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Abstract

Szlam’s Lemma began life as a way of getting upper bounds on the chromatic
numbers of distance graphs in normed vector spaces. Now analogs are available in a
variety of hypergraph settings, but the method always involves a shrewdly chosen 2-
coloring of the vertex set of a hypergraph, together with a subset of the vertex set which
satisfies certain requirements with reference to the 2-coloring. From these ingredients
a proper coloring of the hypergraphs is cooked up.

In this paper, we separate the process from the conclusion of Szlam’s Lemma by
defining Szlam colorings of the vector spaces Rd , and then a more regimented variety
of these, which we call ordered Szlam colorings, which we characterize.

1 Introduction
In [2] the following strange result appeared with a proof so beautiful that Erdős very
likely considered it to be From the Book.

Theorem 1.1. Suppose that R2 is colored with red and blue so that the Euclidean
distance 1 is forbidden for blue. Then the red set contains a translate of each 3-point
set in R2.

Not long after, Rozalı́a Juhász proved [6]:

Theorem 1.2. Suppose that R2 is colored with red and blue so that the Euclidean
distance 1 is forbidden for blue. Then for each F ⊆R2, |F |= 4, the red set contains a
set congruent to F.

This result reigned as one of the summits of Euclidean Ramsey theory for almost
40 years.

In 1999 Arthur Szlam, an undergraduate at Emory University at the time, dis-
covered, while participating in a summer Research Experience for Undergraduates at
Auburn University, a proof of Theorem 1.1 different from that in [2]. After a few
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weeks of examining his reasoning, Arthur came upon a curious result with a very easy
proof that immediately rendered Theorem 1.1 almost trivial and eventually, with the
assistance of the break-through of Aubrey de Grey in [3], provided a very short proof
of a strengthening of Theorem 1.2. We call his result, and each of its descendants,
Szlam’s Lemma.

We give here the statement and proof of an early version of Szlam’s Lemma that
inspired the question addressed in this paper. This version is slightly more general
than the original [9], which has been greatly analogized and generalized; see [1], [4],
[5], [7], and [8]. We have no doubt that the question answered here can be asked and
sometimes usefully answered in different settings - although in the case of the recent
generalization of Szlam’s Lemma in [8], even formulating the question seems to pose
difficulties.

If || · || is a norm in Rd , let ((Rd , || · ||),1) stand for the unit distance graph on
(Rd , || · ||) – the graph with vertex set Rd in which u,v ∈ Rd are adjacent if and only if
||u− v||= 1.

Lemma 1.3 (Szlam’s Lemma). Suppose that d is a positive integer, || · || is a norm on
Rd , R,B is a partition of Rd such that if u,v ∈ B then ||u−v|| ̸= 1, and F ⊆Rd is such
that no translate of F in Rd is contained in R. Then χ((Rd , || · ||),1)≤ |F |.

Proof. For each v ∈ Rd , v+F contains at least one point in B. Color v with some
f ∈ F such that v+ f ∈ B.

Suppose v,w ∈ Rd bear the same color f ∈ F under this coloring. Then v+ f ,w+
f ∈ B.
=⇒ 1 ̸= ||(v+ f )− (w− f )||= ||v−w||
=⇒ v,w are not adjacent in ((Rd , || · ||),1).
Therefore, this coloring of ((Rd , || · ||),1) with |F | colors is proper.

When d = 2, and || · || is the usual Euclidean norm on R2, Theorem 1.1 instantly
follows from the Lemma and the well-known (by 1970) fact that χ((R2, || · ||),1)≥ 4.
In fact, Szlam’s Lemma gives us Theorem 1.1 with Euclidean distance replaced by any
distance defined by a norm || · || such that χ((R2, || · ||),1)≥ 4. (This inequality holds
for any of the usual norms on || · ||p on R2, 1 ≤ p ≤ ∞, with equality when p ∈ {1,∞}.
We suspect that it holds for all norms on R2.)

Thanks to de Grey’s proof that χ((R2, || · ||),1) ≥ 5 when || · || is the Euclidean
norm on R2 [3], from the Lemma, we have the improvement of Theorem 1.2 obtained
by replacing “set congruent to” by “translate of” in the theorem’s statement. Not only
that: we are assured that the improvement holds when the Euclidean norm is replaced
by any norm || · || such that χ((R2, || · ||),1)> 4.

2 The Question
Suppose that R,B is a partition of Rd and F ⊆ Rd is a non-empty set no translate of
which is contained in R.

Definition 2.1. A Szlam coloring of Rd associated with R,B and F is a function ϕ :
Rd → F such that for each v ∈ Rd , v+ϕ(v) ∈ B.



Definition 2.2. If |F |<∞ and f1, ..., fk is an ordering of F, the ordered Szlam coloring
of Rd associated with R,B and F and the given ordering of F is the function ϕ : Rd →
{1, ...,k} such that for each v ∈ Rd , ϕ(v) is the smallest index i such that v+ fi ∈ B.

By definition, any coloring produced in an application of Lemma 1.3 (Szlam’s
Lemma) will in fact be a Szlam coloring. However, it is possible that for some v ∈ Rd

there exist multiple elements f ∈ F such that v+ f ∈ B, in which case we choose be-
tween these arbitrarily. It was our ambition to find a useful characterization of Szlam
colorings, but due to the potentially uncountable number of arbitrary decisions that are
made, now we are inclined to the opinion that the very existence of such a characteri-
zation may be a question suitable for philosophical debate.

We can, however, tame the set of possible colorings if we fix an ordering on the
vertices of F , and always select the first vertex in F when given a choice. An applica-
tion of Lemma 1.3 with a fixed ordering always yields an ordered Szlam coloring. In
this paper we provide a characterization of ordered Szlam colorings.

3 The Answer
Suppose that ϕ : Rd →C, |C|= k > 1, is a coloring of Rd . Let c1, ...,ck be an ordering
of C, and let Ai = ϕ−1({ci}), i = 1, ...,k. We will say that ϕ is dominant with respect
to the ordering c1, ...,ck of C if and only if there exists distinct vectors t2, ..., tk ⊂ Rd

such that

• Ai + ti ⊆ A1 for all i > 1, and

• for all 1 < i < j, (A j + ti)∩A1 = /0.

That is, for i ∈ {2, ...,k}, translation by ti sends Ai into A1, and for each j such that
i < j, translation by ti sends A j into Rd \A1.

Theorem 3.1. A coloring ϕ : Rd → C, |C| = k, is an ordered Szlam coloring if and
only if there is an ordering c1, ...,ck of C with respect to which ϕ is dominant. Further,
for every such ordering of C, ϕ is an ordered Szlam coloring of Rd with reference to
R,B,F, and an ordering f1, ..., fk of F which corresponds to the ordering of C: for
j ∈ {1, ...,k}, and v ∈ Rd , ϕ(v) = c j ⇔ v+ f j ∈ B and for all i < j, v+ fi ∈ R.

Proof. Suppose that R,B partition Rd , F ⊆Rd , no translate of F is contained in R, and
f1, ..., fk is an ordering of F . Let ϕ : Rd →{1, ...,k} be the ordered Szlam coloring as-
sociated with R,B,F , and the given ordering of F . For j ∈ {1, ...,k} let A j =ϕ−1({ j}).

If a ∈ B− f1 then a+ f1 ∈ B, so ϕ(a) = 1. Therefore B− f1 ⊆ A1. On the other
hand, a ∈ A1 =⇒ ϕ(a) = 1 =⇒ a+ f1 ∈ B =⇒ a ∈ B− f1. Thus A1 = B− f1.

Now suppose that 1 < j ≤ k. For a ∈ A j, ϕ(a) = j =⇒ a+ f j ∈ B and for all
i ∈ {1, ..., j− 1}, a+ fi ∈ R = Rd \B. Thus A j ⊆ B− f j = A1 +( f1 − f j), while for
i < j, (A j + fi)∩B = /0 =⇒ (A j + fi − f1)∩ (B− f1) = (A j + fi − f1)∩A1 = /0.

Thus ϕ is dominant with respect to the ordering 1, ...,k of the color set, with trans-
laters t j = f j − f1, j ∈ {2, ...k}.

Now suppose that ϕ : Rd →C is a dominant coloring of Rd with respect to an or-
dering c1, ...,ck of C, with distinct translaters t2, ..., tk, such that, with Ai = ϕ−1({ci}),



i = 1, ...,k, Ai + ti ⊆ A1, for all i ≥ 2 and, for all 2 ≤ i < j ≤ k, (A j + ti)∩A1 = /0.
Set B = A1,R = Rd \ B, and F = { f1, ..., fk}, with ordering f1, ..., fk, with f1 = 0,
fi = ti, i = 2, ...,k.

Observe that for any v∈Rd , if ϕ(v)= c1 then v+ f1 = v∈B, and if ϕ(v)= c j, j > 1
then v+ f j ∈ A j + t j ⊆ A1 = B, so R,B,F , and the ordering f1, ..., fk of F are allowable
as a foundation for an ordered Szlam coloring of Rd . Let ψ be that coloring. We will
show that ϕ = ψ , in the sense that ϕ(v) = ci ⇔ ψ(v) = i.

If ϕ(v) = c1 then v ∈ A1 =⇒ v ∈ 0+A1 = f1 +A1 =⇒ ψ(v) = 1. Otherwise, if
ϕ(v) = c j, j > 1, then v ∈ A j =⇒ v+ f j ∈ A1, and v+ fi /∈ A1 for i < j =⇒ ϕ(v) =
j.

Suppose that R is colored with green, yellow, and white as follows: ϕ(r) = green
if r ∈ [6k,6k+3), for some k ∈Z, ϕ(r) = yellow if r ∈ [6k+3,6k+5) for some k ∈Z,
ϕ(r) = white if r ∈ [6k+5,6k+6) for some k ∈ Z.

Letting G denote the set of green points, Y the set of yellow points, and W the
set of white points, we ask if this coloring is an ordered Szlam coloring of R, and, if
so, what are the constituents R,B, and F = { f1, f2, f3} with reference to which ϕ is
defined?

Clearly
G =

⋃
k∈Z

[6k,6k+3)

Y =
⋃
k∈Z

[6k+3,6k+5)

W =
⋃
k∈Z

[6k+5,6k+6)

Clearly neither Y nor W can contain a translate of G. Therefore, we take G = A1
and green = c1, and search for t2, t3 and a choice of yellow, white ∈ {c2,c3}.

We take yellow = c2, white = c3, and t2 = −2, t3 = −3 to see that this coloring
is, indeed, an ordered Szlam coloring. Back in Szlam-land, B =

⋃
k∈Z[6k,6k+3),R =

R\B, and F = {0,−2,−3} with ordering f1 = 0, f2 =−2, f3 =−3.
Remark 3.1.1. If F = {0,−2,−3} is replaced by a translate of F , say F̃ = {r,r−2,r−
3}, which will satisfy the requirement that no translate of F̃ is contained in R, and if
the ordering of F̃ is f̃1 = r, f̃2 = r−2, f̃3 = r−3, the ordered Szlam coloring defined
will not be the ψ = ϕ we got before: it will be that coloring ”translated by r”, meaning

G̃ =
⋃
k∈Z

[6k− r,6k− r+3) = G− r

Ỹ = Y − r,W̃ =W − r

Remark 3.1.2. In the Hadwiger-Isbell proof that χ(R2,1) ≤ 7, the plane is tiled with
regular hexagons of diameter d, 2√

7
< d ≤ 1. These hexagons are grouped into ”Had-

wiger tiles,” 7 hexagons consisting of one central hexagons together with the 6 hexagons
surrounding it. Color one Hadwiger tile with 7 colors, one to a hexagon, and copy this
coloring periodically on all the other Hadwiger tiles. If 2√

7
< d < 1 - and the aim is to



forbid Euclidean distance 1 for each of the 7 colors, then no care need be taken about
coloring hexagon boundaries.

However, as shown in [7], if one does take care about coloring the boundaries, then
each of these colorings can be transformed into a Szlam coloring. The set F is the set
of hexagon centers in one particular tile, and the set B is the union of the closures of
the central hexagons in the Hadwiger tiles. The moral of this story is that in using
Szlam’s Lemma to put upper bounds on the chromatic numbers of distance graphs on
(Rd , || · ||), you may have to work harder than absolutely necessary.

Still there is left standing a question of interest independent of which of 5,6,7
equals χ(R2,1): whatever k = χ(R2,1) may be, is there a Szlam coloring (R,B,F) of
R2 such that B contains no two points a distance 1 apart and |F | = k? Of course, if
k = 7, then, by [7], the answer is yes.
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loq. Hezthely, 1973; dedicated to P. Erdős on his 60th birthday), vol. I, North-
Holland, Amsterdam, 1945, pp.559-583, Colloq. Math.Soc.János Bolyai, vol.10.

[3] Aubrey D. N. J de Grey, The chromatic number of the plane is at least 5, Geom-
binatorics 28, issue 1 (July, 2018), 18-31.

[4] D. G. Hoffman, P. D. Johnson, and A. D. Szlam, A new lemma in Ramsey the-
ory, Journal of Combinatorial Mathematics and Combinatorial Computing 38
(2001), 123-129.

[5] Peter Johnson, Two consequences of the recent discovery that χ(R2,1)> 4, Ge-
ombinatorics 28, issue 2 (October, 2018), 87-92.

[6] R. Juhász, Ramsey type theorems in the plane, Journal of Combinatorial Theory,
Series A, 27 (1979), 152-160.

[7] C. R. Krizan, Spectrum of planar Szlam numbers, Geombinatorics 26 (April,
2017), 149-156.



[8] Alan Li, Amelia Shapiro, and Kaylee Weatherspoon, A generalization of Szlam’s
Lemma, Geombinatorics 32 (October, 2022), 75-81.

[9] A. D. Szlam, Monochromatic translates of configurations in the plane, Journal
of Combinatorial Theory, Series A, 93 (2001), 173-176.


	Introduction
	The Question
	The Answer

