, after )̂ , we cannot continue to just follow

DLP. Instead, for C > )̂ , we solve an optimization that uses the number of remaining periods:

min
®G
5Đ
Ī
®# (C ) ( ®G) s.t. ®G g ®GALG (C − 1) ∀\, 9 . (TDLP(C))

Comparing TDLP(C) and OPT C we observe similar optimization problems: the only di�erence stems

from )
C
®# (C) ≠ ®# (C), or rather, as the two are equal for the �rst C arrivals, the di�erences be-

tween C̄
C
#\ (C) and #̄\ (C). However, with high probability (Lemma 2.1) both are close to C̄?\ for C

and C̄ su�ciently large. With this in mind, we use TDLP\ 9 (C) to construct lower bounds on OPT
C
\ 9
.
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Lemma 3.5. Consider a period C > )
2
with actions GALG

\ 9
(C − 1) already taken in periods [1, C − 1];

with probability at least 1 − 4:C̄
−
(
2
√
Ī̄

ą2

)
we have ∀\, 9 : OPT C

\ 9
g

⌊
TDLP\ 9 (C) − 2C̄

3
4

√
log C̄

⌋
.

Based on Lemmas 3.1 and 3.5, in any period C > )̂ we can construct an explicit lower con�dence

bound (LCB), +TDLP\ 9 (C) − 2C̄
3
4

√
log C̄,, on how often OPT

C uses 0\ 9 in the periods from C through) .
Such LCBs provide a budget of actions for each type; Algorithm 1 accordingly sets �\ 9 equal to that
LCB. Then, upon arrival of some \C ′ in period C ′ we can take any action 0\Ī′ 9 that has a positive �\Ī′ 9 ,
and reduce the action budget �\Ī′ 9 by 1 afterwards. Assuming the LCBs hold true, we are guaranteed
that the objective OPT C remains attainable. Thus, in period C ′ we either (i) use an action 0\Ī′ 9 with
positive �\Ī′ 9 , or (ii) if no such action exists, we solve TDLP(C ′) to create new LCBs. We show below
that the loss incurred that way can be bounded by summing over the probabilities of LCBs not
holding true. In the last periods we may �nd that, even after resolving, �\ 9 < 1∀ 9 , i.e., no action
can be taken without violating a LCB. In that case the algorithm picks one of the actions most

frequently taken in TDLP(C); we prove that this happens only in $ (1) periods, and thus does not
a�ect our guarantee.

Proof of Theorem 2.2. Given the derivations after Lemma 3.4, we �rst bound E
[
OPT

) − OPT
)̂
]
.

Denote by )1 = )̂ ,)2, . . . ,)B the periods in which Algorithm 1 solves TDLP(C), and denote by )[ the
�rst period in which Algorithm 1 solves TDLP(C) and it is the case that for some \ all budgets �\ 9 < 1;
we denote by T8 the event that the LCB created in period )8 fails to hold true:

T8 =
{
∃\, 9 : OPT )ğ

\ 9
<

⌊
TDLP\ 9 ()8 ) − 2)̄8

3
4

√
log )̄8

⌋}
.

Then we can bound

E

[
OPT

) − OPT
)̂
]
f 2_E

[
[−1∑
8=1

()8+1 −)8 )P[T8 ] + )̄[
]
f 2_E

[
[−1∑
8=1

)̄8P[T8 ] + )̄[
]
.

From Lemma 3.5 we know that P[T8 ] f 4:)̄
− 2

√
Đ̄ğ

ą2

8 ; when )̄8 > X
4 this bound is less than 4:)̄ −2

8 ; thus,

we can bound the above as 2_
(
4:

(
X4 +∑)

C=)̂
C̄−2

)
+ E

[
)̄[
] )

f 2_
(
4: (X4 + c2/6) + E

[
)̄[
] )
.

For E[)̄[] we construct a loose upper bound that assumes V >

√
2 log() /2)

)
, and let)2 be such that

for ) > )2 this inequality holds true. Then, applications of Lemma 2.1 show that, with probability

greater 1− :
)
, every \ and every C > )̂ ful�ll #\ (C) > ?\ C/2∀\ ; we condition on this to be the case,

implying that TDLP(C) is constrained, for every \ , by ∑
9 TDLP\ 9 (C) − GALG\ 9

(C) g ?\ C̄/2 g VC̄/2.
Now, to have C f )[ , it must be the case that when setting �\ 9 at time C we �nd for every action 0\ 9

that �\ 9 =
⌊
TDLP\ 9 (C) − GALG\ 9

(C) − 2C̄
3
4

√
log C̄

⌋
< 1, which requires ℓ (2C̄ 3

4

√
log C̄ + 1) > VC̄/2; as the

right-hand side is linear in C̄ and the left-hand side is sublinear, there exists a constant )1 such that
for C̄ > )1 the right-hand side is larger, meaning the condition cannot be ful�lled for C̄ > )1. Thus,

we bound E[)̄[] f (1 − :
)
))1 + : < )1 + : and �nd that

LALG = E

[
OPT

) − OPT
)̂ + OPT

)̂ − OPT

]
f 2_

(
1 + 4:

(
X4 + c2/3

)
+ (2X2) 1

Ċ +)1 + :
)

holds for ) > max{)0,)2}, with )0 as in Lemma 3.4. In order to drop the condition ) > max{)0,)2}
we set" (V, X, _, n, ℓ) as the maximum of this expression and 2_max{)0,)2}. □
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Extensions. In this section we analyzed the i.i.d. setting with unknown ?\ and a priori unknown
horizon length. In Appendix C we show that similar ideas yield$ (1) loss guarantees when arrivals
are not i.i.d., but (i)) is known, and (ii) the arrival distribution admits some thickness/concentration
assumption, and (iii) a single sample of ) arrivals is available. In that setting, we can also relax
the requirements on the objective function, and handle a slightly more general class of objective
functions. Further, in that setting we show that computational requirements are signi�cantly
relaxed as resolving optimization problems, like EDLP, DLP, etc., $ (log() )) times su�ces to obtain
$ (1) loss. Indeed, when arrivals are i.i.d. from a known distribution, we show that our algorithm
resolves just $ (log log() )) times.

4 IMPOSSIBILITY RESULTS

Our impossibility results in this section focus on three di�erent aspects of our assumptions: we
begin by studying the informational structure around the horizon length (Assumption 3); next, we
consider the geometry of the objective function (Property (ii) of Proposition 1); �nally, we consider
the density of arrivals of each type (Assumption 1). All our results in this section are based on
the same lemma that follows from applying the Berry-Esseen Theorem (Berry 1941, Esseen 1956,
Shevtsova 2011) to our settings. E�ectively, it shows that over a horizon of a given length, with
constant probability, we observe at most a given upper bound or at least a given lower bound of
arrivals of each type. We state the Lemma here and prove it in Appendix A.3.

Lemma 4.1. Consider an interval 1, . . . , g where in each period an arrival is of type \ i.i.d. with

probability ?\ ∈ (0, 1), and let #\ denote the number of arrivals of type \ in the interval. Then

∀<∃b, g0 > 0 : P[#\ g ?\g +<
√
g] g b ∀g g g0 .

Notice that by replacing ?\ by 1 − ?\ the lemma also implies that

∀<∃b, g0 > 0 : P[#\ f ?\g −<
√
g] g b ∀g g g0.

Late heads-up. In the spirit of Example 1.2 we �rst show that no algorithm can have a $ (1) loss
guarantee when Assumption 3 is relaxed to allow for ) − )̂ =

√
) .

Proposition 2. There exists a family of instances to the online stochastic bin packing problem,

with ) − )̂ =

√
) , for which no algorithm can obtain loss > (

√
) ).

Proof. Consider an online stochastic bin packing problem instance in which bins have size 3,
items are of size either 1 or 2 with probability 1

2
, and the time horizon has length either ) or 2) ,

with probability 1
2
each, which is revealed after ) − )̂ periods. Notice that J = {{1, 1, 1}, {1, 2}}.

Denote by 01 the action of placing an item of size 1 into a bin of con�guration {1, 1, 1} and by 02 the
action of placing an item of size 1 into a bin of con�guration {1, 2}, and let G12 denote the number
of times an item of size 1 is placed in a bin of con�guration {1, 2}, G11 denote the number of times
an item of size 1 is placed in a bin of con�guration {1, 1, 1} (as items of size 2 are always placed
in the latter, we focus only on the actions for items of size 1). We de�ne the following random
variables:

• � is the number of items of size 1 in the �rst )̂ periods (with )̂ −� items of size 2);

• � is the number of items of size 1 in the next ) − )̂ periods (with ) − )̂ − � items of size 2);
• � is the number of items of size 1 in periods ) + 1, . . . , 2) (with ) − � items of size 2).

Further, let �) = 2� + � −) , which, if greater 0, denotes the number of items of size 1 in the �rst )̂
periods that cannot be placed into {1, 2} bins with items of size 2 that arrive in the �rst ) periods

(subtract from � 1s in the �rst )̂ periods the ) − (� + �) 2s that arrive in the �rst ) periods). We
also de�ne �2) = 2(� + � +� −) ), where �2) = 2(� + � +� −) ) f 0 implies that there are at
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least ) 2s among the 2) periods. We focus on the following event: � = {�) g ) − )̂ } ∩ {�2) f 0}.
With ) − )̂ =

√
) , Lemma 4.1 implies that P[�] is bounded away from 0. Further, with ) − )̂ =

√
) ,

we argue that when � occurs, an algorithmmust incur ¬(
√
) ) loss on at least one of the two possible

time horizon lengths. Under �, the optimal packing under the horizon of length) puts) −�−� (this
is the number of 2s) 1s in bins of con�guration {1, 2}, and the remaining items of size 1 in bins of

con�guration {1, 1, 1}— for an objective of)−�−�+ 2(�+�)−)
3

=
2)−(�+�)

3
. Now, consider the actions

of an algorithm ALG which gives an objective of GALG11 () )/3 + (� + �) − GALG11 () ) = � + � − 2
3
GALG11 () ).

This means the loss of ALG is(
� + � − 2

3
GALG11 () )

)
−
(
2) − (� + �)

3

)
=
2

3

(
2(� + �) −) − GALG11 () )

)
g 2

3

(
�) − GALG11 () )

)
.

At the same time, over a horizon of length 2) , �2) < 0 implies there are more items of size 2 than
of size 1, so the optimal packing places all items, of either type, in {1, 2} bins, and for any three
items of size 1 in a {1, 1, 1} bin, there is one bin created that the optimal packing would not create,

so the loss incurred is at least
GALG11 () )

3
. The result follows since decisions GALG11 ()̂ ) at time )̂ lead to

LALG g P[�]
2

max

{
GALG11

3
,
2

3

(
�) − GALG11

)}
g P[�]

9
�) ∈ ¬(

√
) ). □

Recall from Section 1.1 that known algorithms in the literature achieve anytime loss $ (
√
) )

on this instance, as it is perfectly packable. Thus, Proposition 2 implies that while there is value

in knowing the end of the time horizon )
1
2+n periods before the end (see Theorem 2.2), there is

e�ectively, up to constant factors, no value in knowing it )
1
2 periods before the end.6

The unavoidable loss is also illustrated in our numerical results in Figure 2. In Figure 2(a) we
simulate the semi-clairvoyant lower bound on the instance from the proposition over a horizon
of length ) = 106. While the lower bound remains small throughout, it starts to grow around

) − )̂ ≈ 1.5
√
) . For comparison, Figure 2(b) shows, for a time horizon of length ) = 104, the loss

of Algorithm 1. Here, we naturally see that the loss is larger, but in particular we also �nd that

around ) − )̂ ≈ 1.5
√
) it grows signi�cantly. We also �nd that around )̂ ≈ ) − 2.5

√
) the bene�t

of an earlier heads-up vanishes for both the semi-clairvoyant and the algorithm. This illustrates
that knowing the exact value of ) when the end is near is necessary to achieve small loss, whereas
knowing it initially, or knowing the exact arrivals, is not.

Our next result sheds light on the value of Assumption 3 as compared to, e.g., the assumption of
a geometrically distributed horizon length. We include the proof in Appendix A.4.

Proposition 3. Suppose ) is a geometrically distributed random variable with mean g ; without

additional information, such as a heads-up as in Assumption 3, the optimal policy is based on a

(potentially intractable) one-step Bellman equation. This policy incurs an expected loss of ¬(√g).
The lower bound in the proposition does not negate the$ (1) expected loss in our results; instead,

it highlights that knowing the horizon end su�ciently long, i.e., ¬() 1
2+n ) ahead of time, allows

the optimal policy an improvement of ¬(
√
) ). Figure 3 shows, for an online packing instance with

geometric horizon length, how the loss of the optimal solution increases with g .

6While Proposition 2 focused on a bin packing instance, one can similarly construct an instance of an online packing

problem for the speci�c setting in Example 1.2: customer types have unit cost and targeting them yields, type-dependent, a

value of either 1 or 2. Arrivals are of either type with probability 1/2, the campaign budget,  in the example, is 1/2 per
arrival (with additional spend being penalized), and the decision for each arriving customer is whether or not to target

them; the campaign length is either) or 2) with probability 1/2. Theorem 2.2 implies that$ (1) loss is achievable when
) − )̂ ∈ ¬ () 1

2 +Ċ ) whereas a similar argument to the one above implies that ¬ (
√
) ) loss is unavoidable when) − )̂ =

√
) .
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(a) Loss of semi-clairvoyant (b) Loss of algorithm

Fig. 2. The dependence of loss on )̂ illustrates the necessity of knowing when the end is near for the semi-

clairvoyant (Proposition 2) and Algorithm 1.

Fig. 3. Plot of the clairvoyant objective and the loss of the optimal policy in an instance with geometric time

horizon length with mean g ; as the mean horizon length increasies from 10 to 10000, without a heads-up as

in Assumption 3, the loss of the optimal policy grows with it.

Instability of optimal solution. Instead of considering functions 5 ®# as described in Section 2, consider
the following problem over a known time horizon ) : in each period, with probability 1/2, we need
to irrevocably accept/reject an arrival type 1 or type 2; we may accept ) /2 arrivals in total, and our
goal is to maximize the number of accepted arrivals of one type, i.e.,

5 ®# ( ®G) = max{G1, G2} s.t. G1 + G2 f ) /2 and G8 f #8 for 8 ∈ {1, 2}.

Though one can always guarantee an objective of ) /2 when ®# is known, it is easy to see that the
optimal policy (accept \1, and thereafter only accept arrivals of that type) in this problem incurs

¬(
√
) ) loss: with probability 1/2 it picks the type of which there are fewer than half the arrivals,

and the gap is likely of order
√
) (see Lemma 4.1). At the same time, the problem ful�lls property (i)

of Proposition 1 (Lipschitz-continuity) and Assumptions 1 and 3; thus, this problem suggests that a
dependence of our guarantee on X is fundamental.

No thickness. We next show that Assumption 1 is necessary for $ (1) loss guarantees. Consider
an online packing problem over ) time periods with (i) arrivals types Θ = {1, 2, 3}, (ii) there is a
budget to accept ) /2 arrivals, (iii) the value of accepting an arrival of type 8 is 8 , and the arrival
probabilities are (iv) ?1 = 1/2, ?2 = 1√

)
, ?3 = 1/2 − 1√

)
.
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Proposition 4. In the instance above, no algorithm can obtain $ (1) uniform loss guarantees.

The proof of the proposition is similar to that of Proposition 2, analyzing the number of accepted
type-2 arrivals in the �rst ) /2 periods; we include it in Appendix A.4.

5 NUMERICAL RESULTS

In this section we numerically verify the uniform loss guarantees of Algorithm 1 for bin-packing and
the online payment routing problem. We compare the performance of Algorithm 1, to two natural
control policies – static certainty-equivalent control (also referred to as static randomized control, or
the �uid policy), and randomized control based on adaptive certainty-equivalent (sometimes called
�uid-policy with resolving). When considering bin packing, we also compare to the well-known
sum-of-squares (SOS) algorithm (Csirik et al. 2006), discussed in Section 1.1. We �rst describe the
static and the adaptive randomized control policies.

Static Randomized Control. The static randomized control policy (SRC) solves the DLP at the
beginning of the time horizon to obtain the fraction of times each action shall be used for each type
over the entire time horizon, assuming arrivals are as in expectation. Thereafter, it randomizes by

using action 0\ 9 for arrivals of type \ with probability
DLPĉ Ġ

?ĉ
.

Adaptive Randomized Control. The adaptive randomized control policy (ARC) is a resolving heuristic
that solves a variant of TDLP(C), with access to the exact values of ?\ and ) , in each round:

min
®G
5 ®# (C )+C̄×®? ( ®G) s.t. ®G g ®GALG (C − 1) ∀\, 9 . (ETDLP(C))

Thereafter, if the arriving item in period C is of type \ it uses action 0\ 9 with probability
ETDLPĉ Ġ (C )
#ĉ (C )+C̄?ĉ .

5.1 Uniform loss of Algorithm 1

Bin packing instance. Our �rst bin packing instance is described in Example 1.1. In Figure 4 we
display for Algorithm 1, ARC, SRC, and SOS the average results over 15 random instances as
well as corresponding 95% con�dence intervals. Noticeably, only the loss of Algorithm 1 does
not grow with ) . We remark that Figure 3(b) in (Gupta and Radovanović 2020) shows results for
their algorithm and SOS on this same instance, and demonstrates that their algorithm performs

signi�cantly worse on it than SOS, while also obtaining a loss that scales as ¬(
√
) ).

In Figure 5 we display the loss of SOS, SRC, and Algorithm 1 for a more complicated bin packing
instance with bins of size 20 and items of size {1, 2, . . . , 20}, that arrive i.i.d. uniformly at random.

The log-log plot shows that the loss of SRC and SS both scale at rate Θ(
√
) ). In contrast, though this

instance (with : = 20 and ℓ = 490) is less well-behaved than the one in Example 1.1 our algorithm
performs remarkably well, and obtains a uniform loss guarantee that is far below the one our
theoretical bounds guarantee.

Online payment routing problem. Payment amounts in our instance are either E\ ∈ {2, 5, 8} with
i.i.d. probabilities ?2 = 0.6, ?3 = 0.3, ?8 = 0.1. Provider A charges 1� = 0.40$, and<� = 0� = 0$ per
payment, i.e., processing each payment costs 0.40$ regardless of the transaction value, whereas
provider B charges a proportional<� = 0.10$ and 1� = 0$ per dollar processed (e.g., processing
a 8$ payment would cost 0.80$ with that provider). Further, � also requires the merchant to pay
a minimum average amount of 0� = 0.30$ per payment processed. As Figure 6(a) shows, only
Algorithm 1 obtains uniform loss. We remark that this example is intentionally designed to guide
the ARC into non-uniform loss, and requires only a slight perturbation for ARC to obtain uniform
loss. For example, Figure 6(b) shows the example from Figure 6(a), but with 2, 5, and 8$ appearing
with probabilities .5, .4, and .1 rather than .6, .3, and .1; in this case, the ARC does get uniform loss.

Electronic copy available at: https://ssrn.com/abstract=3479189



Siddhartha Banerjee and Daniel Freund 18

Fig. 4. Expected loss LALG of Algorithm 1, ARC, SRC, and SOS for the bin packing instance from Example 1.1,

induced over time horizons of varying length where )̂ = .9 ×) .

Fig. 5. Expected loss LALG of Algorithm 1, SRC, and SOS for a bin packing instance with bins of size 20 and

items of size {1, . . . , 20} with ?\ = 1/20 for every \ , and )̂ = .9 ×) .

However, in contrast to Algorithm 1, ARC relies on knowledge of ?\ and) ; SRC generally does not
achieve uniform loss guarantees for the online payment routing problem.

5.2 Case study: batching one day of credit card processing fees

In this last part of our numerical investigation we work with a real-world data set of credit card
payments (see Electronic Supplement) over the course of one month. To better illustrate the kind
of batch settings we previously alluded to, we study the following policy.
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(a) Dual-degenerate instance (b) Non-degenerate instance

Fig. 6. The expected loss of SRC, ARC, and Algorithm 1 is plo�ed for two instances of the online payment

routing problem. The first is dual-degenerate with ARC having loss ¬(
√
) ), whereas in the second (not

dual-degenerate) it has loss $ (1), like Algorithm 1; SRC has loss Θ(
√
) ) in both.

Static Randomized Control then Batch. The static randomized control then batch policy (SRC-B)

imitates the SRC policy for the �rst )̂ periods, and then observes the remaining ) − )̂ arrivals

at once (in one batch), i.e., it can make the last )̂ decisions with full information of ®# . Viewed
di�erently, SRC-B is the hybrid clairvoyant for SRC in period ) − )̂ .
Corollary 5.1. Under the same assumptions as in Theorem 2.2 SRC-B obtains uniform loss.

Proof. Based on the same reasoning as in Lemma 3.4 (see also paragraph after Lemma 3.2) under

SRC-B, with high probability, after ) − )̂ periods the optimal objective is still attainable. However,
as the remaining decisions can be made in one batch, they can be made without incurring any
additional loss. Thus, with high probability, SRC-B incurs no loss at all.

Data set. The data (Dal Pozzolo et al. 2015) for our numerical study is displayed in Figure 7. For
each day of a month we observe the number of payments of each amount that need to be processed.
We assume there are two di�erent payment processing �rms: �rm A, which charges an average fee
of at least $.30 per payment, no base fee, and $.10 per dollar of value processed; and �rm B which
charges a �at fee of $.40 per payment. In our study we repeatedly sample ) transactions from the
data. In Figure 8 we compare 4 di�erent policies: naive benchmarks that route all payments to
either �rm A or B, SRC, and SRC-B, wherein we batch all payments that occur on the last day of
the month. Unsurprisingly, routing all payments to a single �rm incurs a huge loss relative to the
optimum. This indicates that with providers as heterogeneous as in our example, merchants may
�nd signi�cant value in balancing between providers via some kind of optimized policy like SRC.
We also observe the uniform loss guarantee for SRC-B, as well as the increasing loss of SRC. For the
number of transactions we consider (up to 107), we �nd that uniform loss algorithms like SRC-B or
Algorithm 1, give an improvement of a factor of almost 100.
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A OMMITTED PROOFS

A.1 Preliminaries

Proof of Lemma 2.1. The Lemma follows from Hoe�ding’s Inequality (Hoe�ding 1994), which
asserts that for independent random variables -1, . . . , -= , where -8 ∈ {0, 1}∀8 , we have

P

[
|
=∑
8=1

-8 − E[
=∑
8=1

-8 ] | g k
]
f 24−

2ć2

Ĥ .

With = = C̄ , -8 denoting the indicator of whether the 8th remaining arrival is of type \ , and

k =

√
UC̄ log(C̄):

P

[
|#̄ (C) − C̄?\ | g

√
UC̄ log(C̄)

]
f 24−

2
√
ĂĪ̄ log(Ī̄ )2

Ī̄ = 2C̄−2U .

The result follows by taking a union bound over all : types \ . □

Proof of Proposition 1. The proof of part (ii) of the proposition heavily relies on the following result
from the literature (where the variable names are adapted to our notation):

Proposition 5 (Theorem 2.4 in Mangasarian and Shiau (1987)). Let the linear program

min
®G,®I

®21 · ®G + ®22 · ®I B.C . �1

[
®G
®I

]
f ®", �2®G = ®# .

have non-empty optimal solution sets (1 and (2 for right-hand sides ( ®"1, ®# 1) and ( ®"2, ®# 2) respectively.
For each ( ®G1, ®I1) ∈ (1 there exists ( ®G2, ®I2) ∈ (2 such that | ®G1 − ®G2 |∞ f h (�1;�2)

����
[
# 1 − # 2

"1 −"2

] ����
∞
where

h (�1,�2) = sup
®D,®E

{
max{∥D∥1, ∥E ∥1} : ∥D�1 + E�2∥1 = 1, rows of

(
�1

�2

)
corresponding to

nonzero elements of

(
D

E

)
are lin. ind.

}
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To adopt the result for our purposes, set ®"1
=

[ −®~
®� | ®# 1 |1

]
, ®"2

=

[ −®~
®� | ®# 2 |1

]
, and let �1 and �2 be

such that�1

[
®G
®I

]
f ®"1 encodes the constraints −G\ 9 f −~\ 9 , and�®G −�I f ®� | ®# 1 |1 and�2 encodes

the constraints
∑
9 G\ 9 = #

1
\
, respectively �®G − �I f ®� | ®# 2 |1 and

∑
9 G\ 9 = #

2
\
for ( ®"2, ®# 2). Then

the proposition says that there exists X , dependent only on �1 and �2 (which are independent of )

or �) such that for any ( ®G1, ®I1) optimal for ®# 1 we have some ( ®G2, ®I2) optimal for ®# 2 where

����
[
®G1 − ®G2
®I1 − ®I2

] ����
∞
f X

�����
[ ®#1 − ®#2

®"1 − ®"2

] �����
∞
= X

����
[ ®#1 − ®#2

0

] ����
∞
, so in particular | ®G1 − ®G2 |∞ f X | ®#1 − ®#2 |∞.

The proof of part (i) follows as the inner objective is Lipschitz in ®G and ®I, and the corresponding

optimal solutions ®G1, ®G2 and ®I1, ®I2 are Lipschitz in ®# (from part ii), so 5 ®# ( ®G) is Lipschitz in ®G . □

A.2 Proofs of Lemmas in Section 3

Proof of Lemma 3.1. Observe from OPT
C that the optimization problems OPTCė and OPT

CĘ vary only
with respect to the constraints, where ®GALG (C0 −1) is replaced by ®GALG (C1 −1). By the lemma assump-
tion, the solution to OPT

Cė ful�lls that GALG
\ 9

(C1 − 1) f OPT
Cė
\ 9
. Thus, it is feasible to OPT

CĘ , implying

that the objective of OPTCĘ g OPT
Cė . Equality follows as OPTCĘ is more constrained than OPT

Cė . □

Proof of Lemma 3.2. Observe �rst that, by Proposition 1, we have

max
\,9

|OPT\ 9−)×DLP\ 9 | f X max
\

|)?\−#\ |, implying that ∀\, 9 : OPT\ 9 g )×DLP\ 9−X max
\

|)?\−#\ |.

Setting U =
() log() ))Ċ

X2
and C = 0, i.e., C̄ = ) , in Lemma 2.1 we �nd with probability greater 1−2:) −ĐĊ

ą2

that the expression X max\ |)?\ − #\ | is at most [) log() )] 1+Ċ
2 , which implies the result. □

Proof of Lemma 3.3. Observe that the �rst C arrivals, #\ (C) and the last C arrivals, #̄\ (C) come from

the same distribution; thus, Lemma 2.1 gives P
[
max\ {|#\ (C) − C?\ |} >

√
UC log(C)

]
f 2:C−2U .

With U =
(C log(C ))Ċ

X2
, we get

P [SC ] f P
[
max
\

{|#\ (C) − C?\ |} >
[C log(C)] 1+Ċ

2

X

]
f 2:C

−2 (Ī log(Ī ) )Ċ
ą2 < 2:C

−2ĪĊ
ą2 . □

Proof of Lemma 3.4. We distinguish between periods C where the bad event SC holds true, and ones
where it does not. The former we charge to the right-hand side; this leaves us with showing that
across the periods in which SC does not hold true, with probability at least 1 − 1

)
, we do not use

any action 0\ 9 more than OPT\ 9 times. Observe that when SC does not hold true

• the probability that we take an action 0\ 9 where DLP\ 9 = 0 is equal to 0, and

• the probability that we take an action 0\ 9 where DLP\ 9 > 0 is at most DLP\ 9 + ℓ [log(C ) ]
1+Ċ
2

C
1−Ċ
2

.

The former is thus guaranteed to not be used more than OPT\ 9 times; the latter is stochastically

dominated by
∑)̂
C=1 �4A

(
DLP\ 9 + ℓ [log(C ) ]

1+Ċ
2

C
1−Ċ
2

)
. We want to show that this is less than OPT\ 9 , with

su�ciently high probability, to prove the lemma. Recall �rst (Lemma 3.2) that OPT\ 9 g ) × DLP\ 9 −
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[) log() )] 1+Ċ
2 with probability at least 1 − 2:)

−ĐĊ

ą2 . On the other hand, we have

`\ 9 := E


)̂∑
C=1

�4A (DLP\ 9 + ℓ
[log(C)] 1+Ċ

2

C
1−Ċ
2

)

f )̂×DLP\ 9+ℓ log() )

∫ )̂

1

1

C
1−Ċ
2

3C = )̂DLP\ 9+ℓ log() )
2)̂

1+Ċ
2

n + 1
.

Now, we can bound for an action 0\ 9 with DLP\ 9 > 0

P


)̂∑
C=1

�4A (DLP\ 9 + ℓ
[log(C)] 1+Ċ

2

C
1−Ċ
2

) > OPT\ 9


f 2:)

−ĐĊ

ą2 + P

)̂∑
C=1

�4A (DLP\ 9 + ℓ
[log(C)] 1+Ċ

2

C
1−Ċ
2

) > ) × DLP\ 9 − [) log() )] 1+Ċ
2


.

Suppose next that

) × DLP\ 9 − [) log() )] 1+Ċ
2 > )̂ × DLP\ 9 + ℓ log() )

2)̂
1+Ċ
2

n + 1
+ [) log() )] 1+Ċ

2

or equivalently () − )̂ ) × DLP\ 9 g ℓ log() ) 2)̂
1+Ċ
2

n + 1
+ 2 [) log() )] 1+Ċ

2 .

Observe that the left-hand side grows as ¬() 1
2+n ), whereas the right-hand side grows as $̃ () 1+Ċ

2 ),
so for large enough ) this holds true. We set )0 to be the smallest constant such that this holds for
) g )0 for every \ and 9 with DLP\ 9 > 0. Then, we can bound the above probability as

2:)
−ĐĊ

ą2 + P

)̂∑
C=1

�4A (DLP\ 9 + ℓ
[log(C)] 1+Ċ

2

C
1−Ċ
2

) > )̂ × DLP\ 9 + ℓ log() )
2)̂

1+Ċ
2

n + 1
+ [) log() )] 1+Ċ

2


f 2:)

−ĐĊ

ą2 + P

)̂∑
C=1

�4A (DLP\ 9 + ℓ
[log(C)] 1+Ċ

2

C
1−Ċ
2

) − `8 9 > [) log() )] 1+Ċ
2


f 2:)

−ĐĊ

ą2 + 4−2
(Đ log(Đ ) )1+Ċ

Đ̂ f 2:)
−ĐĊ

ą2 +) −2,

where the last line follows from Hoe�ding’s Inequality (see Proof of Lemma 2.1). Taking a union
bound over all 0\ 9 with DLP\ 9 > 0 — noting that we only need the bound from Lemma 3.2 once —

we obtain a bound of 2:)
−ĐĊ

ą2 + :ℓ) −2
<

1
)
for ) > max{2X 2

Ċ , 2:ℓ,)0}. The result follows. □

Proof of Lemma 3.5. We argue similarly to the proof of Lemma 3.2: by Proposition 1, in period C ,

max
\,9

|OPT C\ 9 − TDLP\ 9 (C) | f X max
\

| C̄
C
#\ (C) − #̄\ (C) |,

implying ∀\, 9 : OPT C\ 9 g TDLP\ 9 (C) − X max
\

| C̄
C
#\ (C) − #̄\ (C) |.

Then, by triangle inequality,X max\ | C̄C#\ (C)−#̄\ (C) | f X
(
max\ | C̄C#\ (C) − ?\ C̄ | +max\ |?\ C̄ − #̄\ (C) |

)
,

and we �nd, with U =

√
C̄
X2

in Lemma 2.1, that the probability of either term being greater
C̄
3
4
√
log(C̄ )
X

is

at most 4:C̄−2
√
C̄/X2 , wherewe are using that C > C̄ which follows from )̂ > ) /2. This implies the result,

i.e., we have with probability at least 1−4:C̄−2
√
C̄/X2 that ∀\, 9 : OPT C

\ 9
g TDLP\ 9 (C)−2C̄

3
4

√
log(C̄). □
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A.3 Proof of Lemma 4.1

As stated before, the lemma follows from the Berry-Esseen Theorem (Berry 1941), of which we use
the following formulation.

Proposition 6 (Corollary 3 in Shevtsova (2011)). Let -1, . . . , -g be i.i.d. random variables

drawn from a distribution ful�lling E[-8 ] = 0, f2 = +0A [-8 ] = � [- 2
8 ] = 1, and �nite third absolute

moment V3. Let (g =
∑
8 -8 , / ∈ # (0, 1), and q (A ) be the CDF of / . Then

�g = sup
A

��q (A ) − P [(g < A√g ] �� f 0.4748V3/
√
g

holds for all =.

De�ne the Bernoulli random variables -1, . . . , -g with

-8 =



√

1−?ĉ
?ĉ

with probability ?\

−
√

?ĉ
1−?ĉ with probability 1 − ?\

Observe that E[-8 ] = 0, f2 = 1 − ?\ + ?\ = 1, and V3 = E[|- 3 |] f 1√
?ĉ

+ 1√
1−?ĉ . Then, with (=, / as

in Proposition 6 we have

sup
A

|q (A ) − P[(g < A
√
g] | f

(
1√
?\

+ 1√
1 − ?\

)
0.4748√

g
.

For �xed A > 0, we have 1 > q (A ) > 0, so for large enough g there exists b̄A ∈ (0, 1) with

b̄A := q (A ) −
(

1√
?\

+ 1√
1 − ?\

)
0.4748√

g
f P[(g < A

√
g] .

Setting bA = 1 − b̄A we �nd that P[(g g A
√
g] g bA > 0. Now, de�ne .8 = -8

√
?\ (1 − ?\ ) + ?\ , to

obtain a random variable that is 1 with probability ?\ and 0 otherwise. Further, we have

#\
3
=

∑
8

.8 =
∑
8

-8
√
?\ (1 − ?\ ) + ?\ = =?\ +

√
?\ (1 − ?\ )(g

With probability at least
bĨ√

?ĉ (1−?ĉ )
we have (g g A√g , and thus, with probability at least

bģ√
?ĉ (1−?ĉ )

,

we have #\ g =?\ +
√
?\ (1 − ?\ ). □

A.4 Proofs of further impossibility results

Proof of Proposition 3. Consider a bin packing instance as in Proposition 2 in which bins have size 3
and items are of size either 1 or 2 with probability 1

2
; the time horizon ) is a geometric random

variable with mean g . As in Proposition 2, all arriving items of size 2 need to be put into a bin of
con�guration {1, 2} whereas items of size 1 can either be in a {1, 2} con�guration or in a {1, 1, 1}
con�guration. The main observation necessary to derive the result is that the optimal Bellman
equation gives a threshold solution that sets a threshold 3g and puts arriving items of size 1 into
bins of con�guration {1, 1, 1} when there are 3g bins with only one 1 in them (such bins can have
an arriving 2 added to them), i.e., it acts as follows:

• when an item of size 2 arrives, and there is a bin with only one 1 in it, add the size 2 item to
that bin; else, add the arriving size 2 item to a new bin;

• when an item of size 1 arrives, and there is a bin with only one 2 in it, add the arriving size 1
item to that bin; if there is no such bin, but there is a bin that has two size 1 items in it, add
the arriving size 1 item to that one; if there is no such bin either, and there are less than 3g
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bins that have just a single item of size 1 in them, add the arriving size 1 item to a new bin;
else, add the arriving size 1 item to an existing bin that has a single 1 in it.

We distinguish between the case that 3g f √
g and 3g >

√
g . Further, we condition on the time

horizon lasting between g and 2g periods, which occurs with constant probability (as g grows large).
Then, the following events each occur with constant probability:

(i) over the entire horizon the number of items of size 1 is 2
√
g greater than the number of items

of size 2;
(ii) over the �rst g/2 periods there are at least 2√g more arrivals of size 1 than of size 2 but over

the entire horizon there are more arrivals of size 2 than of size 1.

With 3g f √
g , under the �rst event, at the end of the horizon there are ¬(√g) items of size 1 in bins

by themselves; these could be in a third as many bins of con�guration {1, 1, 1}; with 3g >
√
g , under

the second event, the algorithm creates ¬(√g) bins of con�guration {1, 1, 1} in the �rst g/2 periods,
whereas the optimal solution requires none of these; thus, for any threshold 3g the expected loss
is ¬(√g). □

Proof of Proposition 4. We consider the following events:

• �1 is the event that there are at least
√
) /2 items of value 2 in both the �rst and the last ) /2

periods;
• �2 is the event that there are at most ) /4 items of value 3 over the �rst ) /2 periods;
• �3 is the event that there are at least ) /2 items of value 3 over the entire horizon;

• �4 is the event that there are at most ) /2 −
√
) items of value 3 over the entire horizon.

Observe that both �1 ∩ �2 ∩ �3 and �1 ∩ �2 ∩ �4 occur with constant probability by Lemma 4.1;
now, consider the number of items of value 2 accepted by an algorithm in the �rst) /2 periods: if it
is at least

√
) /4, then the algorithm incurs ¬(

√
) ) loss under �1 ∩ �2 ∩ �3, and if it is at most

√
) /4

then the algorithm incurs ¬(
√
) ) loss under �1 ∩ �2 ∩ �4. Thus, in this instance any algorithm

must incur ¬(
√
) ) loss. □

B APPLICATION TO ONLINE PACKING PROBLEMS

In this section we describe how our framework captures online packing problems or variants thereof,
including AdWords (Alaei et al. 2013), Network Revenue Management (Talluri and Van Ryzin 1998),
or refugee resettlement (Bansak and Paulson 2022). In these problems, for a �xed time horizon

) , we have a budget of resources ®�. Upon each arrival of type \ we need to make an irrevocable
assignment decision, wherein an arrival is assigned to a product 9 , consumes some resources �\ 9
for each resource type 9 , and yields some value 21

\ 9
— note that the latter two are dependent on

both the arrival type and the product assignment; to �t the minimization objective description in
Section 2 we will minimize −®21 · ®G , which maximizes the value. In the canonical quantity-based
network revenue management problem, the arrival is a speci�c request and the decision is just
accept/reject; we can model the reject decision by allowing for a product with in�nite resources and
no value. In refugee resettlement there is no reject decision as arriving refugees need to be send to
a location within a host country; the value to the optimization problem comes from the probability
they �nd employment, as captured through an exogenous machine learning model. As a relaxation
of these problems we allow 5 ®# to violate the budget constraint at a penalty which is greater than
the largest value; when ) is known from the beginning our algorithm would never violate the
budget/incur that penalty; when ) is a priori unknown our algorithm may, with vanishingly small
probability under Assumption 3, violate the budget and incur the penalty. We have I 9 as a decision
variable capture by how much the resource constraint on resource 9 has been violated, and have a
penalty of 229 = max{2\ 9 + 1} Then, we can write the objective as follows
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5 ®# ( ®G) = min
®I

−®2 1 · ®G + ®22 · ®I

s.t.
∑
9

G\ 9 = #\ ∀\

�®G − � ®I f ®�
∑
\

#\

I\ 9 g 0 ∀\, 9,
Observe that for any �xed ®G the �rst term in the objective captures the negative of the value of the
product assignments (which we aim to minimize); whereas the optimal I 9 = min{0, � 9 −

∑
\ �\ 9G\ 9 }

captures by how much the resource constraint on resource 9 is violated, and penalizes it by a
number greater than the value of any resource assignment.

C KNOWN HORIZON AND LAZY RESOLVING

In this appendix we consider di�erent assumptions on the arrival process, the information structure
on the length of the time-horizon, and the objective function. Speci�cally, we focus on a setting
where the objective function (not necessarily linear) ful�lls properties (i) and (ii) in Proposition 1,
the time horizon ) is known from the beginning, we have one sample path (a trace) of ) arrivals,
and the arrivals come from a distribution that ful�lls the following two assumptions.

Assumption 4 (Anytime Concentration). For each type \ ∈ Θ and any period C , we assume

that the number of future arrivals #̄\ (C) is concentrated about its mean; formally, ∃ constant U > 0,

independent of C , such that ∀\, C and every G > 0

P
[��#̄\ (C) − E[#̄\ (C)]�� > G ] f 24

−ĂĮ2
Ī̄ .

Assumption 5 (Anytime Thickness). For each type \ ∈ Θ and any period C , we assume that the

expected number of future arrivals #̄\ (C) grows faster than
√
C ; formally, ∃ positive constants V,W

independent of C such that ∀\, C and every G > 0

E
[
#̄\ (C)

]
g VC̄0.5+W .

Observe that Assumption 1, with W = 1/2, is a special case of Assumption 5. Proposition 7 shows

that Assumption 5 is tight in the sense that one cannot guarantee an expected loss of > (
√
) ) when

W = 0. Also, note that Lemma 2.1 (implied by Assumption 1) is a variant of Assumption 4.

ALGORITHM 2: Lazy resolving

– Initialize GALG
\ 9

(0) = 0; �\ 9 = 0 ∀\, 9
for C = 1, . . . ,) do

if �\Ī 9 < 1 for every action 9 then

– Solve optimization problem SDLP(C);

– Set �\ 9 =

⌊
SDLP\ 9 (C) − GALG\ 9

(C) − 2C̄

(
1+Ą
2

)√
log C̄

⌋
∀\, 9

end

– In period C , use action 0\Ī 9 for some 9 ∈ argmax9 {�\Ī 9 }; reduce �\Ī 9 by 1;

– Set GALG (C) by incrementing GALG
\Ī 9

(C − 1) by 1 and leaving all other values unchanged;

end

Electronic copy available at: https://ssrn.com/abstract=3479189



Siddhartha Banerjee and Daniel Freund 28

We denote the sample path we have access to by \̂1, . . . , \̂) , write #̃
5

\
(C) for the number of type

\ arrivals in periods C + 1, . . . ,) on that sample path, and #̃ 5 for the vector of those arrivals over
the entire sample path; it is worth noting that having such a sample path is a signi�cantly weaker
assumption than full distributional information, as the later always allows one to draw one sample.
Relative to the i.i.d. setting in the main body, this setting here allows for limited correlations
between arrivals in di�erent periods. Similar to Algorithm 1 solving TDLP once the time horizon is
known, Algorithm 2 relies on solving the following:

min
®G
5#̃ Ĝ ( ®G) s.t. ®G g ®GALG (C − 1) ∀\, 9 . (SDLP(C))

Again, similar to Algorithm 1, Algorithm 2 has the following property.

Theorem C.1. Suppose the arrivals ful�ll Assumption 4 and 5 and the objective ful�lls properties (i)

and (ii) of Proposition 1; then there exists an algorithm ALG and a constant"2 (V, _, X, n, ℓ), independent
of ) , such that the loss of Algorithm 2 can be bounded as LALG f "2 (V, X, _, n, ℓ).

Observe that Theorem C.1 does not rely on Assumption 2. Thus, we do not require a solution
OPT

C to be unique below.7 The proof of Theorem C.1 requires us to show the following result,
similar to Lemma 3.5.

LemmaC.2. Consider a period C with actions GALG
\ 9

(C−1) already taken in periods [1, C−1]; with proba-

bility at least 1−4C̄−
ĂĪ̄ Ą

ą2 there exists some solution OPT C with OPT C
\ 9

g
⌊
SDLP\ 9 (C) − 2C̄

(
1+Ą
2

)√
log C̄

⌋
∀\, 9 .

Proof sketch of Theorem C.1. Denote, as in the proof of Theorem 2.2, by )1 = )̂ ,)2, . . . ,)B the
periods in which Algorithm 2 solves SDLP(C), by )[ the �rst period in which Algorithm 2 solves
TDLP(C) and it is the case that for some \ all budgets �\ 9 < 1, and let T8 be the event that the LCB
created in period )8 fails to hold true for any optimal solution OPT

)ğ :

T8 =
{
∀OPT )ğ ∃\, 9 : OPT )ğ

\ 9
<

⌊
TDLP\ 9 ()8 ) − 2)̄8

3
4

√
log )̄8

⌋}
.

Then we can bound

LALG = E
[
OPT

) − OPT
1
]
f 2_E

[
[−1∑
8=1

()8+1 −)8 )P[T8 ] + )̄[
]
f 2_E

[
[−1∑
8=1

)̄8P[T8 ] + )̄[
]
.

We bound the sum similarly to how we did in the proof of Theorem 2.2 (using Lemma C.2 instead
of Lemma 3.5, where with W = 1/2 it is the same bound).

For E
[
)̄[
]
we construct an upper bound by noting that in period C , SDLP assigns #̃

5

\
(C) actions

for type \ , meaning at least one action is assigned at least #̃
5

\
(C)/ℓ actions; with high probability (by

Assumption 4) this is at least E[#̄ĉ (C ) ]
2ℓ

g VC̄ .5+W which, for C̄ large enough is greater 2C̄

(
1+Ą
2

)√
log C̄ .
□

7Recall that for functions 5 ®Ċ as described in Section 2 this was without loss of generality, but for the more general class of

functions we discuss here this need not hold true.
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Proof of Lemma C.2. Consider the solution OPT
C to SDLP(C) that minimizes max\,9 |OPT C\ 9 −

SDLP\ 9 (C) |, where SDLP(C) is the solution Algorithm 2 �nds when solving in period C . Then,

P

[
∃\, 9 : OPTC\ 9 < +SDLP\ 9 (C) − 2C̄

(
1+Ą
2

)√
log C̄,

]
f

P

[
max
\,9

|OPTC\ 9 − SDLP\ 9 (C) | g 2C̄

(
1+Ą
2

)√
log C̄

]
f

P


max
\

|#̄\ (C) − #̃ 5

\
(C) | g

2C̄

(
1+Ą
2

)√
log C̄

X


f

: max
\
P


|#̄\ (C) − #̃ 5

\
(C) | g

2C̄

(
1+Ą
2

)√
log C̄

X


f

: max
\

©­«
P


|#̄\ (C) − E[#̄\ (C)] | g

C̄

(
1+Ą
2

)√
log C̄

X


+ P


|E[#̄\ (C)] − #̃ 5

\
(C) | g

C̄

(
1+Ą
2

)√
log C̄

X


ª®¬
f

44
−ĂĪ̄ Ą log(Ī̄ )

ą2 = 4C̄
−ĂĪ̄ Ą

ą2 □

Lazy resolving. In this part we argue that Algorithm 2 has not only strong performance guarantees,
but also allows for signi�cant lesser resolving; in particular, we claim that with i.i.d. arrivals it
only needs to resolve SDLP, in expectation, $ (log log() )) many times. To see this, note that after
resolving in period C , for large enough C̄ , we have C̄ − > (C̄) periods to go before we next need to

resolve. Indeed, it next resolves after observing, for some type \ , at least #̃
5

\
(C) − ℓ2C̄ 3

4

√
log C̄ arrivals.

Now, with i.i.d. arrivals we �nd that #̃
5

\
(C) is close to, or greater, C̄?\ with high probability (in C̄ , by

Assumption 4 or Lemma 2.1); thus, \ requires the algorithm to resolve next after observing about
C̄?\ − > (C̄) more arrivals of type \ ; however, before observing C̄?\ − > (C̄) arrivals of type \ , with
high probability, we observe C̄?\ ′ − > (C̄) of each other type \ ′; thus, only > (C̄) periods remain when
the algorithm next resolves.

Necessity of Assumption 5. In this section we prove that Assumption 5 is tight in the sense that
with W = 0 one may not be able to obtain the general uniform loss guarantees of Theorem C.1.

Proposition 7. There exists a family of instances wherein E[#̄\ (C)] g VC̄0.5 holds true ∀C , yet no
online algorithm can obtain uniform loss to the online knapsack problem.

Proof. Consider a time horizon of even length) and a budget) /2. Items have unit size and value

1, 2, or 3. For the �rst) /2 periods, all arriving items have value 2. Then, there are) /2−
√
) arrivals

of value either 1 or 3 with probability 1
2
each. Finally, the last

√
) arrivals have value 1, 2, or 3

with probability 1
3
each. Observe that with this family of instances we have E[#̄\ (C)] g

√
C̄
3
since

E[#̄\ (C)] = C̄
3
for C g ) −

√
) , and E[#̄\ (C)] g

√
)
3

g
√
C̄
3
for C < ) −

√
) , so these instances ful�ll

the assumption of the proposition with V = 1/3. Further, by Lemma 4.1 there exists b > 0 such that

P[#̄2 () /2) + #̄3 () /2)]+ f )

4
−
√
) ] > b and P[#̄3 () /2) g

)

4
+
√
) ] > b .

Now, consider an algorithm ALG that accepts GALG2 ()
2
) items of value 2 in the �rst )

2
periods. We

distinguish between two cases.
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Case GALG2 ()
2
) g )

4
. With probability at least b we have #̄3 () /2) g )

4
+
√
) , i.e., there are at least

)
4
+
√
) arrivals of value 3 in the second half of the time horizon, of which ALG can only accept )

4

yielding an expected loss, relative to the clairvoyant, of at least b
√
) ∈ ¬(

√
) ).

Case GALG2 ()
2
) < )

4
With probability at least b we have #̄2 () /2) + #̄3 () /2)+ f )

4
−
√
) , i.e., there

are at most )
4
−
√
) arrivals of value either 2 or 3 in the remaining periods. Thus, ALG must accept

at least
√
) items of value 1 or leave

√
) of its budget unused, yielding an expected loss, relative to

the clairvoyant, of at least b
√
) ∈ ¬(

√
) ). □
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