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Efficient in Vivo Neural Signal Compression Using
an Autoencoder-Based Neural Network

Daniel Valencia'”, Patrick P. Mercier

Abstract—Conventional in vivo neural signal processing involves
extracting spiking activity within the recorded signals from an
ensemble of neurons and transmitting only spike counts over an
adequate interval. However, for brain-computer interface (BCI)
applications utilizing continuous local field potentials (LFPs) for
cognitive decoding, the volume of neural data to be transmitted to
a computer imposes relatively high data rate requirements. This
is particularly true for BCIs employing high-density intracortical
recordings with hundreds or thousands of electrodes. This article
introduces the first autoencoder-based compression digital circuit
for the efficient transmission of LFP neural signals. Various al-
gorithmic and architectural-level optimizations are implemented
to significantly reduce the computational complexity and memory
requirements of the designed in vivo compression circuit. This
circuit employs an autoencoder-based neural network, providing
a robust signal reconstruction. The application-specific integrated
circuit (ASIC) of the in vivo compression logic occupies the smallest
silicon area and consumes the lowest power among the reported
state-of-the-art compression ASICs. Additionally, it offers a higher
compression rate and a superior signal-to-noise and distortion
ratio.

Index Terms—Application specific integrated circuits, neural
engineering, neural networks.

1. INTRODUCTION

HE field of intra-cortical brain-computer interfaces (BClIs)

has been rapidly evolving over the past decade. BCIs ef-
fectively translate (decode) recorded neural signals into a quan-
tifiable representation for augmenting or enhancing the user’s
working experience. The input to a neural decoding algorithm is
a specific representation of the neural activity and the output is
either a continuous variable or a discrete selection. For example,
the former can represent the kinematic variables to control a
computer cursor or a robotic limb [1], [2], while the latter may
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Fig. 1. Intracortical recording and wireless transmission of compressed neural
signals, employing 1000 recording channels.

represent the particular mental state of a user (e.g., sleeping
or alert) [3] or the end-goal of a planned movement [4], [5].
The application of novel machine learning (ML)-based decoding
algorithms has enabled increasingly complex BCI applications,
such as thought-to-text [6] and thought-to-speech synthesis [7].

Intracortical neural recording systems have continuously ad-
vanced from the widely-employed Utah Array [8], supporting
up to a hundred recording sites, to high-density recording elec-
trodes, such as Neuralink [9] and Neuropixels [10], supporting
hundreds of recording sites per implantable recording shank and
hence, thousands of recording channels. An increasing number
of recording channels will inevitably impose a higher data rate
requirement. For example, a neural recording system with 1000
recording electrodes, sampled at 20 kS/s with 16-bit resolution,
would require a data rate of 320 Mbps. The state-of-the-art
wireless transmission of neural data has a mean energy dissi-
pation of 6.7 pJ/bit [11], [12], [13], [14], [15], which would
imply 2.14 mW of power for wireless transmission alone. In
accordance with the the Food and Drug Administration [16],
considering neural tissue-specific absorption rate, the limit for a
safe wireless power transfer is 7.7 mW. Thus, transmitting raw
neural signals would consume over 27% of the available power
budget. By employing in vivo neural signal processing and com-
pression, the data rate requirement can be drastically reduced.
For example, as shown in Fig. 1, if in vivo compression is able to
reduce the data rate by a factor of 20, the wireless transmission
requires only 0.1 mW of power, i.e., approximately 1.4% of
the available power budget. Therefore, efficient realization of in
vivo signal compression becomes crucial for BCIs employing
high-density microelectrode arrays (MEAS).

Compression schemes are generally divided into two cate-
gories. Lossless methods involve reducing the dynamic range of
the neural signals and encoding the signals as variable bit-rate
data streams [17], [18], [19]. One of the commonly-employed
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lossless compression methods for LFPs is to exploit the
temporal redundancy and spatial correlation of LFPs. The tem-
poral difference x4[n] = x[n] — x[n — 1] reduces the dynamic
range of the signals and consequently, the required number of
bits per sample to about a half [17]. With a reduced numerical
range, neural signals can then be represented using Huffman
coding [20], which encodes more commonly occurring samples
using fewer bits. The combination of temporal difference and
Huffman coding is considered as alossless compression scheme,
which generally offers a compression rate on the order of 2 to
51171, [18], [19].

While lossless methods provide perfect reconstruction, lossy
methods can significantly increase the data compression rate
by employing spatial downsampling. The underlying principle
for employing lossy methods in the context of neural signals is
the relatively large amount of spatial correlation among neural
recording channels. Considering that the state-of-the-art neural
decoding algorithms are relatively robust to noise and signal
perturbations [21], [22], by tolerating relatively small signal
errors, employing a lossy compression scheme might be a more
viable approach for BCI applications. Sources of noise include
instrumentation perturbations due to electrode micro-motions,
bit errors during wireless transmission, and quantization noise
caused by finite numerical resolutions. Compressed sensing
(CS) [23] is a lossy scheme used for neural signals [24], [25],
[26], where signal x € R" is multiplied with a sensing matrix
® € R™*™ to produce y € R™, effectively compressing the
signal by a factor of m/n. A variety of CS-based algorithms
are employed in silico to reconstruct the original signal x from
the compressed (encoded) signal y [24], [25], [26].

In this work, we propose the novel application of a ML-based
compression scheme based on autoencoders (AEs). Compared
to the state-of-the-art neural signal compression circuits, the
designed AE-based compression scheme offers a greater com-
pression rate, higher signal-to-noise and distortion ratio, small-
est silicon area, and lowest power consumption. The rest of
this article is organized as follows. Section II discusses the
motivation toward employing the local field potentials over
neural action potentials. Section III discusses the algorithm and
performance of the designed autoencoder-based compression
scheme. For an efficient realization of the in vivo autoencoder,
various algorithmic and architectural optimization techniques
are employed and presented in Section IV. The architecture of
the designed compression hardware is presented and discussed
in Section V and its implementation characteristics are compared
against the relevant compression circuits. Finally, Section VI
makes some concluding remarks.

II. LocAL FIELD POTENTIAL-BASED BCIS

Compared to the non-invasive electro-encephalography
(EEQG), the invasive intra-cortical recording modality offers the
highest temporal and spatial resolutions in which the neural
activity can be represented, as either the excitation of individual
neurons, called single-unit activities (SUAs), or an ensemble
of neurons, called multi-unit activities (MUAs). Applications
employing SUAs or MUAS conventionally perform in vivo spike

detection [27] to reduce the wireless data rate requirements.
Neurons are known to fire relatively infrequently with respect
to the sampling rate, on the order of 40 Hz [28]. Additionally,
due to the physiological refractory period of neurons, spiking
activity is usually represented at the millisecond level with the
required bandwidth of at most one kHz per channel. SUAs can
be obtained by spike sorting, which can be viewed as a clustering
process where spikes fired from the same neurons are grouped
together [29]. Some BClIs employ in vivo circuitry to classify
spike waveforms and transmit only 2-3 bits per spike class [30],
[31], [32], [33], while others avoid in vivo spike sorting and
instead transmit the MUA spike waveforms, which requires
about 2 to 3 milliseconds of data per spike waveforms. By
transmitting only spiking activity, BCIs employing in vivo spike
classification have a compression rate of 1000 — 6000 [30], [31],
[32], [33] at the expense of spike sorting computations, while
BClIs that transmit the entire spike waveforms have compression
rates of 2—44 [34] at the cost of greater data transmissions. Com-
pared to the SUA-based neural signal processing, MUA-based
decoding, however, does not require computationally-intensive
spike sorting [30], [31], [32], [33]. It has been shown that the
overall decoding performance degradation is negligible when
employing MUAs [35]. In addition, transmitting only MUA
events (e.g., spike counts) drastically reduces wireless transmis-
sion rates. For example, if neural signals are sampled at 10-30
kS/s with a 10—16 b resolution, the required wireless data rate is
100-480 Kbps per recording channel. With a 96-channel Utah
Array, the staggering transmission rate is 9.6-46 Mbps. How-
ever, MUA features are commonly represented as spike counts
over an interval of 1-25 milliseconds. Most implementations of
spike detection impose a biologically plausible spike refractory
period of one millisecond [21], [36] and hence, one millisecond
spike bins would require the data rate of only one Kbps per
recording channel, yielding a data rate of at most 96 Kbps for
a 96-channel Utah Array, resulting in at least a 100 times data
rate reduction. Therefore, MUAs have been widely employed in
both clinical trials and therapeutic applications of BCIs.
Neural activities can alternatively be represented by the local
field potentials (LFPs), which are formed by the aggregate
synaptic activities of populations of neurons. Compared to the
SUAs and MUAs, LFPs represent slower variations in the neu-
ral signal’s voltage and have lower spatial resolutions (LFPs:
0.5 mm, MUAs: 0.1 mm, and SUAs: 0.05 mm) [37], [38], [39].
Due to recording variations and instabilities, such as electrode
drift and neuron drop-out [40], as well as potential scarring be-
tween the electrode-tissue interface over a relatively long period
of time [41], LFPs are considered more stable compared to the
SUAs and MUAs. While many of the MUA-based BClIs focus on
decoding the neural activity in the motor cortex, LFP-based BCIs
decode neural activities of the cognitive regions of the brain,
such as the posterior parietal cortex, which allows higher-level
cognitive decoding than that of the lower-level continuous motor
control [5], [42]. Various, studies have shown that reliable neural
decoding can be performed using LFP signals [5], [42], [43]. A
study reported in [43] found that various movement intentions,
such as the imagined end-point, kinematic trajectory, and type
of movement, can be predicted reliably from the LFP signals.
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From the perspective of implantable integrated circuits for
neural recording, the acquisition and processing of LFPs offers
an opportunity for significantly reducing the in vivo power
consumption. For example, neural signals are often sampled
at a rate of 10-30 kS/s to provide the necessary temporal
resolution for detecting action potentials (spikes) [21]. The
acquisition of neural signals consists of low-noise amplifiers
and analog-to-digital converters (ADCs), most of which employ
10-16 b resolutions and have a nominal power consumption
of 0.25 uW-7.3 uW per recording channel. Because the LFP
frequencies of interest are often up to a few hundred hertz (i.e.,
0.1-300 Hz), the sampling rate can be reduced significantly
compared to that required for spike-based processing, typically
between 1-2 kS/s. A five fold reduction in the sampling rate and
signal bandwidth would reduce the power consumption of the
in vivo signal acquisition and conditioning [21]. Also, to extract
SUAs or MUAs from the recorded neural signals, additional
in vivo neural signal processing, such as adaptive threshold
estimation and spike detection, which consumes between 0.6 and
1.78 W of power per recording channel, is required [22], [44].
Thus, a reasonable estimate for processing MUAs is approxi-
mately 8 uW of power per channel. LFPs require no threshold
estimation or additional processing aside from signal filtering
to discard signal components above 300 Hz. While the in vivo
neural signal processing for LFPs is more power efficient than
that for SUAs/MUAG, the data rate requirements, however, are
considerably higher. For example, considering LFPs sampled
at 2 kS/s with a 16-bit resolution, its wireless transmission
would require 32 Kbps/channel, while the spike counts over
one millisecond bins would require only one Kbps/channel.
Therefore, the direct transmission of continuous LFPs would
require over 3 Mbps for a 96-channel electrode array. The data
rate would increase as higher density electrodes are implanted
for emerging BCI applications.

In practical systems, various algorithmic and architectural-
level schemes can be employed to efficiently manage the in
vivo BCI power consumption. For instance, in an asynchronous
(self-paced) BCI paradigm, the user’s desire to engage in the BCI
task can be detected with an intention estimation logic. When
the user is not actively involved in the BCI task, a significant
portion of signal acquisition and processing can be powered
down, leading to substantial power savings [22]. While the
topic of user’s intention estimation is beyond the scope of this
work, its potential to effectively disable the majority of in vivo
circuitry, along with the designed signal compression scheme,
could significantly reduce the energy dissipation of LFP-based
BClIs.

III. AUTOENCODER-BASED COMPRESSION

LFPs are formed by the accumulated synaptic activity of
populations of neurons and hence, they can be readily detected
by recording channels that are relatively close to one another.
Fig. 2 shows the inter-channel correlation over 30 seconds
of a neural recording from a non-human primate performing
self-paced reaching tasks [45]. One can see that various sub-
regions within the recording array are highly correlated. Most
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Fig. 2. Inter-channel correlation over 30 seconds of a neural recording.
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Fig. 3. Block diagram of the designed autoencoder-based compression

scheme.

lossy compression methods aim to exploit this inherent spatial
correlation to perform a spatial downsampling of the LFPs. By
exploiting the spatial correlation, the LFPs can be represented
using either a subset of the channels or a linear transformation
of the original signal.

An autoencoder (AE) is a neural network, consisting of an
encoder network, which reduces the spatial dimension of the
input data, and a decoder network, which is trained to reconstruct
the original input. Conventional AEs employ mirrored network
architectures such that the encoder and decoder have the same
number and type of layers, but in the reverse order. Due to
their data-driven approach to learn an optimal low-dimensional
representation of the input signal, AEs have been previously
employed for spike waveform feature extraction [46], [47] and
for compressing spike waveforms [34].

The block diagram of the designed and implemented AE-
based compression architecture is shown in Fig. 3. The LFPs are
derived from the recorded neural signals using a second-order
Butterworth low-pass filter with a cutoff frequency at 300 Hz.
The encoder network is relatively small and is feasible to be
realized as an implantable circuit in vivo for compressing filtered
neural signals before wireless transmission, while the decoder is
implemented in silico to reconstruct the neural signals for subse-
quent processing. The encoder network consists of a single dense
layer DLg and the decoder consists of arecurrent layer RLp and a
dense layer DLp. The encoder layer reduces the input dimension
from N to F', where N denotes the number of channels in
the recorded signal and F' denotes the number of units in the
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dense layer. The recurrent layer RLp accepts the F'-dimensional
outputs of the encoder, learns temporal information within the
encoded signals, and provides an R-dimensional spatially up-
sampled output. The decoder’s dense layer DLp performs the
final spatial upsampling of R to /N and reconstructs the input
signals. The units in the DLg employ Tanh activation functions,
while the DLp performs a linear regression to reconstruct the
channel activity. The compression rate of the designed model
is CR = Nw;/Fw,, where w; and w, denote the resolution of
the input data and the output resolution of the DLp, respectively.
For example, for a 96-channel Utah Array with F' = 10 units,
16-bit data samples and 10-bit outputs, the compression rate
is 15.36. Note that conventional digital acquisition (DAQ) sys-
tems typically employ 16 bits of resolution for sampling neural
signals. In practice, the lower-order bits of the digitized neural
signals may be discarded if they fall below the noise floor of
the amplifier [19]. For instance, with a given signal amplifier
featuring V; 1V rms input referred noise and an ADC resolution
of V4 p V per bit, the least significant log,(V;/V2) bits can
be discarded. It is important to note that our analyses do not
involve such resolution reduction, as the focus is on the design
and implementation of a parameterizable auto-encoder-based
compression scheme that can be synthesized onto a custom
resolution, independent of the specification of the employed
DAQ system.

The designed AE-based network is trained with the Python
Tensorflow framework using two publicly available datasets.
Dataset I [45] consists of neural recordings from a Macaque
monkey while performing a self-paced point-to-point reaching
task. Dataset II [48] consists of neural recordings from two
monkeys K and L while performing an object reach and grasp
task. Dataset I is sampled at f, = 24.4 kS/s and is filtered
using an anti-aliasing low-pass filter at 7.5 kHz, built into the
recording system. Dataset II is sampled at f; = 30 kS/s and is
filtered using a high-pass filter at 0.3 Hz and a low-pass filter
at 7.5 kHz. Dataset I consists of 30 recordings acquired over 7
months and Dataset II consists of two recordings (one for each
monkey) during a single recording session. Both datasets are
downsampled to 2 kS/s by applying a low-pass filter with the
cutoff frequency at 1 kHz followed by decimation. The model
was trained using the Adam optimizer and the mean absolute
error between the input signals and the reconstructed signals
was considered as the loss function.

Lossy compression methods often report reconstruction error
using the signal-to-noise and distortion ratio (SNDR) metric,
defined as SNDR = 2010g10%, where x and X denote the
original and reconstructed neural signals, respectively, and || - ||2
denotes the L2-norm [49]. The performance of the designed
model was evaluated using the R2 score by analyzing the sim-
ilarity between the true and reconstructed LFPs. The R2 score
describes the ability of the reconstruction model to capture the

variance i is gi — 1 Zu@im)?
present in the data and is given as R2= 1 S

where y; and y; denote the ¢-th reconstructed and true outputs,
respectively, and ¢ denotes the mean. While the compression rate
increases with a smaller F', the increased spatial downsampling
may adversely impact the reconstruction quality. Using the first
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Fig. 4. Mean and standard deviation of (a) R2 scores and (b) SNDRs for the
reconstructed LFP signals analyzed over various numbers of DLg units F'.

recording from Dataset I and both recordings from Dataset II, the
model was trained by varying F' between 16 and 1 and R between
256 and 64 with 16 evenly spaced intervals of 13. This approach
was employed to ensure compensation between smaller values
of F' and larger values of R in the decoder. As the recordings
of the two datasets are from three different animals (Dataset
I with one animal, and Dataset II with two different animals),
the model was trained separately on each dataset. The training
was performed on the first 80% of each recording session, with
the next 10% used for validation and the final 10% for testing.
The training, validation, and testing sets were then split into
time spans of 160 ms, which corresponds to 320 time steps with
fs = 2 kS/s. The training was performed for up to 1000 epochs
using early stopping on the validation set to prevent overfitting.
Fig. 4(a) shows the mean R2 scores over various number of units
F for the first recording session of Dataset I and both recordings
of Dataset II, and the shaded areas show the standard deviation
across the recording channels. It was found that the model with
F = 8and R = 128 provides amedian R2 score of 0.852 £ 0.04
trained on each of the 30 recordings in Dataset I, 0.72 4+ 0.23
and 0.93 =+ 0.09 over the Monkey K and L recordings of Dataset
IL, respectively. It was found that the encoder dimensionality F’
has a stronger impact on the overall performance of the model
compared to that of the decoder dimensionality R. While the
decoder dimensionality could be further increased, values of
R beyond 128 did not yield considerable performance gains.
Fig. 4(b) shows the mean of SNDR. Similarly to those of the R2
score, an increasing number of units F' shows a small increase
in SNDR. The median SNDR over each of the 30 recordings in
Dataset I was 22.79 + 2.19, and 21.19 4 2.89 and 28.89 + 2.66
over the Monkey K and Monkey L recordings, respectively.
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Fig. 5. Mean of the (a) R2 scores and (b) SNDRs of the original, re-trained,

and calibrated models over all recordings of Dataset I, respectively.

As shown in Fig. 4, the performance of the model is data-
dependent, as is in general for the ML-based algorithms. One
important characteristic of the ML-based compression models
is their ability to generalize to future data. Fortunately, Dataset I
contains several months of recordings, which allowed the gener-
alization of the baseline model trained on the first recording ses-
sion to be tested on all subsequent recordings. Fig. 5(a) and (b)
show that the designed model provides a variable performance,
with the R2 scores between 0.5 and 0.73 and the SNDR between
5.26 and 22.93, which is due to the changes in the statistics of
the neural signals per recording channel. For a relatively steady
performance, the original model is either re-trained or calibrated
using a small amount of new data. Fig. 5(a) and (b) show
a negligible difference between the re-trained model and the
calibrated version of the original model, however, the calibrated
model only requires 10% of the new data whereas the re-trained
model requires 80% of the new data for training. Additionally,
the calibrated model retains the weights of the encoder network
and only adjusts the weights of the decoder. In addition to
the R2 score, SNDR is a more commonly employed metric
to quantify the performance of lossy compression algorithms.
The range of acceptable R2 scores depends on the underlying
application (i.e., neural decoding, which is outside the scope of
this work). However, modern ML-based decoding algorithms
for spike-based BCIs are robust to about 10% of input spiking
errors [21], [22]. Although the signal modality of our design is
LFPs, it can be inferred that relatively high R2 scores, where the
model can account for at least 70% of the variance of the LFP
signals, may be sufficient for reliable neural decoding.

One important consideration is that the employed calibration
requires the acquisition of uncompressed LFP signals to create
the new ground truth data. Implantable BCI systems generally
operate in one of the two modes. In the “active” state, the com-
pression circuitry is enabled to reduce the transmitted data rate
while the user is engaged in the BCI task. In the “training” state,
there is no need for real-time transmission of compressed neural
signals. During the “training” state, raw LFP waveforms can be

(a)
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Electrodes D_I@_
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R R
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Fig.6. Analog front-end configuration for realizing staggered spatio-temporal

downsampling (SSTD).

recorded and transmitted for the calibration or re-training of the
AE decoder network. Recently employed BCIs, such as Neu-
raLink [9] and miniaturized implantable recording motes [50],
[51], [52], utilize near-field communication technology to estab-
lish communication with in silico microprocessors. This allows
for higher communication bandwidths and long-term data stor-
age during the “training” phase.

IV. IN VIVO ENCODER OPTIMIZATIONS

Because the encoder network will be realized in vivo, it is
imperative to investigate potential architectural optimizations
for reducing the memory requirements, computational complex-
ity, and data resolution of the encoder output. Since the DLg
requires one weight value per output node per input channel,
the total memory for the DLg is F'(N + 1). One method for
lowering the total number of parameters is to reduce F', however,
as discussed in Section III, this will result in degraded recon-
struction quality. An alternative is to lower the number of input
channels N, however, instead of selecting a subset of channels to
process, the spatial correlation among the channels is exploited
to reduce the input dimension of the network. For an efficient
signal conditioning, we propose the staggered spatio-temporal
downsampling (SSTD) recording configuration, as shown in
Fig. 6. Conventional analog front-end (AFE) circuitry for neu-
ral recording typically employs a shared ADC among various
recording sites along with low-noise amplifiers (LNAs) [53]. To
accurately sample each signal, the switching frequency of the
multiplexer f. is toggled at the rate of N fs, where N denotes
the number of recording sites sharing the ADC, and f, denotes
the sampling rate of the underlying neural signal. Due to the
relatively high inter-channel correlation within recorded neural
signals, each channel is temporally downsampled by a factor
a. This downsampling is achieved by reducing the switching
frequency f. by afactor a, providing a temporally downsampled
data stream for each recording site. Lowering the input dimen-
sion of the network by a folding factor of « reduces the total
memory requirement to F'(N/« + 1). The decoder network is
still trained to reproduce the original input dimension N and
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Fig. 7. Variations of (a) R2 scores and (b) SNDR for the first recording of
Dataset I, the Monkey K recording of Dataset II, and the Monkey L recording
of Dataset II, over various SSTD factors. The dashed lines show the metrics for
raw data, while the marked-up lines depict the trend.

predicts the samples in between the temporally downsampled
data along each input channel, i.e., the samples for times 2As
to (o — 1)As for each channel.

Fig. 7(a) and (b) shows the mean R2 scores for the recording
session I of Dataset I and the two recordings of Dataset II. It
can be seen that both the R2 performance and SNDR are data
dependent. Further, the selection of o depends on the dataset for
achieving a particular range of performance metrics. It should
be noted, however, that the variation of performance metrics
with respect to « is relatively minor, and the dataset itself
has a larger impact on the performance variation. Since the
performance of the ML-based algorithms is generally data de-
pendent, employing the SSTD configuration introduces a larger
statistical variation on Dataset I compared to that of Dataset II,
and the change is relatively linear with respect to the folding
factor. We chose to employ a folding factor of o = 12, which
reduces the memory requirement of the in vivo encoder from
776 to only 72 parameters, a 90% reduction. Lowering the input
dimension of the network by a folding factor « = 12 alsoreduces
the computational complexity of the model. The original input
consists of a multiplication of an input vector x € R**" and
a weight matrix W € RY*¥ | requiring F' x N multiplications
and F' x (N — 1) additions, while lowering the input dimen-
sion by a factor of 12, the total number of multiplications and
additions will be dropped to F' x N/12 and F x (N/12 — 1),
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Fig. 8.  Variations of the R2 score for (a) Dataset I, (b) Dataset II (K), and
(c) Dataset II (L), along with the variations of the SNDR for (d) Dataset I, (e)
Dataset II (K), and (f) Dataset II (L) over different encoder resolutions WFk
and HardTanh output resolutions WF .

respectively. Another opportunity for optimizing the in vivo
encoder is the realization of the Tanh activation function, defined
as:

e —e?

e~% 4 e*’

y= (1)
where z denotes the accumulated weighted input to the acti-
vation function. To avoid implementing the exponential and
division operators directly, the piecewise linear approximation
is commonly employed [54]. An alternative approach that does
not require linear approximation parameters is employing the
HardTanh function, defined as:

—1 if z < —1,
y=<z if —1<z<1, 2)
1 ifz>1,

, where z denotes the weighted input to the activation function,
and requires only two comparators to determine whether the
output of the function should saturate at +1 or -1.

Another consideration for efficient in vivo hardware realiza-
tion is that the encoder network parameters and activations are
represented in the fixed-point format. The baseline model is
first trained employing the SSTD configuration and the Hard-
Tanh activation function. After an initial training, the encoder
and decoder networks are split into two separate networks.
During the initial training, the encoder network’s parameters
are constrained to [-1, 1) and hence, are represented in the
fixed-point format Q(1.WFxk), where 1 and WFk denote the
number of integer and fraction bits, respectively. The output
of the HardTanh function is quantized into Q(2.WF,) format.
The decoder network is then re-trained to account for the slight
variations introduced by the encoder quantization. Fig. 8 shows
the variations in the R2 score and SNDR over values of WFyk
and WF, for Datasets I and both recordings of Dataset II. It can
be seen that the HardTanh output resolution WF has a stronger
impact on the performance variation compared to that of the
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Fig. 9. Mean (a) R2 scores and (b) SNDR of the original, re-trained, and

calibrated models using encoder quantization and SSTD over all recordings of
Dataset I, respectively. The performance of the calibrated SSTD configuration
without quantization is also shown.

encoder paramter resolution WFk. It was found that WFx =4
and WF =8 results in a 6.9% variation in the median of the R2
score values for Dataset I, a negligible 0.03% variation for the
Monkey K recording of Dataset II, and a 0.4% variation for the
Monkey L recording of Dataset IT compared to the SSTD model
with a = 12. Thus, the chosen numerical quantization have a
negligible impact on the reconstruction quality of the model. It’s
worth noting that, as shown in Fig. 8, smaller values for WF
and WFx result in a relatively lower performance variation, but
these values may be viable when primarily focusing on a single
dataset and might be unviable for a generalized realization.

Fig. 9(a) and (b) shows the mean of the R2 score and SNDR
values, respectively, of the original model, the re-trained model,
and the calibrated model, over the 30 recordings of Dataset I
with the encoder quantization and SSTD. The performance of
the SSTD configuration without quantization is also shown. It is
shown that the calibration with 10% of the training data achieves
aperformance comparable to that of the re-trained model as well
as that of the model without employing quantization. One can
see that the employed in vivo optimizations have a negligible
impact on the performance degradation of the model.

V. HARDWARE ARCHITECTURE AND IMPLEMENTATION
RESULTS

Fig. 10 shows the top-level block diagram of the designed and
implemented in vivo encoder network. It consists of an array
of normalization units, multipliers, adder trees, and HardTanh
activation function units. The normalization units are used to
normalize the input data based on the training set. The number
of normalization units D defines the number of input channels to
process simultaneously and is equal to the number of electrode
channels divided by the folding factor «. Each input channel
requires a set of normalization parameters min and range prior
to applying the DLg weights, where min and range denote the

Normalization

Units Weight Multipliers

Input | [
Data >
e E
S ®‘
MUF|
%
| ——— Bias HardTanh
nRAM - Adders  Units
- Encoder
" F Outputs
= MUF /
WRAM Adder MUF MUF
Trees
Fig. 10.  Top-level block diagram of the designed encoder network.

TABLE I
THE ASIC CHARACTERISTICS OF THE DESIGNED AND SYNTHESIZED IN VIVO
ENCODER OVER VARIOUS VALUES OF MUF

MUF | Freq. (kHz) | Area (mm?) | Power (W)
1 16 1.25 10
2 8 1.37 7.6
4 4 1.94 7.35
8 2 2.11 10.4

channel’s minimum and the range of amplitude values stored in
the normalization parameter memory nRAM, respectively. The
model parameters are stored in the weight parameter memory
wRAM. Each bank of weight multipliers and its associated adder
tree computes the accumulation of the weighted inputs. The
weighted sums are biased with the adders and then the HardTanh
activation function is applied.

The multiplier unfolding factor parameter MUF denotes the
number of weighted sums computed per clock cycle. For exam-
ple, with MUF = 1, it would take eight clock cycles to compute
the eight outputs of the in vivo encoder. For a throughput equal to
the sampling rate f;, a clock frequency equal to 8 f, is required.
To find an optimal value for MUF, the encoder network is
synthesized with =12 for the MUF values of 1, 2, 4, and
8. The logic synthesis was performed using Synopsys Design
Compiler and the place and route was performed with Cadence
Innovus in a standard 180-nm CMOS process. To estimate the
power consumption of the design, the post-routed netlist was
simulated using Synopsys Verilog Compiler Simulator (VCS)
by applying a testing subset of the Dataset I to the post-routed
netlist. Table I gives the dynamic power consumption and area
utilization of the designed in vivo encoder over various values of
MUF. Reducing the operating frequency to fs would naturally
reduce the dynamic power consumption, however, it was found
that MUF = 4 consumes the least power due to requiring half
the number of adder trees and hardware of those for MUF = 8.
The ASIC layout of the synthesized in vivo encoder with MUF
= 4 is shown in Fig. 11 and is estimated to occupy 1.94 mm? of
silicon area in a standard 180-nm CMOS process.

Table II gives the ASIC characteristics and implementation
results of various previously published intra-cortical neural sig-
nal compression designs. Both lossless and lossy compression
modalities have been reported. Since the main focus is on the
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TABLE II
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF IN VIVO NEURAL SIGNAL COMPRESSION ASICS

Work Algorithm Tech. (nm) | Supply (V) | Area/ch. (mm?)" | Power/ch. (uW)T | CR SNDR (dB)
DRR,

[17] | Huffman coding 180 1.8 0.039 3.57 458 -

(Lossless)

DRR

[18] (Lossless) 130 12 0.008 15.8 2 -

[25] CS (Lossy) 180 12 0.008 3.55 4 ~14

[55] CS (Lossy) 130 12 0.087 31.003 10 -

[56] CS (Lossy) 180 - - 43 8 9.78

Dataset I: 15+ 3
Ours AE (Lossy) 180 1.8 0.002 0.076 192 | et I 19 4 3

T Normalized to a 180-nm CMOS process with a 1.8 V supply as described in [57],

1.39

r
» mm

A

1.39

Fig.11.  1.94mm? ASIC layout of the synthesized in vivo encoder in a standard
180-nm CMOS process.

efficient design and implementation of the compression circuits,
the ASIC characteristics and implementation results provided in
Table II exclusively take into account the silicon area and power
consumption of the in vivo compression circuits to ensure a
fair comparison. While there are several techniques for lossless
compression, the most commonly employed methods for com-
pressing neural signals involves the dynamic range reduction
(DRR) and variable wordlength encoding. In [17], the spatial and
temporal correlation of neural signals were exploited to reduce
the dynamic range of LFPs. First, a temporal difference was
applied to the signal followed by removing the spatial average of
groups of 16 recording channels. Then, Huffman encoding was
applied to compress the LFPs to 2 or 3 bits prior to transmission.
With the input LFPs represented using 11 bits, this resulted
in an average compression rate of 4.58. The reported design
compressed temporally-sparse spike waveforms by performing
spike detection and transmitting only spike events rather than
the continuous waveforms. For a fair comparison, our design is
compared with the digital LFP compression hardware, which
was reported to consume 3.59 uW of power per channel from a
1.8 V supply operating at 2 kHz. A similar lossless compression
scheme was reported in [18] where the dynamic range of the
signals was reduced by applying common-average referencing
and subtracting this baseline from all channels prior to transmis-
sion. However, rather than encoding the signals, the baseline was

accounting only for the in vivo digital compression circuitry.

transmitted for in silico reconstruction, resulting in an average
compression rate of 2. The compression circuit was estimated
to consume 6.4 W of power per channel from a 1.2 V supply
when operating at 400 kHz. In [25], an analog-based realization
of a CS-based compression scheme was reported. The sensing
matrix consists of samples uniformly selected from the Bernoulli
distribution and achieves a compression rate of up to 16. The
design was implemented in a 180-nm technology operating at
4 kHz and consuming 0.95 yW of power from a 1.2 V supply.
In [55], another CS-based compression ASIC was presented,
employing a novel Manhattan distance cluster-based sensing
matrix for compressing multi-channel neural signals, achieving
the compression rate of 10. The design was implemented in a
130-nm CMOS process and the simulated power consumption
was 12.5 puW per channel from a 1.2 supply voltage. The
CS-based compression system-on-chip reported in [56] was
estimated to consume 4.8 uW per channel and to achieve a
compression rate of 8.

As given in Table II, the designed and implemented
autoencoder-based compression scheme consumes the lowest
power per channel, while achieving a significantly higher com-
pression rate than the previously reported designs. Compared
to the compressed sensing methods for spatial dimensionality
reduction, the designed and implemented autoencoder-based
compression scheme offers reduction in power due to the spatio-
temporal downsampling that drastically reduces the complexity
of the encoder network. Additionally, the units in the encoder
network learn to share parameters among different input chan-
nels, which has a small impact on its reconstruction quality, as
was shown in Section I'V. For practical BCI applications in which
subsequent decoding and processing may tolerate reconstruc-
tion and wireless transmission errors reasonably well, the lossy
methods with a greater compression ratio offer a more viable
approach. Nevertheless, even though the lossless methods do
not achieve relatively high compression ratios, their true signal
reconstruction capability is a valuable attribute for carefully
analyzing neural signals in silico.

Table III gives the power consumption of various neural sig-
nal processing ASICs employing alternative signal modalities.
In [27] MUAs were obtained by performing spike detection.
In [32] the data rate was further reduced by obtaining SUAs
using spike detection and in vivo spike sorting. In [34] SUAs
were obtained by compressing detected spike waveforms using
an in vivo AE. Waveform reconstruction and spike sorting were

Authorized licensed use limited to: San Diego State University. Downloaded on July 31,2024 at 17:05:53 UTC from IEEE Xplore. Restrictions apply.



VALENCIA et al.: EFFICIENT IN VIVO NEURAL SIGNAL COMPRESSION USING AN AUTOENCODER-BASED NEURAL NETWORK 699

TABLE III
POWER CONSUMPTION OF THE IN VIVO NEURAL SIGNAL PROCESSING ASICS
EMPLOYING MUA, SUA, AND LFP NEURAL SIGNALS

Neural Power/ch. (uW)T Power/ch. (uW)
Work | signal Method in vivo digital AFE
signal processing
Spike
(271 MUAs detection 0.64
[32] - 74
SUAs Spl.ke 2.02
sorting
[34] 4.09
Ours | LFPs AE-based 0.076 1.4%
compression
1 Normalized to a 180-nm CMOS process with a 1.8 V supply.

1 Assuming the reduced sample rate and bandwidth requirements for LFPs
over spike-based recordings [21], accounting only for the in vivo digital
signal processing circuitry.

performed in silico. Evidently, employing more in vivo neural
signal processing would consume more power per recording
channel. The analog front end (AFE) of the neural recording
circuitry, which consists of low-noise amplifiers and analog-to-
digital converters, typically consume an average of 7.4 uW of
power per channel [58]. The power consumption of the LNAs
depend on various factors, such as the acceptable input-referred
noise and whether chopper-stabilization is required to mitigate
dominant flicker noise [59]. Additionally, the power consump-
tion of the amplifier is also proportional to the width of the
frequency band of interest [21], which for LFPs is about five
times smaller than that of spikes. Conventional AFEs often
employ successive approximation register (SAR) ADCs, whose
power consumption is relatively linearly proportional to the
sampling rate f; [60], [61]. Therefore, it is reasonable to assume
that reducing both the amplifier bandwidth and ADC sampling
rate by a factor of five would yield a similar reduction in
power consumption, approximately 7.4/5 = 1.5 uW per chan-
nel. Therefore, the compression of LFPs would provide a more
scalable recording scheme for BCIs employing high-density
MEAs.

Intracortical BCIs must operate within strict low-power con-
straints to prevent heating of the brain tissues beyond 1 ° C, as
outlined by the Food and Drug Administration. A maximum
power budget of 7.7 mW has been reported for neural im-
plants with wireless power transfer, based on 15-mm receiving
antennas implanted on the cortical surface of the brain with
an RF operating frequency of 2.02 GHz. Further analyses of
different antenna sizes at various brain depths and their maxi-
mum power budgets are discussed in [16]. Fig. 12(a) shows the
total power consumption for detecting MUASs and compressing
LFPs with the designed AE-based digital circuit (including
that of the AFE and wireless transmission), and the implant’s
power budget. Given a wireless transmission power of 158
pJ/bit [62], it becomes evident that the proposed compression
would enable simultaneous recording from over 3000 channels,
a significant increased compared to spike-based counterparts.
Fig. 12(b) shows the supported data rates for transmitting MUAsS,
LFPs, and compressed LFPs over various number of channels.
Considering the highest Bluetooth data rate of 2 Mbps, it can
be seen that the transmission of raw LFPs is only feasible for
fewer than 100 recording channels. The proposed AE-based
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Fig. 12.  (a) The total power consumption for detecting MUAs and compressed
LFPs (including that of the AFE and wireless transmission) and (b) the supported
data rate for MUAS, raw LFPs, and compressed LFPs over various number of
channels.

compression scheme would make it possible to significantly
increase the number of recording channels, approaching that
of MUAs. Accounting for both the 7.7 mW implant’s power
budget and also the maximum data rate of 2 Mbps, the maximum
number of channels to transmit raw LFPs is only 62, whereas
that for MUASs with one millisecond bins is 878. By employing
the designed AE-based compression, however, the maximum
number of recording channels can be increased to 1152, an
18 times improvement over that for raw LFPs and a 1.3 times
improvement over that for MUAs. In the above comparison,
we assumed the conventional independent processing of multi-
channel signals. To enhanced the overall density of intracortical
electrodes, modern realizations of recording ICs decrease the
electrode pitch by suppressing the sensitivity around the record-
ing electrodes to avoid multiple detections of the same action
potential. This isolation effectively reduces the overall process-
ing of the neuronal data and in vivo power consumption. [44],
[63].

VI. CONCLUSION

This article presents the design and implementation of an
autoencoder-based compression scheme for in vivo compression
of neural signals. Various optimization schemes were employed
for the efficient hardware realization of the designed circuits.
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Using two widely-employed neural datasets, we discussed and
composed the reconstruction performance of the designed com-
pression scheme against other state-of-the-art designs. We pre-
sented an application-specific integrated circuit of the designed
in vivo encoder in a standard 180-nm CMOS process, estimated
to occupy 0.02 mm? per channel and consume 0.076 W of
power per channel from a 1.8 V supply. Compared to the recently
reported compression integrated circuits, the designed and syn-
thesized compression architecture occupies the least silicon area,
consumes the least power, offers the highest compression rate
of over 19 times, and achieves a mean reconstruction quality of
17 dB over two datasets.

VI. DATA AVAILABILITY

The data presented in this study are openly available in Zen-
odo at https://doi.org/10.5281/zenodo.3854034, reference [45]
(Dataset I) and in G-Node at https://doi.org/10.12751/g-node.
83565, reference [48] (Dataset II).
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