
Published as a conference paper at ICLR 2024

A TOPOLOGICAL PERSPECTIVE ON DEMYSTIFYING

GNN-BASED LINK PREDICTION PERFORMANCE

Yu Wang1, Tong Zhao2, Yuying Zhao1, Yunchao Liu1, Xueqi Cheng1, Neil Shah2, Tyler Derr1

1Vanderbilt University 2Snap Inc.
{yu.wang.1,yuying.zhao,yunchao.liu,xueqi.cheng,tyler.derr}@vanderbilt.edu
{tzhao,nshah}@snap.com

ABSTRACT

Graph Neural Networks (GNNs) have shown great promise in learning node em-
beddings for link prediction (LP). While numerous studies improve the overall
GNNs’ LP performance, none have explored their varying performance across
different nodes and the underlying reasons. To this end, we demystify which
nodes perform better from the perspective of their local topology. Despite the
widespread belief that low-degree nodes exhibit worse LP performance, we sur-
prisingly observe an inconsistent performance trend. This prompts us to propose
a node-level metric, Topological Concentration (TC), based on the intersection
of the local subgraph of each node with the ones of its neighbors. We empiri-
cally demonstrate that TC correlates with LP performance more than other node-
level topological metrics, better identifying low-performing nodes than using de-
gree. With TC, we discover a novel topological distribution shift issue in which
nodes’ newly joined neighbors tend to become less interactive with their exist-
ing neighbors, compromising the generalizability of node embeddings for LP at
testing time. To make the computation of TC scalable, We further propose Ap-
proximated Topological Concentration (ATC) and justify its efficacy in approxi-
mating TC with reduced computation complexity. Given the positive correlation
between node TC and its LP performance, we explore the potential of boosting
LP performance via enhancing TC by re-weighting edges in the message-passing
and discuss its effectiveness with limitations. Our code is publicly available at
https://github.com/YuWVandy/Topo LP GNN.

1 INTRODUCTION

Recent years have witnessed unprecedented success in applying link prediction (LP) in real-world
applications (Ying et al., 2018; Rozemberczki et al., 2022). Compared with heuristic-based (Brin &
Page, 1998; Liben-Nowell & Kleinberg, 2003) and shallow embedding-based LP approaches (Per-
ozzi et al., 2014; Grover & Leskovec, 2016), GNN-based ones (Zhang & Chen, 2018; Chamber-
lain et al., 2022) have achieved state-of-the-art (SOTA) performance; these methods first learn
node/subgraph embeddings by applying linear transformations with message-passing and a de-
coder/pooling layer to predict link scores/subgraph class. While existing works are dedicated to
boosting overall LP performance (Zhao et al., 2022; Chen et al., 2021b) by more expressive message-
passing or data augmentation, it is heavily under-explored whether different nodes within a graph
would obtain embeddings of different quality and have varying LP performance.

Previous works have explored GNNs’ varying performance on nodes within a graph, considering
factors like local topology (e.g., degree and homophily/heterophily) (Tang et al., 2020; Mao et al.,
2023), feature quality (Taguchi et al., 2021), and class quantity (Zhao et al., 2021a). While these
studies have provided significant insights, their focus has primarily remained on node/graph-level
tasks, leaving the realm of LP unexplored. A more profound examination of the node-varying LP
performance can enhance our comprehension of network dynamics (Liben-Nowell & Kleinberg,
2003), facilitate timely detection of nodes with ill-topology (Lika et al., 2014), and inspire cus-
tomized data augmentation for different nodes (Zhao et al., 2021b). Recognizing the criticality of
studying the node-varying LP performance and the apparent gap in the existing literature, we ask:

Can we propose a metric that measures GNNs’ varying LP performance across different nodes?

1



Published as a conference paper at ICLR 2024

Figure 1: Average LP performance of nodes across different degree groups based on DegreeTrain(i.e.,
node degree by training edges) on Collab/Citation2. In (a)-(b), Performance@10 does not increase
as the node degree increases. In (c)-(d), few/lower-degree nodes do not perform worse than their
higher-degree counterparts. Detailed experimental setting is included in Appendix F

To answer an analogous question in node classification, prior works observed that GNNs perform
better on high-degree nodes than low-degree nodes (Tang et al., 2020; Liu et al., 2021). Simi-
larly, the persistent sparse topology issue in the general LP domain and recommender systems (Hao
et al., 2021; Li et al., 2021) indicates that nodes with zero-to-low degrees lag behind their high-
degree counterparts. However, as surprisingly shown in Figure 1(a)-(b), GNN-based LP on these
two large-scale social networks does not exhibit a consistent performance trend as the node degree
increases. For example, the performance@10 on Collab under all evaluation metrics decreases as
the node degree increases, while on Citation2, performance@10 first increases and then decreases.
This counter-intuitive observation indicates the weak correlation between the node degree and LP
performance, which motivates us to design a more correlated metric to answer the above question.

Following (Zhang & Chen, 2018) that the link formation between each pair of nodes depends on the
interaction between their local subgraphs, we probe the relation between the local subgraphs around
each node and its GNN-based LP performance. Specifically, we propose Topological Concentration
(TC) and its scalable version, Approximated Topological Concentration (ATC), to measure the topo-
logical interaction between the local subgraph of each node and the local subgraphs of the neighbors
of that node. Our empirical observations show that TC offers a superior characterization of node LP
performance in GNNs, leading to 82.10% more correlation with LP performance and roughly 200%
increase in the performance gap between the identified under-performed nodes and their counterparts
than degree. Moreover, with TC, we discover a novel topological distribution shift (TDS) in which
newly joined neighbors of a node tend to become less interactive with that node’s existing neigh-
bors. This TDS would compromise the generalizability of the learned node embeddings in LP at the
testing time. Given the closer correlation between TC and LP performance, we reweigh the edges
in message-passing to enhance TC and discuss its efficacy/limitations in boosting LP performance.
Our contributions are summarized as follows:

• We propose Topological Concentration (TC) and demonstrate it leads to 82.10% more correlation
with LP performance and roughly 200% increase in the performance gap between the identified
under-performed nodes and their counterparts than node degree, shedding new insights on degree-
related issues in LP. We further propose Approximated Topological Concentration (ATC) and
demonstrate it maintains high correlations to the LP performance similar to TC while significantly
reducing the computation complexity.

• We uncover a novel Topological Distribution Shift (TDS) issue according to TC and demonstrate
its negative impact at the node/graph level for link prediction at the testing time. Moreover, we
discover that different nodes within the same graph can have varying amounts of TDS.

• We design a TC-inspired message-passing where a node aggregates more from neighbors that have
more connections to the local subgraph of that node, which can enhance the node’s weighted TC.
We observe this empirically boosts LP performance and lastly discuss its noncausal limitations.

2



Published as a conference paper at ICLR 2024

2 RELATED WORK

Varying Performance of GNNs on Node/Graph Classification. GNNs’ efficacy in classifica-
tion differs across nodes/graphs with varying label quantity (e.g., imbalanced node/graph classifica-
tion (Zhao et al., 2021a; Wang et al., 2022b)) and varying topology quality (e.g., long-tailed (Tang
et al., 2020; Liu et al., 2021)/heterophily node classification (Zhu et al., 2020; Mao et al., 2023)). To
enhance GNNs’ performance for the disadvantaged nodes/graphs in these two varying conditions,
previous works either apply data augmentations to derive additional supervision (Wang et al., 2021;
Park et al., 2021) or design expressive graph convolutions to mitigate structural bias (Zhu et al.,
2021; Han et al., 2023). However, none of them tackle the varying performance of nodes in LP. We
fill this gap by studying the relationship between node LP performance and its local topology.

GNN-based LP and Node-Centric Evaluation. GNN-based LP works by first learning node em-
beddings/subgraph embeddings through linear transformation and message-passing, and then ap-
plying the scoring function to predict link probability/subgraph class (Zhang & Chen, 2018; Yin
et al., 2022; Wang et al., 2022c; Tan et al., 2023). It has achieved new SOTA performance owing
to using the neural network to extract task-related information and the message-passing to encode
the topological properties (e.g., common neighbors) (Yun et al., 2021; Chamberlain et al., 2022).
Existing GNN-based LP baselines evaluate performance by computing the average rank of each
link against the randomly sampled negative links (Hu et al., 2020). However, because these sam-
pled negative links only count a tiny portion of the quadratic node pairs, this evaluation contains
positional bias (Li et al., 2023). In view of this issue, we leverage the node-centric evaluation met-
rics (Precision/F1/NDCG/Recall/HitsN@K) that are frequently used in recommender systems (Gori
et al., 2007; He et al., 2020) and rank each node against all other nodes in predicting the incoming
neighbors. Detailed definitions of these evaluation metrics are provided in Appendix C.

Varying Performance of GNNs on LP. As LP nowadays has been heavily used to enhance user
experience in social/e-commerce recommendations (Fan et al., 2019; Zhao et al., 2023), studying
its varying performance across different users has real-world applications Zhao et al. (2024) such as
identifying users with ill-topology. Although no efforts have been investigated into the node-varying
performance in GNN-based LP, prior work (Li et al., 2021; Rahmani et al., 2022; Guo et al., 2024)
have investigated the relation of node-varying LP performance with its degree, and both claimed that
users/nodes with higher activity levels/degrees tend to possess better recommendation performance
than their less active counterparts, which also aligns with observations in GNN-based node classi-
fication (Tang et al., 2020; Liu et al., 2021). However, Figure 1(c)-(d) has already raised concern
over the validity of this claim in LP. We follow (Wang & Derr, 2022) and theoretically discover that
some node-centric evaluation metrics have degree-related bias in Appendix D.2, implying that the
GNNs’ varying LP performance could be partially attributed to the choice of evaluation metrics. To
mitigate this bias, we employ a full spectrum of evaluation metrics and find that degree is not so
correlated with the node LP performance. This motivates us to devise a better topological metric
than the degree. Note that although some prior works also define cold-start nodes to be the ones
with few degrees, we systematically review their connections and differences in Appendix B.

3 TOPOLOGICAL CONCENTRATION

3.1 NOTATIONS

Let G = (V, E ,X) be an attributed graph, where V = {vi}
n
i=1 is the set of n nodes (i.e., n = |V|)

and E ¦ V × V is the set of m observed training edges (i.e., m = |E|) with eij denoting the edge

between the node vi and vj , and X ∈ R
n×d represents the node feature matrix. The observed

adjacency matrix of the graph is denoted as A ∈ {0, 1}n×n with Aij = 1 if an observed edge exists
between node vi and vj and Aij = 0 otherwise. The diagonal matrix of node degree is notated as
D ∈ Z

n×n with the degree of node vi being di = Dii =
∑n

j=1 Aij . For the LP task, edges are

usually divided into three groups notated as T = {Train,Val,Test}, i.e., training, validation, and
testing sets, respectively. We denote N t

i , t ∈ T as node vi’s 1-hop neighbors according to edge
group t. Furthermore, we denote the set of nodes that have at least one path of length k to node i
based on observed training edges as Hk

i and naturally H1
i = N Train

i . Note that Hk1

i ∩ Hk2

i is not
necessarily empty since neighbors that are k1-hops away from vi could also have paths of length k2
reaching vi. We collect vi’s neighbors at all different hops until K to form the K-hop computation
tree centered on vi as SK

i = {Hk
i }

K
k=1. We summarize all notations in Table 2 in Appendix A.

3



Published as a conference paper at ICLR 2024

Figure 2: (a)-(b): vi’s Topological Concentration: we calculate the average intersection between
vi’s computation tree and each of vi’s neighbor’s computation tree. The intersection between two
computation trees is the ratio of the observed intersections to all possible intersections. (c)-(d): two
specifications of TC, corresponding to social and e-commerce networks. A higher triangle/square-
based concentration indicates more triangles/squares are formed among v0’s local subgraph.

3.2 TOPOLOGICAL CONCENTRATION: INTUITION AND FORMALIZATION

As the link formation between a node pair heavily depends on the intersection between their lo-
cal subgraphs (Zhang & Chen, 2018; Chamberlain et al., 2022), we similarly hypothesize that the
predictability of a node’s neighbors relates to the intersection between this node’s subgraph and
the subgraphs of that node’s neighbors, e.g., the prediction of the links {(i, jk)}

2
k=0 in Figure 2(a)

depends on the intersection between SK
i and {SK

jk
}2k=0. A higher intersection leads to higher LP

performance. For example, in Figure 2(c)-(d), v0 neighbors closely interact with themselves while
v′0 neighbors do not, posing different topological conditions for the LP on v0 and v′0. From graph
heuristics perspective, v0 shares common neighbors v1, v2, v3 with its incoming validation neighbors
v4, v5 while v′0 shares no neighbors with v′4, v

′
5. From the message-passing perspective, the prop-

agated embeddings of v0 and v4, v5 share common components since they all aggregate {vk}
3
k=1

embeddings while v′0 and v′4, v
′
5 do not share any common embeddings among {v′k}

3
k=1. When the

subgraph (i.e., computation tree) surrounding a node increasingly overlaps with the subgraphs of its
neighbors, more paths originating from that node are likely to loop nearby and eventually return to
it, resulting in a more dense/concentrated local topology for that node. Inspired by this observation,
we introduce Topological Concentration to measure the average level of intersection among these
local subgraphs as follows:

Definition 1. Topological Concentration (TC): The Topological Concentration CK,t
i for node

vi ∈ V is defined as the average intersection between vi’s K-hop computation tree (SK
i ) and the

computation trees of each of vi’s type t neighbors:

CK,t
i = Evj∼N t

i
I(SK

i ,SK
j ) = Evj∼N t

i

∑K

k1=1

∑K

k2=1β
k1+k2−2|Hk1

i ∩Hk2

j |
∑K

k1=1

∑K

k2=1 β
k1+k2−2g(|Hk1

i |, |Hk2

j |)
(1)

∀vi ∈ V, ∀t ∈ T , where I(SK
i ,SK

j ) quantifies the intersection between the K-hop computation

trees around vi and vj , and is decomposed into the ratio of the observed intersections |Hk1

i ∩ Hk2

j |

to the total possible intersections g(Hk1

i ,Hk2

j ) between neighbors that are k1 and k2 hops away as

shown in Figure 2(b). βk1+k2−2 accounts for the exponential discounting effect as the hop increases.
The normalization term g is a function of the size of the computation trees of node vi, vj (Fu et al.,
2022). Although computation trees only consist of edges from the training set, vi’s neighbors N t

i

in Eq. (1) could come from training/validation/testing sets, and we term the corresponding TC as

TCTrain, TCVal, TCTest and their values as CK,Train
i , CK,Val

i , CK,Test
i . We verify the correlation between

TC and the node LP performance in Section 3.3.

4



Published as a conference paper at ICLR 2024

Figure 3: (a)/(d): The average LP Performance of nodes on Collab/Citation2 monotonically in-
creases as the TCTrain increases. (b)/(c): TCTrain mostly achieves the highest Pearson Correlation
with LP performance on Citeseer/Vole than DegreeTrain and Subgraph Density metrics. (e): LP
performance is positively correlated to TCTrain across different network datasets. The deviation of
Collab under both GCN and LightGCN baselines from the primary linear trend might be attributed
to the duplicated edges in the network that create the illusion of a higher TCTrain.

3.3 TOPOLOGICAL CONCENTRATION: OBSERVATION AND ANALYSIS

In this section, we draw three empirical observations to delve into the role of TC in GNN-based LP.
For all experiments, we evaluate datasets with only the topology information using LightGCN and
those also with node features using GCN/SAGE (Kipf & Welling, 2016; Hamilton et al., 2017; He
et al., 2020)1. Detailed experimental settings are described in Appendix F. Please note that while the
findings illustrated in this section are limited to the presented datasets due to page limitation, more
comprehensive results are included in Appendix G.

Obs. 1. TC correlates to LP performance more than other node topological properties. In
Figure 3 (a)/(d), we group nodes in Collab/Citation2 based on their TCTrain and visualize the av-
erage performance of each group. Unlike Figure 1(a)/(b), where there is no apparent relationship
between the performance and the node degree, the performance almost monotonically increases as
the node TCTrain increases regardless of the evaluation metrics. This demonstrates the capability
of TCTrain in characterizing the quality of nodes’ local topology for their LP performance. More-
over, we quantitatively compare the Pearson Correlation of the node LP performance with TCTrain

and other commonly used node local topological properties, DegreeTrain (i.e., the number of training
edges incident to a node) and SubGraph Density (i.e., the density of the 1-hop training subgraph
centering around a node). As shown in Figure 3(b)/(c), TCTrain almost achieves the highest Pearson
Correlation with the node LP performance across every evaluation metric than the other two topo-
logical properties except for the precision metric. This is due to the degree-related evaluation bias
implicitly encoded in the precision metric, i.e., even for the untrained link predictor, the precision of
a node still increases linearly as its degree increases, as proved in Theorem 3. Note that the node’s
1-hop Subgraph Density equals its local clustering coefficient (LCC), and one previous work (Pan
et al., 2022) has observed its correlation with node LP performance. To justify the advantages of
TCTrain over LCC, we provide a concrete example in Appendix E. Additionally, Figure 3(e) shows
that TCTrain also positively correlated with LP performance across various networks, depicting a
preliminary benchmark for GNNs’ LP performance at the graph level (Palowitch et al., 2022). The
LightGCN architecture exhibits a steeper slope than GCN, as it relies exclusively on network topol-
ogy without leveraging node features and thus is more sensitive to changes in the purely topological
metric, TC. The deviation of Collab under both GCN and LightGCN baselines from the primary
linear trend might be attributed to the duplicated edges in the network that create the illusion of a
higher TCTrain (Hu et al., 2020).

1Due to GPU memory limitation, we choose SAGE for Citation2.

5



Published as a conference paper at ICLR 2024

Figure 4: (a)/(d): The average LP performance of nodes with extremely low TCTrain on Col-
lab/Citation2 almost monotonically increases as TCTrain increases. (b)/(e): Nodes with lower
DegreeTrain surprisingly perform better than their higher degree counterparts (Blue curves). In con-
trast, non-concentrated nodes identified by owning lower TCTrain in most cases perform worse than
their concentrated counterparts (Red curves). (c)/(f): As node DegreeTrain increases, the ratio of
nodes owning higher TCTrain increases first and then decreases, corresponding to the observed first-
increasing-and-then-decreasing performance trend in Figure 1(c)/(d).

Obs. 2. TC better identifies low-performing nodes than degree, and lower-degree nodes may
not necessarily have lower LP performance.

As previously shown in Figure 1(c)/(d), when the node degree is at the very low regime, we
do not observe a strict positive relationship between node DegreeTrain and its LP performance.
For example, the node Recall/MRR/NDCG@10 in Collab decreases as DegreeTrain increases and
HitsN /F1/Precision@10 first increases and then decreases. These contradicting observations fa-
cilitate our hypothesis that the degree might not fully capture the local topology in characterizing
the underperforming nodes. Conversely, in Figure 4(a)/(d) on Collab/Citation2, nodes with lower
TCTrain almost always have worse LP performance under all evaluation metrics except when TCTrain

is between [0, 0.02). For this extreme case, we ascribe it to the distribution shift as nodes with ex-
tremely low TCTrain generally have a decent TCTest (shown in Figure 20) and sustain a reasonable
LP performance. We thoroughly investigate this distribution shift issue in Obs. 3. Furthermore,
we select nodes with DegreeTrain from 1 to 10 and group them into ‘Lower-degree/Higher-degree’.
Similarly, we select nodes with TCTrain from 0.01 to 0.1 and group them into ‘Concentrated/Non-
Concentrated’. We compare their average LP performance on Collab/Citation2 in Figure 4(b)/(e).
Intriguingly, Lower-degree nodes always perform better than their Higher-degree counterparts across
all DegreeTrain thresholds. This brings nuances into the conventional understanding that nodes with a
weaker topology (lower degree) would yield inferior performance (Li et al., 2021; Tang et al., 2020;
Liu et al., 2021). In contrast, with our defined TCTrain, non-concentrated nodes (lower TCTrain) gen-
erally underperform by a noticeable margin than their concentrated counterparts (higher TCTrain).

We further visualize the relation between DegreeTrain and TCTrain in Figure 4(c)/(f). When node
DegreeTrain increases from 1 to 4, the ratio of nodes owning higher TCTrain also increases because
these newly landed nodes start forming interactions and create their initial topological context. Since
we have already observed the positive correlation of TCTrain to nodes’ LP performance previously,
the LP performance under some evaluation metrics also increases as the DegreeTrain initially in-
creases from 0 to 4 observed in Figure 1(c)/(d). When DegreeTrain increases further beyond 5, the
ratio of nodes owning higher TCTrain gradually decreases, leading to the decreasing performance ob-
served in the later stage of Figure 1(c)/(d). This decreasing TCTrain is because, for high DegreeTrain

nodes, their neighbors are likely to lie in different communities and share fewer connections among
themselves. For example, in social networks, high-activity users usually possess diverse relations
in different online communities, and their interacted people are likely from significantly different
domains and hence share less common social relations themselves Zhao et al. (2021c; 2024).

6



Published as a conference paper at ICLR 2024

Figure 5: (a) HitsN@10 of predicting training/validation/testing edges on Cora/Citeseer/Collab. The
gap between validation and testing performance is much bigger on Collab than on Cora/Citeseer.
(b) Compared with Cora/Citeseer where edges are randomly split, the distribution of the difference
between TCVal and TCTest shifts slightly right on Collab where edges are split according to time,
indicating the interaction between training and testing neighbors become less than the one between
training and validation neighbors. (c) As the gap between TCVal and TCTest increases for different
nodes, their corresponding performance gap also increases, demonstrating TDS varies among dif-
ferent nodes even within the same graph.

Obs. 3. Topological Distribution Shift compromises the LP performance at testing time, and
TC can measure its negative impact at both graph and node level. In real-world LP scenarios,
new nodes continuously join the network and form new links with existing nodes, making the whole
network evolve dynamically (Ma et al., 2020; Rossi et al., 2020). Here, we discover a new Topo-
logical Distribution Shift (TDS) issue, i.e., as time goes on, the newly joined neighbors of a node
become less interactive with that node’s old neighbors. Since the edges serving message-passing
and providing supervision only come from the training set, TDS would compromise the capability
of the learned node embeddings for predicting links in the testing set. As verified in Figure 5(a), the
performance gap between validation and testing sets on Collab where edges are split according to
time is much more significant than the one on Cora/Citeseer where edges are split randomly. Note
that the significantly higher performance on predicting training edges among all these three datasets
is because they have already been used in the training phase (Wang et al., 2023), and this distribu-
tion shift is different from TDS. As TC essentially measures the interaction level among neighbors
of a particular node, we further visualize the distribution of the difference between TCVal and TCTest

in Figure 5(b). We observe a slight shift towards the right on Collab rather than on Cora/Citeseer,
demonstrating nodes’ testing neighbors become less interactive with their training neighbors than
their validation neighbors. Figure 4(c) further demonstrates the influence of this shift at the node
level by visualizing the relationship between TDS and the performance gap. We can see that as the
strength of such shift increases (evidenced by the larger difference between TCVal and TCTest), the
performance gap also increases. This suggests that nodes within the same graph display varying
levels of TDS. As one potential application, we can devise adaptive data valuation techniques or
message-passing mechanisms to selectively use neighborhood information (i.e., emphasize less on
stale edges in LP as Chamberlain et al. (2022) did). We demonstrate one use-case in Appendix K.

3.4 TOPOLOGICAL CONCENTRATION: COMPUTATIONAL COMPLEXITY AND OPTIMIZATION

Calculating TC following Eq. (1) involves counting the intersection between two neighboring sets
that are different hops away from the centering nodes in two computation trees. Assuming the

average degree of the network is d̂, the time complexity of computing CK,t
i for all nodes in the

network is O(|E|
∑K

k=1

∑K

k=1 min(d̂k1 , d̂k2)) = O(K2|E||V|) ≈ O(K2|V|2) for sparse networks,
which increases quadratically as the size of the network increases and is hence challenging for large-
scale networks. To handle this issue, we propagate the randomly initialized Gaussian embeddings in
the latent space to approximate TC in the topological space and propose Approximated Topological
Concentration as follows:

Definition 2. Approximated Topological Concentration (ATC): Approximated topological con-

centration C̃K,t
i for vi ∈ V is the average similarity between vi and its neighbors’ embeddings

initialized from Gaussian Random Projection (Chen et al., 2019) followed by row-normalized graph

diffusion Ã
k (Gasteiger et al., 2019), with φ as the similarity metric function:

C̃K,t
i = Evj∼N t

i
φ(Ni,Nj), N =

K∑

k=1

αkÃ
k
R, R ∼ N (0d,Σd) (2)

7



Published as a conference paper at ICLR 2024

Theorem 1. Assuming g(|Hk1

i |, |Hk2

j |) = |Hk1

i ||Hk2

j | in Eq. (1) and let φ be the dot-product based

similarity metric (He et al., 2020), then node vi’s 1-layer Topological Concentration C1,t
i is linear

correlated with the mean value of the 1-layer Approximated Topological Concentration µ
C̃

K,t
i

as:

C1,t
i ≈ d−1µE

vj∼Nt
i
(E1

j
)¦E1

i
= d−1µ

C̃
1,t
i

, (3)

where E1 ∈ R
n×d denotes the node embeddings after 1-layer SAGE-style message-passing and d is

the embedding dimension. The full proof is in Appendix D. This theorem bridges the gap between
TC defined in the topological space and ATC defined in the latent space, which theoretically justifies
the effectiveness of this approximation. Computationally, obtaining node embeddings N in Eq. (2)
is free from optimization, and the graph diffusion can be efficiently executed via power iteration,
which reduces the complexity to O(Kd(|E| + |V|)). Note that although we only demonstrate the
approximation power for the case of 1-layer message-passing, we empirically verify the efficacy for
higher-layer message-passing in the following.

Figure 6: ATCTrain maintains a similar level
of correlation to TCTrain while significantly
reducing the computational time.

We compare TCTrain and ATCTrain under various
number of hops in terms of their computational
time and their correlation with LP performance in
Figure 6. As the number of hops increases, the
running time for computing TC increases exponen-
tially (especially for large-scale datasets like Col-
lab, we are only affordable to compute its TCTrain

up to 3 hops) while ATC stays roughly the same.
This aligns with the quadratic/linear time complex-
ity O(K2|V|2)/O(Kd(|E|+ |V|)) we derived earlier
for TC/ATC. Moreover, ATC achieves a similar level of correlation to TC at all different hops. For
both TC and ATC, their correlations to LP performance increase as the number of hops K used in
Eq. (1)-Eq. (2) increases. This is because larger K enables us to capture intersections among larger
subgraphs and hence accounts for more common neighbor signals (Chamberlain et al., 2022). We
include comprehensive analysis including (A)TCVal/(A)TCTest in Appendix J.

4 TOPOLOGICAL CONCENTRATION: BOOSTING GNNS’ LP PERFORMANCE

From the aforementioned observations, TC consistently exhibits a stronger correlation with GNNs’
LP performance than other commonly used node topological metrics. This insight motivates us to
explore the potential of boosting GNNs’ LP performance via enhancing TCTrain. Specifically, we
propose to vary the edge weight used in message-passing by aggregating more information from
neighbors that contribute more to TCTrain. We theoretically prove this way could enhance 1-layer
TCTrain in Theorem 4 and empirically verify it in Figure 7(a). Since neighbors owning more connec-
tions with the whole neighborhood have higher LP scores with the average neighborhood embed-
dings, we update the adjacency matrix used for message-passing as:

Ã
τ
ij =




Ã

τ−1
ij + γ

exp(gΘg
(Nτ−1

i
,H

τ−1

j
))

∑
n
j=1

exp(gΘg
(Nτ−1

i
,H

τ−1

j
))
, ifAij = 1

0, ifAij = 0

, ∀vi, vj ∈ V, (4)

where H
τ−1 = fΘf

(Ãτ−1,X) is the node embeddings obtained from GNN model fΘf
, Nτ−1 =

ÃH
τ−1 is the average neighborhood embeddings by performing one more SAGE-style propagation,

γ is the weight coefficient, Ã0 = Ã, and gΘg
is the link predictor. The detailed algorithm is pre-

sented in Appendix H. Note that this edge reweighting strategy directly operates on the original adja-
cency matrix and hence shares the same time/space complexity as the conventional message-passing
O(Ld(|E + V|)) with L being the number of message-passing layers. For baselines obtaining node
embeddings without using message-passing such as BUDDY Chamberlain et al. (2022), we reweigh
edges in computing the binary cross entropy loss in the training stage. More details are attached
Appendix I. Specifically, we equip four baselines, GCN/SAGE/NCN/BUDDY, with our designed
edge reweighting strategy and present their LP performance in Table 11. Appendix F thoroughly
describes the experimental settings. For GCN, SAGE and BUDDY, equipping with our proposed
edge reweighting strategy enhances their LP performance in most cases. This demonstrates that by
pushing up the TCTrain of the whole graph, the LP performance can be boosted to a certain level,
which is also verified by the increasing TC shown in Figure 7(a). We hypothesize that neighbors

8



Published as a conference paper at ICLR 2024

Table 1: Results on LP benchmarks. Xrw denotes weighted message-passing added to baseline X.

Baseline
Cora Citeseer Pubmed Collab Collab∗ Citation2 Reptile Vole

Hits@100 Hits@100 Hits@100 Hits@50 Hits@50 MRR Hits@100 Hits@100

GCN 70.63±0.67 65.96±2.12 69.35±1.02 49.52±0.52 58.00±0.27 84.42±0.05 65.52±2.73 73.84±0.98

GCNrw 75.98±1.28 74.40±1.13 68.87±0.99 52.85±0.14 60.57±0.38 85.34±0.30 70.79±2.00 74.50±0.84

SAGE 74.27±2.08 61.57±3.28 66.25±1.08 50.01±0.50 57.06±0.06 80.44±0.10 72.59±3.19 80.55±1.59

SAGErw 74.62±2.30 69.89±1.66 66.77±0.69 52.59±0.37 59.26±0.08 80.61±0.10 74.35±3.20 81.27±0.96

NCN 87.73±1.41 90.93±0.83 76.20±1.55 54.43±0.17 65.34±0.03 88.64±0.14 68.37±3.57 66.10±1.13

NCNrw 87.95±1.30 91.86±0.82 76.51±1.41 54.16±0.24 65.41±0.03 OOM 73.81±4.71 67.32±0.81

BUDDY 84.82±1.93 91.44±1.14 74.46±3.32 55.73±0.16 66.25±0.28 88.41±0.10 74.69±7.55 83.37±1.05

BUDDYrw 85.06±1.81 91.86±1.00 75.74±2.03 56.17±0.42 66.31±0.50 88.48±0.09 77.20±4.10 84.64±1.29

Note that for Citation2, due to memory limitation, we directly take the result from the original NCN paper (Wang et al., 2023). Different from

Collab only using training edges in message-passing for evaluating testing performance, we also allow validation edges in Collab∗.

connecting more to the overall neighborhood likely have greater interactions with incoming neigh-
bors. Thus, aggregating more information from them inherently captures the common neighbor
signals of these incoming neighbors. Meanwhile, as NCN already explicitly accounts for this com-
mon neighbor signal in its decoder, the performance gains from our strategy are relatively modest.
Furthermore, the positive trend observed in Figure 7(b) verifies that the larger enhancement in node
TCTrain leads to a larger performance boost in its HitsN@10. However, we note that LP performance
is evaluated on the incoming testing neighbors rather than training neighbors, so TCTrain is more of
a correlated metric than causal. To illustrate, consider an extreme case where a node vi has training
neighbors forming a complete graph with no connection to its incoming neighbors. In such a sce-
nario, even if we achieve the maximum TCTrain = 1 and a significantly high training performance, it
still hardly generalizes to predicting testing links. This could be reflected in the inconsistent trend in
Figure 21/22 in Appendix G.7. In addition, Figure 7(c) verifies the assumption made in Theorem 4
and in the reweighting model design that nodes with larger TCTrain have higher average embedding
similarity to their neighbors.

Figure 7: (a) Change of Hits@50 and Reweighted TC along the training process in SAGE. (b) Nodes
with enhanced TCTrain exhibit higher performance. (c) Embedding similarity during LightGCN
training increases faster and higher for nodes with higher TCTrain.

5 CONCLUSION

Although many recent works have achieved unprecedented success in enhancing link prediction (LP)
performance with GNNs, demystifying the varying levels of embedding quality and LP performance
across different nodes within the graph is heavily under-explored yet fundamental. In this work,
we take the lead in understanding the nodes’ varying performance from the perspective of their
local topology. Given the connection between link formation and the subgraph interaction, we
propose Topological Concentration (TC) and demonstrate its superiority in characterizing node LP
performance and identifying low-performing nodes by specifically verifying its higher performance
correlation than other node-centric topological metrics. Moreover, we discover a novel topological
distribution shift (TDS) issue by observing the changing LP performance over time and demonstrate
the capability of using TC to measure this distribution shift. Our work offers the community strong
insights into which local topology enables nodes to have better LP performance with GNNs. In the
future, we plan to investigate the causal relationship between TC and LP. Additionally, we aim to
utilize TC for data valuation to select consistently crucial edges in dynamic link prediction.

ACKNOWLEDGEMENTS

This research is supported by the National Science Foundation (NSF) under grant number
IIS2239881 and by Snap Inc.

9



Published as a conference paper at ICLR 2024

REFERENCES

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7):107–117, 1998.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie Zhou, and Xu Sun.
Topology-imbalance learning for semi-supervised node classification. Advances in Neural In-
formation Processing Systems, 34:29885–29897, 2021a.

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and ac-
curate network embeddings via very sparse random projection. In Proceedings of the 28th ACM
international conference on information and knowledge management, pp. 399–408, 2019.

Huiyuan Chen, Lan Wang, Yusan Lin, Chin-Chia Michael Yeh, Fei Wang, and Hao Yang. Structured
graph convolutional networks with stochastic masks for recommender systems. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 614–623, 2021b.

Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. Mamo: Memory-augmented
meta-optimization for cold-start recommendation. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 688–697, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Hao-Ming Fu, Patrick Poirson, Kwot Sin Lee, and Chen Wang. Revisiting neighborhood-based link
prediction for collaborative filtering. In Companion Proceedings of the Web Conference 2022, pp.
1009–1018, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Liang Ge and Aidong Zhang. Pseudo cold start link prediction with multiple sources in social
networks. In Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 768–
779. SIAM, 2012.

Marco Gori, Augusto Pucci, V Roma, and I Siena. Itemrank: A random-walk based scoring algo-
rithm for recommender engines. In IJCAI, volume 7, pp. 2766–2771, 2007.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Zhichun Guo, Tong Zhao, Yozen Liu, Kaiwen Dong, William Shiao, Neil Shah, and Nitesh V
Chawla. Node duplication improves cold-start link prediction. arXiv preprint arXiv:2402.09711,
2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Haoyu Han, Xiaorui Liu, Li Ma, MohamadAli Torkamani, Hui Liu, Jiliang Tang, and Makoto Ya-
mada. Structural fairness-aware active learning for graph neural networks. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Xiao Han, Leye Wang, Son N Han, Chao Chen, Noël Crespi, and Reza Farahbakhsh. Link prediction
for new users in social networks. In 2015 IEEE International Conference on Communications
(ICC), pp. 1250–1255. IEEE, 2015.

Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, and Hong Chen. Pre-training graph neural net-
works for cold-start users and items representation. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pp. 265–273, 2021.

10



Published as a conference paper at ICLR 2024

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Sang Gyu Kwak and Jong Hae Kim. Central limit theorem: the cornerstone of modern statistics.
Korean journal of anesthesiology, 70(2):144–156, 2017.

Vincent Leroy, B Barla Cambazoglu, and Francesco Bonchi. Cold start link prediction. In Pro-
ceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 393–402, 2010.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and Dawei
Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new benchmark-
ing. arXiv preprint arXiv:2306.10453, 2023.

Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. User-oriented fairness
in recommendation. In Proceedings of the Web Conference 2021, pp. 624–632, 2021.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Pro-
ceedings of the twelfth international conference on Information and knowledge management, pp.
556–559, 2003.

Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold start problem in
recommender systems. Expert systems with applications, 41(4):2065–2073, 2014.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1109–1119, 2021.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pp. 719–728, 2020.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? arXiv preprint
arXiv:2306.01323, 2023.

Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E,
64(2):025102, 2001.

John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
bring real insights for gnns. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3691–3701, 2022.

Liming Pan, Cheng Shi, and Ivan Dokmanić. Neural link prediction with walk pooling. In Interna-
tional Conference on Learning Representations, 2022.

Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network synthesis
for class-imbalanced node classification. In International Conference on Learning Representa-
tions, 2021.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

11



Published as a conference paper at ICLR 2024

Hossein A Rahmani, Mohammadmehdi Naghiaei, Mahdi Dehghan, and Mohammad Aliannejadi.
Experiments on generalizability of user-oriented fairness in recommender systems. In Proceed-
ings of the 45th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 2755–2764, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015. URL https://networkrepository.com.

Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski, Klas Karis, Andrej
Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto, Yu Wang, Tyler Derr, and Ben-
jamin M. Gyori. Chemicalx: A deep learning library for drug pair scoring. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3819–3828,
2022.

MN Sanders. Characteristic function of the central chi-squared distribution, 2009.

Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
missing features. Future Generation Computer Systems, 117:155–168, 2021.

Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun Choi, and Xia
Hu. Bring your own view: Graph neural networks for link prediction with personalized subgraph
selection. In Proceedings of the Sixteenth ACM International Conference on Web Search and
Data Mining, pp. 625–633, 2023.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional net-
works. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1435–1444, 2020.

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. Multi-task fea-
ture learning for knowledge graph enhanced recommendation. In The world wide web conference,
pp. 2000–2010, 2019.

Ruijia Wang, Xiao Wang, Chuan Shi, and Le Song. Uncovering the structural fairness in graph con-
trastive learning. Advances in Neural Information Processing Systems, 35:32465–32473, 2022a.

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for
link prediction. arXiv preprint arXiv:2302.00890, 2023.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pp. 3663–3674, 2021.

Yu Wang and Tyler Derr. Degree-related bias in link prediction. In 2022 IEEE International Con-
ference on Data Mining Workshops (ICDMW), pp. 757–758. IEEE, 2022.

Yu Wang, Yuying Zhao, Neil Shah, and Tyler Derr. Imbalanced graph classification via graph-of-
graph neural networks. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 2067–2076, 2022b.

Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. Collaboration-aware graph convolutional net-
works for recommendation systems. arXiv preprint arXiv:2207.06221, 2022c.

Zhiqiang Wang, Jiye Liang, Ru Li, and Yuhua Qian. An approach to cold-start link prediction: Es-
tablishing connections between non-topological and topological information. IEEE Transactions
on Knowledge and Data Engineering, 28(11):2857–2870, 2016.

Tianxin Wei and Jingrui He. Comprehensive fair meta-learned recommender system. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1989–
1999, 2022.

12



Published as a conference paper at ICLR 2024

Linchuan Xu, Xiaokai Wei, Jiannong Cao, and Philip S Yu. On learning mixed community-specific
similarity metrics for cold-start link prediction. In Proceedings of the 26th International Confer-
ence on World Wide Web Companion, pp. 861–862, 2017.

Ming Yan, Jitao Sang, Tao Mei, and Changsheng Xu. Friend transfer: Cold-start friend recommen-
dation with cross-platform transfer learning of social knowledge. In 2013 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, 2013.

Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and
system co-design for efficient subgraph-based graph representation learning. arXiv preprint
arXiv:2202.13538, 2022.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683–13694, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
graphs with graph neural networks. In Proceedings of the 14th ACM international conference on
web search and data mining, pp. 833–841, 2021a.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. In Proceedings of the aaai conference on artificial intelli-
gence, volume 35, pp. 11015–11023, 2021b.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In International Conference on Machine Learning, pp. 26911–26926.
PMLR, 2022.

Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang, Ming Chen, Xudong
Zheng, Xiaobing Liu, and Xiwang Yang. Autoemb: Automated embedding dimensionality search
in streaming recommendations. In 2021 IEEE International Conference on Data Mining (ICDM),
pp. 896–905. IEEE, 2021c.

Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao,
and Bo Long. Autodim: Field-aware embedding dimension searchin recommender systems. In
Proceedings of the Web Conference 2021, pp. 3015–3022, 2021d.

Yuying Zhao, Yu Wang, Yunchao Liu, Xueqi Cheng, Charu Aggarwal, and Tyler Derr. Fairness and
diversity in recommender systems: a survey. arXiv preprint arXiv:2307.04644, 2023.

Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang,
and Tyler Derr. Can one embedding fit all? a multi-interest learning paradigm towards improving
user interest diversity fairness. arXiv preprint arXiv:2402.13495, 2024.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804, 2020.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 11168–11176, 2021.

13



Published as a conference paper at ICLR 2024

Appendix

Table of Contents

A Notations 15

B Review of the cold-start issue in link prediction and recommender systems 16

C Link-centric and Node-centric Evaluation Metrics 17

C.1 Link-Centric Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2 Node-Centric Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Proof of Theorems 18

D.1 Approximation power of ATC for TC . . . . . . . . . . . . . . . . . . . . . . . 18

D.2 Degree-related Bias of Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 19

D.3 Reweighting by LP Score Enhance 1-layer TC . . . . . . . . . . . . . . . . . . 21

E Example demonstrating the advantages of TC over LCC 22

F Datasets and Experimental Settings 23

F.1 Dataset Introduction and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 23

F.2 Hyperparameter Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

G Additional Results 24

G.1 Link prediction performance grouped by TCTest . . . . . . . . . . . . . . . . . 24

G.2 Link prediction performance grouped by TCTrain . . . . . . . . . . . . . . . . . 25

G.3 Link prediction performance grouped by DegreeTest . . . . . . . . . . . . . . . 26

G.4 Link prediction performance grouped by DegreeTrain . . . . . . . . . . . . . . . 27

G.5 Relation between LP performance and TC at Graph-level . . . . . . . . . . . . . 28

G.6 Relation between TCTrain and TCTest . . . . . . . . . . . . . . . . . . . . . . . 28

G.7 Difference in TC vs Difference in Performance before/after applying reweighting 28

G.8 Correlation of the performance with TC and Degree . . . . . . . . . . . . . . . 28

H Edge Reweighting Algorithm 37

I Reweigh edges for baselines without message-passing 37

J Comparing the Efficiency between baseline and their augmented version by TC 38

K Reweighting training neighbors based on their connections to training neighbors or
validation neighbors 38

L Explaining why the curve of link prediction performance has several fast down in
Figure 7(a) 39

14



Published as a conference paper at ICLR 2024

A NOTATIONS

This section summarizes notations used throughout this paper.

Table 2: Notations used throughout this paper.

Notations Definitions or Descriptions

G = (V, E ,X) Graph with node set V , edge set E and node feature X

m,n Number of nodes m = |V| and number of edges n = |E|
vi, eij Node vi and the edge eij between node vi and vj
A Adjacency matrix Aij = 1 indicates an edge eij between vi, vj
Ã Row-based normalized graph adjacency matrix Ã = D

−1
A

Â GCN-based normalized graph adjacency matrix Â = D
−0.5

AD
−0.5

Ã
t Updated adjacency matrix at iteration t

D Diagonal degree matrix Dii =
∑n

j=1 Aij

d̂ Average degree of the network

T = {Train,Val,Test} Set of Training/Validation/Testing edge groups

DegreeTrain/Val/Test Degree based on Training/Validation/Testing Edges

TCTrain/Val/Test Topological Concentrations that quantify intersections
with Training/Validation/Testing neighbors

N t
i Node vi’s 1-hop neighbors of type t, t ∈ T

Hk
i Nodes having at least one path of length k to vi based on training edges ETrain

SK
i = {Hk

i }
K
k=1 K-hop computational tree centered on the node vi

CK,t
i \C̃K,t

i

(Approximated) Topological concentration for node vi considering
the intersection among K-hop computational trees among its type t neighbors.

E
k
i Embedding of the node vi after kth-layer message-passing

Rij Sample from gaussian random variable N (0, 1/d)
gΘg

Link predictor parameterized by Θg

Ẽi, Êi Predicted and ground-truth neighbors of node vi
HG Hypergeometric distribution

LP Link Prediction
(A)TC (Approxminated) Topological Concentration
TDS Topological Distribution Shift

β Exponential discounting effect as the hop increases
αk Weighted coefficient of layer k in computing ATC
µ Mean of the distribution
L Number of message-passing layers
γ Coefficients measuring the contribution of updating adjacency matrix

15



Published as a conference paper at ICLR 2024

B REVIEW OF THE COLD-START ISSUE IN LINK PREDICTION AND

RECOMMENDER SYSTEMS

One line of the research (Leroy et al., 2010; Ge & Zhang, 2012; Yan et al., 2013; Han et al., 2015;
Wang et al., 2016; Xu et al., 2017) defines the cold-start nodes as the ones with little to no topo-
logical information (isolated user) and augment these disadvantaged groups with auxiliary infor-
mation, e.g., user profile/rich text information, community information, and group membership.
Specifically, (Yan et al., 2013) derive the auxiliary information based on the interactions of these
disadvantageous nodes/users from their cross-platform behaviors. (Leroy et al., 2010) constructs
the probabilistic graph and then refines it by considering the transitivity of the contract relationship.
(Ge & Zhang, 2012) incorporates feature selection and regularization to avoid overfitting. The other
line of research (Wang et al., 2019; Dong et al., 2020; Li et al., 2021; Hao et al., 2021; Rahmani
et al., 2022; Wei & He, 2022) studies the cold-start issue from the user perspective in recommender
systems. They usually define cold-start nodes/users as the ones with no-to-sparse/low activities. (Li
et al., 2021; Rahmani et al., 2022) devises a re-ranking strategy by optimizing the performance gap
between low-activity and high-activity users. (Dong et al., 2020; Wei & He, 2022) design multiple
meta-learning frameworks to learn user preferences based on his/her few past interactions. (Wang
et al., 2019) uses knowledge graph embedding to assist with recommendation tasks for low-activity
users while (Hao et al., 2021) trains GNNs to adapt to cold-start nodes by mimicking the cold-start
scenario for warm users.

Following the above second line of research, we study the cold-start link prediction at the node
level since our paper targets demystifying the varying link prediction performance across different
nodes. Therefore, we follow some conventional literature (Wang et al., 2019; Dong et al., 2020;
Li et al., 2021; Wei & He, 2022) and deem the nodes with generally few degrees as cold-start
ones. Particularly, in Figure 4(b)/(e), we change the degree threshold from 1 to 10, divide nodes
into two groups at each degree threshold, and further visualize the average performance for each
group. We can see that nodes in the lower-degree groups generally have higher performance than
nodes in the higher-degree groups. The above observation has two promising insights compared
with conventional literature:

• (1) Many existing recommendation-based papers (Wang et al., 2019; Dong et al., 2020; Li
et al., 2021; Newman, 2001) define cold-start users/nodes as the ones with few/little interac-
tions/topological signals. However, our paper empirically demonstrates that nodes with lower
degrees even exhibit higher LP performance.

• (2) Many existing node classification papers (Tang et al., 2020; Chen et al., 2021a; Wang et al.,
2022a) find nodes with low degrees have lower performance. However, our work sheds new
insights into the degree-related bias in link prediction where nodes with lower degrees can actually
possess higher performance.

We justify the above 1st insight by relating to real-world scenarios where users with high degrees
usually tend to possess diverse interests (nodes with higher degrees may tend to belong to diverse
communities) and therefore, using the equal capacity of embedding cannot equally characterize all
of their interests (Zhao et al., 2021d).

We justify the above 2nd insight by relating to the inherent difference between the mechanism of
node classification and the mechanism of link prediction. For node classification, high-degree nodes
are more likely to obtain the supervised signals from labeled nodes in the same class (Chen et al.,
2021a). For link prediction, the ground-truth class for each node is actually its testing neighbors
and hence when performing message-passing, beneficial supervision signals are not guaranteed to
be captured more by high-degree nodes.

In our paper, we focus on the performance difference between low-degree nodes and high-degree
nodes rather than the cold-start issue. However, if we also consider cold-start nodes as the ones
with sparse interactions as some previous work did (Li et al., 2021; Rahmani et al., 2022), then our
analysis and observation can also apply there.

16



Published as a conference paper at ICLR 2024

C LINK-CENTRIC AND NODE-CENTRIC EVALUATION METRICS

In addition to the conventional link-centric evaluation metrics used in this work, node-centric evalu-
ation metrics are also used to mitigate the positional bias caused by the tiny portion of the sampled
negative links. We introduce their mathematical definition respectively as follows:

C.1 LINK-CENTRIC EVALUATION

Following (Hu et al., 2020), we rank the prediction score of each link among a set of randomly
sampled negative node pairs and calculate the link-centric evaluation metric Hits@K as the ratio of
positive edges that are ranked at K th-place or above. Note that this evaluation may cause bias as
the sampled negative links only count a tiny portion of the quadratic node pairs (Li et al., 2023).
Hereafter, we introduce the node-centric evaluation metrics and specifically denote the node-level
Hit ratio as HitsN@K to differentiate it from the link-centric evaluation metric Hits@K.

C.2 NODE-CENTRIC EVALUATION

For each node vi ∈ V , the model predicts the link formation score between vi and every other node,

and selects the top-K nodes to form the potential candidates Ẽi. Since the ground-truth candidates

for node vi is N Test
i (hereafter, we notate as Êi), we can compute the Recall (R), Precision (P), F1,

NDCG (N), MRR and HitsN of vi as follows:

R@Ki =
|Ẽi ∩ Êi|

|Êi|
, P@Ki =

|Ẽi ∩ Êi|

K
(5)

F1@Ki =
2|Ẽi ∩ Êi|

K + |Êi|
, N@Ki =

∑K

k=1

1[v
φk
i
∈(Ẽi∩Êi)]

log
2
(k+1)∑K

k=1
1

log
2
(k+1)

(6)

MRR@Ki =
1

min
v∈(Ẽi∩Êi)

Rankv
, HitsN@Ki = 1[|Êi ∩ Ẽi| > 0], (7)

where φk
i denotes vi’s k

th preferred node according to the ranking of the link prediction score, Rankv
is the ranking of the node v and 1 is the indicator function equating 0 if the intersection between

Ê i ∩ Ẽi is empty otherwise 1. The final performance of each dataset is averaged across each node:

X@K = Evi∈VX@Ki,X ∈ {R, P, F1,N,MRR,HitsN} (8)

Because for each node, the predicted neighbors will be compared against all the other nodes, there is
no evaluation bias compared with the link-centric evaluation where only a set of randomly selected
negative node pairs are used.

17



Published as a conference paper at ICLR 2024

D PROOF OF THEOREMS

D.1 APPROXIMATION POWER OF ATC FOR TC

Theorem 1. Assuming g(|Hk1

i |, |Hk2

j |) = |Hk1

i ||Hk2

j | in Eq. (1) and let φ be the dot-product based

similarity metric (He et al., 2020), then node vi’s 1-layer Topological Concentration C1,t
i is linear

correlated with the mean value of the 1-layer Approximated Topological Concentration µ
C̃

K,t
i

as:

C1,t
i ≈ d−1µE

vj∼Nt
i
(E1

j
)¦E1

i
= d−1µ

C̃
1,t
i

, (9)

where E1 ∈ R
n×d denotes the node embeddings after 1-layer SAGE-style message-passing over the

node embeddings R ∼ N (0d,Σd).

Proof. Assuming without loss of generalizability that the row-normalized adjacency matrix Ã =
D

−1
A is used in aggregating neighborhood embeddings. We focus on a randomly selected node

Ei ∈ R
d, ∀vi ∈ V and its 1-layer ATC given by Eq. (2) is:

C̃1,t
i = Evj∼N t

i
(E1

j )
¦
E

1
i = Evj∼N t

i
(ÃR)¦j (ÃR)i

= Evj∼N t
i

1

|N Train
j ||N Train

i |
(

∑

vm∈N Train
j

Rm)¦(
∑

vn∈N Train
i

Rn)

= Evj∼N t
i

1

|N Train
j ||N Train

i |

∑

(vm,vn)∈N Train
j

×N Train
i

(Rm)¦Rn

= Evj∼N t
i

1

|H1
i ||H

1
j |
(

∑

(vm,vn)∈N Train
j ×N Train

i ,

vm ̸=vn

(Rm)¦Rn

︸ ︷︷ ︸
Non-common neighbor embedding pairs

+
∑

vk∈N Train
j

∩N Train
i

(Rk)
¦
Rk

︸ ︷︷ ︸
Common neighbor embedding pairs

),

(10)

Note that the first term is the dot product between any pair of two non-common neighbor em-
beddings, which is essentially the dot product between two independent samples from the same
multivariate Gaussian distribution (note that here we do not perform any training optimization, so
the embeddings of different nodes are completely independent). By central limit theorem (Kwak
& Kim, 2017), the first term approaches the standard Gaussian distribution with 0 as the mean,
i.e., µ(Rm)¦Rn

= 0. In contrast, the second term is the dot product between any Gaussian-
distributed sample and itself, which can be essentially characterized as the sum of squares of
d independent standard normal random variables and hence follows the chi-squared distribution
with d degrees of freedom, i.e., (Rk)

¦
Rk ∼ χ2

d (Sanders, 2009). By Central Limit Theorem,

limd→∞ P (
χ2

d−d√
2d

f z) = PN (0,1)(z) and hence limd→∞ χ2
d = N (d, 2d), i.e., µ(Rk)¦Rk

= d.

Then we obtain the mean value of Evj∼N t
i
(E1

j )
¦
E

1
i :

µ
C̃

1,t
i

= µE
vj∼Nt

i
(E1

j
)¦E1

i
≈ Evj∼N t

i

1

|H1
i ||H

1
j |
(µ∑

(vm,vn)∈N Train
j ×N Train

i ,

vm ̸=vn

(Rm)¦Rn
+ µ∑

vk∈NTrain
j

∩NTrain
i

(Rk)¦Rk
)

≈ Evj∈N t
i

d|N Train
i ∩N Train

j |

|H1
i ||H

1
j |

= Evj∈N t
i

d|H1
i ∩H1

j |

|H1
i ||H

1
j |

= dC1,t
i .

(11)

The first approximation holds if assuming all nodes share the same degree. The second approxi-
mation holds since we set d to be at least 64 for all experiments in this paper. We next perform
Monte-Carlo Simulation to verify that by setting d = 64, the obtained distribution is very similar to
the Gaussian distribution. Assuming without loss of generality that the embedding dimension is 64
with the mean vector µ = 0

64 ∈ R
64 and the identity covariance matrix Σ

64 = I ∈ R
64×64, we

randomly sample 1000 embeddings from N (µ,Σ).

18



Published as a conference paper at ICLR 2024

We visualize the distributions of the inner product between the pair of non-common neighbor em-
beddings, i.e., the first term in Eq. (10) (Rm)¦Rn, vm ̸= vn, and the pair of common neighbor
embeddings, i.e., the second term in Eq. (10) (Rk)

¦
Rk, vk ∈ N Train

j ∩ N Train
i in Figure 8. We

can see that the distribution of the dot product between the pair of non-common neighbor embed-
dings behaves like a Gaussian distribution centering around 0. In contrast, the distribution of the dot
product between the pair of common neighbor embeddings behaves like a chi-square distribution of
degree 64, which also centers around 64, and this in turn verifies the Gaussian approximation. Note
that the correctness of the first approximation in Eq. (11) relies on the assumption that the average
of the inverse of the node’s neighbors should be the same across all nodes. Although it cannot be
theoretically satisfied, we still empirically verify the positive correlation between TC and the link
prediction performance shown in Figure 3.

The above derivation bridges the gap between the Topological Concentration (TC) defined in the
topological space and the Approximated Topological Concentration (ATC) defined in the latent
space, which theoretically justifies the approximation efficacy of ATC.

Figure 8: The distribution of the inner product between common neighbor pairs is statistically higher
than that between non-common neighbor pairs.

D.2 DEGREE-RELATED BIAS OF EVALUATION METRICS

One previous work (Wang & Derr, 2022) has empirically shown the degree-related bias of evaluation
metrics used in link prediction models. Following that, we go one step further and theoretically
derive the concrete format of the evaluation bias in this section. We leverage an untrained link
prediction model to study the bias. This avoids any potential supervision signal from training over
observed links and enables us to study the evaluation bias exclusively. Since two nodes with the
same degree may end up with different performances, i.e., X@Ki ̸= X@Kj , di = dj , we model
X@K|d as a random variable and expect to find the relationship between its expectation and the
node degree d, i.e., f : E(X@K|d) = f(d).

Following many existing ranking works (He et al., 2020; Chen et al., 2021b), we assume without
loss of generalizability that the link predictor P ranking the predicted neighbors based on their
embedding similarity with embeddings noted as E, then we have:

Lemma 1. For any untrained embedding-based link predictor P , given the existing k − 1 pre-
dicted neighbors for the node vi ∈ V , the kth predicted neighbor is generated by randomly
selecting a node without replacement from the remaining nodes with equal opportunities, i.e.,
P (vφk

i
= v|{vφ1

i
, vφ2

i
, ..., v

φ
k−1

i
}) = 1

N−(k−1) .

Without any training, Lemma 1 trivially holds since embeddings of all nodes are the same, which
trivially leads to the following theorem:

Theorem 2. Given the untrained embedding-based link predictor P , the size of the intersection

between any node’s predicted list Ẽi and its ground-truth list Êi follows a hypergeometric distribu-

tion: |Ẽi ∩ Êi| ∼ HG(|V|,K, |Êi|) where |V| is the population size (the whole node space), K is

19



Published as a conference paper at ICLR 2024

the number of trials and |Êi| is the number of successful states (the number of node’s ground-truth
neighbors).

Proof. Given the ground-truth node neighbors Êi, the predicted neighbors Ẽi = {vφk
i
}Kk=1 is formed

by selecting one node at a time without replacement K times from the whole node space V . Since

any selected node vφk
i

can be classified into one of two mutually exclusive categories Êi or V\Êi
and by Lemma 1, we know that for any untrained link predictor, each unselected node has an equal

opportunity to be selected in every new trial, we conclude that |Ẽi ∩ Êi| ∼ HG(|V|,K, |Êi|) and by

default E(|Ẽi ∩ Êi|) = |Ẽi|
|Êi|
|V| = K |Êi|

|V| .

Furthermore, we present Theorem 3 to state the relationships between the LP performance under
each evaluation metric and the node degree:

Theorem 3. Given that |Ẽi ∩ Êi| follows hyper-geometric distribution, we have:

E(R@Ki|d) =
K

N
,
∂E(R@K|d)

∂d
= 0, (12)

E(P@K|di) =
αd

N
,
∂E(P@K|d)

∂d
=

α

N
, (13)

E(F1@K|d) =
2K

N

αd

K + αd
,
∂E(F1@K|d)

∂d
=

2αK2

N

1

(K + αd)2
, (14)

E(N@K|d) =
αd

N
,
∂E(N@K|d)

∂d
=

α

N
. (15)

Proof.

E(R@Ki|d) = E(
|Ẽi ∩ Êi|

|Êi|
) =

E(|Ẽi ∩ Êi|)

|Êi|
=

|Êi|
|V| K

|Êi|
=

K

N
(16)

E(P@Ki|d) = E(
|Ẽi ∩ Êi|

K
) =

E(|Ẽi ∩ Êi|)

K
=

|Êi|
|V| K

K
=

αd

N
(17)

E(F1@Ki|d) = E(
2|Ẽi ∩ Êi|

K + |Êi|
) =

2E(|Ẽi ∩ Êi|)

K + αd
=

2K

N

αd

K + αd
(18)

E(N@Ki|d) = E(

∑K

k=1

1[v
φk∈(Ẽi∩Êi)]

log
2
(k+1)∑K

k=1 log2(k + 1)
) =

E(
∑K

k=1

1[v
φk∈(Ẽi∩Êi)]

log
2
(k+1) )

∑K

k=1
1

log
2
(k+1)

(19)

To calculate the numerator DCG, i.e., E(
∑K

k=1

1[v
φk∈(Ẽi∩Êi)]

log
2
(k+1) ) in Eq. (19), we model the link pre-

diction procedure as 1) randomly select K nodes from the whole node space V; 2) calculate |Ẽi∩Êi|,

i.e., how many nodes among the selected nodes Ẽi are in the ground-truth neighborhood list Êi; 3)

randomly select |Ẽi ∩ Êi| slots to position nodes in Ẽi ∩ Êi and calculate DCG. The above steps can
be mathematically formulated as:

K∑

i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

C(K,i)∑

j=1

p(O
(K,i)
j )

K∑

k=1

1[O
(K,i)
jk = 1]

log2(k + 1)
, (20)

20



Published as a conference paper at ICLR 2024

where O(K,i) ∈ {0, 1}C(K,i)×K represents all C(K, i) possible positional indices of putting i nodes

into K candidate slots. Specifically O
(K,i)
j ∈ {0, 1}K indicates the jth positional configuration of i

nodes where O
(K,i)
jk = 1 if an node is positioned at kth slot and O

(K,i)
jk = 0 otherwise. Since our link

predictor has no bias in positioning nodes in the K slots by Lemma 1, we have p(O
(K,i)
j ) = 1

C(K,i)

and Eq. (20) can be transformed as:

K∑

i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

1

C(K, i)

C(K,i)∑

j=1

K∑

k=1

1[O
(K,i)
jk = 1]

log2(k + 1)
. (21)

We know that only when the kth slot is positioned a node can we have O
(K,i)
jk = 1 and among the

total C(K, i) selections, every candidate slot k ∈ {1, 2, ...,K} would be selected C(K − 1, i − 1)
times to position a node, which hence leads to:

C(K,i)∑

j=1

K∑

k=1

1[O
(K,i)
jk = 1]

log2(k + 1)
=

K∑

k=1

C(K − 1, i− 1)

log2(k + 1)
. (22)

We then substitute Eq. (22) into Eq. (21) as:

K∑

i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

1

C(K, i)

K∑

k=1

C(K − 1, i− 1)

log2(k + 1)

=
K∑

i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

C(K − 1, i− 1)

C(K, i)

K∑

k=1

1

log2(k + 1)
.

(23)

Further substituting Eq. (23) into Eq. (19), we finally get:

E(N@K|di) =
K∑

i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

C(K − 1, i− 1)

C(K, i)

=
K∑

i=0

C(N − αd,K − i)C(αd, i)

C(N,K)

(K−1)!
(i−1)!(K−i)!

K!
i!(K−i)!

=
1

K

K∑

i=0

i
C(N − αd,K − i)C(αd, i)

C(N,K)
︸ ︷︷ ︸

E(|Ẽi∩Êi|)

=
1

K

αd

N
∗K =

αd

N

(24)

Based on Theorem 3, Precision, F1, and NDCG increase as node degree increases even when no
observed links are used to train the link predictor, which informs the degree-related evaluation bias
and causes the illusion that high-degree nodes are more advantageous than low-degree ones observed
in some previous works (Li et al., 2021; Rahmani et al., 2022).

D.3 REWEIGHTING BY LP SCORE ENHANCE 1-LAYER TC

Theorem 4. Taking the normalization term g(|H1
i |, |H

1
j |) = |H1

i | and also assume that higher link
prediction score Sij between vi and its neighbor vj corresponds to more number of connections

between vj and the neighborhood NTrain
i , i.e., Sij > Sik → |N 1,Train

j ∩ N 1,Train
i | > |N 1,Train

k ∩

N 1,Train
i |, ∀vj , vk ∈ NTrain,1

i , then we have:

Ĉ1,Train
i =

∑

vj∼NTrain

i

Sij |H
1
i ∩H1

j |

|H1
i |

g Evj∼NTrain

i

|H1
i ∩H1

j |

|H1
i |

= C1,Train
i (25)

21



Published as a conference paper at ICLR 2024

Proof. By definition, we have H1
i = N 1,Train

i , then the computation of 1-layer TCTrain is trans-
formed as:

C1,Train
i = Evj∼NTrain

i
I(S1

i ,S
1
j ) = Evj∼NTrain

i

|NTrain
i ∩NTrain

j |

|NTrain
i |

=
1

|NTrain
i |

Evj∼NTrain

i
(|NTrain

i ∩NTrain
j |).

(26)
On the other hand, we similarly transform weighted TC as:

Ĉ1,Train
i =

1

|NTrain
i |

∑

vj∼NTrain

i

(Sij |N
Train
i ∩NTrain

j |). (27)

By the relation that:

Sij > Sik → |N 1,Train
j ∩N 1,Train

i | > |N 1,Train
k ∩N 1,Train

i |, ∀vj , vk ∈ NTrain,1
i , (28)

Then we have:

Ĉ1,Train
i g C1,Train

i (29)

Moreover, we include Figure 9 to illustrate the idea of enhancing TC via assigning higher weights to
edges connecting neighbors that have higher connections to the whole neighborhoods. We can see
in this case, weighted TC in Figure 9(a) is naturally higher than the one in Figure 9(b)

Figure 9: (a) Increasing the weight of neighbors that have more connections with the whole neigh-
borhood while (b) increasing the weight of neighbors that have fewer connections with the whole
neighborhood. (a) would increase the weighted TC while (b) would not

E EXAMPLE DEMONSTRATING THE ADVANTAGES OF TC OVER LCC

Figure 10: Comparison of TC and LCC

According to the definition of local clustering coefficient
(LCC) and TC, we respectively calculate their values for
node v1 in Figure 10. v2, v3, v4 do not have any connec-
tion among themselves, indicating node v1 prefer inter-
acting with nodes coming from significantly different do-
main/community. Subsequently, the incoming neighbors
v5, v6 of v1 are likely to also come from other communi-
ties and hence share no connections with v2, v3, v4, which
leads to the ill topological condition for predicting links
of v1. However, in this case, the clustering coefficient still
maintains 0.5 because of the connections between v1 and
v2/v3/v4, which cannot precisely capture the ill-topology
of v1 in this case. Conversely, our TCTrain equals 0, re-
flecting the ill topological condition of v1.

22



Published as a conference paper at ICLR 2024

F DATASETS AND EXPERIMENTAL SETTINGS

This section introduces datasets and experimental settings used in this paper.

F.1 DATASET INTRODUCTION AND STATISTICS

We use five widely employed datasets for evaluating the link prediction task, including four citation
networks: Cora, Citeseer, Pubmed, and Citation2, and 1 human social network Collab. We further
introduce two real-world animal social networks, Reptile and Vole, based on animal interactions.

• Cora/Citeseer/Pubmed: Following (Zhao et al., 2022; Chamberlain et al., 2022; Wang et al.,
2023), we randomly split edges into 70%/10%/20% so that there is no topological distribution
shift in these datasets. We use Hits@100 to evaluate the final performance.

• Collab/Citation2: We leverage the default edge splitting from OGBL (Hu et al., 2020). These two
datasets mimic the real-life link prediction scenario where testing edges later joined in the network
than validation edges and further than training edges. This would cause the topological distribution
shift observed in the Obs.3 of Section 3.3. For Collab, different from (Chamberlain et al., 2022;
Wang et al., 2023), our setting does not allow validation edges to join the network for message-
passing when evaluating link prediction performance. Therefore, the edges used for message-
passing and supervision come from edges in the training set. In addition, we also consider a
widely used setting in prior work where the validation edges would be allowed in message-passing
when evaluating in the testing stage and we term this one on Collab as Collab* (Wang et al., 2023;
Chamberlain et al., 2022).

• Reptile/Vole: we obtain the dataset from Network Repository (Rossi & Ahmed, 2015). To con-
struct this network, a bipartite network was first constructed based on burrow use - an edge
connecting a tortoise node to a burrow node indicated a burrow used by the individual. Social
networks of desert tortoises were then constructed by the bipartite network into a single-mode
projection of tortoise nodes. Node features are initialized by a trainable embedding layer, and we
leverage the same edge splitting 70%/10%/20% for training/validation/testing.

Table 3: Statistic of datasets used for evaluating link prediction.

Network Domain Dataset # Nodes # Edges Split Type Metric Split Ratio

Citation Network

Cora 2,708 5,278 Random Hits@100 70/10/20%

Citeseer 3,327 4,676 Random Hits@100 70/10/20%

Pubmed 18,717 44,327 Random Hits@100 70/10/20%

Citation2 2,927,963 30,561,187 Time MRR Default

Social Network Collab 235,868 1,285,465 Time Hits@50 Default

Animal Network
Reptile 787 1232 Random Hits@100 70/10/20%

Vole 1480 3935 Random Hits@100 70/10/20%

F.2 HYPERPARAMETER DETAILS

For all experiments, we select the best configuration on validation edges and report the model per-
formance on testing edges. The search space for the hyperparameters of the GCN/SAGE/LightGCN
baselines and their augmented variants GCNrw/SAGErw are: graph convolutional layer {1, 2, 3},
hidden dimension of graph encoder {64, 128, 256}, the learning rate of the encoder and predic-
tor {0.001, 0.005, 0.01}, dropout {0.2, 0.5, 0.8}, training epoch {50, 100, 500, 1000}, batch size
{256, 1152, 64 ∗ 1024} (Hu et al., 2020; Chamberlain et al., 2022; Wang et al., 2023), weights
α ∈ {0.5, 1, 2, 3, 4}, the update interval τ ∈ {1, 2, 10, 20, 50}, warm up epochs Twarm ∈
{1, 2, 5, 10, 30, 50}. For baseline NCN2, we directly run their code using their default best-
performing configurations on Cora/Citeseer/Pubmed/Collab but for Citation2, due to memory lim-
itation, we directly take the result from the original paper. We use cosine similarity metric as the
similarity function φ in computing ATC.

2https://github.com/GraphPKU/NeuralCommonNeighbor

23



Published as a conference paper at ICLR 2024

G ADDITIONAL RESULTS

To demonstrate that the observations made previously in Section 3 can also generalize to other
datasets, here we present the comprehensive results on all datasets we study in this paper as follows.

G.1 LINK PREDICTION PERFORMANCE GROUPED BY TCTest

Figure 11: LP performance grouped by TCTest for all nodes

Figure 12: LP performance grouped by TCTest for low TCTest nodes

24



Published as a conference paper at ICLR 2024

G.2 LINK PREDICTION PERFORMANCE GROUPED BY TCTrain

Figure 13: LP performance grouped by TCTrain for all nodes

Figure 14: LP performance grouped by TCTrain for low TCTrain nodes

25



Published as a conference paper at ICLR 2024

G.3 LINK PREDICTION PERFORMANCE GROUPED BY DEGREE
Test

Figure 15: LP performance grouped by DegreeTest for all nodes

Figure 16: LP performance grouped by DegreeTest for low Test-Degree nodes

26



Published as a conference paper at ICLR 2024

G.4 LINK PREDICTION PERFORMANCE GROUPED BY DEGREE
Train

Figure 17: LP performance grouped by DegreeTrain for all nodes

Figure 18: LP performance grouped by DegreeTrain for low DegreeTrain nodes

27



Published as a conference paper at ICLR 2024

G.5 RELATION BETWEEN LP PERFORMANCE AND TC AT GRAPH-LEVEL

Figure 19: Relation between LP performance and TC at Graph-level

G.6 RELATION BETWEEN TCTrain
AND TCTest

Figure 20: Relation between TCTrain and TCTest on Collab/Citation2

G.7 DIFFERENCE IN TC VS DIFFERENCE IN PERFORMANCE BEFORE/AFTER APPLYING

REWEIGHTING

G.8 CORRELATION OF THE PERFORMANCE WITH TC AND DEGREE

Here we present the comprehensive correlation of the performance with TCTrain/TCVal/TCTest and
DegreeTrain. As the performance is evaluated under different K, we further define the absolute av-
erage/the typical average correlation across different K values to reflect the absolute correlation
strength/the consistency of the correlation average:

Absolute Avg.X@K =
1

4

∑

k∈{5,10,20,50}
|X@k|, Basic Avg.X@K =

1

4

∑

k∈{5,10,20,50}
X@k

28



Published as a conference paper at ICLR 2024

Figure 21: Relation between TCTrain and TCTest on Collab by running GCN

Figure 22: Relation between TCTrain and TCTest on Collab by running SAGE

29



Published as a conference paper at ICLR 2024

Table 4: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Collab. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.2252 0.1925 0.1353 0.0578 0.1527 0.1527
F1 0.2601 0.2364 0.1733 0.0790 0.1872 0.1872
NDCG 0.2279 0.2427 0.2375 0.2206 0.2322 0.2322
Recall 0.2296 0.2358 0.2156 0.1754 0.2141 0.2141

HitsN 0.2057 0.1800 0.1328 0.0717 0.1476 0.1476
MRR 0.2044 0.2044 0.2044

0.1867 0.1867

TCVal

Precision 0.2573 0.2832 0.2788 0.2387 0.2645 0.2645
F1 0.2425 0.2901 0.2991 0.2641 0.2740 0.2740
NDCG 0.2066 0.2330 0.2521 0.2624 0.2385 0.2385
Recall 0.1742 0.2179 0.2428 0.2514 0.2216 0.2216

HitsN 0.2445 0.2674 0.2720 0.2620 0.2615 0.2615
MRR 0.2350 0.2350 0.2350

0.2520 0.2520

TCTest

Precision 0.5184 0.5437 0.5107 0.4127 0.4964 0.4964
F1 0.5858 0.6311 0.5964 0.4799 0.5733 0.5733
NDCG 0.5443 0.6282 0.6706 0.6902 0.6333 0.6333
Recall 0.5644 0.6753 0.7324 0.7533 0.6814 0.6814

HitsN 0.5272 0.5816 0.5924 0.5720 0.5683 0.5683
MRR 0.5085 0.5085 0.5085

0.5905 0.5905

DegreeTrain

Precision -0.1261 -0.0829 0.0006 0.1440 0.0884 -0.0161
F1 -0.1997 -0.1663 -0.0813 0.0812 0.1321 -0.0915
NDCG -0.1822 -0.2017 -0.1985 -0.1750 0.1894 -0.1894
Recall -0.2183 -0.2288 -0.2118 -0.1681 0.2068 -0.2068

HitsN -0.1395 -0.1164 -0.0658 0.0055 0.0818 -0.0791
MRR -0.1349 -0.1349 -0.1349

0.1397 -0.1166

DegreeVal

Precision 0.0047 0.0472 0.1117 0.2141 0.0944 0.0944
F1 -0.0823 -0.0469 0.0200 0.1416 0.0727 0.0081
NDCG -0.0608 -0.0803 -0.0838 -0.0736 0.0746 -0.0746
Recall -0.1203 -0.1296 -0.1269 -0.1100 0.1217 -0.1217

HitsN -0.0063 0.0171 0.0481 0.0848 0.0391 0.0359
MRR -0.0108 -0.0108 -0.0108

0.0805 -0.0116

DegreeTest

Precision 0.1075 0.1833 0.2924 0.4617 0.2612 0.2612
F1 -0.0669 0.0043 0.1249 0.3375 0.1334 0.1000
NDCG -0.034 -0.0723 -0.0814 -0.0668 0.0636 -0.0636
Recall -0.1678 -0.1856 -0.187 -0.1724 0.1782 -0.1782

HitsN 0.0785 0.1103 0.1407 0.1718 0.1253 0.1253
MRR 0.0727 0.0727 0.0727

0.1524 0.0489

Subgraph Density

Precision 0.2199 0.1646 0.0875 -0.0073 0.1198 0.1162
F1 0.2806 0.2259 0.1353 0.0161 0.1645 0.1645
NDCG 0.2811 0.2891 0.2748 0.2491 0.2735 0.2735
Recall 0.2911 0.2783 0.2399 0.1834 0.2482 0.2482

HitsN 0.2265 0.1842 0.1196 0.0423 0.1432 0.1432
MRR 0.2331 0.2331 0.2331

0.1898 0.1891

30



Published as a conference paper at ICLR 2024

Table 5: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Citation2. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided
in Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.0839 0.1312 0.1784 0.2157 0.1523 0.1523
F1 0.0849 0.1323 0.1795 0.2165 0.1533 0.1533
NDCG 0.0773 0.1164 0.1585 0.2012 0.1384 0.1384
Recall 0.0860 0.1346 0.1845 0.2265 0.1579 0.1579

HitsN 0.0840 0.1314 0.1791 0.2182 0.1532 0.1532
MRR 0.1229 0.1229 0.1229

0.1510 0.1510

TCVal

Precision 0.0575 0.0868 0.1200 0.1479 0.1031 0.1031
F1 0.0581 0.0874 0.1206 0.1484 0.1036 0.1036
NDCG 0.0545 0.0790 0.1078 0.1377 0.0948 0.0948
Recall 0.0586 0.0884 0.1231 0.1540 0.1060 0.1060

HitsN 0.0574 0.0870 0.1206 0.1500 0.1038 0.1038
MRR 0.0846 0.0846 0.0846

0.1022 0.1022

TCTest

Precision 0.1797 0.2541 0.3313 0.3996 0.2912 0.2912
F1 0.1812 0.2558 0.3328 0.4008 0.2927 0.2927
NDCG 0.1706 0.2365 0.3071 0.3825 0.2742 0.2742
Recall 0.1829 0.2599 0.3401 0.4141 0.2993 0.2993

HitsN 0.1797 0.2550 0.3331 0.4048 0.2932 0.2932
MRR 0.2512 0.2512 0.2512

0.2901 0.2901

DegreeTrain

Precision -0.0288 -0.0406 -0.0536 -0.0689 0.0480 -0.0480
F1 -0.0295 -0.0415 -0.0546 -0.0699 0.0489 -0.0489
NDCG -0.0285 -0.0394 -0.0522 -0.0692 0.0473 -0.0473
Recall -0.0305 -0.0436 -0.0589 -0.0791 0.0530 -0.0530

HitsN -0.0289 -0.0408 -0.0540 -0.0708 0.0486 -0.0486
MRR -0.0421 -0.0421 -0.0421

0.0492 0.0492

DegreeVal

Precision 0.0161 0.0229 0.0300 0.0393 0.0271 0.0271
F1 0.0156 0.0220 0.0289 0.0381 0.0262 0.0262
NDCG 0.0150 0.0199 0.0248 0.0305 0.0226 0.0226
Recall 0.0150 0.0203 0.0252 0.0301 0.0227 0.0227

HitsN 0.0161 0.0232 0.0300 0.0384 0.0269 0.0269
MRR 0.0234 0.0234 0.0234

0.0251 0.0251

DegreeTest

Precision 0.0060 0.0113 0.0190 0.0364 0.0182 0.0182
F1 -0.0009 0.0047 0.0128 0.0314 0.0125 0.0120
NDCG -0.0086 -0.0113 -0.0147 -0.0185 0.0133 -0.0133
Recall -0.0135 -0.0185 -0.0251 -0.0344 0.0229 -0.0229

HitsN 0.0051 0.0081 0.0120 0.0159 0.0103 0.0103
MRR 0.0104 0.0104 0.0104

0.0154 0.0009

Subgraph Density

Precision 0.0809 0.1217 0.1607 0.1916 0.1387 0.1387
F1 0.0823 0.1231 0.1621 0.1926 0.1400 0.1400
NDCG 0.0761 0.1111 0.1476 0.1853 0.1300 0.1300
Recall 0.0842 0.1268 0.1691 0.2063 0.1466 0.1466

HitsN 0.0811 0.1219 0.1618 0.1956 0.1401 0.1401
MRR 0.1144 0.1144 0.1144

0.1391 0.1391

31



Published as a conference paper at ICLR 2024

Table 6: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Cora. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.0985 0.1046 0.1238 0.1571 0.1210 0.1210
F1 0.0989 0.1042 0.1239 0.1597 0.1217 0.1217
NDCG 0.0933 0.0990 0.1088 0.1306 0.1079 0.1079
Recall 0.1020 0.1042 0.1162 0.1568 0.1198 0.1198

HitsN 0.0961 0.1000 0.1226 0.1617 0.1201 0.1201
MRR 0.0869 0.0869 0.0869

0.1181 0.1181

TCVal

Precision 0.0342 0.0456 0.0840 0.0903 0.0635 0.0635
F1 0.0296 0.0406 0.0820 0.0907 0.0607 0.0607
NDCG 0.0215 0.0259 0.0446 0.0526 0.0362 0.0362
Recall 0.0257 0.0322 0.0724 0.0841 0.0536 0.0536

HitsN 0.0331 0.0413 0.0742 0.0932 0.0605 0.0605
MRR 0.0291 0.0291 0.0291

0.0549 0.0549

TCTest

Precision 0.4694 0.4702 0.4667 0.3977 0.4510 0.4510
F1 0.4952 0.4964 0.4948 0.4216 0.4770 0.4770
NDCG 0.4970 0.5239 0.5551 0.5759 0.5380 0.5380
Recall 0.4941 0.5109 0.5448 0.5347 0.5211 0.5211

HitsN 0.4749 0.4909 0.5130 0.4866 0.4914 0.4914
MRR 0.4920 0.4920 0.4920

0.4957 0.4957

DegreeTrain

Precision 0.0751 0.0970 0.1701 0.3268 0.1673 0.1673
F1 -0.0039 0.0237 0.0938 0.2549 0.0941 0.0921
NDCG -0.0156 -0.0276 -0.0283 -0.0191 0.0227 -0.0227
Recall -0.0432 -0.0547 -0.0568 -0.0529 0.0519 -0.0519

HitsN 0.0656 0.0650 0.0862 0.1135 0.0826 0.0826
MRR 0.0307 0.0307 0.0307

0.0837 0.0837

DegreeVal

Precision 0.0433 0.0623 0.1138 0.2248 0.1111 0.1111
F1 -0.0230 0.0012 0.0508 0.1634 0.0596 0.0481
NDCG -0.0235 -0.0336 -0.0369 -0.0361 0.0325 -0.0325
Recall -0.0570 -0.0648 -0.0689 -0.0784 0.0673 -0.0673

HitsN 0.0253 0.0222 0.0308 0.0431 0.0304 0.0304
MRR 0.0144 0.0144 0.0144

0.0602 0.0179

DegreeTest

Precision 0.1669 0.2104 0.3046 0.4890 0.2927 0.2927
F1 0.0537 0.1111 0.2127 0.4149 0.1981 0.1981
NDCG 0.0004 -0.0104 -0.0082 0.0060 0.0063 -0.0031
Recall -0.0599 -0.0702 -0.0760 -0.0781 0.0711 -0.0711

HitsN 0.1406 0.1487 0.1624 0.1865 0.1596 0.1596
MRR 0.1116 0.1116 0.1116

0.1455 0.1153

Subgraph Density

Precision 0.0794 0.0900 0.0796 0.0381 0.0718 0.0718
F1 0.1088 0.1189 0.1066 0.0580 0.0981 0.0981
NDCG 0.1157 0.1378 0.1543 0.1674 0.1438 0.1438
Recall 0.1330 0.1690 0.2015 0.2272 0.1827 0.1827

HitsN 0.0851 0.1109 0.1257 0.1385 0.1151 0.1151
MRR 0.0976 0.0976 0.0976

0.1223 0.1223

32



Published as a conference paper at ICLR 2024

Table 7: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Citeseer. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided
in Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.3330 0.3735 0.3898 0.3830 0.3698 0.3698
F1 0.3324 0.3803 0.4056 0.4049 0.3808 0.3808
NDCG 0.2831 0.3226 0.3570 0.3879 0.3377 0.3377
Recall 0.3001 0.3481 0.3920 0.4295 0.3674 0.3674

HitsN 0.3386 0.3901 0.4287 0.4603 0.4044 0.4044
MRR 0.3194 0.3194 0.3194

0.3720 0.3720

TCVal

Precision 0.2796 0.2962 0.3224 0.3229 0.3053 0.3053
F1 0.2756 0.2947 0.3291 0.3365 0.3090 0.3090
NDCG 0.2508 0.2662 0.2929 0.3118 0.2804 0.2804
Recall 0.2491 0.2585 0.2928 0.3086 0.2773 0.2773

HitsN 0.2801 0.3049 0.338 0.3496 0.3182 0.3182
MRR 0.2763 0.2763 0.2763

0.2980 0.2980

TCTest

Precision 0.6786 0.698 0.6745 0.6220 0.6683 0.6683
F1 0.7157 0.7385 0.7207 0.6678 0.7107 0.7107
NDCG 0.7037 0.7540 0.7946 0.8300 0.7706 0.7706
Recall 0.7299 0.7797 0.8258 0.8588 0.7986 0.7986

HitsN 0.7127 0.7595 0.7979 0.8216 0.7729 0.7729
MRR 0.7070 0.7070 0.7070

0.7442 0.7442

DegreeTrain

Precision 0.2472 0.3523 0.4591 0.5861 0.4112 0.4112
F1 0.1867 0.2727 0.3872 0.5408 0.3469 0.3469
NDCG 0.1303 0.1645 0.2022 0.2475 0.1861 0.1861
Recall 0.1144 0.1532 0.2047 0.2591 0.1829 0.1829

HitsN 0.2538 0.3181 0.3581 0.3886 0.3297 0.3297
MRR 0.2227 0.2227 0.2227

0.2913 0.2913

DegreeVal

Precision 0.1431 0.1866 0.2255 0.277 0.2081 0.2081
F1 0.1147 0.1582 0.2053 0.2693 0.1869 0.1869
NDCG 0.0845 0.1014 0.1194 0.1429 0.1121 0.1121
Recall 0.0693 0.0880 0.1113 0.1411 0.1024 0.1024

HitsN 0.1438 0.1683 0.1857 0.2148 0.1782 0.1782
MRR 0.1366 0.1366 0.1366

0.1575 0.1575

DegreeTest

Precision 0.3052 0.4412 0.5704 0.7223 0.5098 0.5098
F1 0.1919 0.3133 0.4639 0.6597 0.4072 0.4072
NDCG 0.0949 0.1220 0.1548 0.1975 0.1423 0.1423
Recall 0.0323 0.0562 0.0909 0.1314 0.0777 0.0777

HitsN 0.2745 0.3258 0.3378 0.3369 0.3188 0.3188
MRR 0.2444 0.2444 0.2444

0.2911 0.2911

Subgraph Density

Precision 0.1559 0.1412 0.1168 0.0858 0.1249 0.1249
F1 0.1867 0.1699 0.1420 0.1035 0.1505 0.1505
NDCG 0.2006 0.2097 0.2176 0.2235 0.2129 0.2129
Recall 0.2218 0.2289 0.2411 0.2491 0.2352 0.2352

HitsN 0.1768 0.1799 0.1982 0.2097 0.1912 0.1912
MRR 0.1759 0.1759 0.1759

0.1829 0.1829

33



Published as a conference paper at ICLR 2024

Table 8: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Pubmed. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided
in Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.1981 0.2358 0.2681 0.2924 0.2486 0.2486
F1 0.1690 0.2216 0.2652 0.2961 0.2380 0.2380
NDCG 0.1195 0.1379 0.1600 0.1831 0.1501 0.1501
Recall 0.0917 0.1142 0.1336 0.1397 0.1198 0.1198

HitsN 0.1932 0.2267 0.2485 0.2513 0.2299 0.2299
MRR 0.1920 0.1920 0.1920

0.1973 0.1973

TCVal

Precision 0.1769 0.2180 0.2653 0.3134 0.2434 0.2434
F1 0.1253 0.1815 0.2462 0.3092 0.2156 0.2156
NDCG 0.0780 0.0846 0.1046 0.1303 0.0994 0.0994
Recall 0.0417 0.0503 0.0672 0.0804 0.0599 0.0599

HitsN 0.1627 0.1882 0.2068 0.2077 0.1914 0.1914
MRR 0.1607 0.1607 0.1607

0.1619 0.1619

TCTest

Precision 0.3769 0.3989 0.4078 0.3909 0.3936 0.3936
F1 0.4011 0.4258 0.4329 0.4088 0.4172 0.4172
NDCG 0.3902 0.4231 0.4547 0.4870 0.4388 0.4388
Recall 0.3809 0.4080 0.4286 0.4335 0.4128 0.4128

HitsN 0.3923 0.4247 0.4463 0.4436 0.4267 0.4267
MRR 0.4097 0.4097 0.4097

0.4178 0.4178

DegreeTrain

Precision 0.2433 0.3108 0.3761 0.4849 0.3538 0.3538
F1 0.1019 0.1970 0.2987 0.4456 0.2608 0.2608
NDCG 0.0477 0.0366 0.0441 0.0715 0.0500 0.0500
Recall -0.0402 -0.0386 -0.0385 -0.0357 0.0383 -0.0383

HitsN 0.2080 0.2404 0.2504 0.2612 0.2400 0.2400
MRR 0.2051 0.2051 0.2051

0.1886 0.1733

DegreeVal

Precision 0.1823 0.2290 0.2849 0.3681 0.2661 0.2661
F1 0.0676 0.1368 0.2220 0.3359 0.1906 0.1906
NDCG 0.0293 0.0164 0.0221 0.0407 0.0271 0.0271
Recall -0.0429 -0.0466 -0.0459 -0.0476 0.0458 -0.0458

HitsN 0.1536 0.1749 0.1831 0.1872 0.1747 0.1747
MRR 0.1573 0.1573 0.1573

0.1408 0.1225

DegreeTest

Precision 0.3073 0.3898 0.4719 0.6133 0.4456 0.4456
F1 0.1251 0.2423 0.3716 0.5624 0.3254 0.3254
NDCG 0.0588 0.0406 0.0480 0.0821 0.0574 0.0574
Recall -0.0537 -0.0565 -0.0605 -0.0575 0.0571 -0.0571

HitsN 0.2615 0.2966 0.3030 0.3099 0.2928 0.2928
MRR 0.2556 0.2556 0.2556

0.2356 0.2128

Subgraph Density

Precision 0.1002 0.0746 0.0414 -0.0146 0.0577 0.0504
F1 0.1732 0.1319 0.0792 0.0030 0.0968 0.0968
NDCG 0.2146 0.2307 0.2357 0.2344 0.2289 0.2289
Recall 0.2475 0.2547 0.2540 0.2428 0.2498 0.2498

HitsN 0.1343 0.1330 0.1338 0.1288 0.1325 0.1325
MRR 0.1430 0.1430 0.1430

0.1531 0.1517

34



Published as a conference paper at ICLR 2024

Table 9: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Vole. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.2725 0.2710 0.2648 0.2287 0.2593 0.2593
F1 0.2985 0.2981 0.2869 0.2401 0.2809 0.2809
NDCG 0.2714 0.3012 0.3300 0.3497 0.3131 0.3131
Recall 0.2946 0.3267 0.3677 0.3917 0.3452 0.3452

HitsN 0.3113 0.3307 0.3694 0.3988 0.3526 0.3526
MRR 0.2721 0.2721 0.2721

0.3102 0.3102

TCVal

Precision 0.1375 0.1717 0.1847 0.1721 0.1665 0.1665
F1 0.1233 0.1690 0.1871 0.1739 0.1633 0.1633
NDCG 0.0931 0.1201 0.1403 0.1479 0.1254 0.1254
Recall 0.0825 0.1251 0.1570 0.1548 0.1299 0.1299

HitsN 0.1347 0.1558 0.1815 0.1814 0.1634 0.1634
MRR 0.1219 0.1219 0.1219

0.1497 0.1497

TCTest

Precision 0.5547 0.4822 0.3937 0.2527 0.4208 0.4208
F1 0.6498 0.5597 0.4449 0.2742 0.4822 0.4822
NDCG 0.7395 0.7712 0.7954 0.8030 0.7773 0.7773
Recall 0.7325 0.7384 0.7367 0.6812 0.7222 0.7222

HitsN 0.6470 0.6529 0.6452 0.6016 0.6367 0.6367
MRR 0.6950 0.6950 0.6950

0.6078 0.6078

DegreeTrain

Precision 0.2103 0.2728 0.3620 0.4508 0.3240 0.3240
F1 0.1387 0.2253 0.3391 0.4508 0.2885 0.2885
NDCG 0.0180 0.0352 0.0760 0.1222 0.0629 0.0629
Recall 0.0238 0.0479 0.1111 0.1993 0.0955 0.0955

HitsN 0.1688 0.1977 0.2551 0.2989 0.2301 0.2301
MRR 0.0512 0.0512 0.0512

0.2002 0.2002

DegreeVal

Precision 0.0312 0.0747 0.1182 0.1758 0.1000 0.1000
F1 -0.0135 0.0414 0.0989 0.1685 0.0806 0.0738
NDCG -0.0527 -0.0455 -0.0336 -0.0153 0.0368 -0.0368
Recall -0.0670 -0.0487 -0.0309 0.0059 0.0381 -0.0352

HitsN 0.0077 0.0180 0.0368 0.0599 0.0306 0.0306
MRR -0.0215 -0.0215 -0.0215

0.0572 0.0265

DegreeTest

Precision 0.3731 0.5111 0.6562 0.8126 0.5883 0.5883
F1 0.2040 0.3944 0.5926 0.7916 0.4957 0.4957
NDCG 0.0004 0.0257 0.0722 0.1330 0.0578 0.0578
Recall -0.0942 -0.0697 -0.0301 0.0419 0.0590 -0.0380

HitsN 0.2320 0.2604 0.2731 0.2529 0.2546 0.2546
MRR 0.1642 0.1642 0.1642

0.2911 0.2717

Subgraph Density

Precision 0.0744 0.0369 -0.0119 -0.0815 0.0512 0.0045
F1 0.1372 0.0860 0.0187 -0.0689 0.0777 0.0433
NDCG 0.2205 0.2341 0.2398 0.2398 0.2336 0.2336
Recall 0.2178 0.2366 0.2495 0.2545 0.2396 0.2396

HitsN 0.1206 0.1493 0.1688 0.2138 0.1631 0.1631
MRR 0.2026 0.2026 0.2026

0.1530 0.1368

35



Published as a conference paper at ICLR 2024

Table 10: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Reptile. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section G.8 and they represent the average absolute and simple average correlation, respectively,
across the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.5189 0.5084 0.4977 0.5009 0.5065 0.5065
F1 0.5420 0.5307 0.5146 0.5090 0.5241 0.5241
NDCG 0.5298 0.5502 0.5636 0.5741 0.5544 0.5544
Recall 0.5097 0.5176 0.5343 0.5475 0.5273 0.5273

HitsN 0.5208 0.5278 0.5407 0.5502 0.5349 0.5349
MRR 0.5300 0.5300 0.5300

0.5294 0.5294

TCVal

Precision 0.3994 0.4316 0.4550 0.4647 0.4377 0.4377
F1 0.3753 0.4250 0.4573 0.4670 0.4312 0.4312
NDCG 0.3183 0.3535 0.3790 0.3909 0.3604 0.3604
Recall 0.2670 0.3085 0.3525 0.3744 0.3256 0.3256

HitsN 0.3213 0.3483 0.3675 0.3840 0.3553 0.3553
MRR 0.3666 0.3666 0.3666

0.3820 0.3820

TCTest

Precision 0.7083 0.7000 0.6739 0.6506 0.6832 0.6832
F1 0.7898 0.7629 0.7138 0.6678 0.7336 0.7336
NDCG 0.8475 0.8897 0.9029 0.9072 0.8868 0.8868
Recall 0.8573 0.8858 0.8931 0.8759 0.8780 0.8780

HitsN 0.8276 0.8566 0.8604 0.8495 0.8485 0.8485
MRR 0.8163 0.8163 0.8163

0.8060 0.8060

DegreeTrain

Precision 0.4998 0.5294 0.5664 0.5947 0.5476 0.5476
F1 0.5082 0.5411 0.5788 0.6017 0.5575 0.5575
NDCG 0.4247 0.4572 0.4914 0.5120 0.4713 0.4713
Recall 0.4338 0.4598 0.5201 0.5615 0.4938 0.4938

HitsN 0.4998 0.5073 0.5391 0.5664 0.5282 0.5282
MRR 0.4369 0.4369 0.4369

0.5197 0.5197

DegreeVal

Precision 0.3185 0.3577 0.3797 0.3924 0.3621 0.3621
F1 0.3022 0.3546 0.3840 0.3956 0.3591 0.3591
NDCG 0.2285 0.2617 0.2858 0.2985 0.2686 0.2686
Recall 0.1997 0.2384 0.2830 0.3093 0.2576 0.2576

HitsN 0.2729 0.2938 0.3165 0.3339 0.3043 0.3043
MRR 0.2677 0.2677 0.2677

0.3103 0.3103

DegreeTest

Precision 0.6833 0.7492 0.7935 0.8118 0.7595 0.7595
F1 0.5477 0.6726 0.7556 0.7968 0.6932 0.6932
NDCG 0.3062 0.3404 0.3676 0.3790 0.3483 0.3483
Recall 0.1840 0.2103 0.2429 0.2532 0.2226 0.2226

HitsN 0.3940 0.3555 0.3381 0.3283 0.3540 0.3540
MRR 0.4468 0.4468 0.4468

0.4755 0.4755

Subgraph Density

Precision 0.2482 0.2491 0.2211 0.2022 0.2302 0.2302
F1 0.2943 0.2849 0.2420 0.2108 0.2580 0.2580
NDCG 0.3560 0.3819 0.3792 0.3765 0.3734 0.3734
Recall 0.3588 0.3928 0.3777 0.3607 0.3725 0.3725

HitsN 0.3440 0.3891 0.3837 0.3745 0.3728 0.3728
MRR 0.3510 0.3510 0.3510

0.3214 0.3214

36



Published as a conference paper at ICLR 2024

H EDGE REWEIGHTING ALGORITHM

Here we present our edge reweigting algorithm to enhance the link prediction performance by mod-

ifying the graph adjacency matrix in message-passing. We normalize the adjacency matrix to get Ã

and Â as defined in the algorithm below.

Algorithm 1: Edge Reweighting to Boost LP performance

Input: The input training graph (A,X, ETrain,D), graph encoder fΘf
, link predictor gΘg , update interval

∆, training epochs T , warm up epochs Twarm and weights γ for combining the original adjacency
matrix and the updated adjacency matrix. The validation adjacency/degree matrix A

Val/DVal that
only includes edges in the validation set.

1 Compute the normalized adjacency matrices Â = D
−0.5

AD
−0.5, Ã = D

−1
A, ÃVal = D

Val−1
A

Val

2 Ã
0 = Â

3 for τ = 1, . . . , T do

4 if τ%∆ ̸= 0 or τ f Twarm then

5 Ã
τ = Ã

τ−1

/* Message-passing and LP to update model parameters */

6 for mini-batch of edges Eb ¦ ETrain do

7 Sample negative edges Eb,−, s.t., |Eb,−| = |Eb|

8 Compute node embeddings Hτ = f
Θ

τ−1

f

(Ãτ ,X)

9 Compute link prediction scores Eτ
ij = g

Θ
τ−1
g

(Hτ
i ,H

τ
j ), ∀(i, j) ∈ E

b ∪ ETrain

10 Lb,τ = − 1
|Eb|

(
∑

eij∈Eb logE
τ
ij +

∑
emn∈Eb,− log(1−E

τ
mn))

11 Update Θ
τ
g ← Θ

τ−1
g −∇

Θ
τ−1
g
Lb,τ , Θ

τ
f ← Θ

τ−1
f −∇

Θ
τ−1

f

Lb,τ−1

/* Update adjacency matrix to enhance weighted TC */

12 if τ%∆ == 0 and τ > Twarm then

13 Compute node embeddings Hτ = f
Θ

τ−1

f

(Ãτ−1,X);

14 if Using training neighbors to reweigh then

15 Average pooling the neighborhood embeddings Nτ = ÃH
τ

16 if Using validation neighbors to reweigh then

17 Average pooling the neighborhood embeddings Nτ = Ã
Val
H

τ

18 Compute the link prediction scores Sτ
ij =

exp(gΘτ
g
(Nτ

i ,Hτ
j ))

∑
n
j=1

exp(gΘτ
g
(Nτ

i
,Hτ

j
))

19 Update the adjacency matrix Ã
τ ← Â+ γSτ

20 Return: Ãτ , fΘτ
f
, gΘτ

g

I REWEIGH EDGES FOR BASELINES WITHOUT MESSAGE-PASSING

As discussed in Section 4, we enhance node TCTrain by reweighing the edges in message-passing.
However, for some state-of-the-art baselines Chamberlain et al. (2022) that directly employ the
neural transformation rather than message-passing to obtain node embeddings, we reweigh edges in
computing the binary cross entropy loss in the training stage as follows:

L = −
1

|Eb|

∑

e
ij∈Eb

(wij

∑

eij∈Eb

logEτ
ij + wmn

∑

emn∈Eb,−

log(1−E
τ
mn)), (30)

where wij = σ(φ(Ni,Nj)) quantifies the edge weight between vi and vj with σ being the Sigmoid
function and φ being the cosine similarity. Ni is the node embedding of vi obtained in Eq. (2).

37



Published as a conference paper at ICLR 2024

Table 11: Comparing the efficiency (s) between X and our proposed Xrw.

Baseline Cora Citeseer Pubmed Collab Reptile Vole

GCN 19,5 15.5 158.4 2906 18.3 53.8
GCNrw 21.1 17.2 158.5 2915 17.0 53.0

SAGE 22.3 17.0 189.8 2970 20.9 61.2
SAGErw 23.8 20.5 192.4 2982 21.7 61.9

BUDDY 3.41 4.51 15.51 906.18 2.50 4.99
BUDDYrw 3.98 4.92 14.56 907.52 2.62 5.06

J COMPARING THE EFFICIENCY BETWEEN BASELINE AND THEIR

AUGMENTED VERSION BY TC

Here we compare the running time (s) of each baseline and their corresponding augmented ver-
sion by uniformly testing them on the same machine in Table 11. We can see that equipping our
proposed reweighting strategy could enhance the performance but only lead to marginal computa-
tional overhead. This is because firstly, we only change the weight of existing edges and hence the
number of edge weights to be calculated is linear to the network size. Secondly, we leverage the
pre-computed node embeddings to compute the edge weights. Thirdly, we only periodically update
the edge weights.

K REWEIGHTING TRAINING NEIGHBORS BASED ON THEIR CONNECTIONS TO

TRAINING NEIGHBORS OR VALIDATION NEIGHBORS

As discussed in Obs. 3, due to the topological distribution shift, the newly joined neighbors of one
node become less and less connective to the previous neighbors of that node. Therefore, the train-
ing neighbors of one node share fewer connections with the testing neighbors of that node than the
validation neighbors. This motivates us to further improve our reweighting strategy based on vali-
dation neighbors rather than training neighbors. The intuition is that when performing message-
passing to aggregate training neighbors’ information for each node, we want to incorporate
those training neighbors with more connections to that node’s validation neighbors instead of
those training neighbors with more connections to that node’s training neighbors. Technically,
we include additional steps 14-17 to consider two scenarios in Algorithm H: (1) reweighting based
on the connections of training neighbors to training neighbors and (2) reweighting based on the
connections of training neighbors to validation neighbors. We experiment on Collab to compare the
performance of these two scenarios in Table 12. We can see the performance of reweighting based
on validation neighbors is higher than reweighting based on training neighbors. This demonstrates
that the validation neighbors are more connected to the testing neighbors, justifying the existence of
the topological distribution shift.

Table 12: Comparing the link prediction performance on Collab between reweighting based on
training neighbors and reweighting based on validation neighbors

Performance
GCN SAGE

No Train Val No Train Val

Hits@5 18.94±1.20 19.48±0.75 22.36±0.32 11.25±1.24 20.52±2.35 24.34±0.07
Hits@10 31.24±3.44 32.69±1.00 35.15±2.42 26.41±1.88 31.23±3.52 37.15±2.44
Hits@50 50.12±0.22 52.77±1.00 53.24±0.22 49.68±0.25 51.87±0.10 52.69±0.26
Hits@100 54.44±0.49 56.89±0.17 57.28±0.10 54.69±0.18 56.59±0.19 57.27±0.25

38



Published as a conference paper at ICLR 2024

L EXPLAINING WHY THE CURVE OF LINK PREDICTION PERFORMANCE HAS

SEVERAL FAST DOWN IN FIGURE 7(A)

Here we delve deep into the reason why we encounter several fast-down performances in Figure 7(a).
We ascribe it to the weight clip 3. We hypothesize that the loss landscape has several local minimums
and hence by weight clipping with higher upper bound constraints, our learning step would be
also larger so that the model could jump out of its original local optimum and keep finding some
other better local optimum, which corresponds to the fast downtrend (first jump away from one
local minimum and then find another better local minimum). We further empirically verify our
hypothesis by visualizing the performance curve for each training process with different clipping
weights in Figure 23. We can clearly see that as the clipping threshold becomes lower (upper bound
decreases), we observe less fast downtrend decreases.

Figure 23: From left to right, we constrain GCN-based link predictor with fewer upper bounds by
clipping using a lower threshold. We can see the number of performance fast downtrend decreases.
We hypothesize that the loss landscape has several local minimums and hence by weight clipping
with lower upper bounds, our learning step would be also smaller so that the model could not jump
out of its origin local optimum and hence we end up with fewer fast downtrends.

3Following the publically available implementation on GCN/SAGE on Collab link prediction, we employ
the weight clip every time after parameter update

39


	Introduction
	Related work
	Topological Concentration 
	Notations
	Topological Concentration: Intuition and Formalization
	Topological Concentration: Observation and Analysis
	Topological Concentration: Computational Complexity and Optimization

	Topological Concentration: Boosting GNNs' LP performance
	Conclusion
	 Appendix
	Notations
	Review of the cold-start issue in link prediction and recommender systems
	Link-centric and Node-centric Evaluation Metrics
	Link-Centric Evaluation
	Node-Centric Evaluation

	Proof of Theorems
	Approximation power of ATC for TC
	Degree-related Bias of Evaluation Metrics
	Reweighting by LP Score Enhance 1-layer TC

	Example demonstrating the advantages of TC over LCC
	Datasets and Experimental Settings
	Dataset Introduction and Statistics
	Hyperparameter Details

	Additional Results
	Link prediction performance grouped by TCTest
	Link prediction performance grouped by TCTrain
	Link prediction performance grouped by DegreeTest
	Link prediction performance grouped by DegreeTrain
	Relation between LP performance and TC at Graph-level
	Relation between TCTrain and TCTest
	Difference in TC vs Difference in Performance before/after applying reweighting
	Correlation of the performance with TC and Degree

	Edge Reweighting Algorithm
	Reweigh edges for baselines without message-passing
	Comparing the Efficiency between baseline and their augmented version by TC
	Reweighting training neighbors based on their connections to training neighbors or validation neighbors
	Explaining why the curve of link prediction performance has several fast down in Figure 7(a)


