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Abstract

There is a famous problem in geometric graph theory to find the chromatic num-
ber of the unit distance graph on Euclidean space; it remains unsolved. A theorem of
Erdős and De-Bruijn simplifies this problem to finding the maximum chromatic num-
ber of a finite unit distance graph. Via a construction built on sequential finite graphs
obtained from a generalization of this theorem, we have found a class of geometri-
cally defined hypergraphs of arbitrarily large edge cardinality, whose proper colorings
exactly coincide with the proper colorings of the unit distance graph on Rd . We also
provide partial generalizations of this result to arbitrary real normed vector spaces.

1 Introduction
Z+ will denote the set of positive integers. A hypergraph is a pair H = (V,E) in
which V is a non-empty set, the set of vertices of H , and E ⊆ 2V (i.e. E is a set of
subsets of V ) satisfying e ∈ E implies |e| ≥ 2. (In other definitions, singletons may be
allowed in E and/or E may be a multi-set.) E is the set of hyperedges, or just edges, of
H . A proper coloring of H is a function ϕ : V →C = some set of colors, such that
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no e ∈ E is “monochromatic with respect to ϕ”. This means that for each e ∈ E, ϕ|e
is not constant. The chromatic number of H is the smallest cardinality |C| such that
there is a proper coloring ϕ : V →C.

If H = (V,E) is a hypergraph and U ⊆ V , |U | ≥ 2, the subhypergraph of H
induced by U is H |U = (U,E ∩ 2U ). That is, the vertex set of H |U is U and the
edges of H |U are the edges of H that lie in U . A hypergraph H = (V,E) in which
|e|= 2 for every e ∈ E is a simple graph. The De Bruijn-Erdős theorem [1] concerning
the chromatic numbers of infinite graphs is as follows:

If m ∈ Z+,H = (V,E) is a graph, and χ(H |F) ≤ m for every finite set F ⊆ V ,
then χ(H )≤ m.

To prove our results we shall need a known generalization of this theorem to hy-
pergraphs, which will be provided in the next section.

2 De Bruijn-Erdős for hypergraphs with finite edges
The following theorem generalizes the De Bruijn-Erdős Theorem to hypergraphs. A
different proof may be found in [2], Chapter 26.

Theorem 2.1 (D-E). Suppose that m∈Z+, H = (V,E) is a hypergraph with 2≤ |e|<
∞ for every e ∈ E, and χ(H |F)≤ m for every finite subset F of V . Then χ(H )≤ m.

Remark 2.1.1. Since enlarging the edges of a hypergraph – i.e. putting new vertices in
some of the edges to join those that were there to begin with – would seem to make it
easier to avoid monochromatic edges when coloring the vertices, we are wondering if
we really need the hypothesis, in Theorem D-E, that all edges of H are finite subsets
of V. In the proof to come the hypothesis is actually used, and we do not see a way
to avoid that use, except by trading the hypothesis for other, clumsier hypotheses. Is
there a mathematical logician in the house?

Proof. Suppose that H = (V,E), and m ∈ Z+ satisfy the hypothesis of Theorem D-E.
Let [m] = {1, . . . ,m}. A coloring of V with colors 1, . . . ,m is an element of X = [m]V =

∏v∈V [m], the Cartesian product of [m] with itself |V | times. Let [m] have the discrete
topology, in which every singleton is an open set. Since [m] is finite, obviously [m] is
compact (in this or any other topology). By the Tychonoff theorem [3], X, with the
product topology, is compact.

In the usual definition of the product topology on X, the basic open neighborhoods
of a coloring ϕ ∈ X are the sets
‘ N(ψ,F) = {ψ ∈ X | ψ|F = ϕ|F}, F ∈F (V ) = {finite subsets of V}. For F ∈F (V ),
let YF = {ϕ ∈ X | ϕ|F : F → [m] is a proper coloring of H |F}. Since χ(H |F)≤ m,YF
is non-empty. Also, YF is closed in X : if ψ ∈ X\YF , then ψ|F is not a proper coloring
of HF , so for some e ∈ E ∩ 2F , ψ|e is constant (i.e., the vertices in e are all assigned
the same j ∈ [m] by ψ). Any coloring in N(ψ,e) will assign that same j to each vertex
of e; therefore, N(ψ,e)⊆ X \YF . Thus X\YF is open in the product topology, so YF is
closed.

If F1, . . . ,Ft ∈ F (V ), then F1 ∪·· ·∪Ft ∈ F (V ), and we have

/0 ̸= Y⋃t
i=1 Fi

⊆ YF1 ∩·· ·∩YFt



Thus {YF |F is in F (V )} has the finite intersection property: any intersection of finitely
many sets from the family is non-empty.

In a compact topological space, the intersection of all the sets in a collection of
closed sets with the finite intersection property is non-empty. Therefore

⋂
F∈F (V )YF ̸=

/0. Suppose ϕ ∈
⋂

F∈F (V )YF . We claim that ϕ : V → [m] is a proper coloring of H .
Suppose that e ∈ E. Then e is a finite subset of V . Since e is an edge of H |e, ϕ ∈ Ye
implies that ϕ assigns at least two colors from [m] to the elements of e.

3 Hypergraphs Equivalent to the Unit Distance Graph
The motivation for this result is the following question: Does there exist a finite set of
triangles S in Rd such that the number of colors in a coloring of Rd required to forbid
monochromatic copies of triangles in S is the same as the chromatic number of the
unit Euclidean distance graph on Rd? The answer is yes. In fact, we prove a stronger
result: in addition to generalizing triangles to arbitrary m-point sets, we also show that
there is such a set S so that a coloring ϕ of Rd forbids congruent copies of m-gons in
S if and only if ϕ forbids unit distance. To make this precise, we introduce a notion of
equivalence of hypergraphs.

Definition 3.1. Let S be a set, and H = (S,EH ),G = (S,EG ) be hypergraphs where
S is the vertex set. We say H is equivalent to G if χ(H ) = χ(G ) and ϕ : S → C,
such that |C|= χ(H ) = χ(G ), is a proper coloring of H if and only if ϕ is a proper
coloring of G .

For the purposes of this paper, we define an m-gon as an arbitrary set of cardinality
m. This means that some vertices of the m-gon can be collinear, which contradicts the
standard geometric definition.

We also define a unit m-gon to be an m-gon in Rd as defined above with the fol-
lowing additional property: there exists at least one pair of points x,y in m which are
Euclidean distance 1 apart.

Theorem 3.1. Let M ⊂ 2R
d

be a non-empty finite set of m-gons, for some m≥ 2. Define
H (M) as the hypergraph on Rd with edge set E = {X ⊂Rd | X is congruent in Rd to
some T ∈ M}.

Then there must exist some finite set S of (m+1)-gons, such that H (M) is equiva-
lent to H (S), where H (S) is an (m+1)-uniform hypergraph with edge set E = {Y ∈
Rd | Y is congruent in Rd to some element of S}.

Proof. We shall proceed by recursively obtaining sets S1,S2, . . . ; F1,F2, . . . satisfying:

1. S1 ⊆ S2 ⊆ . . .

2. Each S j is a finite set of (m+1)-gons in Rd , with each (m+1)-gon containing
some m-gon X ∈ M as a subset of its points.

3. Defining E j := {congruent copies in Rd of the (m+ 1)-gons in S j} and H j :=
(Rd ,E j), we obtain Fj, a finite subset of Rd \M such that χ(H j|Fj) = χ(H j).

4. S j+1 = S j ∪{X ∪{z}|z ∈ Fj,X ∈ M}.



Before giving the recursion, let us note that if the S j,Fj,H j =(Rd ,E j) are as above
then we have the following observations.

(i) Since, for each j = 1,2, . . . and e ∈ E j, e contains a copy of some X ∈ M,
χ(H j)≤ χ(H (M)).

(ii) In view of the definition of E j, S1 ⊆ S2 ⊆ . . . implies that E1 ⊆ E2 ⊆ . . . , and
thus χ(H1)≤ χ(H2)≤ . . .

(iii) χ(H (M)) is finite. To see this, observe that in Rd with the Euclidean norm
|| ||, the sets {x,y} congruent to a two-set {u,v} are just the sets satisfying
||x− y|| = ||u− v||. Therefore, a coloring of Rd forbidding congruent copies
of {u,v} is, in other jargon, the same as a coloring which forbids the distance
||u− v||. For every positive distance, the smallest number of colors needed to
forbid that distance is χ(Rd ,1), the chromatic number of the Euclidean unit dis-
tance graph on Rd .
Suppose that |M|= n (recall that M is finite). From each T ∈ M select a 2-set D;
let the 2-sets selected be
D1,D2, ...,Dn and the distances determined by the 2 points in these sets be
d1, ..,dn. For each i = 1, ...,n, let ϕi be a coloring of Rn with χ(Rd ,1) colors
that forbids the distance di. Now color Rd by an assignment ψ of n-tuples:
ψ(r) = (ϕ1(r), ...,ϕn(r)). We now have colored Rd with χ(Rd ,1)n < ∞ colors,
and it is easy to see that ψ is a proper coloring of H (M): For any T ′ ⊆ Rd

congruent to some T ∈ M, T ′ will contain a doubleton congruent to one of the
Di; to the two vectors in that doubleton, ϕi will assign different colors, which
means that ψ will assign different n-tuples to the 2 vectors, which means that T ′

is not monochromatic.

(iv) By (i), (iii), and Theorem D-E, it follows that for each j there is a finite set
Fj ∈ Rd such that χ(H j|Fj) = χ(H j).

(v) Suppose ρ is an isometry of Rd and F is a finite non-empty subset of Rd . Be-
cause ρ maps each e ∈ E j to an edge ρ(e) ∈ E j, χ(H j|F) = χ(H j|ρ(F)).

The recursion:

Let S1 = {X ∪{a} | X ∈ M}, for some a ∈ Rd\
⋃

T∈M T . Let F1 ⊆ Rd be a finite
set such that χ(H1|F1) = χ(H1); as explained in (iv) above, Theorem D-E guarantees
the existence of such an F1, and by (v), we can assume F1 ∩ (

⋃
T∈M T ) = /0; if F1 ∩

(
⋃

T∈M T ) ̸= /0, replace F1 by a translate of itself.
From there, the recursion is dictated in 3 and 4: From S j we get E j; the existence

of Fj is guaranteed. Then we define S j+1 by 4, above, and roll on.
Since the integer sequence (χ(H j)) j is non-decreasing and bounded above by

χ(H (M)), clearly it will be eventually constant. If that eventual constant value were
χ(H (M)), we would be almost done, except for showing that every proper coloring
of Hk also properly colors H (M). All will be accomplished by the following.

Clearly χ(H1) ≥ 2 > 1 whereas χ(Hk) ≤ χ(H (M)) ≤ k for k ≥ χ(H (M)).
Therefore there is a first value of k ∈ Z+ such that χ(Hk)≤ k.



We have k > 1 and

k−1 < χ(Hk−1)≤ χ(Hk)≤ k

whence χ(Hk−1) = χ(Hk) = k ≤ χ(H (M)).
Let ϕ : Rd →{1, . . . ,k} be a proper coloring of Hk, and since Sk−1 ⊂ Sk, ϕ is also

a proper coloring of Hk−1. If ϕ is a proper coloring of H (M), then χ(H (M)) = k,
and, since ϕ is an arbitrarily chosen proper coloring of Hk, the claim of this theorem
will be affirmed, with S = Sk.

Suppose, on the contrary, that ϕ does not properly color H (M), implying that
for some X ′ = {a1, ...,am} a congruent copy of some X ∈ M, ϕ(a1) = ϕ(a2) = ... =
ϕ(am). We can, without loss of generality, convene that ϕ(a1) = ...= ϕ(am) = k. Let
ρ : Rd →Rd be an isometry such that ρ(X) = X ′. Consider any point ρ(z) ∈ ρ(Fk−1),
and note that if it was colored with color k then X ′∪{ρ(z)} would be monochromatic
and congruent to X ∪ {z}, an edge in Hk−1, which is impossible since ϕ properly
colors Hk−1. Thus ϕ is a proper coloring of Hk−1 |Fk−1 with k−1 colors. This means
that χ(Hk−1) = χ(Hk−1 |Fk−1) ≤ k − 1, and contradicts the fact that χ(Hk−1) = k.

Corollary 3.1.1. For all integers m ≥ 2, there exists a finite set S of unit m-gons, such
that H (S)) is equivalent to (Rd ,1), where H (S) = H (Rd ,E) and E = {X ⊂ Rd | X
is congruent in Rd to some element of S} and (Rd ,1) is the Euclidean unit distance
graph on Rd .

Proof. We prove the statement by induction. When m = 2, the corollary is trivially
true.

Now consider m > 2 and suppose that the corollary holds true for m− 1. Then
there exists a finite set Sm−1 of m− 1-gons as asserted in the Corollary. By the The-
orem, there exists a finite set Sm of m-gons such that χ(H (Sm)) = χ(H (Sm−1)),
and any proper coloring of H (Sm) with χ(H (Sm) colors is also a proper coloring of
H (Sm−1).

According to the inductive hypothesis,
χ(H (Sm−1)) = χ(Rd ,1), and any proper coloring of H (Sm−1) with χ(H (Sm−1)
colors is also a proper coloring of the Euclidean unit distance graph on Rd . Thus,
χ(H (Sm)) = χ(Rd ,1), and any proper coloring of H (Sm) with χ(H (Sm)) colors is
also a proper coloring of the Euclidean unit distance graph on Rd .

Also note that because there are two points distance 1 apart in all of the m−1-gons
in Sm−1, for every m-gon in Sm, there must also be two points distance 1 apart. That
is, Sm is a finite set of unit m-gons.

4 Generalizing to Non-Euclidean Norms on Rd

In the preceding sections, distance in Rd was provided by the Euclidean norm, here-
inafter to be denoted as || · ||2. Some, but not all, of Theorem 3.1 and its corollary
survives generalization to the setting of a finite-dimensional normed vector space over



R. Without loss of generality, the vector space will be Rd and the norm will be denoted
as || · ||.

Two sets X ,Y ⊆ Rd are congruent copies of each other in (Rd , || · ||) if and only if
one of them is the image of the other under a composition, in either order, of a surjec-
tive linear isometry of (Rd , || · ||) and a translation. With this definition of congruence,
we lose one of the support beams to our geometric intuition that may seem essential to
the proof of Theorem 3.1: there can exist u,v,x,y∈Rd such that ||u−v||= ||x−y||> 0
and yet {u,v} and {x,y} are not congruent.

However, note: if {u,v} and {x,y} are congruent, then ||u− v||= ||x− y||. Conse-
quently, if ϕ is a coloring of Rd , || · ||) which forbids a distance a > 0, then |ϕ(e)|> 1
if e ⊆ Rd contains two points a distance a apart.

For a > 0 let χ((Rd , || · ||),a) denote the smallest |C| such that some coloring ϕ :
Rd → C forbids the distance a. By the properties of norms, it is clear that χ((Rd , || ·
||),a) = χ((Rd , || · ||),1) for all a > 0. Also very important for our generalizations:

Lemma 4.1. For all || · ||, χ((Rd , || · ||),1)< ∞.

This is well known, but we will provide a proof outline in an Appendix.
From Lemma 4.1 and the definition of congruence we obtain, as in section 3, and

by the same argument, the following.

Lemma 4.2. Suppose that § is a finite collection of subsets of Rd , each subset with at
least 2 elements, and H (§)= (Rd ,E(§)) is defined by E(§)= {T ⊆Rd |T is congruent
to some S ∈ §}. Then χ(H (§))< ∞.

Theorem 4.3. For any norm || · || on Rd , Theorem 3.1 holds with the Euclidean norm
replaced by || · ||, provided the phrase “congruent in Rd” is replaced by “congruent in
(Rd , || · ||).”

In view of Lemmas 4.1 and 4.2, the proof is straightforward; follow the path of
argument in section 3.

However, generalizing Corollary 3.1.1 looks to us like a lost cause. In the case
|| · ||= || · ||2, for any two unit vectors u,v, there is a linear isometry of (Rd , || · ||2) that
takes u into v, whence {0,u} and {0,v} are congruent. Thus the graph ((Rd , || · ||),1)
is the hypergraph H ({0,u}), which makes the base of the induction proof of the
Corollary, when m = 2, “trivial”.

Given a non-Euclidean norm || · || on Rd , we can, with reference to Theorem
4.3, find §2 ⊆ §3 ⊆ . . . such that §m is a finite set of unit m-gons in (Rd , || · ||),
m = 2,3, . . . , and the hypergraphs H (§m) are all equivalent, but we can only be sure
that χ(H (§m)) ≤ χ((Rd , || · ||),1), and even if we happen to have equality, we see
no way of assuring that every proper coloring of χ(§m) with number of colors equal
to the chromatic number of graph will also properly color the unit distance graph on
(Rd , || · ||).

On the other hand, we have no proof that there is no generalization of Corollary
3.1.1 for some or all non-Euclidean norms || · || on Rd , d > 1. Perhaps the question is
worth investigating. (Yes, we are aware that Corollary 3.1.1 will hold for every norm
arising from an inner product on Rd ; Rd with such a norm is linearly and isometrically
isomorphic to (Rd , || · ||2).)



We can obtain m-uniform hypergraphs in (Rd , || · ||) with the same chromatic num-
ber as ((Rd , || · ||),1) if we abandon the practice of defining edge sets as the sets con-
gruent to one of a finite set of m-gons. However, our method does not provably produce
hypergraphs equivalent to the unit distance graph on (Rd , || · ||).

Let Q be a collection of finite subsets of Rd , each with at least 2 elements, and let

E0 = {e ⊆ Rd | for some f ∈ Q, e and f are congruent}

For each t ∈ Z+, let

Bt = { f ∪T | f ∈ Q,T ⊆ Rd , f ∩T = /0, and |T |= t}

Et = {e ⊆ Rd | for some g ∈ Bt , e and g are congruent}

It will be important to notice that because, for each f ∈ Q, we form infinitely many
sets in Bt by taking the union of f with each and every t−subset of Rd \ f , it follows
that if e ∈ E0, T ′ ⊆ Rd \ e, and |T ′|= t, then e∪T ′ ∈ Et .

Theorem 4.4. With t ∈ Z+,Q,Bt ,E0, and Et as above, let H0 = (Rd ,E0) and Ht =
(Rd ,Et). If χ(H0)< ∞ then χ(Ht) = χ(H0).

Proof. Since each e ∈ Et contains an e′ ∈ E0, it follows that a proper coloring of H0
will also serve as a proper coloring of Ht . Thus,

χ(Ht)≤ χ(H0)< ∞

By the same argument,
χ(Ht)≤ χ(Ht−1)≤ χ(H0)

It suffices to show that χ(Ht) = χ(Ht−1) for each t ∈ Z+.
Let k = χ(Ht) and suppose that k < χ(Ht−1). Let ϕ : Rd →{1, ...,k} be such that

no edge g ∈ Et is monochromatic, with reference to ϕ .
Since k < χ(Ht−1), there must exist some B ∈ Et−1 such that ϕ assigns the same

color to every element of B. Without loss of generality, we can assume that this color
is k.

For every u ∈ Rd \B, B∪{u} ∈ Et . Therefore
ϕ(u) ∈ {1, ...,k−1}; otherwise, B∪{u} would be monochromatic under the coloring
ϕ . Thus, ϕ restricted to Rd \B is a proper coloring of Ht |Rd\B with k−1 colors.

We shall now use Theorem D−E to prove the existence of a proper coloring of
Ht with colors {1, ...,k−1} which will contradict k = χ(Ht). Since this contradiction
descends from the assumption that
k = χ(Ht) < χ(Ht−1) it will follow that χ(Ht) = χ(Ht−1) and the theorem will be
proven.

Suppose F ⊂ Rd is finite and χ(Ht |F) = χ(Ht). We aim to show that Ht |F can
be properly colored with no more than k−1 colors, which will imply that

χ(Ht) = χ(Ht |F)≤ k−1 < k = χ(Ht).

Let v ∈ Rd be such that (v+F)∩B = /0. Then ϕ colors v+F with no more than



k − 1 colors so that for each α ∈ 2v+F ∩ Et , ϕ assigns more than one color to the
elements of α . Now color F as follows: color f ∈ F with ϕ(v+ f ). Since every
translate of every α ∈ Et is in Et , and no α ∈ 2v+F ∩ Et is monochromatic under
coloring by ϕ , we have what we wanted, a proper coloring of Ht |F with colors from
{1, ...,k−1}.

Corollary 4.4.1. Let || · || be a norm on Rd . For each m ∈ Z+ such that m > 2,
define Em = {T ⊆ Rd | |T | = m and T contains 2 points || · ||-distance 1 apart}. Let
Gm = (Rd ,Em). Then χ(Gm) = χ((Rd , || · ||),1) for all m.

Proof. If Q = {{0,u}|u ∈ Rd and ||u|| = 1} , then, in terms used in the Theorem’s
statement, H0 = ((Rd , || · ||),1), the unit distance graph on (Rd , || · ||) and, for each
m > 2, Ht−2 = Gm. The conclusion follows from the Theorem.

5 Explicit Construction of Hypergraph
In this section, we are in Rd with the usual Euclidean norm. We will give a “construc-
tive” proof of a weaker version of Theorem 3.1.

By applying Theorem D-E for hypergraphs to Theorem 3.1, it can be shown that
for every finite m-uniform hypergraph in Rd , there must exist a finite (m+1)-uniform
hypergraph of equal chromatic number. However, this deduction is
non-constructive because all known proofs of Theorem D-E use the axiom of choice,
and thus we have no control over what the finite hypergraph might look like. In this
section, we show how to take a finite m-uniform hypergraph and construct a finite
(m+1)-uniform hypergraph of equal chromatic number. This allows us to “construct”,
for any m ∈ Z+, m > 2, a finite m-uniform hypergraph in Rd with chromatic number
equal to χ(Rd ,1). We use “construct” in quotations, however, because this hypergraph
construction will use a finite unit distance graph G with chromatic number χ(Rd ,1).

Theorem 5.1. Let H be a finite, m-uniform hypergraph with vertices in Rd . There
exists a finite, (m+1)-uniform hypergraph H ′ with vertices in Rd such that χ(H ′) =
χ(H ).

Proof. Let k = χ(H ), and F be the vertex set V (H ). Note that for all translates
F + v ⊂ Rd of F where v ∈ Rd , the chromatic number of corresponding hypergraph
H +v, with vertex set V (H +v) = F +v and E(H +v) = {e+v | e ∈ E(H )}, must
also be k.

We now construct an (m+1)-uniform hypergraph H ′ in the following way:

1. Let the vertex set of H ′ be the union of k disjoint translates of F = V (H ),
which we will call F1,F2, ...,Fk. Denote by Hi the translate of H onto Fi.

2. Define the edge set of H ′ by

E(H ′) = {{e∪ v} | e ∈ Hi, v ∈ Fj, where j > i}

In other words, E(H ′) consists of all (m+1)-gons such that m points are from
an edge in Hi and the remaining point is from some Fj with j > i.



By construction, H ′ is finite and (m + 1)-uniform. Also, any proper coloring
ϕ of H can be extended to a proper coloring of H ′ by coloring each copy Fi of
V (H ) in V (H ′) by the same colors assigned to V (H ). Doing so, all e ∈ E(Hi)
will be properly colored, implying that all e ∈ E(H ′) must be properly colored by
construction. Thus, we have shown that k ≥ χ(H ′), and need only to confirm that
k ̸> χ(H ′). To show this, we demonstrate that any coloring of H ′ with fewer than k
colors must yield a monochromatic edge.

Consider a coloring ϕ : Rd → {1, ...,k− 1}. It is clear ϕ must not properly color
Hi for each Hi ∈ H1, ...,Hk. Thus for each Hi, there must be some edge e =
{a1, ...,am} ∈ E(Hi) such that ϕ(a1) = ...= ϕ(am).

We now show that there must be an edge e ∈ H ′ which ϕ monochromatically
colors.

Let e1 be a monochromatic edge in E(H1). Without loss of generality suppose
that ϕ(e1) = {k−1}. If any vertex v ∈ F2 ∪ ... ∪Fk were colored by k−1, we would
have found a monochromatic edge in H ′, by our construction of the edges in H ′.
Thus, we can assume that ϕ(v) ∈ {1, ...,k−2} for v ∈ F2 ∪ ... ∪Fk.

Likewise, there must be a monochromatic edge e2 in E(H2), because F2 is colored
now with even fewer colors than F1 was. Because ϕ(F2) ∈ {1, ...,k − 2}, we can
without loss of generality suppose that ϕ(e2) = {k−2}.

Continuing in this fashion until reaching Fk, we see that for each color α ∈{1, ...,k−
1}, there must appear a monochromatic edge in some Hi for i ∈ {1, ...,k− 1}. Now
consider ϕ(v) for v ∈ Fk. No matter which color is chosen for v, there will appear
a monochromatic edge in H ′ of the form ei ∪ v for some ei ∈ Hi. We see that it is
impossible to properly color H ′ with fewer than k colors, implying that χ(H ′) = k.

Corollary 5.1.1. For all integers m ≥ 2, there exists a finite, m-uniform hypergraph
H ′ with vertices in Rd such that χ(H ) = χ(Rd ,1).

Proof. We prove the statement by induction. When m = 2, the result follows directly
from the D-E Theorem.

Now consider m > 2 and suppose the theorem holds true for m− 1. Then there
exists a finite, (m−1)-uniform hypergraph H with vertices in Rd such that χ(H ) =
χ(Rd ,1). By the previous theorem, there must exist an m-uniform hypergraph H ′

with vertices in Rd such that χ(H ′) = χ(H ) = χ(Rd ,1).

Remark 5.1.1. When m = 2, the hypergraph is not obtained constructively, but with
this method, we still have control over the large-scale geometric structure of the m-
uniform hypergraph based on how we position the finite hypergraphs when m > 2, and
hence the term “construct”.

Appendix
Summary of the proof that for any norm || · || on Rd , χ(Rd ,1)< ∞.



Let || · || be a norm on Rd and let || · ||∞ be the norm on Rd defined by ||(a1, ...,ad)||∞
= max [|ai| ;1 ≤ i ≤ d].

The proof of this well-known result will rely on the even better-known fact that
any two norms on Rd are equivalent. The equivalence of || · || and || · ||∞ means that
there exist c,C > 0 such that for all u ∈ Rd ,

c||u||∞ ≤ ||u|| ≤C||u||∞.

The rightmost inequality can be used to prove the existence of ε > 0 such that the
|| · ||-diameter of the d-dimensional cube [0,ε]d is < 1. [Just take 0 < ε < 1

c .] Then the
leftmost inequality above implies the existence of an integer m > 0 such that for each
of the unit coordinate vectors e j = (S1 j, ...,Sd j) (in which Si j is the Kronecker delta),
||(m−1)e j||> 1.

Next we partition the cube Q = [0,mε)d into md little cubes, ∑
d−1
t=0 [ jtε,( jt +1)ε),

( j0, ..., jd−1) ∈ {0,1, ...,m− 1}d , and color Q with md colors; one to each little cube.
Finally we color Rd with those same colors by tiling Rd with translates (with colors
attached) of Q.

This will be a proper coloring of ((Rd , || · ||),1) because any two points bearing
the same color are either within the same little cube— no two points of which are
|| · ||-distance ≥ 1 apart,— or in two different little cubes, in which case the distance
between them is > 1.

Thus χ(Rd , || · ||)≤ md < ∞.
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