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Abstract In this paper, we study a second-order accurate and linear numerical scheme for the nonlocal Cahn-
Hilliard equation. The scheme is established by combining a modified Crank-Nicolson approximation and the
Adams-Bashforth extrapolation for the temporal discretization, and by applying the Fourier spectral collocation
to the spatial discretization. In addition, two stabilization terms in different forms are added for the sake of the
numerical stability. We conduct a complete convergence analysis by using the higher-order consistency estimate
for the numerical scheme, combined with the rough error estimate and the refined estimate. By regarding the
numerical solution as a small perturbation of the exact solution, we are able to justify the discrete £°° bound
of the numerical solution, as a result of the rough error estimate. Subsequently, the refined error estimate is
derived to obtain the optimal rate of convergence, following the established ¢>° bound of the numerical solution.
Moreover, the energy stability is also rigorously proved with respect to a modified energy. The proposed scheme
can be viewed as the generalization of the second-order scheme presented in an earlier work, and the energy

stability estimate has greatly improved the corresponding result therein.

Keywords nonlocal Cahn-Hilliard equation, second-order stabilized scheme, higher-order consistency analysis,

rough and refined error estimate

MSC(2020) 35Q99, 65M12, 65M15, 65M70

Citation: Li X, Qiao Z H, Wang C. Double stabilizations and convergence analysis of a second-order linear
numerical scheme for the nonlocal Cahn-Hilliard equation. Sci China Math, 2024, 67: 187-210,
https://doi.org/10.1007/s11425-022-2036-8

1 Introduction
In this paper, we study the nonlocal Cahn-Hilliard (NCH) equation [5-9,28-30]

e = A(@> — ¢ +2Lo), (x,t) € Qx (0,T], (1.1)
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where ) = H?Zl(—Xi, X;) is a cuboid domain in R? (d = 1,2,3) and ¢ = ¢(z, ) is the unknown function
subject to the periodic boundary condition on Q. In the last term of the right-hand side, € > 0 is an
interfacial parameter, and £ is a nonlocal linear operator defined as

Co(x) = / J(@ — y) (@) — ¥(y))dy.

In more details, J is a kernel function satisfying
(a) J(x) =0 for any & € R%;
(b) J is Q-periodic and even, i.e., J(—z) = J(x) for any = € R%;
3 Jo J(@)|z|?de = 1;
(d) J is integrable on Q and vp :=%(J* 1) — 1 > 0,
where x stands for the periodic convolution [30]

(%) (@ / J(@ — y)(y)dy = /Q J(y)(e — y)dy.

Using the condition (d), we see that the nonlocal operator can also be rewritten as

Lo = (J*1)gp = T x1h,

and correspondingly, the NCH equation (1.1) becomes

br = A(¢% + 700 — 2T % ¢) = V- ((30* +70)Vp) — 2AJ % ¢.

The positivity of 7o implies the diffusivity of the leading term V - ((3¢2 +v9)V¢), while the solution may
perform some singular behavior without such a condition [7, 8].

Similar to the classic Cahn-Hilliard equation [10], the NCH equation (1.1) can be viewed as the H !
gradient flow with respect to a free energy functional with nonlocal interaction effects. The energy
functional reads as

E(¢) = /Q F()da + 5 (6.£9), (1.2)

where F(¢) = 1(¢? — 1)? and (-,-) denotes the standard L? inner product on €. Due to the
energetic variational structure, the solution to the NCH equation decreases the energy (1.2) in time,

. ;tE(¢( )) < 0. In addition, as a common property of H~! gradient flows, the mass conservation is
0bV10uS in the sense that 4 [ ¢(x,t)dx = 0.

The NCH equation (1.1) has attracted increasing attention and has been applied to a variety of areas,
including material sciences, image processing and finance. In material sciences, the NCH equation and
a few other related formulations arise as the mesoscopic model of interacting particle systems and phase
transitions [25,33]. In the dynamic density functional theory [2,3], the solution describes the mesoscopic
particle density and the interaction kernel is the two-particle direct correlation function. In comparison
with the classic Cahn-Hilliard equation, the NCH equation performs more flexibility to describe more
types of physical processes and phenomena by appropriately choosing interaction kernel functions. At
the theoretical level, the well-posedness of the NCH equation with an integrable kernel function and the
Neumann or Dirichlet boundary condition was studied by Bates and Han [7,8], and it was claimed in [30]
that the existence and uniqueness of the periodic solution to the NCH equation may be established by
using similar techniques. We refer the readers to [16,25] for some reviews of nonlocal diffusion models
and parabolic-like evolution equations. We also refer the readers to [1,52,53] for some other different
forms of the nonlocal Cahn-Hilliard equations. At the numerical level, some researches have been devoted
to designing efficient algorithms for nonlocal diffusion equations [16], the nonlocal Allen-Cahn equation
(the L? gradient flow with respect to the energy (1.2)) [18,20], and some other nonlocal models [9]. For
the NCH equation, one of the main difficulties comes from the existence of both the nonlocal term and
the Laplacian of nonlinear terms. Due to the energetic variational structure of the model, the numerical
algorithms inheriting the energy dissipation law are always highly desired. To this end, the nonlocal term
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and the nonlinear term need to be addressed carefully. Guan et al. [28-30] developed first- and second-
order convex splitting schemes for the NCH equation and proved the energy stability and convergence.
In particular, the nonlinear term was treated implicitly to guarantee the energy stability, under the
framework of the convex splitting approach (see also [24,40,47,49,56,62]). As a result, an iteration solver
becomes inevitable in the numerical implementation, which comes from the nonlinearity of the schemes.
In addition, the nonlocal term was set into the explicit part to contribute only the right-hand side of the
nonlinear system so that multiple evaluations could be avoided in the nonlinear iteration at each time
step.

To further simplify the computation effort, some linear numerical schemes have been developed for
the NCH equation [17,38,39], by applying the stabilization technique [51,63] to preserve the energy
stability. The first-order scheme [17] followed the idea of the standard stabilized implicit-explicit method
and a theoretical justification of the energy stability and convergence analysis was presented in [38].
Moreover, the second-order backward differentiation formula (BDF2) was applied to construct a second-
order accurate stabilized linear scheme [39] with the explicit extrapolation adopted for the nonlinear term
and the concave expansive term. This BDF2 scheme was proved to be energy stable with respect to a
modified energy, which is an O(At) approximation of the original energy (1.2) at the numerical level.
The convergence analysis was also carried out via the induction argument. We refer the readers to [42,43]
and the references therein for more applications of the BDF2 method and [34,41,50, 65] for more linear
schemes for some other gradient flow equations.

Other than the BDF2 approach, another second-order stabilized linear scheme, based on the modified
Crank-Nicolson discretization, has been studied in the existing work [17]. This modified Crank-Nicolson
scheme takes the form of

¢n+1 - ¢n _ 3 n\3 1 n—1\3 3 n 1 n—1
At_AN<2(¢ ) _§(¢ ) - (2¢ _5(15 )
+e2Ln <i¢”+1 + i¢"1> + Ag(p" Tt — 20" + ¢”1)>. (1.3)

A modified energy inequality has been established in [17] as
4o

En(¢"1,¢") < En(6", ") + 210" = "3, (1.4)

if the stabilization constant Ag satisfies
An > é n|2 n712_§2 n+1(2 2n2 1.5
o > max ¢ o([[6" % + 1" %) = 5, 31"l + 206" 15) ¢- (1.5)

The operators with the subindex NN, as well as the discrete norms, represent the corresponding spatially-
discrete versions; the precise definitions will be given in the next section; the term En (¢n, ¢ 1) is a
modified energy defined by the original energy En(¢™) with a perturbation of order O(At?). However,
we notice that the inequality (1.4) is not a rigorous energy stability estimate, since it does not ensure a
global-in-time bound of the energy functional due to the lack of a theoretical control of the increment
term [|¢"t! — ¢™||3, although it is formally expected to be of order O(At?). In addition, the /> norms
of the numerical solutions at time steps ¢,_1, t, and t,; are involved on the right-hand side of (1.5).
As a result, such a lower bound for the constant Ay has not been justified at a theoretical level in [17].
The primary goal of this work is to present a complete analysis of the energy stability and convergence
for the second-order stabilized linear scheme (1.3). In particular, we have to slightly modify the
scheme (1.3) to ensure the theoretical properties. In more details, an additional O(At?) stabilization
term, in the form of A; AtAn(¢" T —¢™) (a Douglas-Dupont regularization term), is added to the right-
hand side. As a result, double stabilization terms are involved in the numerical scheme to facilitate
the theoretical analysis. The double stabilization technique has been used to analyze classic Allen-Cahn
and Cahn-Hilliard equations [57-60], where the lower bounds of the constants Ay and A; depend on
the £°° bound of the unknown numerical solutions, which have not been theoretically determined. To
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justify the lower bounds of the constants Ay and A;, a direct analysis provided in [35-37] for the classic
Cahn-Hilliard equation may hardly be extended to this numerical scheme, due to the lack of higher-order
diffusion terms. Instead, we view the numerical solution as a perturbation of the exact solution to (1.1),
and use the convergence estimate to obtain an ¢>° bound of the numerical solution. In more details, a
higher-order consistency analysis is performed so that the uniform ¢>° bound of the numerical solution,
as well as its discrete temporal derivative, can be theoretically justified. Moreover, one crucial difference
with the standard error estimate is associated with the fact that we have to adopt (—Ax)~1(e" Tt —¢é") to
test the error equation with respect to the numerical error function é”, instead of testing (—Ap)~ten*?
as in the standard error estimate (where (—Ay)~! is a spatial discrete operator to be defined in the next
section). Therefore, the key point of the convergence analysis is to use the discrete temporal derivative
of the error function as the test function, rather than the error function directly, which would provide
a higher-order temporal truncation error to match the modified Crank-Nicolson discretization for the
temporal derivative. As a result of the convergence estimate, we obtain a uniform ¢°° bound of the
numerical solution. This in turn recovers the a priori assumption, and the lower bounds for both Ag
and A; become available at a theoretical level.

Although a BDF2 scheme has been recently investigated for the NCH equation in [39], the numerical
scheme proposed in this paper (the scheme (2.2) given later) still performs significantly in some aspects.
First, the constraints of the stabilizing constants Ag and A; for the energy stability are of order O(M§@)
(with My the supremum norm of the exact solution, as well as its temporal derivative), in comparison
with the order O(M{}) for the BDF2 scheme. In other words, the lower bounds required for Ag and A; are
expected to be smaller for the Crank-Nicolson scheme at a theoretical level. Second, as mentioned above,
the modified energy defined for the BDF2 scheme possesses a deviation of order O(At) away from the
original energy functional. For the proposed Crank-Nicolson scheme, we prove the energy stability with
respect to a modified energy with a deviation of order O(Atz) away from the original energy functional.
This fact implies that the modified energy dissipation law becomes closer to the original physical system,
in comparison with the BDF2 scheme reported in [39].

The rest of this paper is organized as follows. The second-order stabilized linear numerical scheme,
obtained by modifying the existing algorithm (1.3), is presented in the fully-discrete version in Section 2,
and some spatial discretization notations are also introduced in this section. In Section 3, we conduct
the convergence analysis for the proposed scheme by the induction argument, including the higher-order
consistency estimate, a rough error estimate and a refined error estimate. In addition, the infinity-norm
of the numerical solution is justified as a by-product of the convergence result. Subsequently, the energy
stability of the proposed scheme is proved in Section 4. Some numerical experiments are conducted in
Section 5 to verify the second-order temporal convergence rates and the energy dissipation property.
Finally, some concluding remarks are given in Section 6.

2 Second-order stabilized linear numerical scheme

In this section, we develop the fully-discrete second-order scheme for the NCH equation (1.1). First, we
summarize some notations for the two-dimensional Fourier spectral collocation method for the spatial
discretization. An extension to the three-dimensional case is straightforward.

For simplicity of notations, we consider the square domain Q = (—X,X)2. For any given even
number N, let h = 2X/N be the size of the uniform mesh, denoted by €, composed of the nodes
(x;,y;) with ; = =X +4h and y; = —X + jh for 1 < 4,5 < N. The space of all the Q-periodic grid
functions is defined as

Mh:{f:22—>R|f”pN’HqN:fij for 1 <4,j < N and p,q € Z}.

For any grid functions f,g € My, the ¢? inner product, the % norm (1 < p < o) and the /> norm are
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defined, respectively, as

=

N
(f,9)=h? ‘Zl Figgig, Ml = (17107, (1o = | max {fig].
1,)=
In particular, the 2 norm can also be expressed as ||f|l2 = v/{f, f). A subspace of M, collecting all the
grid functions with zero mean is denoted by M) = {f € M, | (f,1) = 0}.

For f € M,,, we have the discrete Fourier expansion

N/2 ) N .
N im N 1 im
fi= > frrexp (X(/fffi + lyj)); fu =57 > " fijexp (- 5 (ki + lyj)>~
kl=—N/2+1 ij=1

The Fourier pseudo-spectral approximations to the first- and second-order partial derivatives in the z-
direction are defined as

N/2

ikm . im
Dufij= Y, ~ Jwexp (X(kxi + lyj))7
kd=—N/2+1
N/2 ) ,
km s im
Difij= Y, (— (X2> )sz exp (X(kafi + lyj))-
kd=—N/2+1

The operators D, and D; in the y-direction can be defined in the similar way. For any f € M,
and f = (f1, f)T € My, x My, the discrete gradient, divergence, and Laplace operators are defined,
respectively, as

D, f
Dy f

For any f,g € Mj, and g € M;, x My, we have the following summation-by-parts formulas [26,27, 38]:

VNf< >, Vn-f=D.f' +Dyf* Anf=Dif+Djf.

(f,VN-g)=—(Vnf.g), (f,Ang)=—(Vn[, Vng) = (ANf 9).

In addition, —Ay is self-adjoint and positive definite on MY, and thus (—Ax)~! exists and is also

positive definite on M. Moreover, for any f,g € M9, we define the discrete H ' inner product and the
discrete H~! norm as

(f,9)-15 = (f,(~AN)"'g) = (-AN) "2 f, (~AN) " 2g),

[fll=1,n =/, v = [(~Axn)"% fl2.

To define the discrete version of the nonlocal operator £, we need the discrete convolution notation. The
following definition follows the similar notations in [30,38]. For any f, ¢ € M, the discrete convolution
f*¢ € M, is defined at a componentwise level, i.e.,

N
(f x@)ij = h? Z fiepj—aPper 1<%,5 <N.

p,q=1

In a recent work [38], the following preliminary estimate has been established for the discrete convolution,
which will be used in the later analysis.

Lemma 2.1 (See [38]).  Suppose that ¢ and ¢ are two periodic grid functions. Assume that f € C,.()
is even and define its grid restriction via fi; := f(z;,y;). Then for any a > 0, we have

16, An0)] < allgl + 1Tl 2.1)

where Cs is a positive constant that depends on f but is independent of h.
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Given a kernel function J satisfying the conditions (a)—(d), the discrete version of the nonlocal operator
can be defined as

Lno=(Jx1)p—Jxd, Voe My

Finally, we present the second-order stabilized linear numerical scheme studied in this paper. Given
a uniform time step size At, we set {t, = kAt} as the nodes in the time interval and denote by ¢* the
numerical solution at time ¢ = t). The fully-discrete scheme is proposed as follows: given ¢",¢" ! € M9
(n > 1), find "™ € MY such that

(bn-i-l _ (bn

St = A (0 - 0 G g 20 4 o)

+ A At(p" T — ") + 2Ly <i¢”+1 + iqﬁ"l)) (2.2)

with ¢nt1/2 = 3¢m — 2¢"~ L. The case of A; = 0 yields the algorithm (1.3) studied in [17]. In addition
to Ag(¢"tl — 29" 4 ¢~ 1), the term A;At(¢"T! — ¢") is another stabilization term, which stands for
the Douglas-Dupont regularization. Therefore, double stabilizations have been involved in the proposed
scheme. The later analysis will reveal that the stabilization term A; At(¢" T — ¢™) does not contribute
to the convergence estimate, while it is crucial to the energy stability estimate.

In addition, since the proposed scheme (2.2) is a two-step algorithm, we have to give some remarks on
the initialization process to obtain the numerical solution ¢!. A simple choice of single-step algorithms to
generate ¢! is the first-order stabilized linear scheme proposed and studied in [17,38], in which a second-
order temporal accuracy could be obtained in the first step (see [31,32] for the related analysis for the
classic Cahn-Hilliard equation). However, for the proposed scheme (2.2), a higher-order approximation at
time ¢ = t; is needed in the theoretical analysis. Therefore, a second-order accurate numerical algorithm
is highly preferred in the first time step. For example, the discrete gradient scheme [19,45] turns out to
be a one-step second-order accurate and energy stable scheme, so it gives a third-order approximation
at time ¢ = t; if the exact initial data is imposed for ¢°. While the discrete equations are inevitably
nonlinear in this approach, the explicit second-order Runge-Kutta method can be another choice with
the desired accuracy but sacrificing the energy dissipation property.

3 Convergence analysis

Denote by @ the exact solution to (1.1). The existence and uniqueness of a smooth periodic solution to
the NCH equation (1.1) with smooth periodic initial data may be established by using the techniques
developed by Bates and Han [7,8], from which one can obtain

1@l oo (0,752.00) + 1Rl oo (0, 7515) < C (3.1)

for any 7" > 0.

Define ®n(-,t) := Py®(-,t), the (spatial) Fourier projection of the exact solution into BX, the
space of trigonometric polynomials of degree up to and including K := N/2. The following projection
approximation is standard: if ® € L>°(0,T; H’,,(Q)) for some ¢ € N, then

per

[N — @ o,mm) < Ch ™| @] Lo 0,710y, VO < m < L. (3.2)

We define &%, = & (-, ;) and ®F = &( -, ¢;,) with ¢, = kAt, and denote by qbé“\, = Pp®n(-,tx) the values
of &y at discrete grid points at time t;. Since &y € BX and 1 € BX, we have the mass conservative
property at the discrete level, i.e.,

— 1 1
oN = @/ﬂ O (s ty)de = @/Q O(, g )da

1/ 1 F1
= — | @t dw:—/ Oy (- tp1)de = 61, VEeEN,
) Jo Pt S gy, PG e = o
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We use the mass conservative projection for the initial data: ¢ = P,®x(-,t = 0), i.e., ?j =

Oy (z,y;,t = 0). Thus, the solution to the numerical scheme (2.2) is also mass conservative at the

discrete level, i.e., ¢k = ¢pF—1 Vk € N. Of course, based on the regularity assumption (3.1), we have

ok — oh!

At < C7,

k
a6+ max ‘

o0

where Ny := |T/At] for any given T' > 0.

Because of the fact that d)’fv and <I>’1“V are identical on the discrete grid points, we just use the notation
@k in the following discussions for simplicity of presentation. With initial data of sufficient regularity,
we can assume that the exact solution has regularity as

® e R:= H0,T;Cp., () N H*(0,T; CZ,, () N L=(0,T; Cr (), m > 3.
Theorem 3.1.  Given T > 0, suppose that the periodic solution to the NCH equation (1.1), given by
O(x,y,t) on Q for 0 <t < T, is sufficiently smooth. Meanwhile, the following assumption is made for
the constants Ag and Aj :

2

3M, _ . .
Ay > 20 with My =14 C*, C* = 1%%2%(”%""" + 10:@% |s0), A1 >0. (3.3)

Then provided that At and h are sufficiently small, under the linear refinement path constraint
Ci1h < At < Coh with Cy and Cy any fized constants, we have the following error estimate:

1% — ¢"[l2 < C(AL + h™) (3-4)

for all positive integers n such that nAt < T, where C > 0 is independent of h and At.

The key point in the convergence proof is that a higher-order consistency analysis is necessary to provide
a higher-order truncation error so that the desired /> bound of the numerical error can be recovered
with the help of the inverse inequality. In fact, this approach has been adopted for the numerical analysis
of a large family of nonlinear partial differential equations (PDEs) (see, e.g., [4,21-23,28, 30,44, 48] and
[65,61]). With the higher-order truncation error established for the constructed approximation solution,
we perform the stability estimates for the numerical error function. Meanwhile, it turns out to be
impossible to obtain the expected results directly, due to the complicated nonlinear expansion. We have
to divide this part into two steps. First, a rough estimate is performed to obtain the > bound of the
numerical solution, as well as its temporal derivative. Subsequently, a refined estimate is carried out to
derive the desired result of convergence rate, based on the £ bound obtained by the rough estimate. In

particular, instead of testing the error equation by (—Ay)~1é"™!, we adopt a test function in the form
of (~Ay)~1(entl —eén).

3.1 Higher-order consistency analysis and asymptotic expansion

With the Taylor expansion in time and the approximation estimate (3.2), we know that the Fourier
projection solution ® 5 solves the discrete equation
ot — on 3 R Y " .
% =An (2(‘1’7\7)3 - §(¢N P = BNTYE 4 Ag(@pt! — 20 + B
3 1
A AHDT — DY) + 2Ly (4<1>§LV+1 + 4@%1» +rp

Fr+1/2 _ 3gn _ lgn—1 n+1 ; ; .
where @ = 5@ — 3@ " and 79" is the truncation error determined by

n+1l __ <I>T]<l+1_¢’x/'76q) t 2A£ D (t 7§®n+171q>n—1
o =\ T A 9 N(thyr) ) +e N(tny1) 18N 18N
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3 1 3 1.
# 8 (xltas )~ JO0° + 5@ - A (@ltary) - 38 + 308

— An(Ao(®3 - 2B + ) + AL AHRRT - B%))

3 1 .
+ 62(A£ - ANﬁN) (4@%"_1 + 4@%_1> + A('PN((I)(tn_,'_%)S) — (I)N(tn_g.%)s)
3, 1, . 3 1 .-
#a-aw(G@pr - et - Jog 4 jor ).

Note that we have assumed ® € R. By the Taylor expansion with the integral remainder, one can
easily conclude that the summation of the first three lines of the right-hand side of 76”1 is bounded by
CAt?; by the Fourier spectral approximation, the rest terms have the bound Ch™. In summary, we have
o —1.v < C(At* + ™). However, this local truncation error will not be enough to recover the £
bound of the numerical solution and its discrete temporal derivative, due to the second-order accuracy in

time. To remedy this, we construct a supplementary field CID(AQt) and introduce the approximate solution

b=y + APyl (3.5)

As a result of this construction, a higher O(At* + h™) consistency is satisfied with the given numerical
scheme (2.2). The constructed field <I>(A2t) is obtained by using a perturbation expansion and depends only
on the exact solution ®.

An application of the temporal discretization in the numerical scheme (2.2) to the Fourier projection
solution ®, indicates that

@R}-‘rl B QR/ 3 n\3 1 n—1\3 $n+1/2 n+1 n n—1
—ar - = AG@R)7 (BT = oy T+ Ao(BNT — 20 + O )
3 1
+ A AL — B%) + s2c<4q>?v+1 + 4%1)) + APgD (L t,y1/0) + O(AE), (3.6)

which comes from the Taylor expansion in time. In fact, the function g(®(x,t) is smooth enough and
depends only on the higher-order derivatives of ®. In turn, the temporal correction function (I)fz is

given by the solution of the following linear differential equation:
80 = AB(@N)20R) — 0R) +2L0Y)) — g@. (3.7)

In fact, the existence and uniqueness of the solution to (3.7) follow the standard argument for parabolic

equations [54], and this solution depends only on the profile ® 5 and is smooth enough. Similar to (3.6),
an application of the temporal discretization to <I>(A22 implies that

(2) n+1 (2)\n
@ @ 3 1 n =
( Af,) . ( At) A (3(2(q)n )2((1)(22)n Q(q) 1)2(@(22)71—1) ((I)(22>n+1/2

3 n 1 n— n n n—
w2t (3@ J@) ) + Au((@E - (el + @)
+ Ay ALy — (@fg)n)> — gD (- tni1y2) + O(AL%) (3.8)

with ((f’(AZt))”H/Q = g@(jt))" - %(@ft))"‘l. A combination of (3.6) and (3.8) results in the following

higher-order consistency estimate:

énJrl _ (i)n R 1 . . v R R .
A _ A<2((Dn)3 7 5((I)nfl)d _ @n+1/2 + AO((Dn+1 — 29" 4 (pnfl)

+ A AP — B + ch(iéﬂ“ + ié’“)) +0(A)
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with <I>”+1/2 3pn — %(i)”_l, and we have made use of the following estimate:

(&5)3 = (@ + APy (@2))F)3
= (®h))3 + BAL (D) 2Py ())E +O(At4+hm)
= (®K)% + BALPN ((95)?Pa(@C)%) + O(At + h™), k=n,n—1.

Moreover, with an application of the Fourier pseudo-spectral appr0x1mat10n in space, we obtain the
O(A#? + h™) truncation error estimate for the constructed solution @, i.e.,

(i)n-‘rl _ (i)n

_ 3 ana  Loan 13 Zagi Sntl _ ogn , Gn—1
. _AN<2(<I>) S(B" 1) — BT 4 Ag(§71 287 + 571

+ A AP — D7) 2Ly < et 4 cb”“)) o (3.9)

with |72 _1 nv < C(AE + h™).

Again, the purpose of the higher-order expansion (3.5) is to obtain an £°° bound of the error function, as
well as its temporal derivative, via its £2 norm in higher-order accuracy by utilizing an inverse inequality
in the spatial discretization. The details will be demonstrated in the later sections. Under the linear
refinement constraint C1h < At < Cyh, a careful analysis reveals that ||® — ®x s < C(AL? 4+ ™),
because of the Fourier projection estimate (3.2) and the fact that ||<I>(A22||OO < C. Then if At and h are
sufficiently small, in particular, C1h < At < min{(4C(1 + C; ™))~ 1,1}, the following bounds are valid:

. 1 . - 1
1@ — @nlloo < CAL +A™) < 7 50 that [ @l < [@nlloc + & — Bivlloe < C* + 7 < M, (3.10)
ok — k-1 ok — okl 20(A2 4+ ™) 1 — Pkl 1
- < < = so that <C* 4= < M. (3.11
H At At |, At g N0 H At |, T3 <M. (31D

3.2 A rough error estimate

Instead of a direct comparison between the numerical solution and the Fourier projection ®y of the
exact solution, we analyze the error between the numerical solution and the constructed solution to
obtain a higher-order convergence in the £2 norm. The error function is introduced, i.e., é¥ := Pk — gk
Subtracting (2.2) from (3.9) gives

én+1 e 34 3 3 L s 1\3 1\3 5 1/2 1 5 1
T = (B8 = (09) = (@) = @) - gl a4 e
3 1
+ Aj At — )+52£N<4A"“+4é” )> o (3.12)

with ent1/2 .= %é” — %é"’l. To carry out the nonlinear error estimate, we have to make an £ assumption
for the numerical error function at the previous time steps ¢, and ¢, _1:

€¥]2 < At? +h™3 k=n,n—1. (3.13)
Since C1h < At < Csh, an application of the inverse inequality reveals that

Cvinv ek g
[16%]|oo < % CL (A2 + W™ %) k=nn—1, (3.14)
where Ci,y, is the constant in the inverse inequality and CY,, depends on Ci,, and Cy. Therefore, if
At and h are sufficiently small, in particular, C1h < At < min{(4C/ (1 + Cf/zim))ﬂ,Mofl}, the £°°
bounds for the numerical solutions at t,, and t,,_1, as well as their discrete temporal derivatives, become
available (for k =n,n — 1), i.e
1 1

16 100 = 18* = &¥lloc < 19*]lo0 + [1€¥]|oc < C* + 7+ < Mo, (3.15)
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¢k _ qbk_l _ (i)k _ (Apk—l ek _ gk—1
At |l At - At ||
120 (At? + hmE) 1
< * - inv * M. ; 1
O™+ 5+ A C+2+2 0 (3.16)

1 1 1
“[¢F — ¢ Moo < CF + = + S MpAt < C* + 1 = My, (3.17)

TRH1/2)| || sk
8120 = 1640 + e

in which the estimates (3.10) and (3.11) for ||®*| . have been recalled. Also, a careful estimate
3 m—3 3 S—m m—3 S_m m—3 1 1
AHT R A OF AR = (L OF ALY AL AL A

is taken in the derivation of (3.16), where the condition m > 3 is used. The a priori assumption (3.13)
will be recovered in the convergence estimate presented later.

Since ék = 0 for any k > 0, (—Ay)~'é* is well defined. Taking a discrete inner product with (3.12)
by (—AN)’l(é”+1 — é") leads to

H6n+1 n||2_LN +A0<é"+1 — 28" 4+ énfl,énJrl o én> +A1At||én+1 o én”g

— _<g((‘i)n)3 _ (d)n)S) _ %((é’nfl)S _ (¢n71)3)7én+1 _ én> + <é”+1/2,é”+1 _ én>

<£N (4 U ié”—l),é”“ - é”> + ((—An) et —emy), . (3.18)
For the artificial regularization term on the left-hand side, the following identity is obvious:
(e —en 4 et e ey = (e — a3 — flen — e 3 4+ et —2en 4 &) (3.19)
The right-hand side term associated with the truncation error can be bounded by

(Ap) M — &), ™) < et = @floaw - ™| —av < AtIIA”+1 — &2y n + At T2 N

4

For the second linear term on the right-hand side, a direct calculation gives

<én+1/2’én+1 _ An>

é
1 ~n+1 An An+1 ~n 1 sn+1 5 sn—1 4 1 5

=_(e"" +é —é >—7<e" —2¢" gent entl _gm)
2
1. . . . N R N . i

= S E = llerl3) - (H mHL | — e — e T3 4 flen Tt —2em e ), (3.20)

in which the first step comes from the fact that é"+1/2 = 1(entl 4 em) — L(entl —2¢m 4 en~1). The
nonlocal linear term on the right-hand side can be rewritten as

_ 52<£N (Zén—i-l 4 ién—1>’én+1 _ én>
- <(J 1) C’lm*l + ié”*) J % (i el 4 ié““)é"“ — é”>
1 1
e2(J * 1)<iA”+1 + 1é”*l,énﬂ - é”> <J * <i el 4 4é”1),é"+1 - é”>. (3.21)

For the first term appearing in the expansion (3.21), the following identity is available:

3 N7 1 n—1 sn N7 1 N7 N 1 N AN An
(Jerts qentiom = >= S+ — e ||§)+§(||€ e flen — e YR)

IIA"+1 e+ e,
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Meanwhile, for the term e?(J x (2ent! 4 1en~1) ént! — ") we apply (2.1) in Lemma 2.1 and obtain

<J>k <4An+1 4 j‘lénl),énJrl _ én>

2o (Se ot ) an(-am e o)

1 2

3
< At < an+1 -
Cg H46 + 4

sn—1

wnw Ax)THE - )

03

< g AtOeTH I + flen 1II) alle ez

I At (3.22)

with C3 depending only on J and e. Subsequently, a combination of (3.21)—(3.22) yields

1
<£N(4 sn+1 + 4én—1>7én+1 _ én>

2
g2 o . € . o an—
S =5 (D3 — llem]3) — 5 (Fx (et — ez —[lem —en 1II§)
2

3

X n | an— Cs . n— R
— g (T )(emT =28 + &) + A9 TS + 1) + g et — iy (3:23)

4At

For the nonlinear inner product on the right-hand side of (3.18), we begin with the following nonlinear
expansion:

((i)k)B_(¢k)3: ((Ci)k)2+<i)k¢k+(¢k)2)ék, k=mn,n—1.
Set CF := (9%)2 + d* ¢k + (¢*)2. The consistency estimate (3.10) and the a priori estimate (3.15) indicate
[C*|loo < 3ME, k=n,n—1. (3.24)

Then we arrive at [|(®%)3 — (¢F)3||2 < [IC¥||oo - [|€¥[l2 < 3ME||€||2, k = n,n — 1. As a consequence, the
following rough estimate can be derived:

<<< W (9 - 3«@”1)3—(&1>3>,é”+1—én>

< (30

3 An, n— ~n en
<3m3(2enlo + 1)e 1||2) e+t - el

w\w

6P + 5@ <¢“>3||2> e — e

l\D\@

Mg (9lle™ (13 + lle"~13) + HA”+1 e"l3. (3.25)

Therefore, a substitution of (3.19)—(3.20), (3.23) and (3.25) into (3.18) leads to

o o A 1 £?
gl e+ (P g+ 5O D)

x (Jlent —e3 —flem — enTHF + [lentt — 2e" + &3
R . 1 . R . .
+ A Atenth = e[z 4 5 (e (T x 1) = D(lEmTHE — em13) H B P
PRI 9

\

A9 HIZ + 1€ HIE) + 5 Mo Olle™ |13 + Nl 3) + Atllrg 12y v

Using the condition (d) for the kernel, we see that

8
(
’YO sn+1 ]'
SR FRS
+

A 52 s e Y0 1 an C3 n An—

5 t1 S(J*l))He iz + o llé 5 + 5 At HE 4+ 1leH3)
LBV,

2

Mg O[3 + lle"~HI3) + Al 12y - (3.26)
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Meanwhile, with the application of the a priori error estimate (3.13), we get
L3 < Ca(AF + B2, (3.27)

provided that At < min{2v¢(9C3)~!,1} and h < 1. Then an application of the two-dimensional inverse
inequality gives

C(inv el A A 4C.
||én+1||oo S M § C1(At% + hmi%) with 01 = Oinv(CZ + 1) 74,
0

under the linear refinement constraint C1h < At < Cyh. Consequently, if At and h are sufficiently small,
in particular, C1h < At < min{(4C4(1 + Clg/zfm))”, 1}, the following a priori bounds are valid:

0 N * 1 1
16" Hloo < N1@™ oo + (16" Hloo < C* 4 7 + 5 < Mo, (3.28)
¢n+1 _ ¢n &n-&-l _ (i)n én—i—l —en 1 1
S S < ||——— _— SC"+ -4+ - < M. 2
H At |l At |, At | Crgty < (8.29)

In fact, these bounds will play a crucial role in the refined error estimate.
3.3 A refined error estimate

It is observed that the error estimate (3.25) is too rough; as a result, an inductive argument could not
be applied to the inequality (3.27). In this subsection, we perform a more refined error estimate for the
nonlinear term, under the a priori estimate (3.29).
We begin with the following rewritten form of the nonlinear error terms:
3

H1n n 1 Hn— n— _ 3 nAn_l n—1sn—
DU (67)%) — () — (97)) = sener - e e

_ /n §An71An71 EAnfl n _ on—1
=C (26 5¢ >+26 (cr—-cn )

g 1
— Cnén+1/2 + 5én—l(cn _ Cn—l).

Also similar to (3.20), the following identity is always valid:

n NG An 1 NG an 1 NG n n An— NG AN An—
IR (et —em) = (M) — (eM)%) — (T =) — (e — &) (T — 26" @),

This in turn leads to the following rewritten form:

(587 = (@) = 5@ = (g 1Pt - o)

1 1 1 1
_ on (sn+IN2\ _ Tyon anN\2\ T /on (an+l _ sn)\2 ~J/on (an _ zn—1\2
_2<C 7(6 )> 2<C 7(6 )> 4<C 7(6 e)>+4<c 7(6 € )>
_ i<cn’ (én—i-l — 9" 4 én—i-1>2> + %«C" _ Cn—l)én—l7 én+1 _ én>. (3.30)

For the fifth term appearing in the expansion of (3.30), we apply the £°° bound (3.24) and get

1 n (sn+1 N ~n\ 2 1 n ~n—+1 NG ~n+112 SM(? ~n—+1 ~n ~n—1(2
_1<C ,(é —26"+ M%) > _ZHC loollé —28" 4" 5 = —THe —2&"4+e" 5. (3.31)
In addition, we have the following £°° estimate:

||Ck+1 _ Clc”OO _ ||(ék+1)2 _ (ék)Q + ék+1¢k+l _ (i)k¢k + (¢k+1)2 _ (Qbk)z”oo
< (197 oo + 16" oo + 2% o) |97H — ¥l
+ (105 oo + 116" lloo + 12 [lo0) 6"+ — 6" 1o
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< 3Mo - MoAt 4+ 3My - MoAt
= 6MZAt (3.32)
for k = n,n—1, in which the consistency estimates (3.10) and (3.11) and the rough bound estimates (3.28)

and (3.29) have been applied in the second inequality. As a direct consequence, the following lower bound
for the last term appearing in (3.30) becomes available:

%<(C"—C"_1)é"‘1,é”“—é”>>—1||C” C" oo - fl€" Iz - flE™H —&”[|2
GMOAt ez - [len*h — e
—SMO At(len 3+ e — e 3). (33)
We introduce the quantities
IF == <c’€ (€)%, Ik : <Ck,(ék7ék*1)2>, k=mn,n+1.

It is observed that the first and third terms in (3.30) are not I';™' and I:;;“(Q), due to the inductive

nonlinear coefficient functions. To apply the induction analysis in the later steps, we have to bound their
difference. Using the preliminary estimate (3.32), we have

SICT (@) — I = Sen — e (@)
> 3 C™ € - €3 > ~3ME A" B, (3:34)
S ET ) 4 I = (e e (e )
FIC = C o e — 613 > ~ D MBI — 3. (3.35)

A combination of (3.30), (3.31) and (3.33)—(3.35) yields a refined error estimate

3 H1)3 n\3 1 Fn—1\3 n—1\3\ sn+1 n
(518 = (67)%) = (@1 = @t - )

3
>IN -1 — (Iﬁﬁé) — I o) — 3MGAL||e" T3 — 3MG Atf| et — |5 — §M§AtHé"’1||§
3M
0 entt —2em 4 en 2. (3.36)

As a result, a substitution of (3.19)—(3.20), (3.23) and (3.36) into (3.18) results in

1 Ay 1

~n en 62 n en NGO A —
gl = ok (G T+ SO D)l - el - e - ey

n on 1 sn sn
+ A Atentt — ez + 5 (2 (Tx 1) = (e — [1én3)
1

AO g2 n n n— n n
(P GOl -2t B I - I - (13 - T

3ME . s R R
< et = 2en &+ BME A e — e 3

3 n 3 n— n
+ (Bewvarg) ae g+ (Geu+ a3 aden 1+ Al

Using the condition (d) for the kernel and the condition (3.3) for the parameter Ay (which indicates that
2
%—&—i} 3Af°)7weget

NG NG A 1 n o NG An—
et 1 - 1)+ (42 + 3+ SO0 )4 —eE— e - e
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n+l n+1 n
+ Inl (Inl ,(2) Inlv(2))

3
<BMZAHE — e+ (03 + 3M5)At||é”“||§

3 AN —
( Cs+ Mo)At 2 4 A2,

The following quantity is introduced to facilitate the later analysis:

. Ag 1 .
s L rt+ (G S0 ) Jer - - 1
In fact, for the last term, we have the following estimate:
. . 1 R R 3M2 . R Ao . R
Ity = <C”+1 (e =M < ZlIC™ ool = I3 < = Hllent — enfls < S llenth — e,

in which the ¢*° bound for C"*! can be obtained in a similar way as in (3.24). The condition (3.3) for
Ap has been applied as well. This in turn implies that

n 70 |1 4n n 1 € n en
P Rl 1+ (34 500D )l - el >0

As a consequence, the following estimate can be derived:
Frl— P < CsAF™ M + At 7312y, Cs = max{2(Cs + 9MG)yy ', 12M5 )

Subsequently, if At < (2C5)~!, an application of the discrete Gronwall’s inequality gives the desired
convergence estimate
Frtl < Co(AL° 4 h2m), (3.37)

due to the fact that ||75]|_1ny < C(At® + h™) for k < n + 1. In particular, the following bound is

observed:
6"y < /26075 (AL + B™) < A3 + h™3 (3.38)

for At < (2C3) 140 and h < (2C5) 4o so that the a priori assumption (3.13) has been recovered at time
instant t,,4+1. Therefore, the analysis can be carried out in the induction style. This completes the error
estimate for é, the numerical error between the numerical solution ¢ and the constructed approximation
solution ®.

Certainly, the error estimate (3.4) becomes a direct consequence of the following identity:

eb = ek - AtQPNtbgz (by the construction (3.5)),

combined with the fact that ||( ) l2 < C for any k > 0. This completes the proof of Theorem 3.1.

Remark 3.2.  Since the inverse inequality used in (3.14) depends on the number of dimension, we briefly
illustrate the necessary modifications of the above derivation if one considers the three-dimensional case.
Instead of (3.13), the £2 assumption for the induction would be

¥l < AT + W™ k=nn—1. (3.39)

Then under the requirement C1h < At < Csh, an application of the three-dimensional inverse inequality
gives
C'inv ek 5
€% 0 < % SC(AtT+ 0™ 3), k=nn—1.
5

The ¢*° bounds of ¢ and (¢* — ¢*~1) /At with k = n,n — 1 can be similarly obtained as in (3.15)-(3.17).
We need to recover the estimate (3.39) for K = n + 1. First, a rough error estimate, independent of the
number of dimension, leads to (3.26), and an application of the estimate (3.39) gives

Llen 3 < ou(ae +pmot).
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With the linear refinement constraint C1h < At < Cyh, applying the three-dimensional inverse inequality
gives )
7@“”6? l2 Cy (AT + )

h2
so that the £> bounds for ¢"*! and (¢"*! — ¢")/At can be derived as (3.28) and (3.29). Second, a
refined error estimate can be performed to obtain (3.37), and the estimate (3.38) needs to be replaced by

[[€" oo <

205

T(At3 LAY K AT 4 AR
0

[e" 2 <

so that the assumption (3.39) is recovered at time instant ¢,;.

4 Energy stability analysis

The following energy stability estimate can be established with respect to a modified energy.

Theorem 4.1.  Under the assumptions of Theorem 3.1, if Ag, A1 and At satisfy

1
A > % 3 A > ZgMg, Cre? At <2(J*1) (4.1)

with Cy depending only on J, we have a modified energy dissipation property for (2.2) as follows:

En(¢™,¢",¢" 1) < En(¢™,¢" ", ¢"?),

where
- 27 A 1 2
Bn(@ 6", 6" 1) = Ex(04) 4 S A0 - g4 (4 1+ SO D)0 - o
_ i<(¢n+l/2)2 + ¢n+1/2$n+1/2 + ($n+1/2)27 (¢n+1 o ¢n)2> (42)

Proof.  Taking a discrete inner product with (2.2) by (—Ax)~1(¢" ! — ¢™) yields
T T2+ Aggm — 267 4 ¢ 6 = ) + Ay A6 — 673
(56 - G gt @ g )
—(w (ot o) o o), (4.3
For the artificial regularization term, the following identity is straightforward:
(@t =207 + 9" 9" - 97 = %(W“ = "3 = 6" = "M + 1" = 26" + "), (4.4)
For the second linear term on the right-hand side, we see that
(G2, gt — gm)
= GO = ) = S 29 g =)
= 2™ I3~ 19718) — 70l — 6" 13— 9" — 6" I3 + 6™t — 26" + " R),  (45)

in which the first step comes from the fact that ¢"+1/2 = (gt +¢m) — L(¢pn Tt —2¢" +¢"~1). For the
nonlocal diffusion term on the right-hand side, we rewrite it as

o 52<£N (i¢n+1 + jl(bnl) , ¢n+1 _ ¢n>
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3 1 3 1
_ 2 n+1 n—1 n+1 n+1 n+1 n
=-2((J=1(= - —Jx (= - -
E<( * ><4¢ + 0 ) *(4¢ + ¢ >,¢ ¢>
2 3 n+1 1 n—1 n+1 n 2 3 n+1 1 n—1 n+1 n

For the first term appearing in (4.6), we have

3 n+1 1 n—1 n+l n 1 n+112 n||2 1 n+1 n (|2 n n—1(2

SO £9m 6 = ) = (1R — 97 B) + 516 - 6" — le” — 6" B)

1 _
R N

Meanwhile, for the second term, we apply (2.1) in Lemma 2.1 and obtain

€2<J " (id)n—l-l _|_ 1¢n—1>7¢n+1 _ ¢n>
<J* (@™ +9m), 0" = 9") — <J # (@™ = 20" + 6", An((—AN)TH (" — ¢M))

(T % 6", ") — uw&w»+%@&mw“haw+w*ﬁ

+ w\‘“mw\‘“

tlld)”“ — "2 ns (4.7)

where C'; depends only on J. Subsequently, a combination of (4.6)—(4.7) yields

52<£N <i¢n+1 + i¢n1>’¢n+1 _ ¢n>

62

2
> S ((Lng™,o" ) = (Lng",6™) + %(J «1)([lo" ! = "3 — llo™ — ¢"13)

# (SO0 = a6 = 2 4 6 = 6 - 6 (43)

For the nonlinear inner product, we begin with the following decomposition:

3 n 1 n—1 1 n+1\2 n\2 n+1 n
§(¢ )3—§(¢ )3—1((¢+) + (")) (" 4 o)

236"+ 6")(@" — ) (6 T - )
_ %<(¢n+1/2)2 +¢n+1/2q7)n+1/2 + ($n+1/2)2)(¢n+1 _ 2¢n + (bn—l), (49)

where ¢"t1/2 = L(¢n+! 4 ¢") and iz = 3¢m — £¢™. For the first two terms appearing in (4.9), the
following inner product estimates can be derived:

A s (A s S

> (D107 + 2107 ) 0 = 6" - " = 67 a7 - 07

> ~3My - MyAt- 67 = 6" - "+ — 67

> —SMBAKIG" — ¢ 3 + 6" - 67IR) (410)
A T Ao S

> &wwwm+wwwwwwhwwmwwﬂfw@

HCXJ

1
= Mo+ MoAt- [ @™+ — ¢"|[3 = — T MGAt6" ! — 6”5, (4.11)
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in which the a priori estimates (3.15) and (3.16) and the bounds (3.28) and (3.29) have been repeatedly
— (¢n+1/2)2 +¢n+1/2(5n+1/2 + (én+1/2)2.

applied. For the last term appearing in (4.9), we define C"*+1/2

In turn, the following estimates become available:
(4.12)

w

~(M§ + Mg) = 3M§,

N |

len /2 (||<Z>"“/2||2 + 10" <

loo <
HCn+1/2 _cn 1/2Hoo

< H(¢n+l/2)2 _ (¢n_1/2)2||oo + ||¢n+1/2(5n+1/2 _

< (16" [loo + 11" [loo + 16" /2 lo0) - 6™ F/2

+ (16" 2 oo + 16" 2 [loo + 10"/ loo) - 167 F1/2

< (Mo + My + My) - MoAt + (Mg + Mo + Mp) - 2MyAt = 9MFAt.

Again, the a priori estimates (3. 15)—(3.17) and the bounds (3.28) and (3.29) have been repeatedly applied
1(CkH1/2 (¢FF1 — ¢F)2). Then we get

¢ 2" o + (872 = (6772 |oo
_¢n71/2”o¢

o q‘gnfl/Q Hoo
(4.13)

Meanwhile, we introduce Isl'*'(g) =

(6" T2 (@™ — 20" + 671, 9" — g7)

%<((¢n+1/2)2_|_¢n+1/2(5n+1/2+

_%<Cn-‘r1/27 ((bn—i-l _ ¢n)2 _ (¢)n _ ¢n—1)2 + (¢n+1 _ 2¢n + ¢n—1)2>

_ _i(crﬁ»l/27 (d)nJrl _ ¢n)2> + %<Cn71/2 ( ¢n71)2>
+ i<cn+1/2 _ Cn71/2’ (¢n _ ¢n71)2> i<cn+1/2 (¢n+1 2¢n + ¢n71)2>. (414)

The last two terms could be bounded as follows:

1 — n n— 1 n n— n n—
L S G et 1 (Gl S Y A

4
1
> —Z-9M02At- " —

1 - 1 n n n n—
= (TR (@ = 267 4 677 2 =L CT oo - [|97 T — 267 4+ 67

3
> —SMllem ! — 26" + 6",

n— 9 n n—
o" I = = MiAtle" — "3,

by using the preliminary estimates (4.12) and (4.13). Going back (4.14), we obtain

- 1<(<¢>”“/2>2 A (A b [ R N

—Iity + Dy — TMEAHIO" = " M5 = TMG @™ — 20" + 0" 5. (4.15)
On the other hand, the following estimate is straightforward:
1 n n 3 n 3 3 1 n n
(FUO™2 4 @M+ 67,04 = ) = J(1om L= 1), (116)
Therefore, a combination of (4.10), (4.11), (4.15), (4.16) and (4.9) yields
§ n3_1 n—1\3 n+l _ n
(3 - Jepem o
1 3
U™ G = 1612 = If) + Tigey — 7110 = 20" + 6" 713
7
(4.17)

iy g A" — g3 — MoAt||¢ — "3

Finally, a substitution of (4.4), (4.5), (4.8) and (4.17) into (4.3) results in

En(¢™") — En(¢") — 1T, (3) + L)



204 Li X et al. Sci China Math  January 2024 Vol. 67 No.1

£S5 (1677 = 9~ 6" -6 )

uu>cwmt3Mﬁwwlzw+wlﬁ

4
11 ., L 27 -
+ (0= g 0a3) Aot — o1 - Fasgader - 61 <0
As a result, the constraint (4.1) leads to
A 1 3, = 1, 11 27
Lol Syzs0, Se1) - S0t 0, A - =M > 2,
2 + 4 4 0 O, 3 (J* ) 160J€ t 0 1 3 0 3 0

and thus, we obtain a modified energy inequality

En(¢"*!, 0", ¢" ) = En(¢", 0" ¢" ) <0
This completes the proof of Theorem 4.1. O

Remark 4.2.  In the modified energy (4.2), we see that although the correction terms include a negative
part, —Iszr(lg) = —%(C”“/Q, (¢t — ¢™)?2), the overall correction values are still non-negative. The
preliminary estimate (4.12) reveals that

n 1 n n n 1 n n n 3 v n
I = = CR (T ) > =l R gl — g7 > — M - g3, (418)

which in turn gives
Ag 1
(B2 41+ 50 0)lom -6l > 1,
As a consequence, the modified energy dissipation property (4.2) leads to a uniform-in-time bound for
the original energy functional. More precisely, for any n > 2, we have

EN(an) < EN(¢na ¢n_17 ¢n_2) << EN(¢27 ¢17 ¢0)? (419)
where, by (4.2) and (4.18),

En(¢*¢6',¢%)

27 A 1 1

— Bx(6?) + EAGA -+ (B4 1+ S0 )17 - 01 - HEA (6 - o))
2

< En(6%) + (é” + i S+ 1M°2 + 287M§At) 6% = &[5

By conducting the similar deductions as done in [17], we can obtain

2 1 e 1 0y 41 0 A 1 1 012 4AO
En(¢%) < Bx(8') + (L8 = 6°),0" — 6 + (22 + 7 )10 = 0°13 + 222010 — '3
For the nonlocal term, similar to the proof of [38, Lemma 2.1], we have
e 1 0y 41 0 £ 1 op2 & 1 0y 41 0
§<£N(¢ —¢), ¢ —9 >_§( «1)[¢" — ¢ H2—§<J*(¢ —¢7), 6 —¢")
£ 1 op2 , &~ 1 02
< ST Dlet - U3+ SOl - 1B,
where C; depends only on the kernel J. Then we obtain
A 1 g2 4A
Ex(@) < By(@)+ (2 + 1+ S0 1+ 500016 - 13+ 2520167 - 611
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For the numerical solution ¢! at time t = t1, by either the discrete gradient scheme or the second-order
Runge-Kutta (RK) method (discussed at the end of Section 2), the following initial accuracy is available:

En(¢') < En(¢°) + 1 A8, (4.20)
where ¢ is independent of At. Combining (4.19)—(4.20) and the estimate (3.29), we arrive at
En(¢") < En(¢°) + CAt?

with C' independent of At. This gives a uniform bound of the original energy functional.

Remark 4.3.  Double stabilization terms, namely, AgAx (¢" Tt —2¢"+¢" 1) and A1 AtAy (¢ —p™),
have to be included in the modified Crank-Nicolson scheme (2.2) to ensure the energy stability estimate,
as demonstrated in the proof of Theorem 4.1. Meanwhile, for the modified BDF2 scheme reported in [39],
only one stabilization term, AgAn (¢ — 2¢™ + ¢"~ 1), is necessary in the theoretical justification of
the energy stability analysis. Such a difference comes from the subtle fact that the BDF2 temporal
discretization brings more numerical diffusion than the Crank-Nicolson approximation, since an inner
product with the nonlocal diffusion term by the discrete temporal derivative gives an O(1) coefficient
of [|[¢"T1 — ¢™||3 of numerical stabilization in the BDF2 method, while such an inner product yields
an almost exact energy identity in the Crank-Nicolson approximation (see the related energy estimates
for the BDF2 approaches [11, 58, 64] and the Crank-Nicolson ones [12,14,15,31,32]). In particular, for
the classic Cahn-Hilliard equation, it turns out that the theoretical estimate has been available for the
stabilized BDF2 scheme [35, 36], while the associated estimate for the Crank-Nicolson one has faced
serious difficulties (see also a related work [46] for the artificial regularization parameter analysis for the
no-slope-selection thin film model).
On the other hand, the modified energy functional for the energy stability estimate reported for the
BDF?2 scheme [39] takes a form of
Ag+1

Ex(¢™*,¢") = En(¢""") + —5— o™ = ¢"II3 +

1

TN AME T RS CE Y

In comparison with the modified energy functional (4.2) for the Crank-Nicolson scheme, an O(At)
deviation away from the original functional is observed in (4.21) (due to the correction term % [|¢"*?
— ¢"||2, ), while an O(A#?) approximation is preserved in (4.2). Therefore, the energy dissipation
property; as stated in Theorem 4.1, is a closer approximation to the original physical system than the
BDF2 approach.

5 Numerical experiments

In this section, we carry out some numerical experiments to verify the theoretical results of the numerical
scheme (2.2) in the two-dimensional case. The choice of the kernel function J in the nonlocal diffusion
operator is crucial. We consider a family of Gauss-type functions
4 =2 9
Js(x) = —51¢ 7, xeRe (5.1)
where § > 0 is a parameter. Obviously, Js5 defined by (5.1) is even but not periodic. Note that Js decays
to zero exponentially as |x| — oo, so it is reasonable to view Js as a function supported in £ as long
as 0 is smaller than the size of Q. Then we can extend it periodically to the whole space to obtain the
periodic kernel function. Since Js * 1 = 4/§2, the condition (d) is equivalent to § < 2. The action of
the discrete nonlocal operator Ly can be implemented by the fast Fourier transform, and we refer the
readers to [17, Lemma 3] for the detailed discussions.
Theoretically, the stabilization constants Ay and A; should satisfy the restriction (4.1) for the sake of
the energy stability. In practice, we find that the numerical solutions are always located in an interval
slightly larger than [—1, 1], and it suffices to set Ay = 2 and A; = 5 for the stability in all the numerical
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experiments below. To generate the numerical solution ¢!, we adopt the first-order stabilized semi-implicit
scheme (i.e., the scheme (13) studied in [17]) with the stabilization constant equal to 2.

First, we test the temporal convergence rates of the fully-discrete scheme (2.2). We consider the square
domain Q = (—1,1) x (—1,1) on which the uniform 1024 x 1024 mesh is adopted. The periodic boundary
condition is enforced, and the smooth initial value is taken, i.e.,

¢o(x,y) = 0.5sinmasinmy + 0.1, (z,y) € Q.

The convergence rates will be tested for the cases with various € and § by computing the numerical
solution at time ¢ = 0.05. The numerical solutions are computed by the scheme (2.2) with various time
step sizes At = 0.005 x 27% with k = 0,1,...,8. To calculate the numerical errors, we treat the solution
computed by At = 0.001 x 278 as the benchmark. Figure 1 shows the discrete £ errors of the numerical
solutions with various € and 8. For each case, the second-order temporal convergence rate is obvious.

Second, we verify the energy stability by simulating the coarsening dynamics. A ts power law of
the rate of the energy decay has been predicted in [13], i.e., E(t) ~ t=%, for the classic Cahn-Hilliard
equation. Although there has been no similar theoretical analysis for the nonlocal version, we can conduct
a numerical simulation of the power law for the NCH equation. Let Q = (—27,27) X (=27, 27), and the
initial configuration be given by the random data uniformly distributed from —0.1 to 0.1 on each point
in a uniform mesh. To accelerate the computations, we adopt variable time step sizes, i.e., At = 0.001
on the time interval [0,1000), At = 0.01 on [1000,10000), and At = 0.1 for ¢ > 10000 (if needed).

With § = 0.05, we perform the simulation on the 512 x 512 spatial mesh. The evolutions of the energies
for the cases e equaling 0.10, 0.08, 0.06 and 0.04 are displayed in Figure 2(a). For each case, the energy
decay is obvious, and the energy decay rate satisfies the t3 power law. More precisely, we can take a
logarithmic fitting of the energy in the form E(t) ~ bet™<, namely, a linear fitting applied to In E(t) in
terms of Int. The digits of the coefficients m. and b, are collected in Table 1, where the values of m, are
close to —%, especially when ¢ is small.

In addition, we also carry out the simulation with 6 = 0.005 on the 1024 x 1024 spatial mesh. For
the cases € equaling 0.10, 0.08, 0.06 and 0.04, Figure 2(b) plots the energy curves and the coefficients of
the logarithmic fitting of the energies are listed in Table 2, where the 3 power law of the energy decay
can be observed. Figure 3 is devoted to the snapshots of the computed solutions at ¢ equaling 1, 10, 60,
400, 2000 and 10000 for the coarsening dynamics with ¢ = 0.04. This figure implies the phase transition
beginning with a disorder state towards the order states and the steady state at around ¢ = 10000.

It is observed that there is no significant difference between these numerical results and those shown
in [17,39], although an extra stabilization term A3 At(¢" T — ¢™) is used in comparison with the second-
order scheme in [17].

1077 : . 107!
10 3 1072 L
107" 10741
5 5
¢ 10° 5
. L - 4L
9 2 10
10°°F 107
107k ,,’ —A—(i:gzzzo.l ] 10k . —4—5=e2=0.01 |
IR —e—é‘ = 25A =02 -, —a—0? =2e2=0.02
- 2 =32 =03 ’,’ 0% =3¢ = 0.03
1 8 L L -7
10 10:, 10—1 10—.; 10—2 10 5 ’ 1 1 ‘ 3 10-2
. . 10 10 10 10
Time step size Time step size
(a) (b)

Figure 1 (Color online) Temporal convergence tests: €2 = 0.1 (a) and €2 = 0.01 (b)
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Figure 2 (Color online) Evolutions of the energies for the cases § = 0.05 (a) and § = 0.005 (b)
Table 1 Coefficients of the fitting E(t) ~ bet™e for the case § = 0.05
€ 0.10 0.09 0.08 0.07 0.06 0.05 0.04
Me —0.304 —0.304 —0.323 —0.322 —0.324 —0.333 —0.339
be 22.447 21.304 19.629 18.090 16.204 14.201 12.324
Table 2 Coefficients of the fitting E(t) ~ bet™e for the case § = 0.005
€ 0.10 0.09 0.08 0.07 0.06 0.05 0.04
Me —0.343 —0.331 —0.337 —0.335 —0.336 —0.349 —0.330
be 11.158 10.534 9.769 8.854 7.940 6.964 6.009
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Figure 3 (Color online) Snapshots of the coarsening dynamics at ¢ equaling 1, 10, 60, 400, 2000 and 10000 for the case
§ = 0.005 and € = 0.04

6 Conclusion

In this work, we study a second-order stabilized linear numerical scheme for the nonlocal Cahn-Hilliard
equation. A modified Crank-Nicolson and the second-order explicit extrapolation are adopted for the
temporal discretization. To ensure the energy stability at a theoretical level, we add two artificial
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stabilization terms AgAn(¢"T! — 2¢™ + ¢" 1) and A} AtAN(¢"T — ¢") in the numerical scheme. In
particular, the optimal rate convergence analysis is accomplished by applying the higher-order consistency
estimate, combined with a rough error estimate and a refined error estimate. In turn, the £*° bound of
the numerical solution, as well as its discrete temporal derivative, becomes an important by-product.
Meanwhile, the energy stability is obtained in the sense that a modified energy decreases in time and
the original energy is uniformly bounded, where the second stabilization term has played an important
role. The theoretical result has greatly improved the ones reported in an existing work [17], in which
the second-order scheme can be viewed as a special case of the proposed scheme (2.2) with A; = 0. In
comparison with the second-order scheme based on the BDF2 temporal discretization in [39], the lower
bounds required for Ag and A; in (4.1) are moderately smaller, which implies that the constraint for the
energy stability is less restrictive than that for the BDF2 scheme. Moreover, the modified energy defined
by (4.2) gives an approximation of the original energy with a deviation of order O(At?), while an O(At)
correction term is added for the modification adopted in the BDF2 scheme [39]. In other words, the
energy dissipation property (see Theorem 4.1) turns out to be closer to the original physical system than
the BDF2 approach.
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