The Intersection of Compliance, Databases, and IT Operations

Ben Lenard
DePaul University
Argonne National Laboratory
Chicago, IL, USA
blenard@anl.gov

Nick Scope
DePaul University
Chicago, IL, USA
nscope52884@gmail.com

Abstract

Most organizations rely on relational database(s) for their day-to-
day business functions. Data management policies fall under the
umbrella of IT Operations, dictated by a combination of internal
organizational policies and government regulations. Many privacy
laws (such as Europe’s General Data Protection Regulation and
California’s Consumer Privacy Act) establish policy requirements
for organizations, requiring the preservation or purging of certain
customer data across their systems. Organization disaster recovery
policies also mandate backup policies to prevent data loss. Thus, the
data in these databases are subject to a range of policies, including
data retention and data purging rules, which may come into conflict
with the need for regular backups.

In this paper, we discuss the trade-offs between different compli-
ance mechanisms to maintain IT Operational policies. We consider
the practical availability of data in an active relational database and
in a backup, including: 1) supporting data privacy rules with re-
spect to preserving or purging customer data, and 2) the application
performance impact caused by the database policy implementation.
We first discuss the state of data privacy compliance in database
systems. We then look at enforcement of common IT operational
policies with regard to database backups. We consider different im-
plementations used to enforce privacy rule compliance combined
with a detailed discussion for how these approaches impact the
performance of a database at different phases. We demonstrate that
naive compliance implementations will incur a prohibitively high
cost and impose onerous restrictions on backup and restore process,
but will not affect daily user query transaction cost. However, we
also show that other solutions can achieve a far lower backup and
restore costs at a price of a small (<5%) overhead to non-SELECT
queries.

CCS Concepts

« Applied computing — IT governance; Enterprise data manage-
ment; « Security and privacy — Database and storage security.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only. Request permissions
from owner/author(s).

SSDBM 2024, July 10-12, 2024, Rennes, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1020-9/24/07

https://doi.org/10.1145/3676288.3676297

Alexander Rasin
DePaul University
Chicago, IL, USA
arasin@cdm.depaul.edu

Thamer Al Johani
DePaul University

Chicago, IL, USA
taljoha2@depaul.edu

Keywords

Relational Database, Compliance, Operational Procedures, Backup
and Recovery

ACM Reference Format:

Ben Lenard, Alexander Rasin, Nick Scope, and Thamer Al Johani. 2024.
The Intersection of Compliance, Databases, and IT Operations. In 36th
International Conference on Scientific and Statistical Database Management
(SSDBM 2024), July 10-12, 2024, Rennes, France. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3676288.3676297

1 Introduction

Most modern businesses are dependent on relational database man-
agement systems (RDBMS) to operate and exist as a business; very
few businesses can survive without their data as the data defines
them. In fact, this data is often used to build their competitive ad-
vantage, or what makes the business unique. Since this data is key
to business success, one of the responsibilities of the IT department
is ensuring that this data is safe from destructive events, such as
hardware failures or an external disaster. A disaster could be a
natural event such as a hurricane or an earthquake; however, a
disaster could also be an upgrade gone wrong, failed hardware,
rogue employee, or human error. Planning for recovery effectively
is crucial, especially in light of the unique difficulties caused by
regional differences in natural catastrophes. For example, with Hur-
ricane Sandy, we saw the devastation in data centers too close to
the coast line; many of these data centers became flooded despite
having redundant equipment [18, 23]. Thus, it may be no longer
safe to have a “remote” disaster recovery site in the same region.
While each region within the United States may have its own set
of natural disasters, Sandy caused people to reevaluate disaster re-
covery and business continuity. In fact, some telecommunications
companies are trying to forecast what climate change means for
their infrastructure in thirty years [2].

One of the key tasks performed by the IT Operations group is
to develop a Disaster Recovery (DR) and Business Continuity (BC)
Plan. DR and BC plan has to account for both natural disasters
(e.g., an earthquake) as well as malicious incidents such as ran-
somware attacks. These plans often use backups in a cold, warm, or
hot secondary location and are essential for the organization should
something go awry; a University of Texas study by Christens and
Schkade [11] found that 94% of business who suffer a major data

SSDBM 2024, July 10-12, 2024, Rennes, France

loss close their doors; another study found 60% close within six
months [42].

To accommodate the demand for customer data privacy, new
laws and policies have been introduced to require the retention
(based on necessity for data) and purging of records when the data
is no longer required for business reasons. If fact, in addition to
California Consumer Privacy Act (CCPA), there are 31 [4] other
states that have recently enacted or updated laws dictating the
management and storage of data. That being said, if an organiza-
tion had a data governance strategy, the retention and purging
implementation would likely fall on the data steward to develop
these policies and communicate to the data custodian to implement
them, if the necessary features were not already built into the ap-
plication. A data steward is an individual who is responsible for
designing, implementing and enforcing data management policies
and procedures [28]. In a less complex corporate environment (i.e.,
smaller organizations), the business and IT Operations would work
together to develop and implement these rules so that the business
remains compliant. For example, when IT Operations delete data
from an RDBMS, they expect the data to be destroyed since the
SQL statement does not return deleted data. In practice, however,
this deleted data still remains on disk (i.e., it is not actually gone
and can still be recovered). In fact, deleted data in an RDBMS has a
surprisingly long lifetime [21, 39].

A related key responsibility of IT Operations is database per-
formance, which greatly impacts general application performance.
A database administrator (DBA) continuously monitors and tunes
the database performance, so that the application maintains its
performance level. Within a structured environment this could be
guided by a formal Service Level Agreement (SLA); in an applica-
tion that faces users, one has a few seconds before a user navigates
away because the user is unhappy [14]. In an internal application,
employees are the users who will instead file (dreaded) support
tickets that say “It’s slow” [26].

This paper evaluates several viable options for enforcing compli-
ance for retention of data and purging of data from both active and
backup tables. To our knowledge, there have not been any previous
attempts to measure the overhead of data storage compliance sup-
port in a DBMS. Since relational DBMS behavior is similar across
all major vendors (commercial and open source), our analysis gen-
eralizes to any major relational database. Our major contributions
in this paper include:

e Review and compare all plausible’ strategies available to
enforce compliance (both retention and purging) in a typical
relational database

o Evaluate the runtime overhead imposed by different frame-
works with purging and retention policies enforcement at a
different scale

e Compare the overhead of different existing strategies for
purging data in (possibly offline) backups at a different data
scale

2 Background and Related Work

Business Record: Organizational rules and requirements for data
management are defined in units of business records. United States

Lenard et al.

federal law refers to a business record broadly as as any “memoran-
dum, writing, entry, print, representation or combination thereof, of
any act, transaction, occurrence, or event [that is] kept or recorded
[by any] business institution, member of a profession or calling, or
any department or agency of government [...] in the regular course
of business or activity” [36]. In other words, business records de-
scribe any interaction or transaction resulting in new data. In a
database, a business record may span many combinations of rows
across multiple tables (e.g., a purchase order consisting of a buyer,
a product, and the purchase transaction from three different ta-
bles). Compliance solutions (e.g., Ataullah et al. [9]) define business
records using Select-Project-Join SQL syntax.

Retention: Retention policies mandate the preservation of data
by protecting it from deletion and optionally maintaining a com-
prehensive update history. Retention may be defined for a certain
period or an indefinite amount of time. Some retention require-
ments (e.g., the Health Insurance Portability and Accountability
Act) may require a complete historical log of all business record
updates (e.g., current address and full history of address changes
for a patient) [10].

Purging: Purging is the permanent and irreversible destruction
of data in a business record [17]. A business record purge can be
accomplished by physically destroying the device which stored
the data, digitally erasing all data from the device, or encrypting
data and erasing the corresponding decryption key (although the
ciphertext still exists, destroying the decryption key makes it ir-
recoverable in practice). For example, if a file is deleted in a file
system, but can still be recovered from storage using forensic tools,
it does not qualify as purged [17]. Similarly, records deleted in
a database can be recovered through forensic analysis [38] and
queried from all physical storage [40]; such records and other par-
tial data elements [41] can be retained indefinitely within database
backups [21].

Business Impact Analysis: A Business Impact Analysis identifies
business processes, potential impacts to business success, as well the
likelihood of them occurring [34]. For example, a delivery company
might look at diesel fuel shortages, union strikes, and vehicle part
shortages, considering the impact and the likelihood of these events
occurring. The impact considerations would also include the path
to recovery if such an event occurred.

Business Continuity (BC) and Disaster Recovery (DR):. BC and
DR are critical components of organizational resilience, aimed at
ensuring operational continuity during adverse events, regardless
of the cause [24]. It extends beyond IT to encompass crisis man-
agement, employee safety, and alternative work arrangements. A
comprehensive BC and DR approach involves meticulous planning,
including Business Impact Analysis, risk analysis, and the creation
of plans, tests, exercises, and training. Planning documents serve
as a vital resource, containing employee contacts, emergency de-
tails, vendor information, testing procedures, equipment lists, and
technical diagrams.

Legal hold: This obligation is known commonly as a litigation
hold. Between 2003 and 2004 in New York, the case of Zubulake
v. UBS Warburg elaborated on the application of a litigation hold

The Intersection of Compliance, Databases, and IT Operations

to electronically stored information [12]. As a result of the ruling,
organizations must retain and preserve relevant data even if they
merely anticipate a lawsuit in the future.

Service Level Agreement: A Service Level Agreement (SLA) de-
fines the service expected from a vendor or application. Metrics
are used to define and quantify the delivered service [8]. For ex-
ample, availability and up time can often be subject to an SLA,
defining how much the service offered can be down. If a vendor or
an application does not meet their SLA, a compensation might be
warranted, depending on the agreement.

Academic Research: Lenard et al. [21] showed that deleted (yet
forensically recoverable) data will be incorporated into database
backups. When a database deletes a row, the row is soft deleted,
meaning a delete flag is set, but the row exists until the table is
reorganized and the row is overwritten. Database software per-
forms backups at the block level, copying such deleted data into
the backups unless the table is reorganized prior to the backup.
Even then, a window of opportunity exists where deletes could
occur and make their way into a backup. Ultimately, it is up to
the organization to determine the data lifecycle phases at which
noncompliance with data handling may occur [30]. Li et al. [22]
designed a system that supports policy-based object erasure using
cryptographic erasure (i.e., encrypt the data and then destroy the
key to prevent data access).

Ataullah et al. [9] presented a retention approach in relational
databases that blocks queries (using triggers) whose execution
would result in a non-compliant database state. They pioneered
using Select-Project-Join (SPJ) queries to define business records
and policies. When a DELETE or UPDATE query came into conflict with
a retention policy, the framework would prevent the query from
executing.

Scope et al. [29] developed a compliance system that implements
both retention and purging mechanisms in a database using trig-
gers and SPJ definitions (similar to Ataullah et al. [9]). Retention
is implemented by transparently archiving the data as its status
changes [32]; because the user deleted the data, it is removed from
active database tables yet is retained in the archive for compliance
purposes. Purging is implemented through cryptographic erasure
by mirroring regular tables in so called “shadow tables” which en-
crypt all values subject to purging in the future [33]. Both archive
and shadow tables are maintained with triggers as INSERTs and
UPDATES are executed; shadow tables replace original tables in data-
base backup to ensure purging capability. Cryptographic erasure
mechanic also addresses the problem of forensically recovered con-
tent that may be remain in backups [21], as long as the data is
subject to a purging policy.

Industry Tools: Google Cloud offers retention protection poli-
cies that can be placed on objects to prohibit premature erasure.
Furthermore, Google’s Data lifecycle management functionality
allows the storage administrators to set real-time policies that au-
tomatically move object to Google’s coldline store (i.e., archive) or
delete objects based on predefined rules. Currently, Google does not
offer the ability to automatically archive objects instead of deletion.
Amazon’s AWS [37] offers many of the same features as Google for
potential compliance support. It offers the ability to encrypt objects,

SSDBM 2024, July 10-12, 2024, Rennes, France

set life cycle rules for prohibiting premature erasure, migrate ob-
jects to lower cost archive storage (AWS Glacier), and automatically
deleting objects based on a time criteria. Overall, many of these
features are common across major cloud storage providers.

Oracle’s Flashback Data Achieve (Total Recall) allows users to
recall the history of a table at the tuple level [27] (thus it does
not directly fulfill organizational needs for a business record level
policy across tables). Archiving automatically provides a history
of business records whenever a value of the business record is
UPDATEd. While Total Recall provides retention capabilities, it does
not provide a solution for expunging data from backups.

None of the above industry solutions support deletion at a finer
granularity than the file level. This paper specifically benchmarks
the performance of supporting retention and purging at the tuple
level, and thus, we do not offer direct comparison to the existing
industry tools. A comparison to industry tools would be reduced to
providing a comparison of file erasure speed, which is contingent
on the server performance of the vendor and the target file size.

3 Motivation

A database administrator who implements backup policies must
refer to the organization’s disaster recovery and business continuity
requirements. There is an entire spectrum of backup methodolo-
gies, ranging from full backups (e.g., weekly or monthly), incre-
mental backups, or differential backups in between (see [21] for an
overview). Backups are an operational requirement that has evolved
to ensure data safety; 94% of businesses that suffered a catastrophic
data loss shut their doors within two years [11]. Regardless of spe-
cific regulatory policy for disaster recovery and business continuity
plans, a responsible IT organisation, private or public, must have
backups to recover from a disaster regardless of the disaster cause
or how predictable it may be. Additional backups must often be
kept in an external physical location so that data can be recovered if
something happens to the data center itself (regardless of whether
the data center is cloud-based or not) [19].

Furthermore, regardless of the backup method, we know that
deleted data (i.e., deleted by user but still forensically recover-
able [39]) will trickle into backups unless data tables are explicitly
rebuilt prior to the backup creation [21]. For a small database, re-
building data structures before backup may be practical. However,
for a larger database, the reorganization process would take time,
CPU time, as well as IO per second (IOPS). While an online reorga-
nization could happen in the background, and one could throttle
the process, it is still consuming CPU and IOPS, and that could, and
often does, impact application performance.

Application Performance also falls under the umbrella of IT Op-
erations. While some applications may have an audience that is
not sensitive to a slowdown in response time, many applications
have a set window before the user gets impatient and moves on
(e.g., leaving the company website for a competitor), or starts com-
plaining [13, 16]. Consider examples such as a financial trading
application, a global logistics company, or a credit card network.
Most applications have a standard service level agreement (SLA)
that is measured in seconds. For example, when one physically
uses a credit card, the authorization needs to come back in seconds.
Behind the scenes, the vendor had to transmit the credit card info to

SSDBM 2024, July 10-12, 2024, Rennes, France

their processor, who then had to contact the network, which then
contacts the underwriting bank for approval before responding
back with an authorization code [3].

Because SLA are a requirement that may be costly to violate,
there are suites of tools specifically centered around application
performance management, such as IBM APM [6] or IBM Db2 Data
Management Console [7]. These can send alerts about queries ex-
ceeding a specified performance threshold (to monitor and ensure
the SLAs are not violated). In the credit card example, there are
multiple steps in the credit card process, and there are multiple
different systems implementing these steps. The application perfor-
mance monitoring tools ensure that the response times meet their
SLAs.

In this paper, we consider the impact of compliance support
on database performance in different stages of user query perfor-
mance and backup process, thus identifying which processes may
be significantly affected by compliance enforcement overheads.
Database tuning is a significant factor in the overall responsibilities
of improving application performance tasks of IT operations.

There are a variety of reasons why a company would retain
business records; the reasons could range from a legal hold, to a reg-
ulatory rule from some government legislation, or simply to protect
it from accidental deletion. Regardless, retention requirements are a
regular focal point of data lifecycle planning [31], particularly in fi-
nance and healthcare industries. For example, if one were to receive
a legal hold for a customer’s data, IT Operations is responsible for
ensuring that the application has the appropriate tools to ensure the
customer’s data was retained to comply with legal requirements.
Furthermore, this would require the capability to first correctly
identify all records and values relevant to the issued legal hold. On
the other hand, if one were to delete data after an event (e.g., due
to a GDPR “right to be forgotten” request), IT Operations is respon-
sible for ensuring that this deleted data does not contaminate the
backups. If purged customer data remains in backups, the data has
not been fully purged. While Oracle provides a database specific
function for retention, namely Total Recall, not every RDBMS or
application runs on Oracle, nor does it support purging.

As CPRA and other laws require the purging of customer data,
this is an aspect of compliance that must be harmonized with IT
operations. For example, Kentucky law 50-7a03, Destruction of con-
sumer information says “Unless otherwise required by federal law
or regulation, a person or business shall take reasonable steps to de-
stroy or arrange for the destruction of a customer’s records within
its custody or control containing personal information which is no
longer to be retained by the person or business by shredding, eras-
ing or otherwise modifying the personal information in the records
to make it unreadable or undecipherable through any means” As
discussed earlier, deleted data survives in database structures, prop-
agating to the block based backups. It is the responsibility of the
data curators to be aware of the applicable data purging require-
ments and of the technical details that may result in non-compliance.
Many laws and policies state that the businesses are not permitted
to hold data indefinitely and that companies must purge data after
a given period of time. While database administrator might be able
to delete data pertaining to the specific customers under a law’s
requirements, they have no reliable mechanism to measure compli-
ance of their storage and backups. New York’s SHIELD Act requires

Lenard et al.

that businesses “develop, implement and maintain reasonable safe-
guards to protect the security, confidentiality and integrity of the
private information including, but not limited to, disposal of data.”
In sum, there are many jurisdiction-specific and policy-specific
reasons why data must eventually be disposed of.

Given that an organization may need to retain database backups
for the survival of the business, while maintaining regulatory com-
pliance for deleted and archived data and minimizing active storage
overhead to maximize performance, we break down the perfor-
mance considerations across possible approaches. Any compliance
implementation must find an approach that satisfies a multitude of
stakeholders within an organization.

4 Evaluation

In this section, we evaluate frameworks that address different IT
Operations that pertain to data storage compliance. Specifically, we
consider Ataullah et al. [9] retention framework, Scope et al. [29]
retention and purging framework, and two simple custom strategies
for manually purging data from backups by editing the backups to
remove purged data. We compare these approaches for both data
retention and purging purposes, measuring the overhead (both for
storage and performance) as well as for ease of IT deployment.
Table 1 summarizes all of the approaches and their applicability to
retention and purging. Ataullah et al. and Scope et al. approaches
are described in Section 2; the two custom reference approaches
are discussed next.

Restore, DELETE, and Backup: Using a restore, DELETE, and backup
(RDB) process requires connecting to the database backup and mod-
ifying it directly to accomodate data purging. The downside of that
approach is the requirement that all backups remain accessible at
all times. Thus, storing the backup on a physically disconnected
storage medium would prohibit this process or impose a further
requirement that backups be recalled from offsite storage (an ac-
tion which would be required at every designated purging period
bucket). Many organizations use delta and incremental backups in
addition to periodic full backups. Both of these approaches (delta
and incremental) capture changes to the database since the last
full backup. Editing a backup to purge data would further void all
delta and incremental backups associated with the full backup that
was modified. In our evaluation, we assume that all backups are
accessible and only full backups are used (which is typically not
the case in practice).

We also assume that some steps were taken to optimize the RDB
purging process, such as removing indexes during the restore (to
avoid index update costs). While we performed our evaluation for
one database, this would be a more expensive proposition for an
enterprise where they could have hundreds to thousands of dif-
ferent databases (and corresponding backups). Furthermore, these
approaches get more expensive when the backups are stored offsite
for business continuity and disaster recovery purposes. In order
to edit a backup, one would have to recall the stored backup, load
the backup, delete the data, recreated the backup, and then ship the
storage to its designated offsite storage facility. While automated
processes could streamline this process, it would still require sig-
nificant additional computing resources of the organization. For

The Intersection of Compliance, Databases, and IT Operations

SSDBM 2024, July 10-12, 2024, Rennes, France

Retention Support | Purging Support | Section
Ataullah et al. [9] Yes - 4.1
Scope et al. [29] Yes Yes 4.1,4.2
Restore, DELETE, and Backup (RDB) - Yes 4.2
Partitioning Backups - Yes 4.2

Table 1: Approaches evaluated in this paper

backup implementation, we used pg_dump which provides a con-
sistent backup of the database; pg_dump is a utility provided with
Postgres for exporting a Postgres database.

Partitioning Backups: This approach exports the business records
into individual files partitioned by purging date. Once the business
records are bucketed by the purge date range, they can be removed
by deleting the file that corresponds to the relevant partition of
the table. The to-be-purged data is clustered together by this par-
titioning process. Once all business records have been exported
and removed, the remaining data in the database is backed up us-
ing regular backup process. As with RDB approach, in order to
purge the files to maintain compliance, each backup file requiring
purging must be physically accessible (i.e., online) at the time of its
corresponding purge period.

Our original intent was to implement table partitioning using
views or material views. However, pg_dump command does not ex-
port views. Thus, we used temporary tables as a partitioning mech-
anism, with the directory option as the target of pg_dump so that
each table is exported into its own file. Since every table is a file,
this implementation breaks tables into smaller temporary tables
so that individual purge date ranges can be deleted. During the
creation of temporary tables, the application must be stopped so
that a consistent database backup can be created. When restoring
from this backup, the removed chunk of the table would be skipped
when loading into the target table. This process will present some
challenges in practice as many larger database systems do not allow
database outages for even a short period of time.

Dataset: In our experiments, we use the TPC-H benchmark [35],
for both examples and for our experimental evaluation. TPC-H is a
recognized industry benchmark, preferable to a synthetic schema
or a complex enterprise application, such as SAP or PeopleSoft. For
the purposes of our analysis, we make the following changes to
TPC-H:

(1) Removed referential integrity constraints between:
e LINEITEM and PARTSUPP tables
e CUSTOMER and NATION tables
(2) Added the following columns to the tables CUSTOMER, ORDERS,
and LINEITEM:
e GROUP: Used to set policies on controlled subsets of the
table data
e RETAIN_DATE: As the criteria for the retention duration
e PURGE_DATE: As the criteria for when the business record
must be destroyed

The first change was necessary to allow us to set policies to fit
our parameters for testing; specifically, we wanted to test policies
covering one, two, and three tables without causing violations of

referential integrity. The second change was needed to allow us
to bucket the groups for different data coverage, while the dates
allowed us to balance the distribution of data covered by retention
and purging criteria.

We used a server with dual Intel Xeon E5645, each with 6 physical
cores and Hyper Threading enabled, 64GB of RAM, and an SSD
drive. The server was running CentOS 8 Stream x86_64 with Kernel
Virtual Machine [20] (KVM) as the hypervisor software. We used
two Virtual Machines (VMs) to carry out the experiments; since a
majority of database interactions operate in a client-server model,
we deployed two independent VMs to represent client and server.
Both VMs were built with CentOS 8 Stream x86_64, Postgres 14.5,
1 x vNIC and a 25GB QEMU copy-on-write [5] (QCOW?2) file on
an SSD. The client VM has 4GB of RAM and 4 vCPUs and the
server VM was allocated 8GB of RAM and 4 vCPUs. The Postgres
Buffer Pool was set to 4GB. The QCOW?2 file was partitioned into:
350MB /boot, 2GB swap space, with the remaining storage used
for the / partition, using standard partitioning and ext4 file system.
Only these two VMs were running on the hypervisor to minimize
runtime fluctuations. For Scale 10 TPC-H experiments, we had to
expand the QCOW?2 file to 100GB and then expand the filesystem
with native utilities.

We ran a combination of DELETE, UPDATE, and SELECT queries (us-
ing the standard TPC-H SELECT queries 1-16) across different imple-
mentations to measure the overheads imposed by various solutions.
We evaluated retention blocking and cryptographic erasure frame-
works by adjusting the data size, the number of active policies, the
percent of tuples in the tables covered by the policies, the number
of tables in the policies, and the scale of the database. The parame-
ters summarized in Table 2 were tested on a system which had no
compliance framework (i.e., the baseline times), retention protec-
tions that automatically archived data, retention protections that
blocked queries that would result in non-compliance, and a simul-
taneous retention and purging framework that utilizes archiving
and encryption for cryptographic erasure.

Variable Inputs
Tables Covered by Policy 1,2,3
Coverage 01-1
Policies 1-20
Scale (i.e., Total GB of Data) | 1,3, 10

Table 2: Input Variables Tested

For each workload tested, we ran 9,400 SELECT queries, 5,000
UPDATE queries targeting a table with an active policy, 5,000 UPDATE
queries targeting other tables in the database, 5,000 DELETE queries
targeting a table with an active policy, and 5,000 DELETE queries

SSDBM 2024, July 10-12, 2024, Rennes, France

targeting other tables in the database. These queries were shuffled
and the query times were measured per-query using real time
measure.

For our statistical hypothesis, the default (i.e., null hypothesis)
assumption is denoted as Hy. When we found the probability of
the null hypothesis to be statistically unlikely (in our case using a
p-value of < 0.05), we conclude the alternative hypothesis (Hy) to
be true.

Across our analyses, we consider the overhead on a database that
approximates real-world transactions. Hsu et al. [15] previously
found that typical data warehouse query workloads are, on average,
90% SELECTs, 7% UPDATEs, and 3% DELETEs. During the evaluation of
the overhead, each combination of our tested variables is compared
to the runtime of the same query without any retention or purging
functionality. We then calculate the average weighted overhead
for SELECTs, UPDATEs, and DELETEs using the overhead of each query.
For the overall workload overhead, we only use the overhead of
UPDATEs and DELETES targeting tables that had an active policy. This
pessimistic assumption provides the highest potential overhead.
Using O to denote overhead, Eq. 1 denotes our overhead formula
for a query workload:

Oworkiload = (Oselect*0~90)+(oupdate*0-07)+(Odelete*0-03) (1)

When discussing workload overhead, we calculate the perfor-
mance of a given approach compared to a non-compliant database
using Eq. 2:

0= performa”cecompliant - Performancenon—compliant @)
Performancenon—compliant
Therefore, an O > 0 translates to an overhead added to the
performance of a workload when compared to a non-compliant
system. For example, a O = 0.10 would roughly translate to a 10%
performance overhead.

SELECT Overhead: Because trigger-based solutions (Ataullah et
al. [9] and Scope et al. [29]) do not execute when running a SELECT
query, we first verify the expected overhead in SELECT queries. We
tested by comparing the simultaneous retention and purging ap-
proach against a database without any compliance framework using
9,400 SELECTSs across the workload combinations. This analysis was
performed using both indexed and non-indexed workloads. Our
hypotheses were:

Hy : Ogeect =0
Hg : Oselect > 0

Using a one-sample t-test (which assumes normality) and a Wilcoxon
signed-rank test (a non-parametric test), we fail to reject Hy of the
overhead of SELECT queries being equal to 0 (both returned a p-
value of 1.0). Thus, when calculating the overhead of framework
we assume SELECT overhead of 0.

Indexing. To evaluate whether or not indexing additional columns
would increase the relative performance overhead of a compliance
framework, we ran workload combinations using a subset of our
variables with and without indexed columns in the database used

Lenard et al.

in a retention and purging compliance framework. Our hypotheses
are as follows:

Ho : Oindexed workloads = Onon—indexed workloads
Ha : Ojndexed workloads # Onon—indexed workloads

These two distributions are compared using a two-sample t-test;
this test fails to reject Hy of the indexing overhead being equal
to the non-indexing overhead (with a p-value of 0.059). In subse-
quent analyses, we default to only using indexed workloads. Note
that query performance with and without indexing has changed,;
however, the relative query overhead remained the same.

4.1 Retention: Archiving or Blocking

In this analysis, we compare the retention archiving framework
(Scope et al. [29]) to a retention blocking framework (Ataullah et
al. [9]). We ran workloads using the variable combinations outlined
in Table 2 with indexing enabled. The average workload overhead
with retention blocking was 0.00 while the average workload over-
head with the retention archiving framework enabled was 0.03.
These averages are analyzed using a two-sample t-test with the
following hypotheses:

Ho : Oretention blocking = Oretention archiving
Hg : Oretention blocking # Oretention archiving

This test returns a p-value of < 0.001, which allows us to reject Hy
and conclude that a retention archiving framework compared to a
retention blocking framework come with a statistically significant
difference in the workload overhead. Overall, the retention archiv-
ing framework has an average overhead of 3% when analyzed using
our query workload.

4.2 Purging: Backup Solution Comparison

In our analysis of backup purging approaches, we divide the analy-
sis into three steps: 1) backup creation, 2) purging, and 3) backup
restore. Because the database itself does not support purging in
backups, we cannot use it as a baseline. Thus, we use the crypto-
graphic erasure framework (Scope et al. [29]) as the baseline time;
i.e., all times are reported relative to the cryptographic framework
performance.

We used the TPC-H modified schema with purging policies that
cover all columns for the 1ineitem table. We begin our analysis cre-
ating the backups with an as-of-date of 12/31/2022 with databases
that contain records that must be purged over the next six (6)
months. Next, we simulated database changes one, two, and three
months ahead to evaluate the cost of implementing different com-
pliance solutions. In these simulated futures, the backups contain
both data that has already expired and as well as data that is still
retained. Policy expiration ranges were bucketed by month for this
analysis (i.e., the same encryption key or partition combined all
records requiring purging into the same month granularity). In
practice, organizations may choose to implement a more narrow
or broad date time-periods depending on organizational need and
policy requirements.

The Intersection of Compliance, Databases, and IT Operations

With respect to the partitioning approach, our comparison sim-
plified this process by having a single table where all columns were
included under the purge policy. In practice, business records may
span multiple tables with the additional complexity of potentially
only a subset of the table columns defined under the policy. If one
were to only include subsets of columns from different tables with
partitioning, the restore process would require a custom Extract
Transform and Load (ETL) process to re-normalize the denormal-
ized data. This would require either A) reconstructing tables from
a series of temporary tables or B) using a combination of INSERTs
and UPDATEs.

Table 3 provides the sizes associated with the main components
of a cryptographic erasure approach. This approach can be divided
into three main components: 1) the active tables, 2) the table used
to manage and store the encryption keys and corresponding purge
dates, and 3) the shadow tables used to store the encrypted copies of
data. The size of the encrypted data can fluctuate greatly depending
on the encryption key used. When an encryption key is deleted,
the corresponding encrypted data still takes up space on disk, even
though it is no longer recoverable.

Backup Size (MB)
Active Tables 1,419.19
Encryption Key Table 55.73
lineItem_shadow Tables 4745.93

Table 3: Cryptographic Erasure Backup Sizes

Table 4 summarizes the corresponding sizes of a database using
the RDB approach. This implementation requires a full restore of
the database to purge the data, but this approach enables us to
remove and reuse the purged storage on disk. Depending on the
pages and whether or not a database defragmentation was executed
(i.e., the tables were rebuilt), these numbers can also fluctuate (see
the analysis by Lenard et al. [21]) depending on database engine
and query workload.

Backup Size (MB)
Starting Backup 1,419.19
Backup After 1 Month of Purging 1,403.45
Backup After 2 Months of Purging 1,362.99
Backup After 3 Months of Purging 1,289.08

Table 4: Restore, DELETE, Backup Database Backup Sizes

The third approach of partitioning the records by purge date
resulted in file sizes shown in Table 5. In our analysis, we broke
up the purge dates into six months, with data not subject to purge
policy rules backed up together in a single file. As with the RDB
approach, once a file is deleted, the system can mark the storage
space as free for other purposes (which is not the case with a
cryptographic erasure approach).

Performance Overhead: To analyze the performance cost of main-
taining compliant backups, we consider the cost of creating backups,
purging backups to maintain compliance, and restoring data from a

SSDBM 2024, July 10-12, 2024, Rennes, France

Backup Size (MB)
Backup Size (minus Records Subject to Purging) 390.98
Average Monthly Purge Size 171.37

Table 5: Partitioning Backup Sizes

compliant backup. Neither the partitioning approach nor the RDB
solution would require any changes to the day-to-day use of a
database; thus, they do not incur any performance overhead with
standard SELECT, DELETE, and UPDATE queries in a database. On the
other hand, the cryptographic purging framework does incur a
day-to-day query performance overhead as discussed previously.

For each of the analyses, we first calculate the average time the
baseline framework takes to execute the given step (e.g., creating a
backup), denoted as y. We then compare that framework’s perfor-
mance to the performance of other approaches for the same task
(denoted as a) using the formula in Eq. 3:

i)
u
The relative performance scale is in (—inf : 1] range. The per-
formance that is the same as the baseline corresponds to a zero.
Thus, a negative value (@ > p) indicates a comparatively slower
performance compared to the baseline framework while a positive

result (o < p) indicates a comparatively faster performance.

®)

relative performance =

Creating Backups: When creating a backup using the RDB im-
plementation, initial backup creation does not add any steps to the
default process. Thus, RDB adds almost no overhead to that phase;
compared to the cryptographic erasure framework, this approach
has an average relative performance of 0.92, indicating a much
faster performance.

Using partitioning to create separate files for purging requires
non-trivial changes to the backup process. Because Postgres does
not support exporting views as separate backup files, we first create
temporary tables to store the partitioned backups. These tempo-
rary tables are then exported with the other tables not subject to
the purge policy requirements. The backup creation process for
the partitioning approach was found to have an average relative
performance of 0.49 — also significantly faster than the baseline but
slower than RDB’s.

Overall, both of these approaches had a statistically significant
different relative performance compared to the cryptographic era-
sure framework. However, we believe that the lower cost of RDB
and partitioning approaches is not worth the downtime that they
impose on the database. While the pg_dump command ensures a
consistent backup, it does not support export of views. Thus, one
must stop the application or take alternative steps to ensure the
database is in a consistent state before creating the temporary tables
and running the steps necessary to partition business records for
exporting into separate files. Although the cryptographic erasure
framework approach takes longer due to the additional storage in
a backup requiring extra storage for the encrypted values, it does
not require any application downtime.

Purging Data to Maintain Compliance: In order to purge data
with the RDB approach, one must restore the entire backup in order

SSDBM 2024, July 10-12, 2024, Rennes, France

to purge the expired records. Adding to the expected cost, this must
be done for every backup that contains relevant data; if an organi-
zation were to have multiple backups, this processing time would
be multiplied by the number of backups that contain data subject to
purging. When comparing the cryptographic erasure framework to
a single backup using the RDB process, the RDB process was found
to have a relative performance of -98.53 (indicating an extremely
high relative cost).

With the partitioning-based approach, the only step required to
purge data is deleting the files with expired data at the OS level
(i.e., no restore is required). This approach showed an average rela-
tive performance of 0.45 indicating a faster performance. As with
the RDB process, if one were to have multiple backups subject to a
purge, this would result in a slower performance when compared to
the baseline cryptographic erasure framework. Additionally, if we
were to bucket the purging period of the records in smaller buckets
(e.g., by day or by week instead of by month), this would require
deleting more files leading to a slower performance.

Both of the relative performance comparisons were found to
exhibit a statistically significant difference when compared the
baseline cryptographic erasure framework. Another important con-
sideration of both RDB and partitioning approaches is the require-
ment of the backups/partitioned files being accessible in order to
execute the purging steps. The cryptographic erasure framework
does not require the encrypted data in backup(s) to be accessible,
although it does require access to the encryption key table.

Restoring Backups. To use a compliant backup created using the
RDB approach, we would use the standard database backup restore
process. This method showed a relative performance of 0.96. With
the partitioning approach, one has to recombine the partitioned files
and INSERT the records back into the original tables after restoring
the database. Regardless, this still incurred a relative performance
of 0.96. Both are faster than the cryptographic erasure approach
by a statistically significant margin. This is primarily due to the
cost of decrypting all encrypted values in the shadow tables be-
fore re-INSERTing them back into the database’s active tables. We
believe that this could be an acceptable trade-off due to the relative
infrequency in executing a complete restore of databases in an or-
ganization (even compared to other backup steps such as creation
of backups).

5 Discussion

IT departments have multiple requirements to contend with in
their operations, including compliance with purging and retention
policies, keeping backups safe and in sync for a DR event, as well
as maintain the application’s performance.

Many organizations may choose, or are required, to leverage
multiple backup sites that are geographically diverse to ensure re-
dundancy as part of the DR and BC plan. Loss of data may mean the
end of business, so these plans become essential for the business’
survival. A business may also be subject to regulatory requirement
to have redundant backups a certain number miles away from
the main site; for example the SEC recommends “geographically
dispersed back-up sites” [1]. Therefore, backups (either tape or al-
ternative storage mediums) and data replication have to be moved

Lenard et al.

offsite. In lieu of leasing or building a data center and the corre-
sponding infrastructure, one might decide to utilize a cloud provider
for their remote storage, or a 3rd party such as Iron Mountain [25].
Regardless of where the backup is located, retrieving and editing
backups is a high-overhead process (see Section 4).

Although organizations may use asynchronous or synchronous
replication, such methods are not a replacement for backups. Con-
sider a disaster where logic corruption occurs, or a user deletes
production data (whether accidentally or maliciously). The data
would be affected on the primary copy and this corruption would
then be faithfully replicated to other locations. Thus, storage based
replication should not be used instead of a backup where numerous
copies of the data are kept in case the current data is damaged or
lost for any reason. In other words, backups are irreplaceable for a
recovery effort.

With most systems, there are a multitude of ways to generate
backups. If the organization’s backup process generates a snapshot
of a VM, none of the frameworks will be able to enforce purging
compliance, due to all data being backed up (e.g., non-encrypted
data, forensically recoverable data). This also applies if one were to
snapshot an entire filesystem. While there are methods for segre-
gating database tables into separate tablespaces, which can be on a
separate filesystem, designing such mechanism is outside the scope
of this paper.

The cryptographic erasure framework’s use of encryption allows
it to purge data from backups which are not physically accessible.
Alternatively, using the RDB or partitioning approaches requires
the backups to be accessible. Thus, organizations that disconnect
backups for storage would be required to change their backup stor-
age processes to accommodate the RDB or partitioning compliance
process. Moreover, if an organization compliance requires it to
manually connect offline backups to execute the deletion steps,
the organization will have to a) regularly connect the storage and
execute the compliance steps or b) wait until the purging period
has passed before executing the backup compliance steps (resulting
in a period of non-compliance).

Many organizations leverage incremental and delta backups,
neither of which are supported by RDB or partition backup. Thus,
any organization using either approach would be relegated to only
using full backups. However, for any solution to be accepted by an
industry organization, the ability to continue to use their existing
backup processes is critical.

In sum, all of the retention and purging solutions require addi-
tional steps to be integrated into the existing procedures to enforce
and maintain compliance. Where to apply these steps to strategi-
cally distribute the overhead impact will be at the discretion of the
DBA when deciding which approach to implement.

In our evaluation, we are writing to a single SSD drive which has
a limitation for the read and write speeds of roughly 500MB per sec-
ond; other hardware of our server can be a limiting factor (e.g., bus
speed, SATA controller). If one were to run the same experiment
using enterprise hardware (storage and/or server) or an HDD, the
times will change accordingly based on the hardware limitations.
For example, if we were to use an SSD storage array connected
to our server via multiple 32Gbps Fibre Channel ports, multipath,
the I/O throughput and IOPS would dramatically increase, despite
running on the same physical server. By reporting overheads as a

The Intersection of Compliance, Databases, and IT Operations

normalized rather than absolute runtime, we are able to mitigate
the overall impact of hardware choices in our analysis.

6 Conclusion

IT Operations and the database administrator have competing prior-
ities that they must consider. They must ensure that the application
is performant, recovery is available, and that the data housed in the
RDBMS is compliant with the laws under applicable jurisdiction.
In this paper, we investigated the overheads associated with these
considerations.

We examined several different methods for retaining data as well
as purging the data across backups. Across different compliance
techniques, we discussed how various factors contribute to the per-
formance overhead when implementing a compliance system. With
respect to retention, we showed that retention blocking approach
offers a lower overhead compared to a retention archiving solution.
However, the blocking approach may require a significant amount
of code and process modification in the organization.

In purging data from backups, we compared three different meth-
ods : 1) restoring the backups, deleting the data, and recreating the
backup, 2) partitioning the backups into segments that can be erased,
and 3) cryptographically erasing data. The restore, delete, backup
approach potentially involves a large amount of time between re-
calling the backup (if offsite), restoring the backup, deleting the
purgeable data, and recreating the backup. This method is imprac-
tical in a large enterprise with hundreds or thousands of databases.
Furthermore, an organization could not claim that the backups were
not altered in case of a legal proceeding. For backup partitioning,
DBA would have to suspend the application writing to the database
in order to take a consistent backup of the database; thus, this solu-
tion is unrealistic in the era of always on and on-demand. Lastly, we
have considered the cryptographic erasure approach in which the
data can be purged from backups without recalling or reloading the
backups by destroying the corresponding encryption keys. While
the cryptographic restore process has significantly higher overhead
compared to other methods, the backup restore process should be
invoked infrequently.

It is up to each organization to determine which approach (with
respect to performance, implementation, and associated limitations
or costs) to choose in order to guarantee that privacy compliance
is maintained. In this paper, we have evaluated the trade-offs in
achieving these overarching goals.

Acknowledgments

This work was partially funded by US National Science Foundation
Grant IIP-2016548, CME Group, and Argonne National Laboratory.
Argonne National Laboratory’s work was supported by the U.S.
Department of Energy, Office of Science, under contract DE-AC02-
06CH11357.

References

[1] 2003. Interagency Paper on Sound Practices to Strengthen the Resilience of the
U.S. Financial System; Release No. 34-47638; April 7, 2003; Business Continuity
Planning, BCP. https://www.sec.gov/news/studies/34-47638.htm

[2] 2019. https://about.att.com/story/2019/climate_resiliency_project.html

[3] 2020. https://merchantcostconsulting.com/lower-credit-card-processing-fees/
how-to-increase-credit-card-authorization-rates/

(13]

(14]

[15

=
&

(17

[18

[19

[20]

[21

[22]

[23

[24]

[25]

I
S

[27]

(28]

[29

[30

w
—

(32

[33

SSDBM 2024, July 10-12, 2024, Rennes, France

2021. https://www.blancco.com/wp-content/uploads/2021/07/u-s- state- specific-
data-disposal-laws.pdf

2022. Qcow. https://en.wikipedia.org/wiki/Qcow.

2023. https://www.ibm.com/products/instana/application-performance-
monitoring

2023. https://www.ibm.com/products/db2-data-management-console

2024. https://www.cio.com/article/274740/outsourcing-sla-definitions-and-
solutions.html

Ahmed A Ataullah, Ashraf Aboulnaga, and Frank Wm Tompa. 2008. Records
retention in relational database systems. In Proceedings of the 17th ACM conference
on Information and knowledge management. 873-882.

Centers for Medicare & Medicaid Services. 1996. The Health Insurance Portability
and Accountability Act of 1996 (HIPAA).

Steven R Christensen and Lawrence L Schkade. 1987. Financial and functional
impacts of computer outages on businesses. Rothstein Associates.

SD New York Dist. Court. 2005. Zubulake v. UBS WARBURG LLC. F. Supp.
2d, Volume 382, Page 536. , 536 pages. https://sosmt.gov/wp-content/uploads/
attachments/E- ZubulakeV.pdf?dt=1519325634100

Dennis F Galletta, Raymond Henry, Scott McCoy, and Peter Polak. 2004. Web
site delays: How tolerant are users? Journal of the Association for Information
Systems 5, 1 (2004), 1-28.

John A Hoxmeier and Chris DiCesare. 2000. System response time and user
satisfaction: An experimental study of browser-based applications. (2000).
Windsor W Hsu, Alan Jay Smith, and Honesty C. Young. 2001. Characteristics of
production database workloads and the TPC benchmarks. IBM Systems Journal
40, 3 (2001), 781-802.

World Leaders in Research-Based User Experience. [n.d.]. Website response
times. https://www.nngroup.com/articles/website-response-times/
International Data Sanitization Consortium. 2017. Data Sanitization Termi-
nology and Definitions. https://www.datasanitization.org/data-sanitization-
terminology/

2012 4:25 pm UTC Jon Brodkin Oct 30. 2012. Hurricane Sandy takes data centers
offline with flooding, power outages. https://arstechnica.com/information-
technology/2012/10/hurricane-sandy-takes-data-centers- offline- with-
flooding-power-outages/

Krishna Kant. 2009. Data center evolution: A tutorial on state of the art, issues,
and challenges. Computer Networks 53, 17 (2009), 2939-2965.

KVM. [n.d.]. Linux KVM Documentation. https://www .linux-kvm.org/page/
Main_Page.

Ben Lenard, Alexander Rasin, Nick Scope, and James Wagner. 2021. What is lurk-
ing in your backups? ICT Systems Security and Privacy Protection IFIP Advances
in Information and Communication Technology, 401-415.

Jun Li, Sharad Singhal, Ram Swaminathan, and Alan H Karp. 2012. Managing data
retention policies at scale. IEEE Transactions on Network and Service Management
9, 4 (2012), 393-406.

Rich Miller. 2024. How sandy has altered data center disaster plan-
ning. https://www.datacenterknowledge.com/data-center-site-selection/how-
sandy-has-altered-data-center- disaster-planning

John Moore, Stephen J. Bigelow, and Paul Crocetti. 2022. What is
BCDR? business continuity and Disaster Recovery Guide. https:
//www.techtarget.com/searchdisasterrecovery/definition/Business-
Continuity-and-Disaster-Recovery-BCDR

Iron Mountain. 2023. Offsite tape vaulting - secure storage. https://

www.ironmountain.com/services/offsite-tape-vaulting

Craig S. Mullins. 2021. Things the DBA hears. https://www.dbta.com/Columns/
DBA-Corner/Things-the-DBA-Hears-147581.aspx

Paulzipblog. 2023. Flashback Data Archive — Auditing Table data changes, a
better approach. https://paulzipblog.wordpress.com/2021/05/03/auditing-table-
data-changes-a-better-approach-flashback-data-archive/

Mary K. Pratt and Melanie Luna. 2022. What is Data Stewardship? - definition
from techtarget.com. https://www.techtarget.com/searchdatamanagement/
definition/data-stewardship

Nick Scope, Alexander Rasin, Ben Lenard, Karen Heart, and James Wagner. 2022.
Harmonizing Privacy Regarding Data Retention and Purging. In Proceedings of the
34th International Conference on Scientific and Statistical Database Management.
1-12.

Nick Scope, Alexander Rasin, Ben Lenard, and James Wagner. 2023. Compliance
and Data Lifecycle Management in Databases and Backups. In International
Conference on Database and Expert Systems Applications. Springer, 281-297.
Nicholas Scope, Alexander Rasin, Ben Lenard, James Wagner, and Karen Heart.
2021. The Life of Data in Compliance Management. In CYBER 2021: The Sixth
International Conference on Cyber-Technologies and Cyber-Systems. Springer.
Nick Scope, Alexander Rasin, James Wagner, Ben Lenard, and Karen Heart.
2021. Database Framework for Supporting Retention Policies. In International
Conference on Database and Expert Systems Applications. Springer. (to appear).
Nick Scope, Alexander Rasin, James Wagner, Ben Lenard, and Karen Heart.
2021. Purging Data from Backups by Encryption. In International Conference on
Database and Expert Systems Applications. Springer. (to appear).

SSDBM 2024, July 10-12, 2024, Rennes, France

[34]

[37]

[38]

[39]

[40]

[41]

[42]

Robert Sheldon, Paul Kirvan, and Carol Sliwa. 2024. What is Business Impact
Analysis (BIA)?: Definition from TechTarget. https://www.techtarget.com/
searchstorage/definition/business-impact-analysis

TPC. 2017. TPC-H Benchmark Database. https://www.tpc.org/tpch/.

United States Congress. 1948. 28 U.S. Code §1732 Record made in regular course
of business; photographic copies.

Jurg van. Vliet, Flavia Paganelli, and Jasper Geurtsen. 2012. https://
docs.aws.amazon.com/aws-backup/latest/devguide/deleting-backups.html
James Wagner, Alexander Rasin, and Jonathan Grier. 2015. Database forensic
analysis through internal structure carving. Digital Investigation 14 (2015), S106—
S115.

James Wagner, Alexander Rasin, and Jonathan Grier. 2016. Database image
content explorer: Carving data that does not officially exist. Digital Investigation
18 (2016), S97-S107.

James Wagner, Alexander Rasin, Karen Heart, Tanu Malik, and Jonathan Grier.
2020. DF-toolkit: interacting with low-level database storage. Proceedings of the
VLDB Endowment 13, 12 (2020).

James Wagner, Alexander Rasin, Tanu Malik, Karen Heart, Hugo Jehle, and
Jonathan Grier. 2017. Database Forensic Analysis with DBCarver. (2017).
Workspace. 2012. What is the true cost of lost data to business?
https://www.workspace.co.uk/content- hub/business-insight/opinion-what-is-
the-true-cost-of-lost-data-to-bus

Lenard et al.

