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Abstract

We introduce a method for online conformal pre-
diction with decaying step sizes. Like previous
methods, ours possesses a retrospective guaran-
tee of coverage for arbitrary sequences. How-
ever, unlike previous methods, we can simulta-
neously estimate a population quantile when it
exists. Our theory and experiments indicate sub-
stantially improved practical properties: in par-
ticular, when the distribution is stable, the cov-
erage is close to the desired level for every time
point, not just on average over the observed se-
quence.

1. Introduction

We study the problem of online uncertainty quantifica-
tion, such as that encountered in time-series forecasting.
Our goal is to produce a prediction set at each time,
based on all previous information, that contain the true
label with a specified coverage probability. Such predic-
tion sets are useful to the point of being requirements in
many sequential problems, including medicine (Robinson)
1978)), robotics (Lindemann et al., 2023)), finance (Myk-
land, 2003)), and epidemiology (Cramer et al.,[2022). Given
this broad utility, it comes as no surprise that prediction
sets have been studied for approximately one hundred years
(and possibly more; see Section 1.1 of Tian et al.[(2022]))).

Formally, consider a sequence of data points (X;,Y;) €
Xx)Y, fort =1,2,.... Ateach time ¢, we observe X; and
seek to cover Y; with a set C¢( X} ), which depends on a base
model trained on all past data (as well as the current feature
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Xy). After predicting, we observe Y;, and the next time-
step ensues. Note that we have not made any assumptions
yet about the data points and their dependencies.

This paper introduces a method for constructing the predic-
tion sets C; that has simultaneous best-case and worst-
case guarantees—that is, a “best of both worlds” prop-
erty. We will describe the method shortly in Section [I.T]
Broadly speaking, the method can gracefully handle both
arbitrary adversarial sequences data points and also inde-
pendent and identically distributed (I.L.D.) sequences. In
the former case, our method will remain robust, ensuring
that the historical fraction of miscovered labels converges
to the desired error rate, « € (0,1). In the latter case,
our method will converge, eventually producing the opti-
mal prediction sets. We summarize our results below:

1. Worst-case guarantee (Theorem [I): When the data
points are arbitrary, our algorithm achieves

1 & C
T ;]]‘Ytecl‘,(Xt) € (1 —azx J—q/2_€> ) (1)

for a constant C' and any fixed ¢ > 0. We call this a
long-run coverage guarantee.

2. Best-case guarantee (Theorem [3): When the data
points are L.I.D., our algorithm achieves

lim P (YT S CT(XT)) —1—-a. 2)

T—o0

We call this a convergence guarantee.

Our algorithm is the first to satisfy both guarantees simul-
taneously. Moreover, the decaying step size yields more
stable behavior than prior methods, as we will see in ex-
periments. See Section [I.2]for a discussion of the relation-
ship with other methods, such as those of |Gibbs & Candes
(2021),|Angelopoulos et al.|(2023)), and Xu & Xie|(2021)).

1.1. Method and Setup

We now describe our prediction set construction. Borrow-
ing from conformal prediction, consider a bounded confor-
mal score function s; : X xY — [0, B], ateach time ¢. This
score s; = s4(X¢,Y:) is large when the predictions of the
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base model disagree greatly with the observed label; an ex-
ample would be the residual score, s;(,y) = |y — fi(z)],
for a model ft : X — R trained online. This concept is
standard in conformal prediction (Vovk et al., [2005)), and
we refer the reader to|Angelopoulos & Bates| (2023) for a
recent overview. Given this score function, define

Ce(r) ={y €V :su(z,y) < @t} 3)
where the threshold ¢, is updated with the rule

qey1 = @ + 0e(Ly,ge, (x,) — @) “)

In particular, if we fail to cover Y; at time ¢, then the thresh-
old increases to make the procedure slightly more conser-
vative at the next time step (and vice versa).

Familiar readers will notice the similarity of the update
step to that of |Gibbs & Candes| (2021)); Bhatnagar et al.
(2023)); |[Feldman et al.| (2023); |Angelopoulos et al.| (2023)),
the main difference being that here, 7; can change over
time—Ilater on we will see that n; o t=1/2=¢_ for some
small € € (0,1/2), leads to guarantees (I) and (2) as de-
scribed above. We remark also that the update step for g;
can be interpreted as an online (sub)gradient descent algo-
rithm on the quantile loss p1_4(t) = (1 — o) max{t,0} +
amax{—t,0} (Koenker & Bassett Jr, [1978), i.e., we can
equivalently write the update step (@) as

gt+1 = qt — nthlfa(St - Qt)~

In this work, we will consider two different settings:

Setting 1 (Adversarial setting). We say that we are in
the adversarial setting if we allow (X1,Y7), (X2, Y2),. ..
to be an arbitrary sequence of elements in X x ), and
S1,82,... to be an arbitrary sequence of functions from
X x Yito|0,B].

Setting 2 (I.I.D. setting). We say that we are in the L1.D.
setting if we require that (Xy,Yy) s op for some dis-
tribution P, and require that the choice of the function
st : X x Y — [0, B] depends only on {(X,,Y:)}r<t, for
each t (i.e., the model is trained online).

Of course, any result proved for Setting[]will hold for Set-
ting 2] as well. We remark that Setting [2] can be relaxed to
allow for randomness in the choice of the score functions
s¢—our results for the L.ID. setting will hold as long as the
function s, is chosen independently of {(X,,Y,)},>:.

Our method, like all conformal methods, has coverage
guarantees that hold for any underlying model and data
stream. Still, the quality of the output (e.g., the size of
the prediction sets) does critically depend on the quality
of the underlying model. This general interplay between
conformal methods and models is discussed throughout the
conformal literature (e.g.,|Vovk et al.| |2005; |/Angelopoulos
& Bates)|, [2023)).

1.2. Related work

We begin by reviewing the most closely related litera-
ture. Set constructions of the form in (3), which “invert”
the score function, are commonplace in conformal pre-
diction (Vovk et al) 2005), with ¢, chosen as a sample
quantile of the previous conformal scores. However, the
exchangeability-based arguments of the standard confor-
mal framework cannot give any guarantees in Setting [T}
The idea to set ¢; via online gradient descent with a fixed
step size appears first in|Gibbs & Candes|(2021)), which in-
troduced online conformal prediction in the adversarial set-
ting. The version we present here builds also on the work
of Bhatnagar et al.[(2023)), |[Feldman et al.| (2023)), and |An-
gelopoulos et al.| (2023)); in particular, Angelopoulos et al.
(2023)) call the update in the “quantile tracker”. These
papers all have long-run coverage guarantees in Setting
but do not have convergence guarantees in Setting 2]

Subsequent work to these has explored time-varying step
sizes that respond to distribution shifts, primarily for the
purpose of giving other notions of validity, such as re-
gret analyses (Gibbs & Candes, |2022; Zaffran et al.| 2022;
Bastani et al., 2022; |[Noarov et al.| 2023; |Bhatnagar et al.,
2023). From an algorithmic perspective, these methods de-
part significantly from the update in (@), generally by incor-
porating techniques from online learning—such as strongly
adaptive online learning (Daniely et al.,[2015)), adaptive re-
gret (Gradu et al., 2023)), and adaptive aggregation of ex-
perts (Cesa-Bianchi & Lugosi, 2006). To summarize, the
long-run coverage and regret bounds in these papers apply
to substantially different, usually more complicated algo-
rithms than the simple expression we have in {@). We re-
mark that “best of both worlds” guarantees appear in the
online learning literature (e.g., Bubeck & Slivkins| 2012
Koolen et al.| 2016} |Zimmert & Seldinl 2021 Jin et al.,
20215 |Chen et al., [2023; [Dann et al., 2023)), where the aim
is to find a single algorithm whose regret is optimal both in
a stochastic setting (i.e., data sampled from a distribution)
and in an adversarial setting. A crucial difference, however,
is that our paper’s guarantees are concerned with inference
and predictive coverage, rather than with estimation or re-
gret.

Farther afield from our work, there have been several other
explorations of conformal prediction in time-series, but
these are quite different. For example, the works of |Bar-
ber et al.| (2022)) and |Chernozhukov et al.| (2018) provide
conformal-type procedures with coverage guarantees un-
der certain relaxations of exchangeability; both can pro-
vide marginal coverage in Setting [2] but cannot give any
guarantees in Settingm Xu & Xie (2021} 2023)) study the
behavior of conformal methods under classical nonpara-
metric assumptions such as model consistency and distri-
butional smoothness for its validity, and thus cannot give
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distribution-free guarantees in Settings [[] or [2] [Lin et al.
(2022) studies the problem of cross-sectional coverage for
multiple exchangeable time-series. The online conformal
prediction setup was also considered early on by |Vovk
(2002) for exchangeable sequences. These works are not
directly comparable to ours, the primary point of difference
being the adversarial guarantee we can provide in Setting|[T]

Finally, traditional solutions to the prediction set prob-
lem have historically relied on Bayesian modeling (e.g.,
Foreman-Mackey et al., 2017) or distributional assump-
tions such as autoregression, smoothness, or ergodic-
ity (e.g.,[Biau & Patra, 2011)). A parallel literature on cali-
bration exists in the adversarial sequence model (e.g., [Fos-
ter & Vohral [1998). Our work, like that of |(Gibbs & Candes
(2021)), is clearly related to the literatures on both calibra-
tion and online convex optimization (Zinkevich,|2003)), and
we hope these connections will continue to reveal them-
selves; our work takes online conformal prediction one step
closer to online learning by allowing the use of decaying
step sizes, which is typical for online gradient descent.

1.3. Our contribution

We provide the first analysis of the online conformal pre-
diction update in (@) with an arbitrary step size. Our anal-
ysis gives strong long-run coverage bounds for appropri-
ately decaying step sizes, even in the adversarial setting
(Setting[T). We also give a simultaneous convergence guar-
antee in the LLD. setting (Setting [2), showing that the pa-
rameter g, converges to the optimal value ¢*. Importantly,
this type of convergence does not hold with a fixed step size
(the case previously analyzed in the online conformal pre-
diction literature). In fact, we show that with a fixed step
size, online conformal prediction returns meaningless pre-
diction sets (i.e., either () or )) infinitely often. From the
theoretical point of view, therefore, our method is the first
to provide this type of “best-of-both-worlds” guarantee.

While these theoretical results show an improvement (rela-
tive to the fixed-step-size method) in an LL.D. setting, from
the practical perspective we will see that a decaying step
size also enables substantially better results and more sta-
ble behavior on real time series data, which lies somewhere
between the L.I.D. and the adversarial regime.

2. Main results in the adversarial setting

We now present our main results for the adversarial set-
ting, Setting [I] which establish long-run coverage guaran-
tees with no assumptions on the data or the score functions.

2.1. Decreasing step sizes

Our first main result shows that, for a nonincreasing step
size sequence, the long-run coverage rate

1 T
T Z ]]'YtGCt(Xt) (5)
t=1

will converge to the nominal level 1 — a.

Theorem 1. Let (X1,Y1), (Xo,Y3),. .. be anarbitrary se-
quence of data points, and let sy : X x Y — [0, B] be arbi-
trary functions. Let 0 be a positive and nonincreasing se-
quence of step sizes, and fix an initial threshold ¢, € [0, B].

Then online conformal prediction satisfies

T
1 B+m
T ;:1 vieci(x,) — (I —a)| < T

forallT > 1.

As a special case, if we choose a constant step size 1y =
7 then this result is analogous to (Gibbs & Candes| (2021}
Proposition 4.1). On the other hand, if we choose 7, oc t7¢
for some a € (0, 1), then the long-run coverage at time 7'
has error bounded as O( ).

2.2. Arbitrary step sizes

As discussed above, if the data appears to be coming from
the same distribution then a decaying step size can be ad-
vantageous, to stabilize the behavior of the prediction sets
over time. However, if we detect a sudden distribution shift
and start to lose coverage, we might want to increase the
step size 7, to recover coverage more quickly. To accom-
modate this, the above theorem can be generalized to an
arbitrary step size sequence, as follows.

Theorem 2. Let (X1,Y1), (Xo,Y3),. .. be anarbitrary se-
quence of data points, and let s; : X x )Y — [0, B] be ar-
bitrary functions. Let n; be an arbitrary positive sequence,
and fix an initial threshold ¢, € [0, B].

Then online conformal prediction satisfies

T
1
T Z ly,eci(x,) — (1 —a)
t=1
B+ maxi<i<t
- T
for all T > 1, where the sequence A is defined with values

[JArrl)

Ay =nt and Ay =n, b — ! forall t > 2.

We can see that Theorem [I]is indeed a special case of this
more general result, because in the case of a nonincreasing
sequence 1, we have max;<;<7 7+ = 11, and
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T
ALzl =07 + Z It =
t=2
T
=0t + Y (7 =) =g
t=2

But Theorem [2|can be applied much more broadly. For ex-
ample, we might allow the step size to decay during long
stretches of time when the distribution seems stationary,
but then reset to a larger step size whenever we believe
the distribution may have shifted. In this case, we can ob-
tain an interpretable error bound from the result of Theo-
rem [2| by observing that [[A.r|; < — 2N where

1<t<T N’

Np = Zfﬂ 1,,>n,_, is the number of times we increase
the step size. Thus, as long as the step size does not decay
too quickly, and the number of “resets” Nr is o(T"), the
upper bound of Theorem [2| will still be vanishing.

3. Results for 1.1.D. data

We now turn to studying the setting of L.I.D. data, Set-
ting [2| where (X;,Y7),(Xo,Y3),... are sampled LLD.
from some distribution P on X x ). While Theorems [I]
and[2]show that the coverage of the procedure converges in
a weak sense, as in (E]), for any realization of the data (or
even with a nonrandom sequence of data points), we would
also like to understand whether the procedure might sat-
isfy stronger notions of convergence with “nice” data. Will
the sequence of prediction intervals converge in a suitable
sense? We will see that decaying step size does indeed lead
to convergence, whereas a constant step size leads to oscil-
lating behavior.

In order to make our questions precise, we need to intro-
duce one more piece of notation to capture the notion of
coverage at a particular time t—the “instantaneous” cover-
age. Let

Coverage,(q) = Pp (s¢(X,Y) < qs¢),

where the probability is calculated with respect to a data
point (X,Y) ~ P drawn independently of s;. Then,
at time ¢, the prediction set C;(X;) has coverage level
Coverage,(qt), by construction. We will see in our results
below that for an appropriately chosen decaying step size,
Coverage, (q;) will concentrate around 1 — « over time,
while if we choose a constant step size, then Coverage, (q;)
will be highly variable.

3.1. Results with a pretrained score function

To begin, we assume that the score function is pretrained,
i.e., that s; = sy = ... are all equal to some fixed function
s : X x)Y — [0, B]. The reader should interpret this as
the case where the underlying model is not updated online

(e.g., s(z,y) = |y — f(x)| for a pretrained model f that is
no longer being updated). This simple case is intended only
as an illustration of the trends we might see more generally;
in Section [3.2]below we will study a more realistic setting,
where model training is carried out online as the data is
collected.

In this setting, since the score function does not vary with
t, we have Coverage,(-) = Coverage(-) where

Coverage(q) = Pp (s(X,Y) < gq),
i.e., instantaneous coverage at time ¢ is Coverage(q;).

First, we will see that choosing a constant step size leads
to undesirable behavior: while coverage will hold on aver-
age over time (as recorded in Theorem |I{and in the earlier
work of |Gibbs & Candes| (2021)), there will be high vari-
ability in Coverage(q;) over time—for instance, we may
have C;(X) = () infinitely often.

Proposition 1. Ler (X;,Y;) $p Sfor some distribution P.
Suppose also that s; = s for some fixed function s : X X
Y — [0, B, and that n; = 7 for a positive constant step
size n > 0. Assume also that o is a rational number.

Then online conformal prediction satisfies
Coverage(g;) = 0 for infinitely many ¢,

and
Coverage(q:) = 1 for infinitely many ¢,

almost surely.

In other words, even in the simplest possible setting of
LLD. data and a fixed model, we cannot expect conver-
gence of the method if we use a constant step size.

On the other hand, if we choose a sequence of step sizes
7, that decays at an appropriate rate (such as 7, oc t~1/27¢,
for some € € (0, 1/2), as mentioned earlier) then over time,
this highly variable behavior can be avoided. Instead, we
will typically see coverage converging to 1 — « for each
constructed prediction set C;(X:), i.e., Coverage(q:) —
1 — . We will need one more assumption: defining ¢*
as the (1 — «)-quantile of s(X,Y’), we assume that ¢* is
unique:

Coverage(q) < 1 — aforall ¢ < ¢*,
* (6)
Coverage(q) > 1 — «forall ¢ > ¢*.
Theorem 3. Ler (X;,Y;) " P for some distribution P.
Suppose also that s; = s for some fixed function s : X X
Y — [0, B]. Assume that 1 is a fixed nonnegative step size
sequence satisfying

d =00, Y ni <o (7)
t=1 t=1
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Assume also that ¢* is unique as in ().

Then online conformal prediction satisfies

q: — ¢ almost surely.

With an additional assumption, this immediately implies
convergence of the coverage, Coverage(q;):

Corollary 1. Under the setting and assumptions of Theo-
rem[3| assume also that s(X,Y') has a continuous distribu-
tion (under (X,Y) ~ P). Then

Coverage(q:) — 1 — « almost surely.

That is, instead of the high variance in coverage incurred
by a constant step size (as in Proposition [I), here the cov-
erage converges to the nominal level 1 — «. Finally, with
additional assumptions, we can also characterize the rate at
which the threshold ¢; converges to g*:

Proposition 2. Under the setting and assumptions of
Corollary |1} assume also that the distribution of s(X,Y)
(under (X,Y) ~ P) has density lower-bounded by ~y in
the range [¢* — 6,q* + 0], for some v,6 > 0. Take the
step size sequence 1, = ct~'/>=¢, for some ¢ > 0 and
€ € (0,1/2). Then it holds for all t > 1 that

E [(qt _ q*)Z] S bt—l/Q—e7
where b is a constant that depends only on B, 7, J, c, €.

3.2. Results with online training of the score function

The result of Theorem 3]above is restricted to a very simple
setting, where the score functions are given by s, = s for
some fixed s, i.e., we are using a pretrained model. We
now consider the more interesting setting where the model
is trained online. Formally, we consider Setting [2] where
we allow the score function s; to depend arbitrarily on the
data observed before time t, i.e., on {(X,, Y;) }r<t.

First, we will consider a constant step size 1 = 7).

i iid N
Proposition 3. Let (X,;,Y;) ~ P for some distribution P,
and assume the score functions sy : X x Y — [0, B] are
trained online. Let n; = 1 for a positive constant step size
n > 0.

Then online conformal prediction satisfies

1imtinf Coverage,(q;) =0, lim sup Coverage,(q;) =1
—00

t—o0

almost surely.

This result is analogous to Proposition [I] for the case of a
pretrained score function (but with a slightly weaker con-
clusion due to the more general setting). As before, the

conclusion we draw is that a constant step size inevitably
leads to high variability in Coverage,(g:).

On the other hand, if we take a decaying step size, Theo-
rem |3| established a convergence result given a pretrained
score function. We will now see that similar results hold
in for the online setting as long as the model converges
in some sense. In many settings, we might expect s; to
converge to some score function s—for example, if our
fitted regression functions, ft, converge to some “true”
model f*, then s,(z,y) = |y — fi(x)| converges to
s(z,y) = ly — f*(x)|. As before, we let Coverage(q) =
Pp (s(X,Y) < q), and write ¢* to denote the (1 — «)-
quantile of this distribution. We now extend the conver-
gence results of Theorem [3]to this setting.

Theorem 4. Ler (X;,Y;) % P for some distribution P,
and assume the score functions s; are trained online. As-
sume that 1, is a fixed nonnegative step size sequence satis-
fing ). Let s : X x Y — [0, B] be a fixed score function,
and assume that ¢* is unique as in (6)).

Then online conformal prediction satisfies the following
statement almost surely{]|

If s LN s, then ¢; — ¢~.

As in the previous section, an additional assumption im-
plies convergence of the coverage, Coverage, (q;):

Corollary 2. Under the setting and assumptions of Theo-
remH) assume also that s(X,Y') has a continuous distribu-
tion (under (X,Y) ~ P). Then online conformal predic-
tion satisfies the following statement almost surely:

If s, % s, then Coverage,(q;) — 1 — a.

To summarize, the results of this section show that
the coverage of each prediction set Ci(X;), given by
Coverage,(qt), will converge even in a setting where the
model is being updated in a streaming fashion, as long as
the fitted model itself converges over time.

In particular, if we choose 7, o< t~'/27¢ for some € €
(0,1/2), then in the adversarial setting the long-run cov-
erage error is bounded as O( 75— ) by Theorem while
in the LLD. setting, Theorem [4] guarantees convergence. In
other words, this choice of 7, simultaneusly achieves both
types of guarantees.

While the results of this section have assumed I.I.D. data,
the proof techniques used here can be extended to han-
dle broader settings—for example, a stationary time series,

"'We use s; $ s in the sense of convergence in distribution
under (X,Y) ~ P, while treating the s;’s as fixed. Specifically,
we are assuming Coverage, (¢) — Coverage(q), forall ¢ € R at
which Coverage(q) is continuous.
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where despite dependence we may still expect to see con-
vergence over time. We leave these extensions to future
work.

4. Experiments

We include two experiments: an experiment on the Elec2
dataset (Harries et al., |1999) where the data shows signifi-
cant distribution shift over time, and an experiment on Im-
agenet (Deng et al.l 2009) where the data points are ex-
changeableE]

The experiments are run with two different choices of step
size for online conformal: first, a fixed step size (; =
0.05); and second, a decaying step size (1, = t~ /2~ with
e = 0.1). We also compare to an oracle method, where
online conformal is run with ¢* in place of ¢; at each time
t, and ¢* is chosen to be the value that gives 1 — « aver-
age coverage over the entire sequence t = 1,...,7. All
methods are run with o = 0.1.

4.1. Results

Figures [I] and [2] display the results of the experiment for
the Elec2 data and the Imagenet data, respectively. We now
discuss our findings.

The thresholds ¢;. The first panel of each figure plots
the value of the threshold g; over time ¢t. We can see that
the procedure with a fixed step size has significantly larger
fluctuations in the quantile value as compared to the decay-
ing step size procedure.

The instantaneous coverage Coverage,(q:). The sec-
ond panel of each figure plots the value of the instan-
taneous coverage Coverage,(q;) over time ¢. For each
dataset, since the true data distribution is unknown, we es-
timate Coverage,(¢;) using a holdout set. We observe that
Coverage, (q;) is substantially more stable for the decaying
step size as compared to fixed step size in both experiments.
While Coverage, (g;) concentrates closely around the nom-
inal level 1 — « for decaying 7, for fixed 7, the coverage
level oscillates and does not converge.

Long-run coverage and rolling coverage. The third
panel of each figure plots the value of the long-run cov-
erage, %Zizl ]lYTeCT(XT)v over time t. We see that the
long-run coverage converges quickly to 1 — « for all meth-
ods, and we cannot differentiate between them in this plot.

Consequently, in the fourth panel of each figure, we also
plot the “rolling” coverage, which computes coverage rate

’Code to reproduce these experiments is avail-
able at https://github.com/aangelopoulos/
online-conformal-decaying.

averaged over a rolling window of 1000 time points. We
can see that this measure is tighter around 1 — « for the
fixed step size procedure; for the decaying step size pro-
cedure, rolling coverage fluctuates more, but is not larger
than the fluctuations for the oracle method. At first glance,
it might appear that having lower variance in the rolling
coverage indicates that the fixed step size procedure is ac-
tually performing better than decaying step size—but this
is not the case. The low variance with fixed 7; = 7 is due
to overcorrecting. For example, if we have several mis-
coverage events in a row (which can happen by random
chance, even with the oracle intervals), then the fixed-step-
size method will necessarily return an overly wide interval
(e.g., C+(X:) = R) to give certain coverage at the next time
step. Thus, the fixed-step-size method ensures low variance
in rolling coverage at the cost of extremely high variance in
the width and instantaneous coverage of the interval C;(X})
at each time ¢. This type of overcorrection is undesirable.

4.2. Implementation details for Elec2 Time Series

The Elec2 (Harries et al., [1999) dataset is a time-series
of 45312 hourly measurements of electricity demand in
New South Wales, Australia. We use even-numbered time
points as the time series, and odd-numbered time points
as a holdout set for estimating Coverage,(q;). The de-
mand measurements are normalized to lie in the interval
Y; € [0,1]. The covariate vector X; = (Y1,...,Y:_1) is
the sequence of all previous demand values. The forecast
Y, is one-day-delayed moving average of Y; (i.e., at time ¢,
our predicted value Y, is given by the average of observa-
tions taken between 24Aand 48 hours earlier), and the score
is 5¢(X4,Y;) = |Y; = Yyl

4.3. Implementation details for Imagenet

The Imagenet (Deng et al., [2009) is a standard computer
vision dataset of natural images. We take the 50000 vali-
dation images of Imagenet 2012 and treat them as a time
series for the purpose of evaluating our methods. Because
the validation split of Imagenet is shuffled, this comprises
an exchangeable time series. We use 45000 points for the
time series, and the remaining 5000 points as a holdout set
for estimating Coverage, (¢:). As the score function, we use
5:(X4,Y;) = 1 —maxyey f(X¢)y (here maxycy f(Xt)y
is the softmax score of the pretrained ResNet-152 model).

4.4. Additional experiments

As discussed in Section [2.2] in applications where the dis-
tribution of the data may drift or may have changepoints,
it might be beneficial to allow 7, to increase at times to
allow for updates in the learning process. To study this
empirically, in the Appendix, we include additional exper-
iments in a broader range of settings—we test over 3000
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Figure 2. Imagenet results. Same details as for Figure[T]

real datasets, and compare the fixed step size method, the
decaying step size method, and a “decay+adapt” version of
our method where the sequence 7; adapts to trends in the
data (decaying if the distribution of the data appears sta-
tionary, but increasing if distribution shift is detected).

5. Proofs

In this section, we prove Theorems [T} 2} B} and @] and
Propositions [I] and [3] All other results are proved in the
Appendix.

5.1. Proof of Theorems[Iland

First, we need a lemma to verify that the values g; are uni-
formly bounded over all . This result is essentially the
same as that in Lemma 4.1 of (Gibbs & Candes| (2021)), ex-
cept extended to the setting of decaying, rather than con-
stant, step size. The proof is given in the Appendix.
Lemma 1. Let (X1,Y1),(X2,Y2),... be an arbitrary se-
quence of data points, and let s; : X x )Y — [0, B] be
arbitrary functions. Let n. be an arbitrary nonnegative se-
quence, and fix an initial threshold ¢, € [0, B).
Then online conformal prediction satisfies

—aMy 1 < ¢ <B+(1—a)M;_;forallt >1, (8)

where My = 0, and My = max;<,<; 1), for each t > 1.

We are now ready to prove the theorems. As discussed ear-

lier, Theorem [T]is simply a special case, so we only prove
the more general result Theorem 2]

By definition of A, we have n; ! = 23:1 A, forallt > 1.

‘We then calculate

1 T
T Z Ly,ec,(x))
- T t
Z(ZA
(Zm Ly,gc,(x) — ))

-1-a)|=

Z ]1Yt€Ct(Xt)

el

) e (Ly,ge,(x,) — @)

el

Nl
Mﬂ M= WMH ]

by @)

A (qr41 — qr)

1
< T 3 |Ay] - glagchqTH - qr|
< T J[Arr| - (B + max mn),

1<t<T

where the last step holds since ¢, gr+1 are bounded by
Lemmalll
5.2. Proof of Proposition 3]

First we prove that lim sup,_, . Coverage,(q;) = 1 almost
surely. Equivalently, for any fixed e > 0, we need to prove
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that P (lim sup,_, ., Coverage,(q;) <1 —¢€) = 0.

We begin by constructing a useful coupling between the
online conformal process, and a sequence of L.I.D. uniform
random variables. For each ¢t > 1, define

U Uniform[0, Coverage,(g:)], if Y: € Ct(X4),
! Uniform[Coverage,(q:), 1], ifY; & Ce(Xy),

drawn independently for each ¢ after condi-
tioning on all the data, {(X;,Y})}i>1. Since
P(Y; € C(Xy) [ {(Xr,Yr)}rct) = Coverage,(q:) by

. . iid )
construction, we can verify that U; ~ Uniform|0, 1].

Next fix any integer N > n[(g fj(‘;‘) . Let A; be the event that
Uy >1—eforall (i—1)N < t < iN.

Since the U;’s are L.I.D. uniform random variables, we have
P(A;) = €V for each i, and the events A; are mutu-
ally independent. Therefore, by the second Borel-Cantelli

lemma, P (2@1 1a, = oo) = 1. Now we claim that

If A; occurs then max

Coverage >1—e
(i—1)N<t<iN+1 gey(at)

©))
Suppose that A; holds and that Coverage,(q;) < 1 — € for
all ¢t in the range (i — 1) N < ¢t < ¢N. Then by construction
of the Uy’s, we have V; & Cy(X;) forall (1 — 1)N < t <
iN. Therefore by @),

iN
@GiN+1 = 4(i—1)N+1 + Z
t=(i—1)N+1

=qu-1)n+1 + N -n(l —a) > B,

U(]lytgct(xt) - a)

where the last step holds by our choice of N, together
with the fact that g;;_1)y41 > —an by Lemma E} But
since the score function s;n 41 takes values in [0, B] by
assumption, we therefore have Coverage;n,(qin41) >

Coverage; y(B) = 1. Therefore, we have verified the
claim (9).

Since A; occurs for infinitely many 4, almost surely, by ()
we therefore have limsup,_, . Coverage,(q;) > 1 — ¢, al-
most surely, as desired. Since € > 0 is arbitrary, this com-
pletes the proof that lim sup,_, ., Coverage,(¢:) = 1 al-
most surely.

Finally, a similar argument verifies

lim inf;_, . Coverage(g:) = 0 almost surely.

5.3. Proof of Proposition|[i]

Since s; = s, we have Coverage,(q;) = Coverage(q;), for
each t. By Proposition 3 liminf;_,,, Coverage(q;) = 0
and limsup,_, ., Coverage(q;) = 1, almost surely. Since

we have assumed that « is a rational number, by the defini-
tion of the procedure (Ef[) all values ¢; must lie on a discrete
grid (i.e., if & = k/K for some integers k, K then, for all
t, g+ — q1 must be an integer multiple of n/K). Moreover,
by Lemmal[l] ¢; is uniformly bounded above and below for
all ¢, so g; can only take finitely many values. This implies
Coverage(q;) also can take only finitely many values, and
in particular, this means that if lim inf;_, ., Coverage(q;) =
0 (respectively, if limsup,_,. Coverage(q:) = 1) then
Coverage(q:) = 0 (respectively, Coverage(q:) = 1) for
infinitely many ¢.

5.4. Proofs of Theorems 3 and

We observe that Theorem 3]is simply a special case of The-
orem M4 (obtained by taking s; = s for all t), so we only
need to prove Theorem 4]

First, consider the sequence

¢
Zt = an(erecr(xr) — Coverage,.(¢r))-
r=1

Define events £z, the event that lim;_, . Z; exists, and &,
d . . .
the event that s; — s. In the Appendix, we will verify that

tlim Z, exists, almost surely, (10)
— 00

ie.,P(€z) = 1, using martingale theory.

To establish the theorem, then, it suffices for us to verify
that on the event £ N &, it holds that ¢; — ¢*. From this
point on, we assume that £, and &£, both hold.

Fix any ¢ > 0. Since ¢ — Coverage(q) is monotone, it
can have at most countably infinitely many discontinuities.
Without loss of generality, then, we can assume that this
map is continuous at ¢ = ¢* — ¢/3 and at ¢ = ¢* + ¢/3 (by
taking a smaller value of ¢ if needed).

First, since Z; converges, we can find some finite time 7}
such that

+

sup »(Ly, ec,(x,) — Coverage, (g,
o ;” (Iy,ec.(x,) ge,(ar)

. (1)

= sup
v>t>Ty

|Zy — Zi—1] <

Wl m

Moreover, since ), n? < oo, we have 7; — 0 and so
we can find some finite time 75 such that n, < % for all
t > T5. Furthermore, on &, we have Coverage,(q) —
Coverage(q), at each ¢ = ¢* £ €/3. Thus we can find some
finite time 73 and some § > 0 such that

Coverage, (¢ —¢/3)<1—a—9§ (12)
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for all t > T35 (we are using the fact that Coverage(¢* —
€/3) < 1— aby (@)). Similarly we can find a finite 7, and
some ¢’ > 0 such that Coverage,(¢* +¢€¢/3) > 1 —a+ ¢
forallt > Ty. LetT = maX{T]_, Ty, 15, T4}

We will now split into cases. If it does not hold that ¢; €
q* =£ e for all sufficiently large ¢, then one of the following
cases must hold:

e Casela: g, < ¢* —¢/3forallt > T.
» Caselb: ¢: > ¢* +¢/3forallt > T.

» Case 2a: for some t' > t > T, it holds that ¢; >
¢ —€¢/3and qp < ¢* — €.
* Case 2b: for some t’ > t > T, it holds that ¢; <
¢ +e€/3and ¢ > ¢* + e
We now verify that each case is impossible.
Case 1a is impossible. We have
. €
q _g_QTZSUPQt_QT
t>T
t—1
=sup > 1Ly, g, (x,) — @) by @
t>T =
t—1 .
> sup Z 7y ((1 — ) — Coverage,(¢q-)) — = by (1)
t>T =, 3

t—1
€
> su re 0 — = 7,
SO AR

where the last step holds since ¢, < ¢* —¢/3 forr > T,
and ¢ — Coverage,.(q) is nondecreasing, and so we have

Coverage, (q,) < Coverage, (¢ —¢/3) <1—a—4, (13)

by (I2). Since ), 7, = oo, we therefore have that ¢* —
£ — qr > oo, which is a contradiction.

Case 1b is impossible.
proof for Case 1a.

This proof is analogous to the

Case 2a is impossible. First, by assumption for this case,
we can find a unique time ¢” > T such that

qu > ¢ —€/3,
qr < q*—¢/3forallt” <r <t
qy <q*—€.

In other words, t” is the last time before time ¢’ when the
threshold is > ¢* — €/3. Then we have

9 t'—1
- 56 > qy = G = Z mr (Ly,gc,(x,) —a) by @

r=t"

t'—1

€
> | > 1 (1= @) — Coverage, (¢,)) | — 3 by (D)
T:t//
t'—1 .
>~y 4 Z 7 ((1 — ) — Coverage,.(q.)) | — 3
r=t""41

€
> s — 5 by (@)

But since 7, < €/3 (because t”/ > T'), we have therefore
reached a contradiction.

Case 2b is impossible.
proof for Case 2a.

This proof is analogous to the

We have verified that all four cases are impossible. There-
fore, ¢ € ¢* + € for all sufficiently large ¢. Since € > 0 is
arbitrarily small, this completes the proof.

6. Discussion

Our paper analyzes online conformal prediction that with
a decaying step size, enabling simultaneous guarantees of
convergence for L.I.D. sequences and long-run coverage for
adversarial ones. Moreover, it helps further unify online
conformal prediction with online learning and online con-
vex optimization, since decaying step sizes are known to
have desirable properties and hence standard for the latter.
Of course, the usefulness of the method will rely on choos-
ing score functions that are well suited to the (possibly
time-varying) data distribution, and choosing step sizes that
decay at an appropriate rate and perhaps adapt to the level
of distribution shift—building a better understanding of
how to make these choices in practice is crucial for achiev-
ing informative and stable prediction intervals. Many ad-
ditional open questions about extending the methodology
to broader settings and understanding connections to other
tools remain. In particular, we expect fruitful avenues of
future inquiry would be: (1) to extend this analysis to on-
line risk control, as in |Feldman et al.| (2021); (2) to adapt
our analysis of Theorem [3|to deal with stationary or slowly
moving time-series which may not be L.I.D. but are slowly
varying enough to permit estimation; and (3) to further un-
derstand the connection between this family of techniques
and the theory of online learning.
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A. Additional proofs
A.1. Proof of Lemmal[l]
The proof of this result is similar to the proof of Lemma 4.1 of |Gibbs & Candes|(2021). We prove this by induction. First,
q1 € [0, B] by assumption, so (8) is satisfied at time ¢ = 1. Next fix any ¢ > 1 and assume ¢ lies in the range specified
in (8), and consider ¢;+1. We now split into cases:
* If ¢, € [0, B], then we have
Gr+1 = ¢ + 1 (Ly,ge,(x,) — @) € g —ma, g +n:(1 — )] C [~aMy, B+ (1 — o) M.
* If ¢ € (B, B + (1 — a)M;_,], then we must have C;(X;) = ). Then 1y, ¢c,(x,) = 0, and so
Q41 =q —ma € [B—mo, B+ (1 —a)M_1] C [-aMy, B+ (1 — a)M,].
* If ¢, € [~aM;_1,0), then we must have C;(X;) = ). Then 1y, ¢c,(x,) = 1, and so
Q1 = qe + (1 — @) € [~aM;_1,m(1 — )] C [~aMy, B+ (1 — a)My].

In all cases, then, (8)) holds for ¢ 4+ 1 in place of ¢, which completes the proof.

A.2. Proof of

We need to prove that Z; converges almost surely (note that the limit of Z; may be a random variable). For each ¢ > 1, we
have

P (Y € Cu(Xy) | {(X0, Vo) brat) =P (se(Xe, Y2) < qu | {(X7,Y2)}r<t) = Coveragey (qu),
since ¢; and s; are functions of {(X,,Y,)} <+ and are therefore independent of (X;,Y;) ~ P. This proves that Z; is a
martingale with respect to the filtration generated by the sequence of data points. We also have sup,~ Var(Z;) < oo, since
we have assumed Y ;° 17 < oco. This means that Z; is a uniformly integrable martingale, and therefore, Z; converges
almost surely (to some random variable), by Doob’s second martingale convergence theorem.

A.3. Proofs of Corollaries[I]and
As for the theorems, it suffices to prove Corollary [2] since Corollary [T]is simply a special case.

Using the notation defined in the proof of Theorem [d] suppose that events £, and £ both hold. Now we need to show
that Coverage,(¢:) — 1 — « holds as well. Fix any € > 0. Since s(X,Y) has a continuous distribution, the map
q — Coverage(q) is continuous, and so we can find some § > 0 such that

|Coverage(q) — Coverage(q*)| < ¢/2forall g € ¢* £ 6.

Moreover, Coverage(g*) = 1 — a, since the distribution of s(X,Y") is continuous and ¢* is its (1 — «)-quantile, so we have

|Coverage(q) — (1 —a)| < e/2forallq € ¢* £ 6.
Next, by Theorem 4] for all sufficiently large ¢, we have

lge —q"| < 0.

By definition of the event &, for all sufficiently large ¢t we have

|Coverage,(¢* — &) — Coverage(q* — §)| < ¢/2
and

|Coverage,(¢" + d) — Coverage(q* + 0)| < €/2.
Then, combining all of these calculations, for all sufficiently large ¢ we have

Coverage,(q;) > Coverage,(¢* — 0) > Coverage(q* —d) —€¢/2> (1—a—¢€/2) —¢/2=1—a —¢,

where the first step holds since ¢; > ¢* — d, and ¢ — Coverage, (¢q) is nondecreasing. Similarly, for all sufficiently large ¢
it holds that
Coverage,(q;) <1—a+e.

Since € > 0 is arbitrary, this completes the proof.

12
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A.4. Proof of Proposition 2]

By Lemmall] g, € [—ac, B+(1—a)c] forall t (since i, < cforallt). Since g* € [0, B], we therefore have |¢,—¢*| < B+c
almost surely for all ¢. We also have 2v§ < 1and 6 < B < B + ¢, since the density of s(X,Y") is supported on [0, B] and
must integrate to 1.

Next, by the assumptions of the proposition, for any ¢; > ¢*, if ¢ < ¢* + ¢ then
Coverage(q:) > 1 —a+ (¢ — q%)

while if ¢, > ¢* + § then
Coverage(q:) > Coverage(¢® +0) > 1 — a+ 0.

Either way, then, if ¢; > ¢* then

. )
Coverage(q:) > (1 —a) + (¢ — q*) - ny—i— =
A similar calculations shows that if ¢; < ¢*, then
. 0
Coverage(q:) < (1 - ) = (¢" —a) 5

Defining a = g > 0, we therefore have

Coverage(q;) — (1 — «) _
q—q*

(14)

whenever q; # ¢*. Note that we must have a < 1/c¢, by construction.

Next, from the update step (@), we have

G — 4" = (a — ") +1:((1 = @) = Ly,ee,(x,))-
Since P (Y; € Co(Xy) | {(X, Y;) }r<t) = Coverage(q:), we then calculate

Elq+1 — " | {(X0, Vo) brat] = (@ — ¢7) + me((1 — ) — Coverage(qy)),

and
Var(gei1 — ¢° | {(X, Y2)}r<t) = 0} - Coverage(q;) - (1 — Coverage(q;)) < 7 /4.

Therefore,

* * 2
E [(Qt+1 —q )2 ’ {(X5, Yr)}r<t] < ((Qt —q")+ nt((l —a)— Coverage(qt))) + 77t2/4
< (g —q")* (1= ane)* + i /4,
where the last step holds by (T4) above. After marginalizing, then,
E [(ger1 = ¢)°] SE[(@ — )] - (1 —am)® +nf /4.

Next recall n, = ct~/27¢ for each ¢. Fix some 7' > 1 that satisfies 7*/2—¢ > % First, since |q; — ¢*| < B + cfor all
t as above, by choosing b > (B + ¢)?T"/?¢ we must have (g; — ¢*)? < bt~/2~< for all t < T, almost surely. Next, for
each t > T, we proceed by induction. Assume E [(g; — ¢*)?] < bt=1/27<. Then

E [(gr41—q") ] E (g —q")%] - (1 — ane)? + 17 /4
E [(q —q*)*] 1 —2am) + (E [(q — ¢*)?] - a* + 1/4) n}
< pt— /2 (1 — 2act_1/2_e) + (B +c¢)%a® + 1/4)c*t 1%
= bt 7127 — 2abet 7 2 4 (B4 ¢)%a® + 1/4)ct7 172
<b (t‘l/Q‘E — act_l_Qe) ,

13
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Figure 3. Density plots of results on M4 datasets. These plots show the same quantities as in Table [T} but now as histograms over the
time-series in M4.

method coverage  variance MSE infinite sets

DTACI 0.895491 4.107740 5.439935 0.036584
decay+adapt 0.885174 1.144337 1.967552 0.005011
decaying 0.900495 1.320579 2.366297 0.006883
fixed 0.901636  1.580243 2.922989 0.011179

Table 1. Table of results on M4 datasets. The table shows average results over all time series in the dataset—thus, all columns should
be interpreted on average over time-series in M4. The coverage column displays the long-run coverage. The variance column shows the
variance of the quantile normalized by the variance of the score sequence. The MSE column shows the squared error of the quantile
normalized by the variance of the score sequence. Finally, the infinite sets column shows the fraction of time steps in the sequence for
which the output is an infinite-width prediction set.

S ((B+¢)?a®+1/4)c

where the last step holds as long as we choose b . And, since t > T, we have

act—l—Qe _ actl/?—e X t—3/2—e > ach/Q—e . t—3/2—e > (1/2 + 6)t—3/2—5 > t—l/2—e _ (t + 1)—1/2—67
where the last step holds since ¢ — ¢t~ /2~¢ is convex, with derivative —(1/2 + €)t~3/2¢. Therefore, we have verified

that E [(g41 — ¢*)?] < b(t + 1)71/27¢, as desired.

B. Additional experiments

We compare against two additional methods: first, “decay+adapt”, a variant of our procedure that decays until it detects a
change point, then resets the learning rate. Change points are identified when at least Vy,iscoverage CONsecutive miscoverage
events or Noverage €VENts are observed in a row (we set these constants to 10 and 30 by default, respectively). When a

change point is identified, the learning rate is reset to ( where Tchangepoint 18 the time at which the

B
t—Tehangepoint )/ 2T€
changepoint is detected and € € (0,1/2). In these experiments, like in the main text, we set € = 0.1.

We additionally compare against DTACI (Gibbs & Candes, 2022), an adaptive-learning-rate variant of ACI that uses
multiplicative weights to perform the updates (see (Gibbs & Candes, [2022) for further details.)

We compare these methods on a dataset of over 3000 time series subsampled from the M4 time series dataset. This dataset
is a diverse array of time series with varying numbers of samples and distribution shifts. Code is available in our GitHub
repository to run on all 100,000 time series in M4; here, we show results on the first 3000.

Finally, to showcase the conceptual differences between the standard decaying learning rate sequence and the ‘de-
cay+adapt’ method, we display a simulated score sequence in Figure Ié-_ll Here, the scores are simulated from A (g, 1),
where 1, = 0 for the first thousand time steps, p; = 2 for the second thousand, i, = 4 for the third thousand, and p; = 6
for the final thousand. Especially towards the end of the time series, ‘decay+adapt’ can more quickly adjust to the change
points.
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Figure 4. Simulation comparison of decaying step size and ‘decay+adapt’. The raw score sequence is shown in blue, the decaying
step size sequence is in orange, and ‘decay+adapt’ is in green.
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