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Abstract

This work studies algorithms for learning from ag-

gregate responses. We focus on the construction

of aggregation sets (called bags in the literature)

for event-level loss functions. We prove for linear

regression and generalized linear models (GLMs)

that the optimal bagging problem reduces to one-

dimensional size-constrained k-means clustering.

Further, we theoretically quantify the advantage

of using curated bags over random bags. We then

propose the PriorBoost algorithm, which adap-

tively forms bags of samples that are increasingly

homogeneous with respect to (unobserved) indi-

vidual responses to improve model quality. We

study label differential privacy for aggregate learn-

ing, and we also provide extensive experiments

showing that PriorBoost regularly achieves op-

timal model quality for event-level predictions, in

stark contrast to non-adaptive algorithms.

1. Introduction

In supervised learning, the learner is given a training dataset

of n i.i.d pairs (xi, yi), where xi ∈ R
d is a feature vec-

tor and yi is the corresponding response. Responses are

real-valued for regression problems, and belong to a finite

discrete set for multi-class classification. The fundamental

problem in supervised learning is to (1) train a model with

this data, and (2) use this model to infer the response/label

of unseen test instances. However, in many practical appli-

cations (e.g., medical tests and elections), the responses con-

tain sensitive information, but the features are far less sensi-

tive (e.g., demographic information or zip codes/regions). In

such applications, there are valid concerns about revealing

individual responses to the learning algorithm, even if it is a

trusted party.

A popular approach to mitigate this privacy concern in prac-

*Equal contribution 1University of Southern California
2Google Research. Correspondence to: Adel Javanmard <aja-
vanma@usc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

tice is to let the learner access responses in an aggregate

manner. In the framework of learning from aggregate re-

sponses (LAR), the learner is given access to a collection of

unlabeled feature vectors called bags and an aggregate sum-

mary of the responses in each bag. A widely used choice is

the mean response or label proportions of each bag (Yu et al.,

2014). The learner then fits a model using the aggregate

responses with the goal of accurately predicting individual

responses on future data.

The problem of learning from aggregate responses (a.k.a.

learning from label proportions in the context of classifi-

cation) dates back to at least Wein & Zenios (1996) in the

context of group testing, a technique used in many different

fields including medical diagnostics, population screening,

and quality control. The idea is to combine multiple samples

into a group and test them together rather than individually.

This approach has been widely adopted in cases where test-

ing resources are limited or the prevalence of the condition

being tested for is low. LAR has also been studied in other

earlier work (de Freitas & Kück, 2005; Musicant et al., 2007;

Quadrianto et al., 2008; Rueping, 2010; Patrini et al., 2014)

for settings where direct access to the individual responses

is not possible (e.g., in political party elections where aggre-

gate votes are only available at discrete district levels).

Recently, there has been a resurgence in the LAR framework

primarily due to the rise of privacy concerns; see (Scott &

Zhang, 2020; Saket, 2022; Zhang et al., 2022; Busa-Fekete

et al., 2024; Chen et al., 2023; Brahmbhatt et al., 2023; Ja-

vanmard et al., 2024; Li et al., 2024) for a non-exhaustive

list. Specifically, if the aggregation bags are large enough

and have no (or little) overlap, revealing only the aggregate

responses provides a layer of privacy protection, often for-

malized in terms of k-anonymity (Sweeney, 2002). Large

tech companies have recently deployed aggregate learning

frameworks, including Apple’s SKAdNetwork library (Koll-

nig et al., 2022) and the Private Aggregation API in the

Google Privacy Sandbox (Geradin et al., 2020). Aggregate

responses can further be perturbed to provide label differen-

tial privacy (Chaudhuri & Hsu, 2011), a popular notion of

privacy that measures the leakage of personal label/response

information, which we discuss in detail in Section 6.

In some applications, the bagging configurations are natu-

rally determined by the problem at hand (e.g., in the voting
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example above the bags are defined based on districts). In

other applications, however, the learner has the flexibility of

curating bags of query samples to maximize model utility

while complying with privacy or legal constraints imposed

by the data regulators. Our work focuses on the problem of

bag curation in the framework of learning from aggregate

responses.

1.1. Problem statement

We first describe the process of learning from aggregate re-

sponses, for a given collection of bags. Consider a partition

of n samples into m non-overlapping bags, each of size at

least k, for a prespecified k (and hence n ≥ mk). We focus

on training a model by minimizing the following event-level

loss:

θ̂ := argmin
θ

1

n

m∑

`=1

∑

i∈B`

L(y`, fθ(xi)) , (1)

where B` is the set of samples in bag ` and y` is the mean

response in bag `. In words, with this approach the model

is learned by fitting individual predictions to the average

response of its bag.

The problem of bag curation is to find an optimal bagging

configuration that maximizes model utility (in terms of min-

imizing estimation error), while satisfying the minimum bag

size constraint |B`| ≥ k. Note that this min-size constraint

implies k-anonymity in the sense of that any response in the

(aggregate) dataset is shared by at least k individuals. Larger

values of k offer higher protection of individual responses.

1.2. Overview of our approach and contributions

This work focuses on event-level loss and the problem of bag

curation. To control privacy leakage, we require the bags

to be non-overlapping and of size at least k. An important

property of our mechanism is the following: The learner

never sees an individual response. Conceptually, the learner

always constructs a query of fresh samples to send to an

oracle, who then returns the aggregate response.

Our key insight is to leverage available prior information

about E[y | x] to construct better bags for the learner. Such

prior information can be based on domain knowledge, mod-

els trained on public data, or even previous iterations of an

aggregate learning algorithm.

We summarize our contributions as follows.

• Reduction to size-constrained k-means clustering.

We first present our method assuming access to a prior.

We start with linear regression and characterize the

dependence of the model estimation error on the bag

construction. We then show that finding optimal bags

reduces to a one-dimensional size-constrained k-means

clustering problem that involves prior information on

the expected response of samples. In Section 3, we

then extend our derivations to the family of generalized

linear models.

• Advantage over random bagging. In Section 4, we

theoretically demonstrate the improvement of our bag-

ging approach over schemes that construct bags inde-

pendently of data (including random bagging).

• Iterative prior-boosting algorithm. In Section 5,

we propose an adaptive algorithm called PriorBoost,

which constructs a good prior from the aggregate data

itself. It can be used even in settings where no public

prior distribution is available. PriorBoost partitions

the training data across multiple stages: it start with

random bagging, and then iteratively refines the prior

by constructing more consistent bags on the remaining

data.

• Differentially private LAR. In Section 6, we propose

a mechanism that adds Laplace noise to aggregate re-

sponses to ensure label differential privacy. We observe

an intriguing tradeoff on the choice of minimum bag

size k. On the one hand, larger k implies less sensi-

tivity of aggregate responses to individual substitution

and hence less noise is needed to ensure privacy. On

the other hand, smaller k results in smaller bias of the

trained model. The optimal choice of k (for a fixed

privacy budget ε) depends on how these two effects

contribute to the model test loss. We showcase this

tradeoff empirically and discuss how the optimal k
varies with the sample size n, features dimension d,

and bag construction algorithm.

• Experiments. We study PriorBoost through exten-

sive experiments in Section 7. This includes a com-

parison with random bagging for linear and logistic

regression tasks, as well as a careful exploration into

label differential privacy with Laplace noise for differ-

ent privacy budgets.

1.3. Other related work

An active line of work in LAR is centered around the design

of new loss functions. In addition to the the event-level loss

in (1), another popular choice is bag-level loss (or aggre-

gate likelihood), which measures the mismatch between the

aggregate responses y` and the average model predictions
1/|B`|

∑
i∈B`

fθ(xi) across bags ` ∈ [m] (Rueping, 2010;

Yu et al., 2014). Javanmard et al. (2024) study the statis-

tical properties of both losses and show that for quadratic

loss functions `(x, y) = (x− y)2, the event-level loss can

be seen as a regularized form of the bag-level loss. They

propose a novel interpolating loss that optimally adjusts the

strength of the regularization.
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It is worth noting that in many large-scale production ML

systems, models are often trained online (Anil et al., 2022;

Fahrbach et al., 2023; Coleman et al., 2024), and event-level

loss is more amenable to online optimization. A separate

system can be in charge of bagging and generating aggregate

responses without the learner needing to know the bagging

structure. In contrast, bag-level loss minimization requires

computing average predictions for each bag, making it more

challenging to implement, especially with mini-batch SGD

where all samples in a bag must be in the same batch.

(Li et al., 2024) studies the problem of learning from label

proportions and various learning rules that acheive PAC

learning guarantees for classification loss. It also proposes

novel debiasing techniques to achieve optimistic rates in

both the realizable and agnostic setting.

We note that the works discussed above mainly consider

random bagging. Closer to our goal, Chen et al. (2023)

study the problem of bag curation, but they take a differ-

ent approach than ours by grouping samples by common

features instead of predicted response values.

2. Warm-up: Linear regression

The high-level intuition behind our approach is that useful

bagging configurations are ones where aggregate responses

are close to their individual responses. This allows for the

estimator to be close to the empirical risk minimizer (ERM),

similar to teacher-student knowledge distillation (Hinton

et al., 2015). Our goal is therefore to use available predic-

tions ỹ ≈ E[y | x] based on prior information to construct

better bags for the aggregate learner.

To illustrate this idea, we start with a linear regression setup

where response yi is generated as

yi = x
ᵀ

i θ
∗ + εi , εi ∼ N (0, σ2). (2)

The design matrix is X =
[
x1 . . . xn

]ᵀ ∈ R
n×d, the

response vector is y = (y1, . . . , yn)
ᵀ, and the noise vector

is ε = (ε1, . . . , εn)
ᵀ. We assume ε is independent of X ,

and that E[ε] = 0 and E[εεᵀ] = σ2I . Letting m denote the

number of bags, we encode the assignment of samples to

bags with a matrix S ∈ R
m×n, where

S`,i =

{
1√
|B`|

if i ∈ B`,

0 otherwise.
(3)

Consider the event-level loss minimizer of (1) with L being

least squares loss, which we can write as

θ̂ = argmin
θ

1

n
‖SᵀSy −Xθ‖22 . (4)

2.1. Bounding the estimator error

Our next result characterizes the error of this estimator. All

proofs in this section are deferred to Appendix A.

Theorem 2.1. If the design matrix X ∈ R
n×d has rank d,

then for the estimator θ̂ given by Eq. (4), we have

E

[ ∥∥∥θ̂ − θ∗
∥∥∥
2

2

∣∣∣X
]
=
∥∥(XᵀX)−1Xᵀ(SᵀS − I)Xθ∗

∥∥2
2

+ σ2
∥∥(XᵀX)−1XᵀSᵀ

∥∥2
F
. (5)

An optimal bagging configuration (in the sense of minimiz-

ing the estimation error) is one whose matrix S minimizes

(5) among all feasible partitions. The first term of the right-

hand side is the (conditional) bias of θ̂ and the second term

is its variance. As we can see, the choice of S affects both

terms.

Instead of solving for an optimal S, which can be challeng-

ing due to its partition structure, we first develop an upper

bound on the error, and then we minimize this bound over S

to give guidance on how to design aggregation bags.

Corollary 2.2. The estimation error E[‖θ̂ − θ∗‖22 |X] in

Eq. (5) is upper bounded by
∥∥(XᵀX)−1Xᵀ

∥∥2
op
(‖(SᵀS − I)Xθ∗‖22 + σ2 min(m, d)).

2.2. Reducing to size-constrained k-means clustering

Next observe that I − SᵀS is a projection matrix given by

(I − SᵀS)i,j =





1− 1
|B`|

if i, j ∈ B` and i = j,

− 1
|B`|

if i, j ∈ B` and i 6= j,

0 otherwise.

Specifically, I − SᵀS is the projection onto the space of

vectors that have zero mean within each bag.

Let ỹi := E[yi | xi] = x
ᵀ

i θ be the conditional expected

response of sample xi according to the prior model θ ∈ R
d.

Letting ỹ = (ỹ1, . . . , ỹn), we then have

‖(I − SᵀS)ỹ‖22 =
m∑

`=1

∑

i∈B`

(ỹi − µ`)
2 , (6)

where µ` =
1

|B`|

∑
i∈B`

ỹi is the mean of the entries of ỹ

in bag `. Observe that (6) is the one-dimensional k-means

objective.

To summarize, let B denote the set of all partitions of the n
samples. Minimizing the upper bound in Corollary 2.2 over

the set of non-overlapping bags of size at least k amounts to

the following optimization problem:

min
(B1,...,Bm)∈B

m∑

`=1

∑

i∈B`

(ỹi − µ`)
2 + σ2 min(m, d)

subject to |B`| ≥ k ∀` ∈ [m]
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This problem exhibits an interesting tradeoff with the num-

ber of bags m. The first term in the objective is the bias of

the estimator θ̂, which measures the within-bag deviation

of ỹ. If we require larger bags (and hence a smaller m), this

term increases since there will be more heterogeneity within

bags. Decreasing m, however, reduces the second term in

the objective, which is the variance of the estimator θ̂. The

reason is that the aggregate responses y` are averaged across

larger bags and thus have lower variance. This reduction in

the variance of the aggregated responses corresponds to a

reduction in the estimator variance.

Focusing on the case where m ≥ d, we can drop the second

term in the objective to get the following one-dimensional k-

means clustering problem with minimum size constraints:1

min
(B1,...,Bm)∈B

m∑

`=1

∑

i∈B`

(ỹi − µ`)
2 (7)

subject to |B`| ≥ k ∀` ∈ [m]

The next result establishes a structural property about opti-

mal solutions to this problem.

Lemma 2.3 (Sorting structure). Consider the optimization

problem (7) and sort the values ỹi in non-increasing order

as ỹ(1) ≥ · · · ≥ ỹ(n). There exists an optimal solution

{B∗
` : ` ∈ [m]} with the following property: if ỹ(i) and ỹ(j)

are in a bag B∗
` , then ỹ(k) ∈ B∗

` for all k ∈ {i, i+1, . . . , j}.

We discuss the algorithmic consequences of Lemma 2.3 in

more detail in Section 5.

3. Extension to GLMs

We next extend our derivation to the family of generalized

linear models (GLMs). In a GLM, the response variables yi
are conditionally independent given xi, and generated from

a particular distribution in the exponential family where the

log-likelihood function is written as:

log p(yi | ηi, φ) =
yiηi − b(ηi)

ai(φ)
+ c(yi, φ) , (8)

where ηi is the location parameter and φ is the scale param-

eter. The functions ai(·), b(·), and c(·, ·) are known. It is

sometimes assumed that ai(φ) has the form ai(φ) = φ/wi,
where wi is a known prior weight. We consider canoni-

cal GLMs, in which the location parameter has the form

ηi = x
ᵀ

i θ
∗ for an unknown model parameter θ∗. GLMs in-

clude several well-known statistical models, including linear

regression, logistic regression, and Poisson regression.

1More accurately, this is a one-dimensional m-means cluster-
ing problem with size constraints. We use k to denote the minimum
bag size to agree with the notion of k-anonymity.

Let θ̂ be the minimizer of the event-level loss in (1) with L
the negative log-likelihood. Concretely,

θ̂ = argmin
θ

L(θ)

:= argmin
θ

1

n

m∑

`=1

∑

i∈B(`)

y`x
ᵀ

i θ − b(xᵀ

i θ)

ai(φ)
, (9)

where we drop the term c(yi, φ) as it does not depend on θ.

By the optimality of θ̂, we have ∇L(θ̂) = 0. Our goal is

to find a bagging configuration that makes θ̂ close to the

ground truth model θ∗. A natural approach towards this goal

is to make the gradient of the loss at θ∗ small. As we show

in Lemma B.2, for strongly convex losses, the estimation

error ‖θ̂ − θ∗‖2 can be controlled by ‖∇L(θ∗)‖2.

Our next result characterizes the norm of the loss gradient

at θ∗, connecting it to the bagging matrix S. Throughout,

we use the following convention: For a function f : R→ R,

when f is applied to a vector, it is applied to each entry of

that vector, i.e., f(v) = (f(v1), . . . , f(vn)).

Theorem 3.1. Consider the GLM family in (8) with canon-

ical link functions (ηi = x
ᵀ

i θ
∗). For negative log-likelihood

loss in (9), we have

E

[
‖∇L(θ∗)‖22

∣∣X
]
=
∥∥XᵀD−1(SᵀS − I)b′(Xθ∗)

∥∥2
2

+
∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2

∥∥∥
2

F
, (10)

where D = diag({ai(φ)}).

We defer all proofs in this section to Appendix B. Note that

E[y | x] = b′(xᵀθ∗) and Var(y | x) = a(φ)b′′(xᵀθ∗) are

available from the given prior and therefore, in principle,

the right-hand side of (10) can be minimized over the choice

of bagging matrix S.

However, similar to the case of linear regression, we start

by upper bounding (10), and then we minimize this upper

bound over the choice of S. This provides guidance for how

to construct the bags, and is easier to compute while being

more interpretable.

Corollary 3.2. Define µi := E[yi | xi] = b′(xᵀ

i θ
∗) and

vi := Var(yi | xi) = ai(φ)b
′′(xᵀ

i θ
∗), and let their vector

forms be µ = (µ1, . . . , µn) and v = (v1, . . . , vn). Then,

E

[
‖∇L(θ∗)‖22

∣∣X
]
≤
∥∥XᵀD−1

∥∥2
op

(11)

·
{
‖(SᵀS − I)µ‖22 +min

( m∑

`=1

∑

i∈B`

vi
|B`|

, d ‖v‖∞
)}

.

In the case of linear regression, we have vi = σ2, so the term

involving vi becomes σ2 min(m, d) like in Corollary 2.2,

which only depends on the number of bags.
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Further, if m/d ≥ max(vi)/min(vi), the min term in (11)

is achieved by d ‖v‖∞, so this term can be dropped from

the objective, bringing us to the familiar size-constrained

clustering problem:

min
(B1,...,Bm)∈B

m∑

`=1

∑

i∈B`

(µi − µ`)
2 (12)

subject to |B`| ≥ k ∀` ∈ [m]

We conclude by showing that we can drop the variance term

from the bound in (11) for logistic and Poisson regression,

i.e., that (12) is the correct objective function.

Logistic regression. In this case we have y ∈ {0, 1}, so

the log-likelihood becomes:

log p(y | η) = yη − log(1 + eη) ,

which corresponds to b(η) = log(1 + eη), a(φ) = 1, and

c(y, φ) = 0. Therefore, µ = b′(η) = 1/(1 + e−η) and

v = eη/(1 + eη)2. Then, for any i, j ∈ [n], we have

vi
vj

= eηi−ηj
(
1 + eηj

1 + eηi

)2

≤ eηi−ηje2(ηj−ηi)+

≤ e|ηi−ηj | ≤ e‖xi−xj‖2e‖θ
∗‖2 ,

where we used ηi = x
ᵀ

i θ
∗. Therefore, if ‖xi‖2 ≤ B, we

have max(vi)/min(vi) ≤ exp(2B ‖θ∗‖2), so for m/d ≥
exp(2B ‖θ∗‖2), we can drop the variance term from the

objective function.

Poisson regression. In this case we have y ∈ Z≥0, so the

log-likelihood reads as:

log p(y | η) = yη − eη − log(y!) ,

which corresponds to b(η) = eη, c(y, φ) = − log(y!), and

a(φ) = 1. Thus, µ = b′(η) = eη and v = a(φ)b′′(η) = eη.

Then, similar to the previous example, max(vi)/min(vi) ≤
exp(2B ‖θ∗‖2) and so for m/d ≥ exp(2B ‖θ∗‖2), we can

drop the variance term from the objective function.

4. Comparison with random bagging

We now theoretically justify the benefit of our prior-based

bagging approach for aggregate learning compared to ran-

dom bagging by proving a separation in the estimator error

for linear models. An analogous but more involved analysis

can also be carried out for GLMs. Before we present our

results, we neet to establish some definitions and state our

assumptions.

Definition 4.1. A random variable X is η-subgaussian if

E[exp(X2/η2)] ≤ 2. A random vector x is η-subgaussian

if all of the one-dimensional marginals are η-subgaussian,

i.e., xᵀv is η-subgaussian for all v with ‖v‖2 = 1.

Some examples of subgaussian random variables include

Gaussian, Bernoulli, and all bounded random variables.

Assumption 4.2. The features vectors x1, . . . ,xn ∈ R
d

are drawn i.i.d from a centered κ-subgaussian distribution

with covariance matrix Σ := E[xix
ᵀ

i ] ∈ R
d×d.

Assumption 4.3. We consider an asymptotic regime where

the sample size n and the features dimension d both grow

to infinity. We assume that the eignevalues of Σ remain

bounded and also away from zero in this asymptotic regime,

i.e., σmin(Σ) ≥ Cmin > 0 and ‖Σ‖op ≤ Cmax < ∞ for

some constants Cmin and Cmax.

Our first theorem upper bounds the estimator error when the

bags are formed using the ground truth model θ∗.

Theorem 4.4. Consider the linear model (2) under Assump-

tions 4.2 and 4.3. Suppose that the dimension d and the sam-

ple size n grow to infinity and n = Ω(d). For the bagging

matrix S constructed by solving problem (7), the following

holds true with probability at least 1− 1/n− 2e−cd,

E

[ ∥∥∥θ̂ − θ∗
∥∥∥
2

2

∣∣∣X
]
≤ C

(
k log(n) ‖θ∗‖22 + σ2d

nσmin(Σ)

)
,

for some constants c, C > 0 that depend only on the sub-

gaussian norm κ.

Out next result lower bounds the estimator error when the

bags are chosen independently of the data. This applies to

random bags as a special case.

Theorem 4.5. Consider the linear model (2) under Assump-

tions 4.2 and 4.3. Suppose the dimension d and the sample

size n grow to infinity and n = Ω(d2 log d). If the bags are

constructed independent of data and each of size k, the fol-

lowing holds true with probability at least 1−2e−c1d−2d−c,

E

[ ∥∥∥θ̂ − θ∗
∥∥∥
2

2

∣∣∣X
]
≥
[(

1− 1

k
− Cd

√
log d

σmin(Σ)
√
n

)2

‖θ∗‖22

+
σ2

kn

trace(Σ)−√d log d
(‖Σ‖op + c0

√
d
n )

2

]
,

where c, c0, c1, C > 0 are constants that only depend on κ,

the subgaussian norm of the features vectors.

Remark 4.6. Theorems 4.4 and 4.5 quantify the improve-

ment we get in model risk when using the bag construction

from constrained k-means instead of random bags. Note

that in the asymptotic regime where n, d → ∞ with n =
Ω(d2 log d), the model risk under Theorem 4.4 converges to

zero, while the risk under Theorem 4.5 is lower bounded by

(1− 1
k )

2 ‖θ∗‖22. We note that Cmind ≤ trace(Σ) ≤ cmaxd.

In other words, the bias of the estimated model remains non-

vanishing under random bags, whereas it vanishes asymp-

totically when the bags are constructed via size-constrained

k-means.
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Remark 4.7. Theorem 4.4 considers bagging configurations

based on k-means with a minimum group size constraint

in (7). It assumes access to an oracle model that gives the

correct ordering of (unobserved) responses yi. However, as

stated in our methodology, we use a prior model to com-

pute the conditional expected responses ỹi, and because

of this there may be a mismatch between the ordering of

yi’s and ỹ′is. We denote by S and S̃ the corresponding

bagging matrices. Our next theorem shows how the esti-

mator error inflates with respect to the mismatch quantity

‖SSᵀ − S̃S̃ᵀ‖op.

Theorem 4.8. Consider the linear model (2) under Assump-

tions 4.2 and 4.3. Suppose that the dimension d and the

sample size n grow to infinity, and n = Ω(d). Let S̃ be

the bagging configuration based on problem (7) using the

predicted responses ỹi by a prior model. Similarly, let S

be the corresponding bagging configuration by an oracle

model who has access to individual responses yi. If we have

a mismatch ‖SSᵀ − S̃S̃ᵀ‖op ≤ ε, then the following holds

true with probability at least 1− 1/n− 2e−cd,

E

[ ∥∥∥θ̂ − θ∗
∥∥∥
2

2

∣∣∣X
]
≤ C

(
k log(n) ‖θ∗‖22 + σ2d

nσmin(Σ)

)

+
σmax(Σ)− C ′

√
d/n

σmin(Σ) + C ′
√
d/n
‖θ∗‖22 ε2,

for some constants c, C,C ′ > 0 that depend only on the

subgaussian norm κ.

5. Algorithm

We now present the PriorBoost algorithm. The high-level

idea is to partition the data X into T parts, and use each slice

X(t) together with last round’s model θ̂(t−1) to form better

bags S(t), and hence learn a stronger event-level model θ̂(t)

at each step. This is an iterative and adaptive procedure.

However, since we get one aggregate response per sample

(non-overlapping bags), taking more steps means using less

data per step. We compare PriorBoost to the random bag-

ging algorithm in Section 7 that uses all available data in a

one non-adaptive round.

Concretely, the first step of PriorBoost uses random bag-

ging to learn θ̂(1) from the aggregate responses of the first

slice X(1). In each subsequent step, we use θ̂(t−1) to pre-

dict the individual responses ỹ(t) for this round of data X(t).

Based on these predictions, we form aggregation bags by

solving the one-dimensional size-constrained k-means clus-

tering problem in (7). Recall that our goal is for bags to

be homogoneous with respect to the true responses, which

the learner never sees. The learner then gets the aggregate

response of each bag, learns a better model θ(t), and re-

peats the process. We give pseudocode for PriorBoost in

Algorithm 1 PriorBoost

Input: data X , model L(·, fθ(·)), number of steps T

1: Split X into T equal-sized parts X(1), . . . ,X(T )

2: Get aggregate responses y(1) for (X(1),S(random))

3: Update θ̂(1) ← argminθ L(y(1), fθ(X
(1)))

4: for t = 2 to T do

5: Predict ỹ(t) ← f
θ̂(t−1)(X

(t))

6: Sort samples by ỹ
(t)
i and solve (7) to get bags S(t)

using Lemma 5.1

7: Get aggregate responses y(t) for (X(t),S(t))

8: Update θ̂(t) ← argminθ L(y(t), fθ(X
(t)))

9: end for

10: return θ̂(T )

Algorithm 1 and summarize its core clustering subroutine

below.

Lemma 5.1. The clustering problem in (7) with bags of

minimum size k can be solved in time O(nk + n log n).

This subroutine exploits the sorted structure of an optimal

partition (Lemma 2.3) and uses dynamic programming with

a constant-time update for the sum of squared distance term

for the last cluster in the recurrence (Wang & Song, 2011).

We describe this algorithm in more detail and give a proof

of the lemma in Appendix D.

Remark 5.2. If we have a weak model for predicting event-

level responses (e.g., using prior θ̂(0) or transfer learn-

ing), we can use its predictions for ỹi to sort X(1) and ap-

ply Lemma 5.1 in step t = 1. This warm starts PriorBoost

compared to random bagging S(random) and allows the algo-

rithm to use fewer adaptive rounds.

6. Differential privacy for aggregate responses

As previously explained, aggregate learning offers a degree

of privacy protection by obscuring individual responses and

only disclosing aggregated responses for each bag. If the

bags do not overlap and each bag has a minimum size k,

substituting individual responses with the aggregated ones

ensures k-anonymity, a privacy concept asserting that any

given response is indistinguishable from at least k− 1 other

responses.

Another widely used notion of privacy that formalizes the

privacy protection of responses/labels is label differential

privacy (label DP), introduced by Chaudhuri & Hsu (2011).

In simple terms, a mechanism, or data processing algorithm,

is deemed label DP if its output distribution remains largely

unchanged if a single response/label is altered in the input

dataset. The concept of label differential privacy is derived

from (full) differential privacy (Dwork et al., 2006a;b), fo-

cusing specifically on preserving the privacy of responses

rather than all features. It is important to note that dif-
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Conclusion

This work proposes a novel method for using available prior

information for expected responses of samples to construct

bags for aggregate learning. We devise the multi-stage algo-

rithm PriorBoost to obtain good priors from the aggregate

data itself if no public prior is available. We also propose a

differentially private version, as well as intriguing observa-

tions about optimal bag sizes. Our analysis provably shows

the advantage of our approach over random bagging, which

we back up with strong numerical experiments.
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A. Missing analysis from Section 2

A.1. Proof of Theorem 2.1

The derivative of the loss at the minimizer is zero, which gives us:

Xᵀ(SᵀSy −Xθ̂) = 0.

By rearranging the terms, we have

θ̂ − θ∗ = (XᵀX)−1XᵀSᵀSy − θ∗

= (XᵀX)−1XᵀSᵀSXθ∗ − θ∗ + (XᵀX)−1XᵀSᵀSε

= (XᵀX)−1Xᵀ(SᵀS − In)Xθ∗ + (XᵀX)−1XᵀSᵀSε .

Since the noise vector ε ∈ R
n is independent of the design matrix X with E[ε] = 0 and E[εεᵀ] = σ2I , we have

E

[ ∥∥∥θ̂ − θ∗
∥∥∥
2

2

∣∣∣X
]
=
∥∥(XᵀX)−1Xᵀ(SᵀS − In)Xθ∗

∥∥2
2
+ σ2trace((XᵀX)−1XᵀSᵀSSᵀSX(XᵀX)−1) . (13)

Further, since the bags are non-overlapping, we have SSᵀ = Im, by which we get

trace((XᵀX)−1XᵀSᵀSSᵀSX(XᵀX)−1) = trace((XᵀX)−1XᵀSᵀSX(XᵀX)−1)

=
∥∥(XᵀX)−1XᵀSᵀ

∥∥2
F
. (14)

Substituting into (13), we prove the claim.

A.2. Proof of Corollary 2.2

By definition of the operator norm, we have
∥∥(XᵀX)−1Xᵀ(SᵀS − In)Xθ∗

∥∥
2
≤
∥∥(XᵀX)−1Xᵀ

∥∥
op
‖(SᵀS − In)Xθ∗‖2 .

Next, we upper bound the variance term in Eq. (14) using the inequality

‖AB‖2F ≤ min
(
‖A‖2op ‖B‖

2
F , ‖B‖2op ‖A‖

2
F

)
.

We have ‖S‖2F = m and ‖S‖op = 1 by the Cauchy–Schwarz inequality. We also assumed rank(X) ≤ d, which implies

∥∥(XᵀX)−1Xᵀ
∥∥
F
≤
√
d
∥∥(XᵀX)−1Xᵀ

∥∥
op

.

Therefore, we obtain ∥∥(XᵀX)−1XᵀSᵀ
∥∥2
F
≤
∥∥(XᵀX)−1Xᵀ

∥∥2
op

min(m, d) .

Combining these two bounds with Theorem 2.1 gives the result.

A.3. Proof of Lemma 2.3

The key idea is to rewrite the optimization problem by “lifting” the space of optimization variables as follows:

min
(B1,...,Bm)∈B

m∑

`=1

∑

i∈B`

(ỹi − c`)
2 (15)

subject to |B`| ≥ k ∀` ∈ [m]

c` ∈ R ∀` ∈ [m]

In words, we introduce the additional variables c` ∈ R, for ` ∈ [m]. It is easy to see that problems (7) and (15) have the

same optimal bagging configurations. Now, suppose that {(B∗
` , c

∗
` ) : ` ∈ [m]} is an optimal solution to (15). If the claim is

not true, then there exists ỹi > ỹj and c` > c`′ such that ỹi ∈ B∗
`′ and ỹj ∈ B∗

` . We then argue that by assigning ỹi to B∗
`

and ỹj to B∗
`′ , we can reduce the objective value, which is a contradiction. To show this, we must prove that

(ỹi − c`′)
2 + (ỹj − c`)

2 > (ỹi − c`)
2 + (ỹj − c`′)

2 ⇐⇒ −ỹic`′ − ỹjc` > −ỹic` − ỹjc`′

⇐⇒ (ỹi − ỹj)(c` − c`′) > 0 ,

which is true by our assumption.
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B. Missing analysis from Section 3

We recall the notion of strong convexity below.

Definition B.1. A function f : Rn → R is strongly convex with parameter µ if the following holds for all x, y ∈ R:

f(y) ≥ f(x) + sᵀx(y − x) +
µ

2
‖y − x‖22 ,

for any sx ∈ ∂f(x), where ∂f(x) denotes the set of subgradients of f at x.

The next lemma states that controlling the estimation error for a strongly convex loss function reduces to controlling the

norm of the gradient of the loss at the true model.

Lemma B.2. Suppose that the loss L is strongly convex with parameter µ and θ̂ = argminθ L(θ). Then, for any model θ∗,

we have ∥∥∥θ̂ − θ∗
∥∥∥
2
≤ 1

µ
‖L(θ∗)‖2 .

In addition, if L has a Lipschitz continuous gradient with parameter L, we have

1

L
‖L(θ∗)‖2 ≤

∥∥∥θ̂ − θ∗
∥∥∥
2
.

Proof. By writing the definition of strong convexity for θ̂ and θ∗, and noting that ∇L(θ̂) = 0, we get

L(θ∗) ≥ L(θ̂) + µ

2

∥∥∥θ∗ − θ̂
∥∥∥
2

2
.

Likewise, by changing the role of θ̂ and θ∗, we have

L(θ̂) ≥ L(θ∗) +∇L(θ∗)ᵀ(θ̂ − θ∗) +
µ

2

∥∥∥θ∗ − θ̂
∥∥∥
2

2
.

By adding the above two inequalities and rearranging the terms, we arrive at

∇L(θ∗)ᵀ(θ∗ − θ̂) ≥ µ
∥∥∥θ∗ − θ̂

∥∥∥
2

2
.

Next, by Cauchy–Schwarz inequality,∇L(θ∗)ᵀ(θ∗ − θ̂) ≤ ‖L(θ∗)‖2
∥∥∥θ∗ − θ̂

∥∥∥
2
, which along with the previous inequality

proves the first claim.

The second claim follows easily from Lipschitz condition. We write

‖∇L(θ∗)‖2 =
∥∥∥∇L(θ∗)−∇L(θ̂)

∥∥∥
2
≤ L

∥∥∥θ∗ − θ̂
∥∥∥
2
,

which completes the proof.

B.1. Proof of Theorem 3.1

The gradient of the loss in (9) reads as

∇L(θ) = 1

n

m∑

`=1

∑

i∈B(`)

1

ai(φ)
(y` − b′(θᵀxi))xi

= XᵀD−1(SᵀSy − b′(Xθ)) .

We next consider the following bias-variance decomposition:

E

[
‖∇L(θ∗)‖22

∣∣X
]
=
∥∥∥E
[
∇L(θ∗)

∣∣X
]∥∥∥

2

2
+ trace(Cov(∇L(θ∗) |X)) . (16)
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Under the GLM, the responses yi are independent conditioned on xi. In addition,

E[yi | xi] = b′(θᵀxi), Var(yi | xi) = ai(φ)b
′′(θᵀxi) .

We therefore get

E

[
∇L(θ∗)

∣∣X
]
= XᵀD−1(SᵀSb′(Xθ∗)− b′(Xθ∗))

= XᵀD−1(SᵀS − I)b′(Xθ∗) . (17)

In addition,

Cov(∇L(θ∗) |X) = E

[
XᵀD−1SᵀS(y − b′(Xθ∗))(y − b′(Xθ∗))ᵀSᵀSD−1X

∣∣X
]

= XᵀD−1SᵀSDdiag(b′′(Xθ∗))SᵀSD−1X .

Therefore,

trace(Cov(∇L(θ∗) |X)) =
∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2

∥∥∥
2

F
. (18)

Combining (17) and (18) into (16) completes the proof.

B.2. Proof of Corollary 3.2

We upper bound each term of (10) separately. For the first term, we have
∥∥XᵀD−1(SᵀS − I)µ

∥∥
2
≤
∥∥XᵀD−1

∥∥
op
‖(SᵀS − I)µ‖2 .

For the second term, we develop two upper bounds and take the minimum of the two.

For the first upper bound we have

∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥
2

F
≤ d

∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥
2

op

≤ d
∥∥XᵀD−1

∥∥2
op
‖SᵀS‖2op

∥∥∥D1/2diag(b′′(Xθ∗))1/2
∥∥∥
op

≤ d
∥∥XᵀD−1

∥∥2
op
‖v‖∞ .

For the second upper bound we have

∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥
2

F
≤
∥∥XᵀD−1

∥∥2
op

∥∥∥SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥
2

F
, (19)

using the inequality ‖AB‖2F ≤ ‖A‖
2
op ‖B‖

2
F.

We also note that
∥∥∥SᵀSD1/2diag(b′′(Xθ∗))1/2

∥∥∥
2

F
= trace (SᵀSDdiag(b′′(Xθ∗))SᵀS)

= trace (Ddiag(b′′(Xθ∗))SᵀSSᵀS)

= trace (Ddiag(b′′(Xθ∗))SᵀS)

= trace (Ddiag(b′′(Xθ∗))SᵀS)

=

m∑

`=1

∑

i∈B`

ai(φ)b
′′(xᵀ

i θ
∗)

|B`|
=

m∑

`=1

∑

i∈B`

vi
|B`|

.

Combining the above bounds, we obtain

∥∥∥XᵀD−1SᵀSD1/2diag(b′′(Xθ∗))1/2
∥∥∥
2

F
≤
∥∥XᵀD−1

∥∥2
op

min
( m∑

`=1

∑

i∈B`

vi
|B`|

, d ‖v‖∞
)
. (20)

This completes the proof of the corollary.
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C. Missing analysis from Section 4

C.1. Proof of Theorem 4.4

We prove the claim using the result of Corollary 2.2. Recall the notation µ := Xθ∗. By Lemma 2.3, we know that the

solution S given by (7) has a simple sorting structure. We use that structure to construct a bagging scheme to upper bound

the term ‖(SᵀS − I)µ‖22. Without loss of generality, assume that n is divisible by k. Sort the entries of µ and construct the

bags as B(`) = {(`− 1)k+ 1, . . . , `k} for ` = 1, . . . ,m := n/k. In addition, let µ̄` indicate the average of µi’s over bag `.
This construction of bags satisfy the constraint of (7) and so we have

‖(SᵀS − I)µ‖22 ≤
m∑

`=1

`k∑

j=(`−1)k+1

(µj − µ̄`)
2

≤ k

m∑

`=1

(µ`k − µ(`−1)k+1)
2

≤ k
( m∑

`=1

µ`k − µ(`−1)k+1

)2

= k(µ(1) − µ(n))
2

≤ 4k ‖µ‖2∞ .

where µ̄i in the first inequality denotes the average of µi’s over bag i.

We next bound ‖µ‖2∞. Since xi’s are κ-subgaussian, we have that µi is κ ‖θ∗‖2-subgaussian, for i ∈ [n].

Lemma C.1. Suppose that ξ1, . . . , ξn are centered η-subgaussian random variables. Then, with probability at least 1− 1
n ,

we have

max
i∈[n]

ξ2i ≤ 2η2 log n.

By using Lemma C.1 we obtain

‖(SᵀS − I)µ‖22 ≤ 4k ‖µ‖2∞ ≤ 8kκ2 ‖θ∗‖22 log n , (21)

with probability at least 1 − 1/n. We next use the concentration bounds on the singular values of matrices with i.i.d.

subgaussian rows to bound
∥∥(XᵀX)−1Xᵀ

∥∥
op

. Specifically, we use Vershynin (2012, Equation (5.25)), which states that

with probability at least 1− 2e−c1t
2

, the following holds true:

∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≤ max(δ1, δ
2
1), δ1 = C1

√
d

n
+

t√
n
, (22)

for constants c1, C1 > 0 that depend only on κ. We define the probabilistic event E as follows:

E1 :=

{∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≤ C

√
d

n

}
, (23)

for some fixed constant C > 0. Then using (22) we have Pr(E1) ≥ 1− 2e−c1d, for some constant depending on C and κ.

Under the event E , and by using Weyl’s inequality for singular values, we have

σmin(X) ≥
√
nσmin(Σ)− C

√
dn . (24)

Combining (21) and (37) in Corollary 2.2, we obtain the result.

Proof of Lemma C.1. Since ξi is η-subgaussian, by definition E[exp(X2/η2)] ≤ 2. Exponentiating and using Markov’s

inequality, we obtain

Pr(|ξi| ≥ t) = Pr(eξ
2
i /η

2 ≥ et
2/η2) ≤ e−t

2/η2
E[eξ

2
i /η

2

] ≤ 2e−t
2/η2 .
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Choosing t = η
√
2 log n and union bounding over i ∈ [n], we get

Pr
(
max
i∈[n]
|ξi| ≥ η

√
2 log n

)
≤ 2

n
,

which completes the proof of lemma.

C.2. Proof of Theorem 4.5

We recall the characterization of the risk given by Theorem 2.1:

E

[ ∥∥∥θ̂ − θ∗
∥∥∥
2

2

∣∣∣X
]
=
∥∥(XᵀX)−1Xᵀ(SᵀS − In)Xθ∗

∥∥2
2
+ σ2

∥∥(XᵀX)−1XᵀSᵀ
∥∥2
F
. (25)

We introduce the shorthand Λ := SᵀS − In. Our next lemma lower bounds the expected bias.

Lemma C.2. Under the assumptions of Theorem 4.5, the following holds with probability at least 1− 2e−c1d − 2d−c,

E

[ ∥∥(XᵀX)−1Xᵀ
ΛXθ∗

∥∥2
2

∣∣∣X
]
≥
(
1− 1

k
− C

d
√
log d

σmin(Σ)
√
n

)2

‖θ∗‖22 ,

where constants C, c, c1 > 0 only depend on the subgaussian norm κ.

Our next lemma lower bound the variance term in (25).

Lemma C.3. Under the assumptions of Theorem 4.5, the following holds with probability at least 1− 2e−c1d − 2d−c,

E

[ ∥∥(XᵀX)−1XᵀS
∥∥2
F

∣∣∣X
]
≥ 1

kn
· trace(Σ)−√d log d
(‖Σ‖op + c0

√
d
n )

2
,

where constants c, c0, c1 > 0 only depend on the subgaussian norm κ.

Proof of Theorem 4.5 follows by using Lemma C.2 and Lemma C.3 in the decomposition (25).

C.3. Proof of Lemma C.2

Consider the following optimization problem

α̂ =
1

2n
arg min

α∈Rd
‖Xα−ΛXθ∗‖22 . (26)

It is easy to see that by the KKT condition α̂ = (XᵀX)−1Xᵀ
ΛXθ∗, and so we are interested in the norm of the solution

to the above optimization problem. In order to do this, we define α∗ := trace(Λ)
n θ∗. As we will see later this is indeed the

solution of the population version of the above loss (when n→∞). The strategy is to upper bound ‖α̂−α∗‖2 from which

we obtain a lower bound on ‖α̂‖2.

By the optimality of α̂ we have

0 ≤ 1

2n
‖Xα∗ −ΛXθ∗‖22 −

1

2n
‖Xα̂−ΛXθ∗‖22

=
1

n
(α∗ − α̂)ᵀXᵀ(Xα∗ −ΛXθ∗)− 1

2n
‖X(α̂−α∗)‖22 .

Rearranging the terms we get

1

2n
‖X(α̂−α∗)‖22 ≤ ‖α∗ − α̂‖2

1

n
‖Xᵀ(Xα∗ −ΛXθ∗)‖2 .

The left-hand side can be also lower bounded by

1

2
σmin

( 1
n
XᵀX

)
‖α̂−α∗‖22 ≤

1

2n
‖X(α̂−α∗)‖22 .
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Combining the last two inequalities we arrive at

‖α̂−α∗‖2 ≤
2 ‖Xᵀ(Xα∗ −ΛXθ∗)‖2

nσmin(XᵀX/n)
. (27)

By using concentration bound on the singular values of matrices with i.i.d subgaussian rows, see Vershynin (2012, Equation

(5.25)), we have that with probability at least 1− 2e−c1t
2

,

∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≤ max(δ1, δ
2
1), δ1 = C1

√
d

n
+

t√
n
, (28)

for constants c1, C1 > 0 which depend only on κ. We define the probabilistic event E1 as follows:

E1 :=

{∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≤ C

√
d

n

}
,

for some fixed constant C > C1. Then using (28) we have Pr(E1) ≥ 1− 2e−c1d, for some constant depending on C and κ.

We next bound the numerator of the right-hand side of (27). We write

1

n
‖Xᵀ(Xα∗ −ΛXθ∗)‖2 ≤

∥∥∥∥
( 1
n
XᵀX −Σ

)
α∗

∥∥∥∥
2

+

∥∥∥∥Σα∗ −
1

n
Xᵀ

ΛXθ∗

∥∥∥∥
2

. (29)

Under event E1 the first term is bounded by C
√
d/n ‖α∗‖2.

In addition, by its definition it is easy to see that Λ is a projection matrix of rank n−m. More specifically, it projects onto

the space of vectors which are zero mean on each of the m bags. Therefore trace(Λ) = n−m and so

‖α∗‖2 =
n−m

n
‖θ∗‖2 = (1− 1

k
) ‖θ∗‖2 . (30)

Hence, under the event E1 the first term in (29) is bounded by

∥∥∥∥
( 1
n
XᵀX −Σ

)
α∗

∥∥∥∥
2

≤
∥∥∥∥
( 1
n
XᵀX −Σ

)∥∥∥∥
op

‖α∗‖2 < C ‖θ∗‖2
√

d

n
. (31)

To bound the second term in the (29), we note that by definition of α∗,

∥∥∥∥Σα∗ −
1

n
Xᵀ

ΛXθ∗

∥∥∥∥
2

=
1

n

∥∥∥
(
trace(Λ)Σ−Xᵀ

ΛX
)
θ∗
∥∥∥
2

≤ ‖θ
∗‖2
n
‖trace(Λ)Σ−Xᵀ

ΛX‖op

≤ ‖θ∗‖2
d

n

∣∣∣trace(Λ)Σ−Xᵀ
ΛX

∣∣∣
∞

, (32)

where for a matrix A, the notation |A|∞ refers to the maximum absolute values of its entries. In the last step we used the

inequality ‖A‖op ≤ d|A|∞, for symmetric A ∈ R
d×d.

We next proceed by upper bounding the right-hand side of (32). We first show that the matrix of interest side has zero mean.

To see this note that for any i, j ∈ [d] we have

E[(Xᵀ
ΛX)ij ] = E[x̃ᵀ

iΛx̃j ] = trace(ΛE(x̃jx̃
ᵀ

i )) = trace(Λ)Σij ,

where x̃i denotes the i-th column of X . Therefore, E[Xᵀ
ΛX] = trace(Λ)Σ. We next use the (asymmetric version of)

Hanson–Wright inequality (see, e.g, Vershynin (2018, Theorem 6.2.1)), by which we get that for any fixed i, j ∈ [d],

Pr {|(Xᵀ
ΛX)ij − trace(Λ)Σij | ≥ t} ≤ 2 exp

{
−cmin

( t2

κ2n(1− 1/k)
,
t

κ2

)}
, (33)
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where we used the fact that ‖Λ‖F = n−m = n− n/k, since it is a projection matrix of rank n−m. By union bounding

over the d2 coordinates i, j ∈ [d], we get

Pr {|Xᵀ
ΛX − trace(Λ)Σ|∞ ≥ t} ≤ 2d2 exp

{
−c0 min

( t2

κ2n(1− 1/k)
,
t

κ2

)}
. (34)

Fix a constant C >
√

2
c0
κ and define the event E2 as follows

E2 :=
{
|Xᵀ

ΛX − trace(Λ)Σ|∞ ≤ C
√
n log d

}
.

Using the deviation bound (34) we have Pr(E2) ≥ 1− 2d−c with c = C2c0
κ2(1−1/k) − 2 > 0. Recalling the bound (32), on the

event E2 we have

∥∥∥∥Σα∗ −
1

n
Xᵀ

ΛXθ∗

∥∥∥∥
2

≤ C ‖θ∗‖2 d
√

log d

n
. (35)

Putting together equations (29), (31), (35), we obtain that on the event E := E1 ∩ E2,

1

n
‖Xᵀ(Xα∗ − ΛXθ∗)‖2 ≤ C ‖θ∗‖2 d

√
log d

n
, (36)

for a constant C depending on the subgaussian norm κ. In addition on the event E1, we have

σmin

( 1
n
XᵀX

)
≥ σmin(Σ)−

∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≥ σmin(Σ)− C

√
d

n
. (37)

Next by combining (37) and (36) into (27), we get that

‖α∗ − α̂‖2 ≤
Cd

σmin(Σ)

√
log d

n
‖θ∗‖2 , (38)

for some constant C > 0. Note that here we used the fact that d = o(n). Therefore, by using triangle inequality, on the

event E
‖α̂‖2 ≥ ‖α∗‖2 − ‖α̂−α∗‖2 ≥

(
1− 1

k
− C

d
√
log d

σmin(Σ)
√
n

)
‖θ∗‖2 ,

for a constant C > 0 that depends on the subgaussian norm κ.

We also have

Pr(E) = 1− Pr(Ec1 ∪ Ec2) ≥ 1− Pr(Ec1)− Pr(Ec2) ≥ 1− 2e−c1d − 2d−c ,

which along with the previous equation gives the desired result.

C.4. Proof of Lemma C.3

Write Sᵀ = [s1| . . . |sm] with si ∈ R
n and ‖si‖2 = 1. We then have

∥∥(XᵀX)−1XᵀS
∥∥2
F
=

n∑

i=1

∥∥(XᵀX)−1Xᵀsi
∥∥2
2
. (39)

We next show that for any unit vector s which is independent of data (y,X) we have

∥∥(XᵀX)−1Xᵀs
∥∥2
2
≥ trace(Σ)−√d log d

n2(‖Σ‖op + c0

√
d
n )

2

(
1− 2e−c1d − 2d−c

)
, (40)

which together with (39) and the fact that m = n/k, implies the claim of Lemma C.3.
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Define v := (XᵀX)−1Xᵀs. Therefore, 1
nX

ᵀXv = 1
nX

ᵀs, which implies that

∥∥∥∥
1

n
XᵀX

∥∥∥∥
2

op

‖v‖22 ≥
∥∥∥∥
1

n
Xᵀs

∥∥∥∥
2

2

. (41)

Our strategy to lower bound E[‖v‖22] is to upper bound the left-hand side of (41) and lower bound it right-hand side.

For the first task, recall the concentration bound (28). By taking t = c′
√
d in that bound, we obtain

Pr

(∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≤ c0

√
d

n

)
≥ 1− 2e−c1d, (42)

for some constants c0, c1 depending on κ, the subgaussian norm of rows of X . We refer to the probabilistic event in (42) by

E1.

We then proceed to the second task, i.e., lower bounding
∥∥ 1
nX

ᵀs
∥∥
2
. To do this, denote the columns of X ∈ R

n×d by

x̃1, . . . , x̃d ∈ R
n. In this notation,

‖Xᵀs‖22 =

d∑

`=1

(x̃ᵀ

` s)
2 :=

d∑

`=1

Z2
` . (43)

By assumption, Z` = x̃
ᵀ

` s are independent subgaussian random variables with E[Z2
` ] = Σ`,` and the subgaussian norm

‖Z`‖ψ2
≤ Cκ for a universal constant C > 0. Therefore, by Vershynin (2012, Remark 5.18 and Lemma 5.14), Z2

` − Σ`,`
are independent centered sub-exponential random variables with ‖Z2

` − Σ`,`‖ψ1
≤ 2‖Z2

` ‖ψ1
≤ 4‖Z`‖2ψ2

≤ 4C2κ2 := C0.

Here, ‖ · ‖ψ1
refers to the subexponential norm of a random variable. We can therefore use an exponential deviation

inequality, Vershynin (2012, Corollary 5.17) to control sum (43). This gives us for every ε ≥ 0,

Pr
(∣∣∣ ‖Xᵀs‖22 − trace(Σ)

∣∣∣ ≥ εd
)
= Pr

(∣∣∣
d∑

`=1

Z2
` − trace(Σ)

∣∣∣ ≥ εd

)
≤ 2 exp

[
− cmin

( ε2

C2
0

,
ε

C0

)
d
]
,

where c > 0 is an absolute constant. We take ε =
√
(log d)/d and define the probabilistic event

E2 :=
{∣∣∣ ‖Xᵀs‖22 − trace(Σ)

∣∣∣ ≤
√
d log d

}
.

By the above deviation bound we have Pr(E2) ≥ 1− 2d−c for some constant c > 0.

We next consider the event E := E1 ∩ E2. Using (42) and the above bound on Pr(E2) we get

Pr(E) = 1− Pr(Ec1 ∪ Ec2) ≥ 1− Pr(Ec1)− Pr(Ec2) ≥ 1− 2e−c1d − 2d−c .

Further, on the event E we have

∥∥∥∥
1

n
XᵀX

∥∥∥∥
op

≤ ‖Σ‖op +

∥∥∥∥
1

n
XᵀX −Σ

∥∥∥∥
op

≤ ‖Σ‖op + c0

√
d

n
. (44)

‖Xᵀs‖22 ≥ trace(Σ)−
∣∣∣ ‖Xᵀs‖22 − trace(Σ)

∣∣∣ ≥ trace(Σ)−
√
d log d . (45)

Therefore, by invoking (41), on the event E we have

‖v‖22 ≥
∥∥ 1
nX

ᵀs
∥∥2
2∥∥ 1

nX
ᵀX
∥∥2
op

≥ trace(Σ)−√d log d
n2(‖Σ‖op + c0

√
d
n )

2
. (46)

Since ‖v‖22 is non-negative by an application of Markov’s inequality we get

E[‖v‖22] ≥
trace(Σ)−√d log d
(‖Σ‖op + c0

√
d
n )

2
Pr(E) ≥ trace(Σ)−√d log d

n2(‖Σ‖op + c0

√
d
n )

2

(
1− 2e−c1d − 2d−c

)
.

This completes the proof of (40) and concludes the proof of Lemma C.3.
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C.5. Proof of Theorem 4.8

The proof is similar to the proof of Theorem 4.4. We consider the bias-variance decomposition of the upper bound given in

Corollary (2.2).

We have
∥∥∥(S̃ᵀS̃ − In)Xθ∗

∥∥∥
2

2
≤ 2 ‖(SᵀS − In)Xθ∗‖22 + 2

∥∥∥(SᵀS − S̃ᵀS̃)Xθ∗
∥∥∥
2

2
. (47)

The first term is bounded in Theorem 4.4. For the second term, we bound it as

∥∥∥(SᵀS − S̃ᵀS̃)Xθ∗
∥∥∥
2

2
≤
∥∥∥SᵀS − S̃ᵀS̃

∥∥∥
2

op
‖X‖2op ‖θ∗‖22

≤ ε2 ‖θ∗‖22 σmax(X
ᵀX) . (48)

Combining (47) and (48) into Corollary 2.2, we see that the mismatch between bagging configuration S and S̃ contributes

an inflation term to the model risk which is upper bounded by

∥∥(XᵀX)−1Xᵀ
∥∥2
op

∥∥∥(SSᵀ − S̃S̃ᵀ)Xθ∗
∥∥∥
2

2

≤ σmax((X
ᵀX)−1) ε2 ‖θ∗‖22 σmax(X

ᵀX)

=
σmax

(
1
nX

ᵀX
)

σmin

(
1
nX

ᵀX
) ε2 ‖θ∗‖22 .

Note that the result of Theorem 4.4 is under an event with probability at least 1− 1/n− 2e−cd. Under this same event, we

have
∥∥ 1
nX

ᵀX −Σ
∥∥
op
≤ C

√
d
n (see Equation (23)). Therefore, by Weyl’s inequality for singular values we have

σmax

(
1

n
XᵀX

)
≤ σmax(Σ) + C

√
d

n
, σmin

(
1

n
XᵀX

)
≥ σmin(Σ)− C

√
d

n
,

which completes the proof of theorem.

D. Missing analysis from Section 5

D.1. Proof of Lemma 5.1

We build on the observation in Lemma 2.3 about the sorted structure of an optimal solution. First, sort the points by their ỹi
value in O(n log n) time. Next, we present a dynamic programming algorithm that optimally slices the sorted list, i.e., a

stars-and-bars partition where each part has size at least k.

Define the function fk(i) to be the objective of an optimal solution for the subproblem defined by the first i points. It follows

that

fk(i) =





∞ if i < 0

0 if i = 0

mink≤s≤i

{
fk(i− s) +

∑i
j=i−s+1(ỹj − µi,s)

2
}

if i ≥ 1

where

µi,s =
1

s

i∑

j=i−s+1

ỹj .

This recurrence considers all suffixes of size s ≥ k as the last cluster, computes their sum of squares error, and recursively

solves the subproblem on the remaining points via fk(i− s). This naively leads to an O(n3)-time dynamic programming

algorithm. However, there are two observations that allow us to reduce the running time to O(nk):

1. We can assume each cluster in an optimal solution has size k ≤ s < 2k. If not, we can split a cluster of size s ≥ 2k into

two parts without increasing the objective. It follows that we can compute each fk(i) by considering O(k) recursive

states.
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2. We can iteratively compute the sum of squared errors d(i, s) :=
∑i
j=i−s+1(ỹj − µi,s)

2 in constant time, as shown in

Wang & Song (2011):

d(i, s) = d(i, s− 1) +
s− 1

s
(ỹi−s+1 − µi,s−1)

2

µi,s =
ỹi−s+1 + (s− 1)µi,s−1

s

This means each value of fk(i) can be computed in O(k) time.

Putting everything together, we can compute fk(n) and reconstruct an optimal clustering in O(nk) time after sorting.
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