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Abstract

As machine learning being used increasingly in
making high-stakes decisions, an arising chal-
lenge is to avoid unfair Al systems that lead
to discriminatory decisions for protected popula-
tion. A direct approach for obtaining a fair pre-
dictive model is to train the model through opti-
mizing its prediction performance subject to fair-
ness constraints. Among various fairness con-
straints, the ones based on the area under the
ROC curve (AUC) are emerging recently because
they are threshold-agnostic and effective for un-
balanced data. In this work, we formulate the
problem of training a fairness-aware predictive
model as an AUC optimization problem sub-
ject to a class of AUC-based fairness constraints.
This problem can be reformulated as a min-max
optimization problem with min-max constraints,
which we solve by stochastic first-order methods
based on a new Bregman divergence designed
for the special structure of the problem. We nu-
merically demonstrate the effectiveness of our ap-
proach on real-world data under different fairness
metrics.

1 INTRODUCTION

Al systems have been increasingly used to assist in making
high-stakes decisions such as lending decision (Addo et al.,
2018), bail and parole decision (Dressel and Farid, 2018),
resource allocation (Davahli et al., 2021) and so on. Along
with this trend, a question arising is how to ensure Al sys-
tems are fair and do not produce discriminatory decisions
for protected groups defined by some sensitive variables
(e.g., age, race, gender, etc.). To answer this question, the
first step is to define and quantitatively measure fairness of
Al systems, which is itself an active research area.
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For a classification task, a variety of fairness metrics have
been studied including demographic parity (Beutel et al.,
2019b; Caldersetal., 2009; Gajane and Pechenizkiy,
2017), equality of opportunity (Hardtetal., 2016),
equality of odds (Hardtet al., 2016), predictive quality
parity (Chouldechova, 2017) and counter factual fair-
ness (Kusneretal., 2017). All of these fairness metrics
are formulated based on statistical relationships between
predicted class labels and sensitive variables. However,
many predictive models only generate a predicted risk
score and a predicted class label is obtained afterwards by
comparing the score with a threshold. A good threshold
is not always easy to choose in practice and may vary
with datasets and applications. In fact, it is likely that a
model satisfies a fairness criterion with one threshold but
violates the same fairness criterion with another threshold.
Moreover, the threshold is often chosen to achieve a
targeted predicted positive rate. When doing so, it is not
easy to ensure a targeted fairness criterion is satisfied at
the same threshold.

With these drawbacks in the threshold-dependent fairness
metrics, there have been growing efforts on developing
threshold independent fairness metrics, among which
the fairness metrics based on AUC, or equivalently,
pairwise comparison, are prevalent (Beutel et al., 2019a;
Borkan et al., 2019; Dixon et al., 2018; Kallus and Zhou,
2019; Narasimhanetal.,, 2020; Vogeletal., 202I;
Yang etal., 2022c).  These metrics are directly de-
fined based on statistical relationships between predicted
risk scores and sensitive variables and thus do not require
a predetermined threshold.

Regardless of the fairness metric applied, training a fair
predictive model requires balancing the model’s prediction
performance and fairness, two potentially conflicting tar-
gets. Hence, it is naturally to formulate this problem as
constrained optimization where the model’s prediction per-
formance is optimized subject to some fairness constraints.
This approach has been studied with constraints based on
threshold-dependent fairness metrics (Agarwal et al., 2018;
Cotter et al., 2018, 2019; Cruzet al., 2022; Diana et al.,
2021; Dwork et al., 2012; Goh et al., 2016; Kearns et al.,
2018; Woodworth et al., 2017) and threshold-agnostic fair-
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ness metrics (Narasimhan et al., 2020; Vogel et al., 2021;
Zafar et al., 2017) with different optimization algorithms
applied during training. In Narasimhan et al. (2020), a
proxy-Lagrangian method from Cotter et al. (2018, 2019)
is applied to optimization with fairness constraints while
regularization methods are applied by Beutel et al. (2017);
Vogel et al. (2021) to optimize a weighted sum of predic-
tion performance and fairness metrics.

Online learning is a common setting in machine learning
where data becomes available sequentially and the model
needs to be updated by the latest data. When learning a
fair model online, the methods in Narasimhan et al. (2020);
Vogel et al. (2021) need to compute stochastic gradients
of the constraint functions. However, due to the pairwise
comparison involved in their optimization models, com-
puting one online stochastic gradient requires processing
a pair of data points, one from the protected group and
the other from the unprotected group. This requires that
data points always arrive in pairs, which is not always
guaranteed in practice. For the similar reason, when train-
ing models off-line using an existing dataset, the methods
by Narasimhan et al. (2020); Vogel etal. (2021) require
processing all pairs of data points and thus need a compu-
tational cost quadratic in data size, which is prohibited for
large datasets.

In this paper, we focus on developing efficient numerical
methods for training a classification model under AUC-
based threshold-agnostic fairness constraints by addressing
the computational issues mentioned above. The main con-
tribution of this paper is formulating the aforementioned
problem into a stochastic optimization problem subject to
min-max constraints. Although the min-max constraints
are new and challenging structures, we propose a special
Bregman divergence after changing variables such that the
problem can be solved efficiently by the existing stochas-
tic first-order methods for constrained stochastic optimiza-
tion such as Boob et al. (2022); Lin et al. (2020); Ma et al.
(2020). Compared to Narasimhan et al. (2020); Vogel et al.
(2021), the main advantage of our approach is that it sup-
ports model training in an online setting with one data
point, instead of a data pair, arriving each time in any se-
quence. Moreover, when applied under the off-line setting,
our approach only has a computational cost linear in data
size. One limitation of our approach is that we must use a
quadratic surrogate loss to approximate the AUCs in the ob-
jective and constraint functions. However, the numerical re-
sults on real-world datasets show that the models found by
our methods trade off classification performance and fair-
ness more effectively than existing techniques.

2 RELATED WORKS

A survey of prevalent fairness metrics, including
some discussed in the previous section, is provided

by Verma and Rubin (2018). However, most metrics dis-
cussed in Verma and Rubin (2018) are based on predicted
class labels and thus threshold dependent. The threshold-
agnostic fairness metrics based on AUC (see examples
in Section 3) have been proposed in Borkan et al. (2019);
Dixon et al. (2018); Kallus and Zhou (2019); Vogel et al.
(2021). They have been extended to a broader class of
metrics based on pairwise comparison, so the target vari-
able can be continuous or ordinal (e.g., in a regression or
ranking problem) (Beutel et al., 2019a; Narasimhan et al.,
2020). The class of fairness metrics we consider in this pa-
per is more general than Borkan et al. (2019); Dixon et al.
(2018); Kallus and Zhou (2019) and has similar generality
to Beutel et al. (2019a); Narasimhan et al. (2020). A
ROC-based fairness metric is proposed by Vogel et al.
(2021) which is threshold-agnostic and stronger than the
AUC-based ones in this paper. However, their optimization
algorithms do not have theoretical convergence guarantees
and require processing data points in pairs per iteration,
which leads to a quadratic computational cost and is not
ideal for training online.

The three main approaches for building a fairness-
aware machine learning model include the pre-processing,
post-processing, and in-processing methods. The pre-
processing method reduce machine bias by re-sampling
and balancing training data (Dwork et al., 2012). The post-
processing method adjusts the prediction results after to en-
sure fairness (Hardt et al., 2016). The methods in this pa-
per are the in-processing methods, which enforce fairness
of a model during training by adding constraints or regular-
ization to the optimization problem (Agarwal et al., 2018;
Goh et al., 2016; Yang et al., 2022c¢).

Most in-processing methods are based on threshold-
dependent fairness metrics (Agarwaletal., 2018;
Cotter et al., 2018, 2019; Cruzet al., 2022; Diana et al.,
2021; Dwork et al., 2012; Goh et al., 2016; Kearns et al.,
2018; Woodworth et al., 2017) while this work consid-
ers threshold-independent metrics. The unconstrained
optimization approach by Yang et al. (2022¢) minimizes
the maximum of four different AUC scores to achieve a
balance between classification performance and fairness,
while we ensure fairness by constraints. Although a
constrained optimization approach is also presented in the
appendix of Yang et al. (2022c), no convergence analysis
is provided. Fairness constrained optimization is an impor-
tant application of stochastic constrained optimization for
which many effective algorithms have been developed un-
der the convex setting (Boob et al., 2022; Lin et al., 2020;
Yan and Xu, 2022; Yang et al., 2022a) and the non-convex
setting (Boobetal.,, 2022; Maetal., 2020). A proxy
Lagrangian method has been developed for optimization
subject to a class of rate constraints (Cotter et al., 2018,
2019; Narasimhan et al., 2020), which include almost all
fairness constraints we discussed above. The theoretical
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complexity of the proxy Lagrangian method has been
analyzed (Cotter et al., 2019) when the objective function
is convex or non-convex (Cotter et al., 2019) although a
strong Bayesian optimization oracle is assumed in the
non-convex case. Unconstrained optimization has also
been considered for building fairness-aware models where
fairness is enforced through a penalty term (Beutel et al.,
2017, 2019a; Vogel et al., 2021).

When directly applied to the AUC-based fairness con-
straints, the optimization algorithms mentioned above all
need to request a pair of data points, one from the protected
group and one from the opposite group, to construct the
stochastic gradients. This is not ideal for online learning
because data may not always arrive in pairs. On the con-
trary, our method is developed by first reformulating the
AUC-based fairness constraints into min-max constraints
using a quadratic loss (Ying et al., 2016). The stochastic
gradient of this formulation can be computed using only
one data point each time with any order of arrivals. Min-
max stochastic constraints are new in optimization litera-
ture, so we develop a new Bregmen divergence by chang-
ing variables so that the existing algorithms like Boob et al.
(2022); Lin et al. (2020) and their convergence analysis can
be applied. Yang et al. (2022b) develop an algorithm for
stochastic compositional optimization subject to composi-
tional constraints which can be applied to our problem with
the same computational complexity. This is because our
min-max constraints can be also viewed as compositional
constraints. They focus on the convex case but we also con-
sider the non-convex case under some additional assump-
tion (see Assumption 4).

3 PRELIMINARIES

Consider a binary classification problem, where the goal is
to build a model that predicts a binary label ¢ € {1, -1}
based on a feature vector & € RP. The sensitive fea-
ture of a data point is denoted by v € {1,—1}, which
may or may not be a coordinate of £&. This feature di-
vides the data into a protected group (y = 1) and an un-
protected group (y = —1). We denote a data point by
a triplet z = (£,¢,v) € RPT2 which is a random vec-
tor. We say G C RP*2 has a positive measure w.r.t. z if
Pr(z € G) > 0. Let hy : R? — R be the predictive model
that produces a score hy, (&) for €. Function hy, is parame-
terized by a vector w from a convex compact set YW C R
We assume hy, (+) is differentiable and consider threshold-
agnostic fairness metrics defined based on the join distribu-
tion of hy (&), ¢ and ~.

Definition 1 (AUC defined by subsets) Let z = (£,(,7)
and 7' = (&',(',7') be i.i.d random data points. Given
two sets G and G' in RPT2 with positive measures w.r.t. z,

the AUCw.rit. G and G is

AUCw(G,G") := Pr(hw (&) > hw(€)|z € G, 2 € G").

When G = Dy := {z|( = 1} and G’ = D_ := {z|( =
—1}, AUCw (G, G’) is reduced to the standard AUC for a
binary classification problem.

Definition 2 (AUC-based fairness metric) Given sets G,
Go, G1 and Gb in RP*2 with positive measures w.r.t. z, the
AUC-based fairness metric w.r.t. G, Ga, G1 and G is

JAUCw(G1,G1) — AUCw (G2, G3)| € [0,1], (1)
where AUCy, (-, -) follows Definition 1.

We say model hy, is unfair if the value of (1) is close
to one and is fair if close to zero. This class of fair-
ness metrics contains several existing threshold-agnostic
metrics in literature, including the inter-group pairwise
fairness (Beutel et al., 2019a; Kallus and Zhou, 2019), the
intra-group pairwise fairness (Beutel et al., 2019a), the pos-
itive/negative average equality gap (Borkanetal., 2019)
and the fairness metric based on background-subgroup
AUCs (Borkan et al., 2019). In Appendix A, we discuss
how Definition 2 is reduced to these metrics by setting Gy,
G2, G1 and G to be different sets.

Besides fairness, we are also interested in the performance
of the model as a classifier. In this paper, we also use the
AUC, namely, AUCy, (D4, D_), as the performance metric
and optimize it subject to fairness constraints. This choice
is made only to obtain a uniform structure in the objective
and constraint functions. The numerical methods we pre-
sented in this paper can be also applied when the classifica-
tion performance is optimized by a traditional method, e.g.,
minimizing the empirical logistic loss.

The general formulation of our problem can be written as

max
wew

st. |AUCw(G1,G1) — AUCw(Ga, G5)| = 0.

AUCyw (D4, D_),

The equality constraint used here may be too restrict be-
cause an absolutely fair model may have a poor prediction
performance and may be unnecessarily overly fair for users.
To provide some flexibility to users, we replace the equality
constraint to two inequalities after introducing a targeted
level of fairness, denoted by £ > 0, on the right-hand sides:

AUCy, (D4, D_),
gy AVCw(Pr D)

st. AUCw(G1,G)) — AUCw (G2, Gb)
AUCy (G2, Gh) — AUCw(G1,GY)

<k, @
<K

Solving (2) directly is challenging because the objective
and constraint functions involve indicator functions which
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are discontinuous. A common solution is to introduce a sur-
rogate loss to approximate the indicator function. In partic-
ular, focusing on the objective function first, we have

max AUCy, (D4, D)

wew
- ‘I’vneav)\(}Pr(hw(é) > hw(&)|¢ =1,¢' = —1)
& min Pr(hw(€) < hu()lC = 1,¢' = -1)

B vIv%ing[H(hw(£>*hw(£’>§0)|< =1, =-1]
~ minE[l(hw(€) — hw(€))|¢ =1, = -1],3)

w

where /(-) is a continuous surrogate loss function that ap-
proximates the indicator functions I(. <o) and I(.<¢). Sim-
ilar to (3), we approximate the left-hand side of the first
constraint in (2) as follows

AUCyw(G1,G}) — AUCw (G2, Gh)
=Pr(hw (&) > hw(¢&')|z € G1,2' € G})
— Pr(hw(€) > hw(&)|z € G2, 2" € GY)
=Pr(hw(§) > hw(&)|z € G1,2' € g1)
+Pr(hw(§) < hw(&)lz € G2,2" € G3) — 1
RE[((hw(€') = hw(§))|z € G1,7 € G1]
+E[l(hw(€) — hw(€'))|z € G2,2' € Gy — 1. (4)

Similarly, we approximate the left-hand side of the second
constraint in (2) as

AUCy (G2, G5) — AUCyw (G1,G7)
%E[f(hwg/) - hw(ﬁ))|z €Gy,7 € gé]
+ E[l(hw(€) — hw(€'))|z € G1,2 €G] —1. (5)

Using (3) as the objective function and (4) and (5) as the
left-hand sides of the inequality constraints. We obtain the
following approximation to (2).

min B [((hw(€) — hw(£))[¢ =1, = 1] ©)

wew ( )
s.t. E[f(hw (&) — hw(€))|z € G1,2' € Gi],
+E[l(hw(§) — hw(&))|z € Go,2' € G| < 1+k,
—hw(§))|z € Ga,2' € gﬂ
+E[l(hw(§) — hw(€))|z € G1,2€ G| <1+k.

Although (6) have continuous objective and constraint func-
tions, it is still computationally challenging in general be-
cause each expectation in (6) is taken over a pair of random
data points from two different subsets. When formulated
using the empirical distribution over n data points, each ex-
pectation becomes double summations which have O(n?)
computational cost. Moreover, (6) is not suitable for online
learning as computing its stochastic gradient requires data
arriving in pairs (one from G; and one from ng), which is
not always the case. Fortunately, when the loss function is

quadratic, more specifically, when £(-) = ¢1(- — ¢3)? with
c1,co > 0, it is shown by Ying et al. (2016) that each ex-
pected loss in (6) can be reformulated as the optimal value
of a min-max optimization problem whose objective func-
tion can be computed in O(n) cost under the empirical dis-
tribution. The new formulation also supports online learn-
ing since its stochastic gradient can be computed even with
one data point (see Lemma 1 below). To derive the refor-
mulation of (6) with quadratic loss functions, we need the
following lemma by (Ying et al., 2016) whose proof is pro-
vided in Appendix B just for completeness.

Lemmal Letz = (¢,(,7) and z = (¢',(',7') be i.id
random data points. Given any two sets G and G’ in Rp+2
with positive measures w.r.t. z,

E [e1(hw (€) — hw(€) — c2)*|s € 6,7 € ¢'] =

a,b‘é“}g,g, aénzag«fcglji {Fg.0/(w,a,b;2) + aGg g/ (w; z) — 0’}

(7
where
Fgg/(w,a,bz) =
ek 2ci1c2hw (€)Ig(z) | 2cicohw (€)lg/ (2)
102 Pr(z € G) Pr(z € G')
| e1lh(€) = 0)Io(@)  ex(hw(€) ~b)Tgi(x)
Pr(z € G) Pr(z € G’) ’
L 20h(@ls(z) 26 (©)lg (2)
Gog(w;2) = Pr(z € G) B Pr(zeg) '’

andLg g+ C R is the smallest interval such that

0, +E [hw(€) |z € G], +E [hw(&)|2’ € ¢'], /
+ (E[hw(é)|z € G] — E[hw(&)|2 € g’}% € Lo

forany w € W.

According to Lemma 1, the new formulation (7) needs
three auxiliary variables, a, b and « in a large enough in-
terval Zg g-. We then apply Lemma 1 to each conditional
expected loss in (6) with £(-) = ¢;1(- — ¢2)?. To do so, we
first define Z as any bounded interval such that

Ip, p_:Tg g;:Lg,0, CL, )

where Zg g/ is defined as in Lemma 1. We then introduce
fifteen auxiliary variables a;, b; and o; inZ fori =0, .. ., 4.
Here, (a;, b;, «;) for each i corresponds to one conditional
expected loss in (6) (there are five of them). In additional,
we define the primal variable x = (w, (a;, b;)}_o) € X =
W x Z'° and the dual variable o = (;)}_, € Z°. With
these notations, we apply Lemma 1 and reformulate (6) as

fTi=minfo(x) s.t. f1(x) <14k, fa(x) <1+ k&, (10)
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where

fo(x) —maXIE[FD+ p_(x;2) + aoGp, p_(W;z) — oz(z)]

apg€Z
(11
Fgr g, (x; z)+a1Gg/ g, (w;z) — o3
= E| “L7t ! 12
fibo) alnalaz}éILF% gy (x;2) +a2Gg2 g, (w;z) — a3 (12)
Fg: g, (x;2) —l—agGg/ g, (Wiz) — a3
= E| "272 2 13
f2 (X) a’:’r}la:él |:+Fg1 g/ (X Z) + Oé4Gg1 g/ (W Z) — 05421 ( )
and
FD+,D7 (X; Z) FD+ D_ (W,ao7b0;Z)
Fgr g,(x;2) = Fg; g (W,a1,b1;2)
Fg,qy (x;2) Fg, .y (w, a2, bs; z)
Fgé,gz (X, Z) Fg/ 2(W7 as, b37 Z)
Fg, .0 (x;z) = Fg,, g, (W, a4, ba; z)

with Fg g/(w, a,b;z) and Gg g (w; z) defined in (8).

4 CONVEX CASE

In this section, we introduce the stochastic feasible level-set
(SFLS) method by Lin et al. (2020) for solving (10) when
the problem is convex. We make the following assumptions
in this section.

Assumption 1 E[Fy g/ (x;2)] + oE[Gg,g (W;2)] is con-
vex in x for any sets G and G' and any « € R.

This assumption holds when A, (§) = w €.

Assumption 2 There exists o > 0 such that

E [exp(|Fg7g/(x; z)|2/02)} < exp(1), (14)
E [exp(|Gg’g/ (w;z)|2/02)} < exp(1), (15)
E [exp(||V Fg,g/(x;2)||2/0%)] < exp(1), (16)
E [exp(|[VGo,g/(w;2)|[3/07)] <exp(l)  (17)

Sor any sets G and G' and any x € X, where VFg g/ (x;z)
and NGg,g(w;z) are the gradients of Fg g and Fg g
with respect to x and w, respectively.

Assumption 3 (Strict Feasibility) There exists x € X
such that max{ f1(x), f2(X)} <1+ k.

As the following lemma shows, this assumption holds if
hw (+) becomes a constant mapping for some w € V. The
proof is provided in Appendix B.

Lemma 2 Assumption 3 holds if c1c3 < 0.5 and there ex-
ists w € W such that hy (+) is a constant mapping.

The SFLS method relies on the following level-set function

H(r):= miEP(T, x), (18)

x€E

Algorithm 1 Stochastic Feasible Level-Set Method (SFLS)
1: Inputs: A stochastic oracle A, a level parameter

r@ > f*, an optimality tolerance eqp > 0, an ora-
cle error €4 > 0, a probability § € (0, 1), and a step
length parameter 0> 1.
fork =0,1---,do

§k) = 21

(U (T(k)) X(k)) A(r(k),eA, 5(k))

if U(r)) > —e€opt then

Halt and return x(¥)

D ) L U () /(20) and k «— k + 1

end for

where r € R is a level parameter and
Pr,x)=max{ fo(x) —r, f1(x) =1 — K, fa(x) =1 — k}.

By lemmas 2.3.4 and 2.3.6 in Nesterov (2003) and Lemma
1 in Lin et al. (2018b), H(r) is non-increasing and convex
and has an unique root at r = f*. The SFLS method is es-
sentially a root-finding procedure that generates a sequence
of (¥} k = 0,1,..., approaching f* from the right. The
update of 7(¥) requires the knowledge of H () which is un-
known. Typically, another algorithm is applied to (18) to
obtain an upper bound estimation of H (r). This algorithm
is called a stochastic oracle of H (r) defined below.

Definition 3 Given r > f* €4 > 0, and § € (0,1), a
stochastic oracle A(r,e 4, 8) returns U(r) e Randx € X
that satisfy the inequalities P(r,x) — H(r) < e and
|U(r) — H(r)| < e with a probability of at least 1 — .

Suppose a stochastic oracle A exists, the SFLS method
by Lin et al. (2020) is presented in Algorithm 1 with its
convergence property given in Proposition 1.

Proposition 1 (Theorem 5 in Lin et al. (2020)) Suppose
€ = —3H(T)e and e4 = —%H(r(o))e for
e € (0,1). Algorithm 1 generates a feasible solution at
each iteration with a probability of at least 1 — 6. Moreover,
it returns an x¥) that is feasible and relative e-optimal, i.e.,
(fo(xP)) — £)/(fo(x D) — £*) < € with this probability
in at most O(elz) iterations. !

The remaining question is how to design an stochastic ora-
cle A(r,€,9) satisfying Defintion 3. Lety = (9o, 91, J2) €
Az :={y eR3 |Z _o Ui = 1}. With (11), (12) and (13),
we can reformulate (18) into

O(x, ¥, cx) (19)

H(r) :=min max
XEX yeAz,a€Ib

where the definition of g?)(x, ¥, ) is in Appendix D. This
min-max optimization problem is not jointly concave in y

"Here and in the rest of the paper, 0 suppresses the logarith-
mic factors in the order of magnitude.
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and « due to their product terms. As a result, the standard
stochastic mirror descent method, e.g., Nemirovski et al.
(2009), does not necessarily converge in theory if applied
directly to (19). Motivated by Lin et al. (2018a), we equiv-
alently convert this min-max problem above into a convex-
concave min-max problem by changing variables. In par-
ticular, we define variables & = (&;)}_, where @y =
Yoo, 1 = Y1, Gy = Y12, 3 = Yau3,04 = Yooy
and define y = (y, &) and

y:: {y_(yvd)

Yy € As, a9 € 9o - L,
ap, 02 €91 -L, a3, 04 €Y2-L |-

Eliminating by & in (19) gives

d 20
min ryngx{sb(x y) —dy(y)}, (20)
where ¢(x,y) := E[®(x,y,2)],
~2 ~2 ~2 ~2 ~2
dy(y) =20 4 21 22 L 95 L %4 ()
Yo Y1 Y1 Y2 Y2
D(x,y,2) :=§fTF(x, z) + dTG(W, z), (22)

Fp,p_ (x;2z) —r
F(x,z) = | Fg;g,(x;2) + Fg,g,(x;2) =1 =k
Fgy 6, (x52) + Fg, g1 (x52) =1 — K

and

Gg,,g;(W;z)

G(w,z) = g4,0> (W3 2)
Gg,.g,(W;z)

g1.91 (w;2z)

We also slightly generalize (23) to the following problem

min max {¢(x,y) — dy(y) + dz(x)}, (23)
xeX ye)y
where d;(x) = ng — %||3 for some p > 0 and some

x € X. In this section, we focus on the convex case and
only need to solve (23) with p = 0. When we solve the
weakly convex case later, we will set p > 0 and choose
some X.

Note that (23) is a convex-concave min-max problem. In
fact, except the term d,, (y), the objective function is linear
in y, which allows us to apply stochastic mirror descent
(SMD) method. The SMD method requires some distance
generating function on X and ) and their corresponding
Bregman divergences. In our problem, the distance gener-
ating functions on X and ) are chosen as w, (x) = £x||3

and wy (y) := 2(1 +/2I)? (Z yzlnyz—f—ln?)) +dy(y)

respectively, where I := max,e7 || Function wy(y) is
specially designed for the set ) so, as we will show be-
low, the iterates in the SMD method can be updated in

Algorithm 2 Stochastic Mirror Descent for (23)

1: Input: Level parameter » € R, number of iterations 7',
step size 1 and 74, p > 0 and x.

2: Setx® =0, = (1,1 HT & 3 =0andy©® =
(S’(O) ’ d(O))

3: fort =0toT'— 1do

: Sample z*).
5: Compute stochastic gradients:

(t) Z(t))

g = V.o(x"y gy =V, o(x" y" 2")

6: Primal-dual stochastic mirror descent:

_ x®)]2
(t+ ) —arg mln <g(t) > + u
xex 2n:

+ da(x)

®
y"“* =arg min — <g§f)7 y> + Bby)
yey Tt

+dy(y)
(25)

7: Compute a stochastic upper bound

U(r) = max

{Zt 5 Tt[ (x (t)7

y,20) = dy(y) + da (x)]
Yo T '

(20)

8: Output: U(r) and (X,y) = 7 ™y @),

closed-forms. Note that we can always choose Z such that
it satisfies (9) and is bounded. In fact, since W is compact
and E[hw (§)|G] is continuous in w, the intervals Zp, p_,
Zg, g, and Zg, g, are all bounded, so we can also set 7 to
be bounded. This ensures I < +oc.

Let |Ix|l. = [xlz and [yl, = [lylh2 =

llyll? + ll@||3. It is clear that w,(x) is 1-strongly con-
vex on X with respect to ||x||,. It is shown by Lemma
2 in Lin et al. (2018a) that w,(y) is 1-strongly convex on
Y with respect to ||yl||,. Hence, we can use them to de-
fine Bregman divergence V,(x,x) = wy(x) — [wy(x) +
Ve () (x — x)] = L — x/||3 and

Vy(y,y") = wy(y) = lwy (y') + Ve (y') " (v = ¥')]

N
2(1 + V2I)? Zyﬂn(y)—i— o(ao fﬁ) (24)

Yo Yo

~ ~ 4 ~ ~ 2
+~z<“f D rny (2-2)
U1 = — = Y2 —-— == ] -
=\ N T\ P

With these Bregman divergences, we describe the SMD
method in Algorithm 2. The subproblems (25) and (26)
have closed-form solutions, which are characterized in
Lemma 3 in Appendix B.2.
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The convergence property of Algorithm 2 is well known
(see, e.g., Lin et al. (2020); Nemirovski et al. (2009)) and,
in combination with Proposition 1, it implies the total com-
plexity of Algorithm 1 as stated in the following theorem.

Theorem 1

Let D, := \/maxxex we(x) —
D, := \/maxycy wy(y) — minycy wy(y). There exists
a constant M depending on o, p, I, D, and D, such that:

Ming ey wy(x) and

e Algorithm 2 is a stochastic oracle by Definition 3 if
T>O( > In(5 )) and

ne =2D2/(MVt+ 1), 7 = 2D, /(MVt+1).  (27)

* Suppose €,y and € o are defined the same as in Propo-
sition 1. If Algorithm 2 is used as the stochastic or-
acle A with 1y and 1 defined as in (27) and T >
O ( - In(s5 )) with §%) defined in Algorithm 1. Al-
gorlthm 1 returns a relative e-optimal and feasible so-
lution with probability of at least 1 — § after running
at most O (& In(3)) stochastic mirror descent steps
across all calls of A.

In Appendix C, we provide the definition of M and the
exact value of 7" and we also give a brief discussion on
how this theorem is obtained by applying the convergence
results in Lin et al. (2020); Nemirovski et al. (2009) to Al-
gorithm 2.

5 WEAKLY-CONVEX CASE

In this section, we apply the proximal point techniques
by Boob et al. (2022); Jia and Grimmer (2022); Ma et al.
(2020) to extend the approach to the case where the objec-
tive and constraint functions in (10) are weakly convex.

Definition 4 Given h : R — R U {oo}, we say h is p-
strongly convex for . > 0 if

h(x) = hx') + 8" (x = x) + Zlx - x|

for any x,x" € X and any g € Oh(x), and we say h is
p-weakly convex for p > 0 if

h(x) > hix') +" (x = x) = Ellx = x|

forany x,x' € X and any g € Oh(x). Here, Oh(x) is the
subdifferential of h at x.

In this section, we do not assume Assumption 1 but assume
Assumptions 2 and 3 and the following assumption.

Assumption 4 The following statements hold:

1. E[Fg.g (x;2)] + aE[Gg g/ (W; 2)] is p-weakly convex
in x for any sets G and G' and any o € R.

2. There exist o > 0 and p. > 0 such that

min {maxfz( N—1—-k+ #Hx' —XH2} < —0.

x'ex |i=1,2
forany x € X with max;—1 5 fi(x) — 1 — rk < €2

3. |lgll < G for a constant G for any g € 0f;(x) for
1=0,1,2andx € X.

In Appendix B.3, we will provide a sufficient condition for
Assumption 4.2 to hold. In this case, the objective or the
constraint functions can be non-convex, so finding an e-
optimal solution is challenging in general. Hence, we target
at finding a nearly e-stationary point defined below.

Definition 5 A point x € X is called a e-Karush-Kuhn-
Tucker (KKT) point of (10) if there exist Lagrangian mul-
tiplies \; > 0 and g; € Of;(x) fori = 1 and 2 such that

Dist(go + M1g1 + A2g2, —Nx(x)) < ¢,
M)~ 1= R)[ S, filx) 14 me, i=1,2,

where Ny (x) is the normal cone of X atx. Let p > p. A
point x € X is called a nearly e-stationary point of (10) if
IX — x|| < e where

(28)

9M—iﬁ§l+mi:L2

s.t. fi(X/) +

Remark 1 Since x is optimal for (28), there exist La-
grangian multiplies \; > 0 and g; € Ofi(X) fori =1
and 2 such that

Dist(80 + M81 + o2, —Nx (X))
<p(1 + At + )[R — 2,

. A p

Ai(fi(x) =1 =r)[ <

As discussed in Boobetal. (2022); Jia and Grimmer
(2022); Ma et al. (2020), when X\; for i = 1 and 2 are
bounded, a nearly e-stationary point X is no more than €
away from X, which is an O(€)-KKT point of (10). This
Jjustifies why a nearly e-stationary point is a reasonable tar-
get for solving (10) when the problem is non-convex. Dif-
ferent assumptions are considered in Boob et al. (2022);
Jia and Grimmer (2022); Ma et al. (2020) to ensure the
boundness of A;. This paper follows Ma et al. (2020) by
assuming Assumption 4.2 and the boundness of \; under
this assumption follows Lemma 1 in Ma et al. (2020).

Next we apply the inexact quadratically regularized con-
strained (IQRC) method by Ma et al. (2020) to (10), which
is given in Algorithm 3. This algorithm requires an oracle
define below.
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Algorithm 3 Inexact Quadratically Regularized Con-
strained Method

1: Input: An €2-feasible solution x(

Dptpe=p>p

PR p— G+2pD, 2
56(0,1),6—111111{1, %(Vﬁ—i—l) }e,
and the number of iterations S.

2: fors=0,...,5—1do

3 Compute XD = B(x(*) p.e, 2)

4: Output: X)) where R is a random index uniformly
sampled from {0, ..., S}.

Definition 6 Givenx € X, p > 0, ¢ > 0, § € (0,1),
a stochastic oracle B(X, p, €, 0) returns x' € X such that,
with a probability of at least 1 — 6, X is an é*-feasible and
é2-optimal solution of (28).

According to the definition of this oracle, in its iteration
t, Algorithm 3 needs to find é2-feasible and é2-optimal so-
lution of subproblem (28) with x = %(*). Since (28) is
convex when p > p, Algorithm 1 can be used as an ora-
cle B. To do so, we need to derive and solve the level-set
subproblem (18) corresponding to (28), which is

-~

A(r) = miy {P(r, x) + §||x - 5<||§}. 29)

Following the same step as in Section 4, (29) can be refor-
mulated as (23). Recall that we set p = 0 in Section 4
when the problem is convex, but here we set p > p because
of non-convexity.

According to Theorem 1, when Algorithm 2 is used as
the oracle A in Algorithm 1, Algorithm 1 becomes an
oracle B for Algorithm 3 with an iteration complexity
of O(%)=0(Z%). According to Theorem 1 in Maet al.
(2020), Algorithm 3 finds a nearly e-stationary point of
(10) in O(% ) iterations with 3 called once in each iteration.
Combining these two results, we know that the total itera-
tion complexity of Algorithm 3is O(Z%) x O(4) = O(%).
This is formally stated in the following theorem. The proof
is omitted since this theorem can be easily obtained from
the existing results according to the discussion above.

Theorem 2 Suppose Algorithm 3 uses Algorithm 1 as ora-
cle B and €,p, and € 4 in Algorithm 1 are set as in Proposi-
tion 1 except that H is replaced by Hin (29). Also, suppose
Algorithm I uses Algorithm 2 as oracle A and 1y, 7 and T
are set as in Theorem 1. Algorithm 3 returns X' as a
nearly e-stationary point of (10) within O(Eiﬁ) stochastic
mirror descent steps across all calls of B.

6 NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of the
proposed approaches for AUC optimization subject to the

AUC-based fairness constraints given in Examples 1, 2 and
3 in Section 3. All experiments are conducted on a com-
puter with the CPU 2GHz Quad-Core Intel Core i5 and the
GPU NVIDIA GeForce RTX 2080 Ti.

Datasets Information. The experiments are conducted
using three public datasets: a9a (Chang and Lin, 2011;
Dua and Graff, 2017; Kohavi, 1996), bank (Chang and Lin,
2011; Dua and Graff, 2017; Moro et al., 2004) and COM-
PAS (Fabris et al., 2022; J. Angwin and Kirchner, 2016).
Details about these datasets can be found in Appendix E.1.

Baselines. We compare our methods with three base-
lines, the proxy-Lagrangian method (Cotter et al., 2019),
the correlation-penalty method (Beutel et al., 2019a) and
the post-processing method (Kallus and Zhou, 2019). The
description of each baseline is provided in Appendix E.2.

Convex case. For convex case, we consider a linear model,
ie., hw(€) = &€'w. A smaller » in (2) makes the model
more fair in terms of the corresponding fairness metric but
may compromise the classification performance in terms of
AUC. Hence, we varies x in (2) so each method in compar-
ison will generate a Pareto frontier, showing the trade-off
between performance and fairness.

For the three baselines and our algorithm, the process to
tune the hyper-parameters is explained in Appendix E.3.
We then evaluate AUC and the fairness metric of the out-
put model on testing set and report the Pareto frontiers by
each method in Figure 1. We repeat each experiment five
times with different random seeds and report the standard
errors of the AUC scores and the fairness metrics through
the error bars on each curve. Due to the page limit, we
postpone the plots of COMPAS dataset to Appendix E.4.

Weakly-convex case. For weakly-convex case, we choose
hw to be a two-layer neural network with 10 hidden neu-
rons and the sigmoid activation functions. The process
of tuning hyperparameters is in Appendix E.3. In the
non-convex case, the original proxy-Lagrangian method
in Cotter et al. (2019) updates w through an approximate
Bayesian optimization oracle, which can solve a non-
convex problem with a reasonably small optimality gap.
Here, we directly perform one stochastic gradient descent
step to update w just as in the convex case because it is un-
clear how to design such an oracle due to non-convexity.
The Pareto frontiers in weakly-convex case are reported
with error bars in Figure 2.

It can be observed from Figures 1 and 2 that the level-set
method performs better than the other three baselines when
K is not too small. When « is small, the level-set method
is less efficient in trading performance for fairness on the
bank dataset. This is likely because the approximation gap
between (10) and (2) is large on this dataset. As a result,
we have to use a very small « in (10) in order to achieve the
targeted fairness level in the original problem (2), which
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Figure 1: Pareto frontiers by each method on testing set in convex case (see Appendix E.4 for COMPAS dataset).
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Figure 2: Pareto frontiers by each method on testing set in weakly-convex case (see Appendix E.4 for COMPAS dataset).
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leads to very restrictive constraints in (10) and harms the
classification performance in terms of AUC.

7 CONCLUSION and LIMITATION

We consider AUC optimization subject to a class of AUC-
based fairness constraints, which includes most of the exist-
ing threshold-agnostic and comparison-based fairness met-
rics in literature. When solving this problem in an online
setting where the data arrives sequentially, the existing op-
timization methods need to receive at least a pair of data
points to update the model, which may not be allowed by
the order of data’s arrivals. In addition, when the original
problem is formulated using an empirical distribution in an
off-line setting, the computational cost becomes quadratic
in data size due to the definition of AUC. This computa-
tional cost is too high when the data is large.

To address these computational challenges, we reformu-
lated this problem into a min-max optimization problem
subject to min-max constraints using a quadratic loss func-
tion to approximate the AUCs in the objective and con-
straint functions. The new optimization formulation allows
the model to be updated in an online fashion with one data
point arriving each time. In the off-line setting, the new for-
mulation also reduces the computational cost to only linear
in data size. By introducing a novel Bregman divergence
after changing variables, we show that existing stochastic
optimization algorithms can be applied to the new formula-
tion in the convex and weakly convex cases. In the numer-
ical experiments, we observe an efficient trade off between
classification performance and fairness by the models cre-
ated by our approaches.

However, we acknowledge that our formulation only works
for the quadratic loss function. It is our future work to fur-
ther extend our methods for a general loss function.
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A  EXAMPLES of FAIRNESS METRICS SATISFYING DEFINITION 2

In this section, we present five examples of fairness metrics that satisfy Definition 2 and thus can be applied as fairness
constraints in (2) and solved by the optimization algorithms in this paper. In the discussion below, we assume all data
points are ranked decreasingly in hy (€) 50 hy (&) > hw(¢') means 2 is ranked higher than 2’.

Example 1 (Group AUC Fairness) Let G = {z|]y = 1}, G} = {z|y = —1} and Go = G = RP™2 (50 AUCy (G2, Gh) =
0.5). The AUC-based fairness metric becomes |Pr(hw(€) > hw(€')|y = 1,7" = —1) — 0.5|. When it is small, a random
data point from the protected group is ranked above a random data point from the unprotected group with nearly 50%
probability. In other words, if we use hy, (€) to predict sensitive variable v, it must has a poor prediction performance in
terms of AUC w.r.t. 7y (instead of ).

Example 2 (Inter-Group Pairwise Fairness) Ler G; = {z|( = 1,7 = 1}, G| = {z|( = —1,7 = =1}, G2 = {z|¢ =
1,v = =1} and G = {z|¢ = —1,v = 1}. In this case, the AUC-based fairness metric becomes the cross-AUC in
Kallus and Zhou (2019), which is also called inter-group pairwise fairness (Beutel et al., 2019a). When it is small, the
probability of a random positive data point being ranked above a random negative data point from the opposite group is
nearly independent of the group.

Example 3 (Intra-Group Pairwise Fairness) Ler G = {z|¢ = 1,7 = 1}, G} = {z|¢ = —1,7 = 1}, G2 = {z|¢ =
1,v=—1}and Gy = {z|¢ = —1,v = —1}. Inthis case, the AUC-based fairness metric becomes the intra-group pairwise
Jairness introduced by Beutel et al. (2019a). When it is small, the probability of a random positive data point being ranked
above a random negative data point from the same group is nearly independent of the group. In other words, the classical
AUCs (w.rt. class labels) evaluated separately on each group are similar.

Example 4 (Average Equality Gaps) Let G; = {z|¢ = 1,7 = 1}, G| = {z|¢ = 1} and G2 = G = RPT2. The AUC-
based fairness metric becomes the positive average equality gap introduced by Borkan et al. (2019), i.e., |Pr(hw (&) >
hw(&)|y = 1, = 1,¢' = 1) — 0.5|. Similar to Example 1, when this value is small, a random positive data point from
the protected group is ranked above a random positive data from the whole dataset with nearly 50% probability. Similarly,
the negative average equality gap by Borkan et al. (2019) is obtained when G, = {z|( = —1,v = 1}, G| = {z|( = -1}
and Gy = G = RPY2. [n this case, the AUC-based fairness metric becomes |Pr(hy (&) > hw(€)|y = 1,{ = =1, =
—1) — 0.5|. It has the similar interpretation as the positive average equality gap.

Example 5 (BPSN AUC and BNSP AUC) When G = {z|¢( = 1} and G| = {z|¢ = —1,7 = 1}, AUCw(G1,G1)
becomes the background positive subgroup negative (BPSN) AUC in Borkan et al. (2019). When Gy = {z|¢ = 1,7 = 1}
and G}, = {z|¢ = —1}, AUCw (G2, G5) becomes the background negative subgroup positive (BNSP) AUC in Borkan et al.
(2019). One fairness metric introduced by Borkan et al. (2019) is the absolute difference between the BPSN AUC and the
BNSP AUC, which is exactly (1) w.r.t Gy, G}, Ga and G} chosen above. When this metric is small, the probability of a
random positive data point from the whole dataset being ranked above a random negative data point from the protected
group is close to the probability of a random positive data point from the protected group being ranked above a random
negative data point from the whole dataset.

B TECHNICAL LEMMAS AND THEIR PROOFS

In this section, we provide some technical lemmas and their proofs.

B.1 Proofs of Lemma 1 and 2

Proof.[of Lemma 1] For simplicity of notation, we directly use G and G’ to represent the events z € G and z' € G’,
respectively, when no confusion can be caused. Because z = (§,¢,v) and z’ = (¢',(, ) are i.i.d. data samples, we have

E[G1(z)+Ga(2)|G,G'] = E[G1(2)|G] +E[Ga(2)|G"] and E[Gh (2)Ga(2)|G,G'] = E[G1(2)|G]E[Ga(2')|G"] for any
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measurable functions G; and G5. Based on this fact, we have

E[(h (&) — hw(&) — ¢2)%1G,d']
= ¢ — 202E[hw(€)|G] + 2¢2E [hw(
[ (

€(G'] +E[(hw 5) |g} +E[(hw(€))?|G] — 2E [hw(£)|G]E [hw(€)|F]
= ¢ —20E[hw(£ |g]+2czE[hw £)1G'] + E[(hw(£))°|G] — (E[hw(8)IG])* + E[(hw(£))?1G"] — (E[hw(£)IG'])?
+(E[hw (8)IG])? + (E[hw(£))]G'])? — 2B [hw (€)|G]E [ w(€)IG']

= - 202E [hw (€)|G] + QCQ]E[hw( NG + malnIE[(hw(E) —a)’ IG] + mlnE[(hw( ) —b)%G ]
+max{2aE[ w(€)|G] — 2aE [hw(£')|G'] —az}

o 2B @) | 2Bl ()] | E[w(@) —0)Ts()] | E[(h(€) T ()]

+ min

Pr(z € G) Pr(z’ € G') a Pr(z € G) b Pr(z’ € G')
E[hw(§)lg(z)] E[hw(£)l(2')] 2
+m3x{2a ( Pr(z € G) - Pr(z’ € G') ) e } (30)

Additionally, given any w € W, the optimal value of a, b and o are E[hw(£)|G], E[hw(£')|G'] and E[hw(€)|G] —

[ w(&)|G }, respectively. By the definition of Zg g/, we can restrict the decision variables a, b and « in Zg g+ without
changing the optimal objective values within (30). The proof is thus completed by multiplying both sides of (30) by ¢; and
observing that ¢" and z’ in (30) can be replaced by £ and z because they are i.i.d. random variables.

O

Proof.[of Lemma 2] By the assumptions of this lemma, there exists w € W such that hy,: (§) = c for any &€. Let x' be a
solution in X whose w-component equals w' and its remaining components are aJ{ = ag = bJ{ = bg = ag = al = bg =
b}; =c

By the definitions of Fg g/ (W, a, b; z) and Gg g (w; z) in (8), we have

E[Fg ¢, (x';2)] =E |e1c; —

2c1c2clg; () . 2c1eaclg, (z) | crlc— aj)® Igi(2)  ci(c—b])°lg (2) | _ o1 2
Przeg,) | PrzcG) Pr(z € g)) PrizeGy | 7

fo [ ciclg; (z) B ciclg; (z) _
ElGg; g, (wh2)] =E Pr(zegG)) Pr(zeG)|
- 12
foo 2 2cicaclg, (2) 2c1e2¢lgy (z)  ¢1(c— ab)?lg,(z)  c1(c—b3)"Ig,(z) 9
Elfg, 0 (x52)] = E |e1cz Pr(zeGs) = Pr(ze€Gy) Pr(z € G2) * Pr(z € Gb) S

E[Gg, o/ (w';2)] = E | 2062 (2) c1clg, (2) ] _
2,95 )

Pr(zeGs) Pr(ze Ggh)

Since ¢;c2 < 0.5, applying the equations above to the definitions of f;(x) in (12) and (13) leads to f;(x') = 2¢1¢3 < 1 <
1 + k. Similarly, it holds that fo(x!) < 1 + x. This means x' is a strictly feasible solution and Assumption 3 holds. (I

B.2 Closed-Form Solutions for (25) and (26)

The closed form of x(**1) is obvious so we only show the closed form of y(*+1) in (25). Given any 7 > 0, v =
(vo,v1,v2,v3,v4) € R, u = (ug,u1,u2) € R3andy’ = (y',&’) € Y, we consider the following problem
y* = (7%.a%) = argmin_—(u) ¥ - (v) &+ 2Y)
y=(¥,&)€y T
which becomes (25) after setting (u, v) = g§,t), 7 =7, and y’ = y®). The following lemma characterizes the closed form
of y#.

+dy(y), (€Y

~/ ~/ ~/ ~/ ~/
o) / Qg Qg /. Q3 /o Qy

Lemma 3 Let o, := A= aly = 7 Q= g = ot and let
pi = min { —av; +a? + 1 L (a; — a§)2 } and a?& :=argmin{ —a;v; +a? + 1 L (s — a§)2 }. (32)

a; €T a; €T
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- = (7 _ Ho— U — (! ___Hatpa—u -
for i = 0,1,...,4. Let mp = (yo)exp( 2(1+\/0§I)20(1/T))’ T o= (yl)exp( 2(14_1\/512)2(11/7)) and Ty =

(7h) exp (—%) Then, y# = (y#, &™) € Y defined as follows is an optimal solution to (31):

=T for i=0,1,2.
o + 7™ + T2

aff =gtal, af =gtat, af =gtol, af =gtal, af =gtat.

Proof. Recall the definitions of V,(y,y’) in (24) and d,(y) in (21). (31) can be formulated as

—(U)TSI—(V)Td—i— (1+\/_I) Z Oyzln( )
; Jo(do _ G0N\2 4 hcdn _ Ghy2 ﬂ_d__£2 ﬂa_a2 U2 (da _ 042
miny A0 R TG g A @ g R G g R G ) (33)
TR
0 Y1 1 Y2 Y2

We first fix y € A3 and only optimize & in (33) sub_]ect to constraints &g € Yo -Z, &1 € Y1+ L, a2 €y -1, ag € y2-Z and

&4 € Y2 - L. By changing variables using ay : yo ,Qp = yll gt ‘;12 ag = Z; oy = Z* and af = g/ ,ah = Zl
1
aly = Z—f, oy = Z—Z, aly = Z—Z, (33) becomes
—(w) 7y + (1+\/_I) Zl o Ui 1n(g—) + 7o nner% [—aovo + L(ao — af) + ad]

min (34)

YeAs | 445 min [Z —a;v; + L(a; — b)) +a? } + 2 min [Z —a;v; + L (a; — o) —i—a?}

a1,02€L o asz,ou€L T
. ~ 2 U
= Jin { —(u)Ty+ (1+\/_I) S o (%) + Gopo + 91 (p + p2) + Gaps + pa) } ) (35)
3

according to the definition of y; in (32).

Equality (34) above indicates that the minimization over & in (33) for a given y is equivalent to the inner minimization
over « in (34), which is independent of y and can be solved for each 7 separately. Note that the optimal objective value and
the solution of the ith inner minimization are y; and afﬁ in (32), where afﬁ has a closed form. Equality (35) indicates that,
after obtaining the optimal «;, we can solve the optimal y by solving the outer minimization problem (35) whose solution
is exactly ¥ defined in Lemma 3 which can be verified from the optimality conditions. According to the relationship
between «; and &, the optimal value of the original variable &; is exactly dfﬁ defined in Lemma 3.

0
Next, we consider the optimal value U (r) in (26). According to the definition of ® in (22), (26) can be written as
Ur)= max (u)'y+ ) a—dy(y)+ Z;—Jiiii@ (36)
y=@a)ey ! 2 Zt o Tt '
where
T-1 ® 5® 71 0!
D vrivid (UL BN v D)
Zt =0 Tt Zt —o Tt

We denote each component of u and v as v = (vg, vy, v2, v3,v4) € R and u = (ug, u1,u2) € R3. The following lemma
provides a closed form to U (r).

Lemma 4 Let U(r) defined in (26), or equivalently, in (36). We have

P X — |3
2 ZtOTt

Ul(r) := max{uo + po, w1 + p1 + p2, ug + pi3 + pra} +

)

where |1; := max {aivi — af}fori =0,1,...,4.
a, €T
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Proof. Recall the definitions of d,,(y) in (21) and d,;(x) = ng — %J|3. (36) can be formulated as

o L S S ) Drivl Ll 37
(r)*?é@‘{(u)yﬂv)a—%—a—a‘ﬁ‘ﬁ}+_T' -

Similar to the proof of Lemma 3, we first fix y € A3 and only optimize & in (37) subject to constraints o € o - Z,

a1 €1 L, & €41-Z, a3 € o - L and Gy € o - Z. By changing variables using ag := % o = 2 o T
as = 2 and oy = %, (37) becomes

Y2

<

4
+ 72 min [Z oiv; — a?:| }
i=3

U(r) = max {(u) v + 7o max [aovo — af] + 91 max [2:1 Qv — of

YEAS3 ay,ap€L2 ag,ay €I2
L DXL I %
2 Zt o Tt
) _ %12
x\ —x
= max { (0)"§ + Jopo + G (11 + p2) + G (s + 1a) }+pw
NASTAYS Zt o Tt
Py X — %3
—maX{UO+uo,u1+u1+u2,uz+u3+u}+ #,
t=0 Tt

where the second equality is because of the definition of y; fori = 0, ..., 4 and the last equality is because y € Az. [

B.3 A Sufficient Condition for Assumption 4.2
In this subsection, we present the following sufficient condition for Assumption 4.2 to hold.

_ 2
Lemma 5 Assumption 4.2 holds if 2cic2 — 1 < k, p < 2““—20102),2 and there exists w € W such that hy(+) is a
2 max, e |x—x'[3

constant mapping.

2 2(rk+1—2c1c3) .
Proof. Because 2cic; — 1 < kand p < s, n e TS there exists p, such that

2(k 4+ 1 —2¢163)

P (38)
113

0<pe <
maxy xex ||[X —x

Let x € X be any solution that satisfies max;—1 2 fi(x) — 1 — xk < €. By the assumptions, there exists wT € W such that
het (&) is a constant over &, denoted by c. Let x! be a solution in X whose w-component equals w' and its remaining

components are a{ = a£ = b b2 = a3 = a4 = bg = b4 =c

According to the proof of Lemma 2 in Section B.1, we have f;(x') = 2¢;c2 for i = 1 and 2 and, according to the

assumption of this lemma, we have f;(x) < 1 + & for i = 1 and 2. This implies

. P+ pe ’ 2
)glelg{gnégfz() 1—k+=—=—|x XHz}
+ pe
< max fiGe) = 1w PP x
hi
< 20105—1—K+m max |x — x'||5 = —o,
2 x'eXx

where o := K + 1 — 2¢1¢3 — 2525 maxy e x |x — X'||3 is a positive number because of (38). This completes the proof.

O

Remark 2 Condition 2c1c3 — 1 < k means the targeted fairness level should not be too small, so there exists a sufficiently

. . .. 2(k+1—2c1c3 .
feasible solution (see Lemma 2). Condition p < Im;'ﬁ—m means the original non-convex problem should not
x,x'ex 2

have a high level of non-convexity.
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C DISCUSSION ON THEOREM 1

In this section, we briefly discuss how to directly apply the results from Lin et al. (2020); Nemirovski et al. (2009) to
obtain Theorem 1. First, we match our notation to those used in Lin et al. (2020) and instantize the convergence results in
Lin et al. (2020) on (23). Recall that ||x||, = [|x||2 and |ly[l, = /|73 + ||&]|3. Their dual norms are ||x||+» = [|x]2
and ||y |+, = VII¥ll% + ||&][3, respectively. The complexity of SMD is known to depend on the diameters of X" and )
measured by the corresponding distance generating functions, namely,

D, = [, (x) — min e, (x) and D, = \/my w0y (¥) = min o, ()

defined in Theorem 1. Moreover, thanks to Assumption 2, it is not hard to show that there exist constants M, M, and @),
which only depend on o, I, p and D,, such that

E [exp(|[ V. @(x,.2) 2 /M2)] < exp(1), (39)
E [exp((|V, @(x.y.2)[2,/M;)] < exp(1), (40)
E [exp(@(x,y.2) - 6(x,y)|* /Q%)| < exp(1), (4D

Additionally, given d € (0, 1), we define

M = \[/2D2M2 + 2D M; (42)

Q(0) := max{ 121n (%), % In (%)} . (43)

With those notations, a brief proof of Theorem 1 is given below.

Compared with problem (5) in Lin et al. (2020), our problem (23) has the additional terms d,(x) and d,(y). However,
since we choose the initial solution as x(*) = 0 and y(®) = (1/3,1/3,1/3,0), these additional terms can be eliminated
from the proof of any theorems and propositions in Lin et al. (2020), so the convergence results in Lin et al. (2020) also
hold for problem (23) and Algorithm 2. Moreover, the algorithm in Lin et al. (2020) is presented using a unified updating
scheme for x and y with only one step size v, while our Algorithm 2 is presented with x and y updated separately. However,
it is easy to verify that, by choosing 1, = 2D2~; and 7, = 2D?~; with v, = 1/(M+/t + 1) where M is defined in (42),
Algorithm 2 is equivalent to the algorithm in Lin et al. (2020). Hence, according to Theorem 8 in Lin et al. (2020), if

T'> T(6.e4) = max {67 <16 (QQ(9) +10MO(8) +4.5M) | (8 (QQU5) + 10MQ(5) + 4.5M))>2 B 2} e

€A €A

the outputs U () and X by Algorithm 2 satisfy the inequalities P(r,x)—H (r) < eand |U(r)—H (r)| < € with a probability
of atleast 1 — ¢ for any r > f*. Hence, SMD with T' > T'(9, € 4) is a valid stochastic oracle defined in Definition 3. Hence,
according to Corollary 9 in Lin et al. (2020), SFLS returns a relative e-optimal and feasible solution with probability of at
least 1 — § using at most O (eiz ln(%)) stochastic mirror descent steps across all calls of SMD. Theorem 1 is thus proved.

D DEFINITION of ¢ IN (19) AND TABLE OF NOTATIONS

In Section 4, we can write (18) as

H(r) = min P(r, x) = min max {9o(fo(x) =7) + 91(f1(x) = 1 = k) + §2(f2(x) = 1 = K)},

where Az := {y € Rfﬂ Z?:o g; = 1}. With (11), (12) and (13), we can reformulate the problem above into (19), i.e.,

H(r):=min__max _o(x.¥,a),

where
—rgo — (1 + k)g1 — (1 + k)72
I +90Fp, p_(x;2) + 1 Fg g, (x:2) + 91 Fg, g1 (X:2) + G2Fgr ¢, (x;2) + §2Fg, g (x;2)
o(x,y,a) :=E - + N 191 " 2,95 65,92 1,61
Y +JoawGp, p_(W;2) + J1o0Gg; g, (W;2) + J102Gg, g, (W; 2) + G203Ggy g, (W; 2) + F20uGg, g; (W;2)
—Joag — 105 — Gras — foai — o]

Since many notations are introduced this paper, we summarize them in Table 1 so readers can find their meanings more
easily.
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Table 1: Notation used throughout the paper.

Symbol Definition
I3 Feature vector of a data point.
¢ Binary label of a data point.
¥ Binary sensitive feature of a data point.
z=(&(,7) A data point.
w and W Parameters of a classification model. It belongs to a convex compact set € W.
hw (&) Predicted score for a data point based its feature &.
G, G1,G4, Ga, Gh Set in RP*2 with positive measures w.r.t. z.
D4 Positive dataset.
D_ Negative dataset.
110 Surrogate loss function that approximates I(.<o) and I(.¢).
c1(- — c2)? Quadratic loss function that approximates [.<oy and I(. <q).
a,b, « Auxiliary variables introduced to formulate the quadratic loss into a min-max problem (7).
/ ! !
Ig,g The smallest interval that contains { (:)é:(tg [[fi:”"(gif:gg]} ’_ig[[;?:((g’))l |sz : gg/]]; }
Z and [ A bounded interval containing Zp, p_,Zg, g/, Zg, g, and I := maxaer |al.
X The domain of primal variables.
Yy The domain of dual variables.
Az The simplex in R3.
wz(x) and wy (x) Distance generating functions on X" and )/, respectively.
Va(x,x") and V, (y,y’) Bregman divergences on X’ and )/, respectively.
H(r) and H (r) Level-set functions of (10) and (28), respectively.
rand r(%) Level parameters in the stochastic level-set method.
pand p Weak convexity parameter of (10) and p > p.

E ADDITIONAL MATERIALS FOR NUMERICAL EXPERIMENTS

In this section, we present some additional details of our numerical experiments in Section 6.

E.1 Details of Datasets

We provide below some details about the three datasets we used in our numerical experiments.

* The a9a dataset is used to predict if the annual income of an individual exceeds $50K. Gender is the sensitive attribute,
i.e., female (v = 1) or male (v = —1).

* The bank dataset is used to predict if a client will subscribe a term deposit. Age is the sensitive attribute, i.e., age
between 25 and 60 (v = 1) or otherwise (y = —1).

e The COMPAS dataset is used to predict if a criminal defendant will reoffend. Race is the sensitive attribute, i.e.,
caucasian (v = 1) or non-caucasian (y = —1).

Some statistics of these datasets are given in Table 2. Data a9a originally has a training set and a testing set, and we further
split the training data into a training set (%90) and a validation set (%90). For bank and COMPAS datasets, we split them
into training (%60), validation (%20) and testing (%20) sets. The validation sets are used for tuning hyper-parameters
while the testing sets are for performance evaluation.

E.2 Details of Baselines

In this section, we provide the details of three baselines used in our experiments.

* Proxy-Lagrangian is a Lagrangian method for solving (2), where only the indicator function L, (¢)— ., (¢/)<0) in the
objective function is approximated by a surrogate loss while the indicator functions in the constraints are unchanged.
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Table 2: Statistics of the datasets.

Datasets | #Instances #Attributes  Class Label  Sensitive Attribute
a9a 48,842 123 Income Gender
bank 41,188 54 Subscription Age

COMPAS 11,757 14 Recidivism Race
@ COMPAS ® COMPAS ® COMPAS
©0.744 0.744 ©0.745
£ g g
50.742 5 0.742 5 0.74 —t—
‘£ b= K Level-set ‘t -
a 0.74 a 074 + Proxy Lagrangian & 0735
S S0.738 Post-Processing 5 or /I o Level-set -
§ 0.738 'g' - - ‘g‘ , ¥ Proxy Lagrangian
= __+ & 0.736 T & 0.725 7
§oree BT - 8 0.7 [e” & o7 ;
? 0.734 ,a" """ f;;?;i;iztgrangian ? l -[r -7 ? ‘
£ + Correlation $0.732 §0.715
I 4 Post- i %) %)
8072 i Post-Processing 8 o7 S om
< 0 002 004 006 008 01 o012 < 0 005 0.1 015 02 025 < 0 0.005 0.01 0.015 0.02

Group AUC Fairness Inter-Group Pairwise Fairness Intra-Group Pairwise Fairness

Figure 3: Pareto frontiers by each method for COMPAS dataset in convex case.

* Correlation-penalty is a method that adds the absolute value of the correlation between hy, (£€) and 7 in the objective
function as a penalty term while optimizing the AUC of hy, for predicting (. We are only able to apply this method
when the fairness constraints are based on Example 1 because the constraints based on Examples 2 and 3 cannot be
equivalently represented as penalty terms of statistical correlations.

* In the post-processing method, we first train a model by optimizing the AUC of h,, for predicting ¢ without any
constraints. Then we modify the predicted scores on data with v = 1 to w1 hw (&) + w2 but leave the scores on data
with v = —1 unchanged. We then tune w; and ws to satisfy the constraints in (2). We are unable to apply post-
processing to Example 3 since tuning w; and we requires knowing the true labels (¢) of the data, which is impractical.

E.3 Process of Tuning Hyperparameters

In this section, we explain the process to tune the hyper-parameters.

Convex case. For the level-set method and the proxy-Lagrangian method, we solve their constrained optimization problems
with different values of . For each value of x, we track the models from all iterations and return the one that is feasible to
(2) and reaches the best AUC on the validation set. In the correlation-penalty method, we select A from a set of candidates,
solve the penalized optimization problem by the stochastic gradient descent method, and select the model to return in the
same way as the previous two methods. We set ca = 1 and choose ¢; from 0.5 and 1 for all methods. For the level-set
method, we set # = 1 in Algorithm 1 and 7, = ﬁ in Algorithm 2 with ¢ tuned from {102,101, 1} based on the AUC
of the returned model on the validation set. The learning rates of proxy-Lagrangian and correlation-penalty are tuned in the
same way. For post-processing, w is tuned from a grid in [0, 5] with a gap of 0.05 and w, is tuned from a grid in [—3, 3]
with step size 0.1. We use a mini-batch of size 100 in each method when computing stochastic gradients.

Weakly-convex case. The implementation of each method and the process of tuning hyperparameters is the same as the
convex case except that we choose p = 107 in Algorithm 3.

E.4 Plots of COMPAS Dataset

In this section, we present the Pareto frontier obtained by each method on the COMPAS dataset in Figures 3 and 4 for the
convex case and the weakly-convex case, respectively.
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Figure 4: Pareto frontiers by each method for COMPAS dataset in weakly-convex case.
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