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Abstract

We study a sequential binary prediction setting where the forecaster is evaluated in terms of the

calibration distance, which is defined as the L1 distance between the predicted values and the set

of predictions that are perfectly calibrated in hindsight. This is analogous to a calibration measure

recently proposed by Błasiok, Gopalan, Hu and Nakkiran (STOC 2023) for the offline setting.

The calibration distance is a natural and intuitive measure of deviation from perfect calibration,

and satisfies a Lipschitz continuity property which does not hold for many popular calibration

measures, such as the L1 calibration error and its variants.

We prove that there is a forecasting algorithm that achieves an O(
√
T ) calibration distance in

expectation on an adversarially chosen sequence of T binary outcomes. At the core of this upper

bound is a structural result showing that the calibration distance is accurately approximated by the

lower calibration distance, which is a continuous relaxation of the former. We then show that an

O(
√
T ) lower calibration distance can be achieved via a simple minimax argument and a reduction

to online learning on a Lipschitz class.

On the lower bound side, an Ω(T 1/3) calibration distance is shown to be unavoidable, even

when the adversary outputs a sequence of independent random bits, and has an additional ability

to early stop (i.e., to stop producing random bits and output the same bit in the remaining steps).

Interestingly, without this early stopping, the forecaster can achieve a much smaller calibration

distance of polylog(T ).

Keywords: Calibration, sequential prediction

1. Introduction

We revisit the sequential binary prediction setup of Foster and Vohra (1998), in which a forecaster

makes probabilistic predictions on a sequence of T adversarially chosen binary outcomes. At each

step t ∈ [T ], the adversary picks a bit xt ∈ {0, 1} and, simultaneously, the forecaster makes a

prediction pt ∈ [0, 1] on the “probability” of xt = 1. These values are then revealed to both players,

and may factor into their subsequent actions.

The forecaster is evaluated in terms of the calibration criterion, which is a natural and intuitive

condition for the predictions to be interpretable as probabilities. The predictions are called perfectly

calibrated if, among the steps on which each α ∈ [0, 1] is predicted, exactly an α fraction of the

bits are ones. Formally, it must hold for every α ∈ [0, 1] that
∑T

t=1(xt − pt) · ✶ [pt = α] = 0.

Quantitatively, the L1 calibration error, also known as the Expected Calibration Error (ECE), is

defined as the total violation of calibration over all α ∈ [0, 1]1:

ECE(x, p) :=
∑

α∈[0,1]

∣

∣

∣

∣

∣

T
∑

t=1

(xt − pt) · ✶ [pt = α]

∣

∣

∣

∣

∣

. (1)

1. The summand is non-zero only if α ∈ {p1, p2, . . . , pT }, so the summation is finite and well-defined. In the rest of

the paper, we frequently abuse the notation
∑

α∈[l,r] xα if the xα is non-zero on finitely many values of α ∈ [l, r].
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While this definition seems natural, the ECE can be ill-behaved because it is discontinuous with

respect to the predictions. For instance, when x contains the same number of 0s and 1s, predicting

pt = 1/2 at every t ∈ [T ] achieves a zero ECE. However, if we replace each pt with 1/2 + ǫt,
where ǫ1, ǫ2, . . . , ǫT are arbitrarily small, non-zero, and distinct perturbations, the ECE suddenly

jumps to Ω(T ), as the T steps count as T different “bins” in Equation (1). As noted by Błasiok

et al. (2023), while this issue can be alleviated by binning the prediction values, the binning may

introduce discontinuity at the boundary of each sub-interval, and there is no consensus on how the

binning should be chosen in general.

In this work, we study a variant of this fundamental sequential calibration setup, in which the

distance from calibration is defined as the minimum L1 distance between the predicted values and

the closest predictions that are perfectly calibrated with respect to the outcomes. This definition

is analogous to a calibration measure recently proposed and studied by Błasiok et al. (2023) for

the offline setting. Formally, with respect to outcomes x1, x2, . . . , xT , the calibration distance of

predictions p1, p2, . . . , pT is defined as

CalDist(x, p) := min
q∈C(x)

‖p− q‖1,

where C(x) :=
{

p ∈ [0, 1]T : ∀α ∈ [0, 1],
∑T

t=1(xt − pt) · ✶ [pt = α] = 0
}

is the set of predic-

tions that are perfectly calibrated for x.2

Equivalently, the calibration distance measures the minimum amount of modification that the

forecaster has to make to its predictions, in order for them to be calibrated in hindsight. It follows

immediately from the definition that the calibration distance is robust to small perturbations in the

predictions, and thus avoids the discontinuity issue of the ECE. In Appendix E, we prove that the

calibration distance is always upper bounded by the ECE, so the calibration distance can also be

viewed as a relaxation of the ECE.

In this work, we address the following two questions regarding this new calibration measure.

Question 1 Can we efficiently compute (or at least approximate) the calibration distance on given

outcomes and predictions?

Question 2 What is the optimal calibration distance that the forecaster can guarantee against T
adversarially chosen outcomes?

1.1. Overview of Our Results

Efficient approximation via a structural result. We start by giving a positive answer to Ques-

tion 1, up to a small additive approximation error.

Theorem 1 There is an algorithm that, given x ∈ {0, 1}T and p ∈ [0, 1]T , outputs an estimate of

CalDist(x, p) up to an O(
√
T ) additive error in poly(T ) time.

We prove Theorem 1 by relating CalDist(x, p) to the lower calibration distance, denoted by

LowerCalDist(x, p), which we formally define in Section 2. Roughly speaking, the definition of

LowerCalDist(x, p) allows us to compare p1, p2, . . . , pT to randomized predictions q1, q2, . . . , qT .

2. Note that every p ∈ C(x) corresponds to a partition of [T ], so C(x) is a finite set of size TO(T ). Therefore, the

minimum in the definition of CalDist can be achieved.
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ON THE DISTANCE FROM CALIBRATION IN SEQUENTIAL PREDICTION

For the offline setting, Błasiok et al. (2023) introduced an analogous notion, and gave a poly(T, 1/ǫ)
time algorithm that approximates the lower calibration distance up to any additive error of ǫ > 0.

Therefore, Theorem 1 would immediately follow if we could show that LowerCalDist(x, p) is a

good approximation of CalDist(x, p) for any x and p.

A result of Błasiok et al. (2023) implies that, after normalizing by a 1/T factor, these two

measures are indeed polynomially related:

LowerCalDist(x, p)

T
≤ CalDist(x, p)

T
≤ 4

√

LowerCalDist(x, p)

T
.

On the other hand, this quadratic gap is unavoidable in general: We show in Proposition 9 that even

for T = 4, there exist x and p such that CalDist(x, p) = Ω(ǫ) but LowerCalDist(x, p) = O(ǫ2) for

sufficiently small ǫ > 0. Taking ǫ→ 0+ shows that LowerCalDist(x, p) is not a good multiplicative

approximation of CalDist(x, p).
Fortunately, in the example above, the additive gap between the two calibration measures is

small. Our key technical result below states that this is true in general: CalDist(x, p) is always upper

bounded by LowerCalDist(x, p) + O(
√
T ). Thus, Theorem 1 indeed follows from the algorithm

of Błasiok et al. (2023) for approximating LowerCalDist(x, p). Furthermore, when p is sparse in

the sense that it contains only a few different entries, we improve the additive gap from
√
T to the

sparsity level, at the cost of an extra constant factor.

Theorem 2 For any x ∈ {0, 1}T and p ∈ [0, 1]T , we have:

• CalDist(x, p) ≤ LowerCalDist(x, p) +O(
√
T ).

• CalDist(x, p) ≤ O(1) · LowerCalDist(x, p) +O(m), where m = |{p1, p2, . . . , pT }|.
The O(·) notations above hide universal constant factors that are independent of T , x, and p.

Upper bound via a minimax argument. Our next result addresses Question 2 from the upper

bound side.

Theorem 3 There is forecasting algorithm that, against any adversary, achieves an O(
√
T ) cali-

bration distance in expectation.

In light of Theorem 2, it suffices to give a forecaster with an expected lower calibration error of

O(
√
T ). Błasiok et al. (2023) showed that the lower calibration distance and the smooth calibration

error (which we define in Section 2) differ by a constant factor. Therefore, at the core of our proof

of Theorem 3 is an O(
√
T ) upper bound on the smooth calibration error, which is proved via a

minimax argument similar to the proof of Hart for upper bounding the ECE (Foster and Vohra, 1998;

Hart, 2022). We note that Kakade and Foster (2008) gave an algorithm with a sub-linear smooth

calibration error, though directly following their proof gives a looser upper bound of O(T 2/3).

Impossibility of impossibility results from random bits. It might appear “obvious” that the

O(
√
T ) bound in Theorem 3 is tight: Suppose that the adversary plays a sequence of T independent

random bits. Intuitively, the forecaster’s best strategy is to predict pt = 1/2 at every step t. Then,

the calibration distance can be shown to be Ω(
√
T ) in expectation.3

Surprisingly, this argument turns out to be incorrect—in fact, “exponentially” incorrect!4

3. This follows from CalDist(x, p) ≥ LowerCalDist(x, p) ≥ 1
2
smCE(x, p) ≥ 1

2

∣

∣

∣

∑T
t=1(xt − pt)

∣

∣

∣
and that the last

term is Ω(
√
T ) in expectation; see Section 2 for justification of the first three steps.

4. Nevertheless, this argument indeed shows that the proof strategy of Theorem 3 at best gives an O(
√
T ) bound.
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Proposition 4 When the adversary promises to play T independent random bits, there is a fore-

casting algorithm that achieves an O(log3/2 T ) calibration distance in expectation.

Our proof of Proposition 4 has two steps: First, we give a strategy that achieves a small smooth

calibration error. This is done by first predicting 1/2 and then, based on the realization of the random

bits, predicts a slightly biased value in the hope of de-biasing the previous mistakes. To translate

this to an upper bound on the calibration distance, the first bound in Theorem 2 is insufficient, since

the
√
T gap would dominate the polylog(T ) error. Fortunately, in the first step, we always predict

at most O(log T ) different values, so the second bound in Theorem 2 can be applied instead.

Lower bounds from random bits. Despite the surprising fact above, we still manage to prove a

poly(T ) lower bound.

Theorem 5 There is a strategy for the adversary such that any forecasting algorithm must incur

an Ω(T 1/3) calibration distance in expectation.

Theorem 5 is proved by providing a minimal additional ability to the adversary that produces

random bits. The new adversary will generate random bits until the calibration distance hits Ω(T 1/3)
at some point, and then either keep playing zeros or keep playing ones, depending on which bit could

ensure that the calibration distance is still large in the end.

1.2. Related Work

Calibration is a natural criterion for evaluating probabilistic forecasts. The idea of calibration can be

at least traced back to Brier (1950). A formal definition of calibration appeared in the work of Dawid

(1982, 1985). There are huge bodies of recent work on the calibration of neural networks (Guo

et al., 2017) and the use of calibration (and its extension such as multi-calibration) as a measure

of algorithmic fairness (Kleinberg et al., 2017; Hébert-Johnson et al., 2018). In the following, we

focus the discussion mainly on calibration in sequential setups, which is the closest to this paper.

Distance from calibration. In the context of offline probabilistic prediction, Błasiok et al. (2023)

noted that while “the notion of perfect calibration is well-understood”, “there is no consensus” on

how the distance from perfect calibration should be quantified. They proposed to use the following

as the ground truth for the distance of a predictor from calibration: the minimum ℓ1 distance between

the predictor and any predictor that is perfectly calibrated with respect to the underlying distribution.

The authors then examined various calibration measures, and identified which of them are consistent

in the sense that of being polynomially related to this ground truth.

In the sequential setup, however, even the notion of “perfect calibration” might be at odds with

what intuitively count as the “right” predictions. It is easy to construct examples in which the

adversary generates the outcomes randomly from a known distribution, yet the only way to achieve

perfect calibration is through “lying” on some predictions, i.e., predicting a value that is far from

the true (conditional) probability of the next outcome (see, e.g., (Qiao and Valiant, 2021, Example

2) for a concrete instance).

On a technical level, the notion of consistency in the study of Błasiok et al. (2023) might be

loose by a quadratic factor (which is also shown to be unavoidable in their formulation). In contrast,

the goal of this work is to pin down the optimal rate of the calibration distance, so this quadratic gap

poses a challenge. Roughly speaking, the quadratic gap that is unavoidable in the setup of Błasiok
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et al. (2023) is due to the uncertainty in the granularity of the marginal distribution. This gap is

partially avoided in the sequential setup, since the “marginal” is always the uniform distribution

over [T ].

Sequential calibration and variants. Foster and Vohra (1998) gave the first forecasting algo-

rithm that achieves a vanishing (squared L2) calibration error as T → +∞ on a sequence of T
adversarially generated outcomes. Alternative proofs were subsequently given by Fudenberg and

Levine (1999); Foster (1999). In terms of the error rates, the optimal ECE (defined in Equation (1))

is known to be between O(T 2/3) (implict in (Foster and Vohra, 1998); see (Hart, 2022) for a formal

exposition) and Ω(T 0.528) (Qiao and Valiant, 2021).

Foster et al. (2011) studied a strengthened notion of calibration that requires the predictions to be

calibrated even when restricted to certain subsets of the time horizon (also called “checking rules”).

They derived convergence bounds that depend on different complexity measures of the family of

checking rules.

Relaxed versions of the ECE, including weak calibration (Kakade and Foster, 2008), smooth

calibration (Foster and Hart, 2018) and continuous calibration (Foster and Hart, 2021), have also

been studied. These alternative calibration notions also resolve the discontinuity issue of ECE, and

were shown to be achievable by deterministic forecasting algorithms. In contrast, any algorithm

with a sub-linear ECE must be randomized. Gupta and Ramdas (2022) studied a “power of two

choice” variant in which the forecaster is allowed to predict two different (yet nearby) values at

each step, and use the one closer to the outcome after the outcome is revealed.

Calibration-accuracy trade-off. Another variant of the problem is when the forecaster is given

a hint or expert advice before predicting at each step. The goal is to re-calibrate the expert’s pre-

dictions without increasing the cumulative loss in the predictions. Kuleshov and Ermon (2017);

Okoroafor et al. (2023) gave trade-offs between the ECE incurred by the forecaster and the regret,

defined as the excess loss compared to always following the hints.

Online multi-calibration. Multi-calibration was introduced by Hébert-Johnson et al. (2018) in

the context of fairness of machine learning models in offline setups. This notion requires the pre-

dictions to be calibrated on a family of pre-specified subsets of the feature space as well. A recent

line of work Gupta et al. (2022); Lee et al. (2022); Bastani et al. (2022); Garg et al. (2024) gave

algorithms that achieve approximate multi-calibration in the online setup, in which the features and

labels are sequentially and adversarially chosen.

Calibrated predictions for decision-making. Recent work of Kleinberg et al. (2023) and Noarov

et al. (2023) studied models in which the predictions are used for downstream decision-making.

Kleinberg et al. (2023) defined “U-Calibration”, which is shown to be equivalent to the sub-linear

regret guarantee for all decision makers. Noarov et al. (2023) gave algorithms that are calibrated

even when evaluated in conjunction with the decisions, which might, in turn, depend on the predic-

tions.

1.3. Organization of the Paper

In Section 2, we formally introduce two calibration measures in the literature, the lower calibration

distance and the smooth calibration error, both of which are closely related to the calibration dis-

tance, and will play key roles in our proofs. In Section 3, we sketch the proofs of our main results.
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We suggest that the readers read this section before delving into the formal proofs, as most of the

proofs are based on simple ideas and intuition that need slightly heavier notations to be formalized.

We discuss the suitability of the calibration distance as a calibration measure, and highlight a few

open problems in Section 4. The formal proofs are given in Sections A through D.

2. Preliminaries

The binary outcomes and the predictions are denoted by x1, x2, . . . , xT and p1, p2, . . . , pT . We use

the shorthands xl:r and pl:r for subsequences xl, xl+1, . . . , xr and pl, pl+1, . . . , pr. For α ∈ [0, 1]
and t ∈ {0, 1, 2, . . . , T}, ∆α(t) :=

∑t
t′=1(xt′ − pt′) · ✶ [pt′ = α] is the total bias that the forecaster

incurs on prediction value α up to time t. We drop the argument t when it is clear from the context.

Lower calibration distance. Below is a formal definition of the lower calibration distance, which

is equivalent to the “lower distance from calibration” defined by Błasiok et al. (2023) up to a nor-

malization factor of T .

Definition 6 (Lower Calibration Distance) The lower calibration distance of predictions p ∈
[0, 1]T with respect to outcomes x ∈ {0, 1}T is

LowerCalDist(x, p) := inf
D∈C(x)

T
∑

t=1

E
qt∼Dt

[|pt − qt|] ,

where C(x) is the family of T -tuples of distributions D = (D1,D2, . . . ,DT ) such that: (1) The

support of each Dt is finite and contained in [0, 1]; (2) D is perfectly calibrated with respect to x in

the sense that
∑T

t=1(xt − α) · Dt(α) = 0 holds for every α ∈ [0, 1].

We will use the shorthand ‖p − D‖1 :=
∑T

t=1 Eqt∼Dt [|pt − qt|] for p ∈ [0, 1]T and distributions

D1, . . . ,DT over [0, 1]. The definition above can then be simplified to infD∈C(x) ‖p−D‖1.

Remark 7 Definition 6 becomes more natural when viewed through the lens of optimal transport.

Imagine that, for each t ∈ [T ], there is one unit of bit xt located at point pt. Then, each distribution

Dt specifies a way of splitting and transporting the mass to (finitely many) different locations on

[0, 1]. The distributionsD1, . . . ,DT are in the family C(x) if and only if after all the transportations

are done, at every location α ∈ [0, 1], the fraction of ones is exactly α. (Indeed, the constraint
∑T

t=1(xt − α) · Dt(α) = 0 is equivalent to
∑T

t=1 xt·Dt(α)
∑T

t=1 Dt(α)
= α.) The lower calibration distance is

exactly the minimum cost of the transportation subject to the calibration constraint on the resulting

configuration, when the cost of moving one unit of mass from pt to qt is given by |pt − qt|.
In comparison, the definition of the calibration distance introduces an additional constraint:

each unit of mass cannot be transported to multiple locations, i.e., each Dt must be a degenerate

distribution. This immediately gives the inequality LowerCalDist(x, p) ≤ CalDist(x, p).

Smooth calibration error. Another related calibration measure is the smooth calibration error

proposed by Kakade and Foster (2008):

smCE(x, p) := sup
f∈F

T
∑

t=1

f(pt)(xt − pt) = sup
f∈F

∑

α∈[0,1]
f(α) ·∆α(T ),

6
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where F is the family of 1-Lipschitz functions from [0, 1] to [−1, 1].
It was shown by Błasiok et al. (2023) that the smooth calibration error and the lower calibration

distance are at most a constant factor away.

Lemma 8 (Theorem 7.3 of Błasiok et al. (2023)) For any x ∈ {0, 1}T and p ∈ [0, 1]T ,

1

2
smCE(x, p) ≤ LowerCalDist(x, p) ≤ 2smCE(x, p).

Lipschitz continuity. Unlike the ECE, CalDist(x, p), LowerCalDist(x, p), and smCE(x, p) are all

Lipschitz in the predictions p. Formally, we prove in Appendix E that, for fixed x ∈ {0, 1}T and

with respect to the 1-norm, CalDist(x, p) and LowerCalDist(x, p) are 1-Lipschitz, while smCE(x, p)
is 2-Lipschitz.

3. Proof Overview

We sketch the proofs of our results in this section. The proof of the approximation guarantees

(Theorem 2) is the most involved and consists of several technical ingredients, for which we give an

overview in Section 3.1. Given this approximation guarantee, the O(
√
T ) upper bound (Theorem 3)

follows from a minimax argument and a reduction to online learning, outlined in Section 3.2.

Both the polylog(T ) upper bound for random bits (Proposition 4) and the Ω(T 1/3) lower bound

based on random bits and early stopping (Theorem 5) are based on abstracting the setup as a “con-

trolled random walk” game, which we define in Section 3.3. We will discuss how to solve the game

with a polylog(T ) cost, and why that translates into an upper bound on the calibration distance.

Finally, in Section 3.4, we explain why a connection in the other direction also holds, and how the

Ω(T 1/3) lower bound follows.

3.1. Approximation Guarantees

To show that LowerCalDist(x, p) is a good approximation of CalDist(x, p), we first pick D =
(D1,D2, . . . ,DT ) ∈ C(x) as a “witness” of LowerCalDist(x, p), i.e., LowerCalDist(x, p) = ‖p −
D‖1.5 Then, we round the distributions D1, . . . ,DT to deterministic values q1, . . . , qT ∈ [0, 1] such

that q ∈ C(x) and ‖p − q‖1 ≤ α‖p − D‖1 + β. The desired approximation guarantee would then

follow from

CalDist(x, p) ≤ ‖p− q‖1 ≤ α‖p−D‖1 + β = αLowerCalDist(x, p) + β.

This rounding is done in two steps. First, we transform D into another sequence of T distribu-

tions, D′ = (D′
1, . . . ,D′

T ), such that: (1) D′ ∈ C(x), i.e., D′ is still perfectly calibrated; (2) There

is a small finite set S ⊂ [0, 1] that contains the support of every D′
t; (3) ‖p − D′‖1 can be upper

bounded in terms of ‖p−D‖1.

Concretely, Lemma 11 gives such a transformation that guarantees

‖p−D′‖1 ≤ ‖p−D‖1 +O(
√
T ) and |S| = O(

√
T ).

5. Technically, we can only find D that achieves ‖p−D‖1 ≤ LowerCalDist(x, p) + ǫ for some ǫ > 0. Since ǫ can be

made arbitrarily small, the rest of the argument would not be affected.
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When p contains at most m different entries, Lemma 12 shows that we can alternatively achieve

‖p−D′‖1 ≤ O(1) · ‖p−D‖1 and |S| = O(m).

The final ingredient is a method of rounding distributions D′
1, . . . ,D′

T over set S to deterministic

values (q1, . . . , qT ) ∈ C(x). In Lemma 10, we give a rounding scheme with the guarantee ‖p −
q‖1 ≤ ‖p−D′‖1 +O(|S|). Clearly, Lemmas 10 through 12 together prove Theorem 2.

General reduction to small support size. For the general case, we prove Lemma 11 using a sim-

ple binning strategy. Recall from Remark 7 that D = (D1, . . . ,DT ) specifies a way of transporting

T units of mass (labeled with either 0 or 1) over the interval [0, 1]. For each t, a unit amount of

bit xt is originally located at pt, and gets transported according to distribution Dt. The transporta-

tion incurs a total cost of ‖p − D‖1, and the condition D ∈ C(x) requires that, in the resulting

configuration, the fraction of ones at each α ∈ [0, 1] is exactly α.

A priori, the bits might be transported to many different destinations. We partition the interval

[0, 1] into
√
T intervals with equal lengths. For the i-th interval

[

i−1√
T
, i√

T

]

, we examine the mass

being transported to all the locations within the interval. We consolidate these transportations by

redirecting them to a single destination, which is chosen such that the calibration constraint is still

satisfied. Clearly, there will be at most
√
T different destinations after the consolidation for all the

intervals. Since D is perfectly calibrated, it is easy to show that the new destination falls into the

same interval as the original destinations do, and is thus at a distance ≤ 1/
√
T . The total increase

in the transportation cost will be bounded by T · (1/
√
T ) =

√
T as desired.

Reduction to small support size under sparsity. In the setup of Lemma 12, each pt is one of

the m values s1 < s2 < · · · < sm. In light of the proof strategy for the general case, it is

tempting to try the following: Divide [0, 1] into m + 1 intervals by splitting at each si. For each

interval [si, si+1], again, we consolidate all the transportations into the interval by redirecting them

to a single location. Unfortunately, this does not work, since a typical interval [si, si+1] has length

Ω(1/m) and the redirection could incur an Ω(T/m) cost, which is too large.

In our proof, we still examine the mass being transported into the interval [si, si+1] according to

D. Since each unit of mass originates at some pt ∈ {s1, s2, . . . , sm}, the origin must be in [0, si] ∪
[si+1, 1]. An important simplifying observation is that we may assume that all the bits originate from

either si or si+1. This is because the transportation of mass from some origin pt ∈ [0, si]∪ [si+1, 1]
to a destination inside [si, si+1] can be viewed as a two-phase process: first, transport the mass from

pt to one of the endpoints (si if pt ∈ [0, si] and si+1 if pt ∈ [si+1, 1]); then, transport it from the

endpoint to the actual destination. We will keep the first phase of each transportation unchanged, and

focus on consolidating the second phases, in which the origins are either si or si+1. We will ensure

that, after the consolidation, there are O(1) different destinations for each interval [si, si+1], while

the total cost of the second phases increases by at most an O(1) factor. To find such a consolidation

strategy, we exploit the connection between the lower calibration distance and smooth calibration

error (Lemma 8), and perform a quite involved case analysis.

Rounding of distributions supported over a small set. Finally, we sketch the proof of our round-

ing lemma (Lemma 10). The starting point is a sequence of T distributions D1, . . . ,DT over a

common set S of a small size. Let s1 < s2 < · · · < s|S| be the elements of S. Suppose that for

some t1 6= t2, we have xt1 = xt2 , pt1 < pt2 . Meanwhile, Dt1(si) and Dt2(sj) are both positive for

some i > j. Intuitively, this means that D is inefficient—if we redirect an ǫ probability mass of Dt1

8
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from si to sj , and the same amount in Dt2 from sj to si, we would end up with the same outcome

without increasing the cost. In general, we should expect D to satisfy the following monotonicity

property, or we can tweak it without increasing ‖p − D‖1: for any t1, t2 such that xt1 = xt2 and

pt1 < pt2 , every element in the support of Dt1 is less than or equal to every element in the support

of Dt2 . In fact, this is a simple characterization of the optimal transport on a line.

Once we enforce this monotonicity, the rounding is easy—simply because there will not be

much for us to round! Indeed, whenever Dt has a support of size at least 2 (say, {si, si+1}), step t
must be, among all t′ such that xt′ = xt and Dt′(si+1) > 0, the one with the smallest value of pt′ .
This shows that Dt is degenerate, except for O(|S|) different choices of t. For each non-degenerate

distribution Dt, we naı̈vely pick qt = xt, so that calibration is satisfied. We also need to change

the non-degenerate distributions to maintain calibration. It turns out that this rounding incurs an

additional cost of O(|S|), as desired.

3.2. Calibration Distance Upper Bound

Theorem 2 and Lemma 8 together give

CalDist(x, p) ≤ LowerCalDist(x, p) +O(
√
T ) ≤ 2smCE(x, p) +O(

√
T ).

Therefore, to prove Theorem 3, it suffices to achieve an O(
√
T ) smooth calibration error.

Suppose that the forecaster and the adversary are playing a zero-sum game, with the objective

being the smooth calibration error. By the minimax theorem6, we may assume that the adversary’s

(mixed) strategy is known. Then, at each step t ∈ [T ], we may compute the probability for the

adversary to play xt = 1 conditioning on x1:(t−1) and p1:(t−1). A natural strategy is then to choose

pt as this conditional probability. To analyze the smooth calibration error incurred by this strategy,

we frame this game as an instance of online learning on the classF of Lipschitz functions from [0, 1]
to [−1, 1], and apply a regret bound in the online learning literature. The O(

√
T ) bound follows

from the fact that F has an O(
√
T ) sequential Rademacher complexity, which is an analogue of the

usual Rademacher complexity for the sequential setup.

3.3. Improved Forecasters for Random Bits

When the adversary commits to producing T random bits, the minimization of the smooth calibra-

tion error is, informally, captured by the following control problem:

Controlled Random Walk: The player starts at location X0 = 0. At each step t ∈ [T ],
the player first moves by ǫt ∈

[

−1
2 ,

1
2

]

(which may depend on Xt−1). Then, the nature

perturbs the player’s location by δt ∈
{

±1
2

}

chosen uniformly at random. In other

words, the player is located at Xt = Xt−1 + ǫt + δt after step t. The cost of the player

is defined as |XT |+
∑T

t=1 ǫ
2
t . What is the lowest possible expected cost?

To see how the game defined above is related to the calibration setup, recall that the smooth

calibration error can be written as supf∈F
∑

α∈[0,1] f(α) · ∆α, where ∆α =
∑T

t=1(xt − pt) ·

6. Technically, we need to restrict the predictions to a finite set to apply the minimax theorem. This is handled by

rounding the predictions to a 1/T -net of [0, 1] and applying Lipschitz continuity in the formal proof.
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✶ [pt = α] is the total bias associated with prediction value α, and F is the family of 1-Lipschitz

functions from [0, 1] to [−1, 1]. For any f ∈ F , we have

∑

α∈[0,1]
f(α) ·∆α = f (1/2) ·

∑

α∈[0,1]
∆α +

∑

α∈[0,1]
[f(α)− f (1/2)] ·∆α

≤
∣

∣

∣

∣

∣

T
∑

t=1

(xt − pt)

∣

∣

∣

∣

∣

+
∑

α∈[0,1]
|α− 1/2| · |∆α|.

If we write pt = 1/2−ǫt and xt = 1/2+δt, the first term above reduces to

∣

∣

∣

∑T
t=1(ǫt + δt)

∣

∣

∣ = |XT |,
the first term in the cost of the player. In the second term, we note that for each α ∈ [0, 1], the

expectation of ∆α =
∑T

t=1(xt − pt) · ✶ [pt = α] is exactly (1/2 − α) times the expected number

of times α is predicted. If we “assume” that E [|∆α|] is equal to the absolute value of E [∆α]
7, the

second term can be equivalently written as

∑

α∈[0,1]
|α− 1/2|2 ·

T
∑

t=1

✶ [pt = α] =

T
∑

t=1

(pt − 1/2)2 =

T
∑

t=1

ǫ2t .

Therefore, an upper bound on the cost in the controlled random walk game gives a uniform upper

bound on
∑

α∈[0,1] f(α) ·∆α over all f ∈ F and thus, by definition, upper bounds smCE(x, p).

A strategy with sub-
√
T cost. The trivial strategy of playing ǫt = 0 at every step gives a cost of

E [|XT |] = E

[∣

∣

∣

∑T
t=1 δt

∣

∣

∣

]

= Θ(
√
T ). Can we do better? Consider the following simple strategy:

Fix a parameter ǫ ∈ (0, 1/2], and play ǫt = −ǫ · sgn(Xt−1) at step t. In other words, we move

towards the origin by a distance of ǫ at each step. This strategy clearly gives
∑T

t=1 ǫ
2
t ≤ Tǫ2.

For the |XT | term, the following heuristic argument suggests E [|XT |] = O(1/ǫ). Assume that

the noise δt follows the standard Gaussian instead of the uniform distribution on {±1/2}. Then, the

random process Xt = Xt−1 − ǫ · sgn(Xt) + δt is a discretization of the following dynamics:

dX(t)

dt
= −∇U(X(t)) + dB(t),

where the potential is U(x) = ǫ|x|, and B(t) is the standard Brownian motion. As t → +∞, we

expect the distribution of Xt to converge to a distribution with density at x proportional to e−βU(x)

for some constant β, i.e., the Laplace distribution. This implies E [|Xt|] = O(1/ǫ).
If we set ǫ = T−1/3, both terms in the cost would be bounded by O(T 1/3), which gives a

polynomial improvement over the trivial cost of
√
T . Formalizing this heuristic argument gives

a forecasting strategy with E [smCE(x, p)] = O(T 1/3) against random bits. Since the number of

different predictions (i.e., the number of different values of ǫt) is a constant, applying the second

part of Theorem 2 shows that CalDist(x, p) is also at most O(T 1/3) in expectation.

A strategy with polylog(T ) cost. The improvement from T 1/3 to polylog(T ) is done by varying

the parameter ǫ throughout the game. Interestingly, unlike the usual “doubling trick” in online

learning, our time horizon is divided into epochs with geometrically decreasing lengths.

7. This is clearly false in general. In the actual proof, we use a concentration argument on ∆α to show that this

approximation is essentially true.
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Suppose that in the first T/2 steps, the player simply drifts with the noise. Typically, we expect

to have |XT/2| = O(
√
T ). For concreteness, assume that XT/2 =

√
T . Starting from time T/2+1,

we play ǫt = −α/
√
T for some α = polylog(T ). Then, we expect that Xt will drop below 0

before the game ends with high probability. This is because, if the game (hypothetically) runs for

T/2 more steps, XT would roughly follow a Gaussian with mean
√
T − T

2 · α√
T
= −Ω(α

√
T ) and

variance O(T ). For sufficiently large α, this will be negative with high probability. Therefore, the

player simply waits for Xt to become negative, at which point Xt should be very close to 0. Now,

there are at most T/2 steps remaining, and we repeat the same strategy for the rest of the game.

This strategy clearly controls Xt such that |XT | = O(1) with high probability. To upper bound

the
∑T

t=1 ǫ
2
t term, note that in the first epoch, we predict a value with absolute value α/

√
T at most

T/2 times. This contributes at most T
2 · (α/

√
T )2 = polylog(T ) to the sum. Since we repeat this at

most O(log T ) times, we end up with a polylog(T ) cost. Finally, since the procedure only involves

O(log T ) different values of ǫt, applying the second bound in Theorem 2 bounds the calibration

distance by polylog(T ) as well.

3.4. Calibration Distance Lower Bound

Our lower bound proof is based on the observation that a lower bound for the controlled random

walk game also gives a lower bound on the smooth calibration error. Again, we write pt = 1/2− ǫt
and xt = 1/2 + δt. Then, the location XT of the player after T steps is exactly given by XT =
∑T

t=1(ǫt + δt) =
∑T

t=1(xt − pt), the difference between the total outcomes and total predictions.

Recall that smCE(x, p) is the supremum of
∑T

t=1 f(pt) · (xt − pt) among all 1-Lipschitz functions

f : [0, 1] → [−1, 1]. In particular, by picking f to be the constant function 1 or −1, we obtain

smCE(x, p) ≥ |XT |.
To see how the

∑T
t=1 ǫ

2
t term comes into play, consider the function f(x) = 1/2−x, which is in

the family F . This gives
∑T

t=1 f(pt) · (xt − pt) =
∑T

t=1 ǫt · (ǫt + δt). After taking an expectation,

the ǫt · δt term vanishes. Therefore, at least in expectation, the smooth calibration error is lower

bounded by the
∑T

t=1 ǫ
2
t term as well.

However, as outlined in Section 3.3, the player can achieve a polylog(T ) cost in the controlled

random walk game. To obtain the Ω(T 1/3) lower bound, we make another simple observation: as

long as we can lower bound the expectation of maxt∈[T ] |Xt|+
∑T

t=1 ǫ
2
t by Ω(T 1/3), we can obtain

the same lower bound in the prediction setting via an early stopping trick, which was used by Qiao

and Valiant (2021) in their lower bound on the ECE.

Indeed, if an algorithm gives E

[

∑T
t=1 ǫ

2
t

]

= Ω(T 1/3), the connection that we made earlier

lower bounds E [smCE(x, p)] by Ω(T 1/3) as desired. Otherwise, the value |Xt| must be large at

some point t′. Equivalently, the bias

∣

∣

∣

∑t′

t=1(xt − pt)
∣

∣

∣ is large. Then, if the adversary deviates from

outputting random bits, and keep outputting the same bit, this large bias will remain in the end.

To lower bound this strengthened cost of maxt∈[T ] |Xt| +
∑T

t=1 ǫ
2
t , we divide the horizon T

into T 1/3 epochs of length T 2/3 each. In a typical block, the sum of δt has an absolute value of

Ω(
√
T 2/3) = Ω(T 1/3). Then, if the total control of the player (i.e., the sum of ǫt) is much smaller

than T 1/3 in absolute value, we will catch a large |Xt| during this epoch. In order not to be caught,

the player is forced to ensure that the sum of ǫt is ±Ω(T 1/3) in a typical epoch. This, in turn, lower

bounds the sum of ǫ2t within that epoch by Ω(1). Summing over the T 1/3 epochs gives the desired

lower bound of
∑T

t=1 ǫ
2
t = Ω(T 1/3).
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4. Discussion and Open Problems

Is the calibration distance a good metric? In this work, we propose to use the calibration dis-

tance as a calibration measure in sequential prediction setups. The definition of the calibration

distance is natural, and in the same spirit as the work of Błasiok et al. (2023) for the offline setup.

Compared to the ECE, the calibration distance is better-behaved in being Lipschitz continuous in

the predictions. Compared to alternative calibration measures that are continuous (such as weak and

smooth calibration), the calibration distance is, from the forecaster’s perspective, especially easy and

intuitive to certify—to show that the calibration distance is small, the forecaster only needs to out-

put a set of alternative predictions that are calibrated and close to the actual predictions. From this

perspective, our proof of Theorem 2 is algorithmic in the sense that it implies an efficient algorithm

for the forecaster to find such a certificate.

On the other hand, the calibration distance is still far from being the “perfect” calibration mea-

sure in the sequential setup. As we highlight in Proposition 4, even on a sequence of random

bits, minimizing the calibration distance might incentivize the forecaster to deviate from the “right”

predictions. Unfortunately, this is unavoidable to some extent—as discussed in Section 1.2, such

incentive-related issues may arise even when only perfect calibration is concerned.

Stronger approximation guarantees. An obvious open problem is to strengthen Theorem 1 and

design better approximation algorithms for the calibration distance. A natural avenue is through re-

fining the structural results that relate the calibration distance to the lower calibration distance. More

concretely, is the O(
√
T ) upper bound on the gap between CalDist(x, p) and LowerCalDist(x, p)

tight? Can we avoid the extra O(1) multiplicative factor for the sparse case?

Explicit and efficient algorithms. Our proof of Theorem 3 is based on the minimax theorem

and thus non-constructive. Deriving an actual algorithm requires solving a zero-sum game with an

action space that is doubly-exponential in T . Is there an explicit and efficient algorithm for match-

ing the O(
√
T ) guarantee? A concrete approach is based on the prior work of Kakade and Foster

(2008); Foster and Hart (2018, 2021), which gave deterministic forecasters that asymptotically sat-

isfy weak or smooth calibration. Roughly speaking, their forecasting algorithms are deterministic

because they are based on fixed point theorems rather than the minimax theorem. While these work

focused on asymptotic calibration rather than the exact convergence bounds, it follows easily from

(Kakade and Foster, 2008, Lemma 4.3) that their algorithm gives E [smCE(x, p)] = O(T 2/3) in our

notations. Is there a more refined analysis of their approach that gives an O(
√
T ) bound? Can we

efficiently implement their algorithms, which, as stated, are based on finding fixed points?

Stronger lower bounds. Another obvious open problem is to strengthen the Ω(T 1/3) lower bound,

which is essentially based a sequence of random bits (each taking value 1 with probability 1/2). A

natural attempt is to divide the time horizon into multiple epochs, and use different probabilities for

different epochs. The issue is, of course, that the forecaster may predict strategically to decrease the

error that it has accumulated in previous epochs. For the ECE, this difficulty was partially resolved

by Qiao and Valiant (2021) via a “sidestepping” technique, which uses an adaptive, divide-and-

conquer strategy for choosing the probabilities for different epochs. Can we use the same approach

to bootstrap the T 1/3 lower bound to a rate closer to T 1/2?

12
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Appendix A. Proof of the Approximation Guarantees

In this section, we prove Theorem 2, which states that the lower calibration distance is a good addi-

tive approximation of the calibration distance. Then, Theorem 1 follows easily from the algorithm

of Błasiok et al. (2023) that computes the lower calibration distance up to an ǫ additive error in

poly(n, 1/ǫ) time.

A.1. Impossibility of Multiplicative Approximation

Before we proceed to the proof, we give a concrete example showing that LowerCalDist(x, p) does

not give a good multiplicative approximation of CalDist(x, p), even if the multiplicative factor is

allowed to depend on T (but not on x or p).

Proposition 9 There is no function f : N → (0,+∞) such that the following holds for all T ,

x ∈ {0, 1}T and p ∈ [0, 1]T :

LowerCalDist(x, p) ≥ f(T ) · CalDist(x, p). (2)

The proof is based on an example inspired by the proof of (Błasiok et al., 2023, Lemma 4.5).

Proof Let T = 4, x = (0, 1, 0, 1), and p = (1/2 − ǫ, 1/2 − ǫ, 1/2 + ǫ, 1/2 + ǫ) for some small

ǫ ∈ (0, 1/30). We will show that CalDist(x, p) = 4ǫ while LowerCalDist(x, p) = O(ǫ2). This

implies that the ratio

LowerCalDist(x, p)

CalDist(x, p)
≤ O(ǫ2)

4ǫ
= O(ǫ)

can be made arbitrarily small by taking ǫ→ 0+, so Inequality (2) cannot hold for any fixed f .

The calibration distance. We first note that CalDist(x, p) ≤ 4ǫ, as q = (1/2, 1/2, 1/2, 1/2) is

perfectly calibrated with respect to x, and ‖p − q‖1 = 4ǫ. Furthermore, for any q ∈ C(x), all the

entries of q must lie in

{a/b : a ∈ {0, 1, . . . , b}, b ∈ [4]} = {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1}.

If any entry qi is different from 1/2, the difference |pi − qi| must be at least (1/2 − ǫ) − 1/3 =
1/6 − ǫ ≥ 4ǫ (the last step follows from ǫ < 1/30), which implies ‖p − q‖1 ≥ 4ǫ. This shows

CalDist(x, p) = 4ǫ.

The lower calibration distance. Roughly speaking, we achieve the O(ǫ2) lower calibration dis-

tance by transporting O(ǫ) units of the “extra ones (resp., zeros)” at 1/2− ǫ (resp., 1/2+ ǫ) to 1/2.

Formally, let D1 and D4 be the degenerate distributions supported on {1/2 − ǫ} and {1/2 + ǫ},
respectively. Let β = 1/2−ǫ

1/2+ǫ , and define D2 and D3 as

D2(1/2− ǫ) = D3(1/2 + ǫ) = β, D2(1/2) = D3(1/2) = 1− β.

We can then verify that (D1,D2,D3,D4) ∈ C(x), because for α = 1/2, we have

T
∑

t=1

(xt − α) · Dt(α) = (x2 − 1/2) · (1− β) + (x3 − 1/2) · (1− β) =
1− β

2
− 1− β

2
= 0,
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and for α = 1/2− ǫ, we have

T
∑

t=1

(xt − α) · Dt(α) = (x1 − 1/2 + ǫ) · 1 + (x2 − 1/2 + ǫ) · β = 0.

The α = 1/2 + ǫ case holds by symmetry. By definition of the lower calibration distance,

LowerCalDist(x, p) ≤
T
∑

t=1

E
qt∼Dt

[|pt − qt|] = 0+ (1− β) · ǫ+ (1− β) · ǫ+0 =
4ǫ2

1/2 + ǫ
= O(ǫ2).

A.2. Rounding of Distributions with a Small Support

We start with the following lemma, which is crucial for proving both bounds in Theorem 2.

Lemma 10 Suppose that x ∈ {0, 1}T , p ∈ [0, 1]T , and D = (D1,D2, . . . ,DT ) ∈ C(x), where

D1, . . . ,DT are distributions supported over a finite set S ⊂ [0, 1]. Then,

CalDist(x, p) ≤ ‖p−D‖1 + 4|S|.

The lemma states that if we have distributions D1 through DT supported on a common set of a

small size, and they serve as a witness for LowerCalDist(x, p) being small, we can “round” them to

a sequence of (deterministic) predictions and show that CalDist(x, p) is small as well. The rounding

procedure only leads to an additive increase in the distance that is linear in the support size.

Proof We will first transform D1, . . . ,DT to another T distributions (D′
1, . . . ,D′

T ) ∈ C(x) that

satisfy a monotonicity property. Furthermore, the new distributions are still over set S, and the cost

‖p − D′‖1 does not exceed the original cost ‖p − D‖1. With this monotonicity, we apply a simple

rounding scheme to produce a good witness q ∈ C(x) which shows that CalDist(x, p) is small.

Enforce monotonicity. For b ∈ {0, 1}, let T (b) := {t ∈ [T ] : xt = b} denote the set of time steps

where the outcome is b. We claim that there exist distributions D′
1, . . . ,D′

T over S such that:

• D′ = (D′
1, . . . ,D′

T ) ∈ C(x).

• ‖p−D′‖1 ≤ ‖p−D‖1.

• There exist total orders on T (0) and T (1) (both denoted by “≺”) such that: For every b ∈
{0, 1} and t1, t2 ∈ T (b), t1 ≺ t2 implies: (1) pt1 ≤ pt2 ; (2) the maximum element in the

support of D′
t1 is less than or equal to the minimum element in the support of D′

t2 .

In words, the third condition requires that among all the time steps in T (b), steps with a small value

of pt corresponds to a distribution D′
t supported over smaller values.

16



ON THE DISTANCE FROM CALIBRATION IN SEQUENTIAL PREDICTION

Construction of D′. The existence of D′ should be obvious when viewing the problem as an

optimal transport in one dimension: For each b ∈ {0, 1}, we originally have one unit of mass on pt
for each t ∈ T (b), while the goal is to obtain the configuration

∑

t∈T (b) Dt. In order to minimize

the total cost, we should match the two measures in increasing order.

Nevertheless, we provide an elementary proof of this claim by explicitly constructing the distri-

butions D′
1 through D′

T . For each b ∈ {0, 1}, let m :=
∣

∣T (b)
∣

∣ and t1, t2, . . . , tm be a permutation

of the elements of T (b) such that pt1 ≤ pt2 ≤ · · · ≤ ptm . Then, we set D′
t1 ,D′

t2 , . . . ,D′
tm as the

unique distributions over set S that satisfy:

•
∑m

i=1D′
ti =

∑m
i=1Dti , i.e., for every α ∈ S,

∑m
i=1D′

ti(α) =
∑m

i=1Dti(α).

• For every i ∈ [m− 1], the maximum element in the support of D′
ti is less than or equal to the

minimum element in the support of D′
ti+1

.

More concretely, these m distributions can be found by starting with the total measure
∑m

i=1Dti ,

and then greedily forming a probability measure by taking one unit of mass from the smallest

elements in the support of the remaining measure, until m probability measures are formed.

By construction, the distributions D′
1, . . . ,D′

T are over set S, and satisfy the monotonicity con-

straint (with respect to the total order defined as t1 ≺ t2 ≺ · · · ≺ tm). It remains to show that

D′ ∈ C(x) and that the cost of D′ is not higher than that of D.

D′ is perfectly calibrated. We note that for every α ∈ [0, 1],

T
∑

t=1

(xt − α)D′
t(α) =

∑

b∈{0,1}
(b− α)

∑

t∈T (b)

D′
t(α)

=
∑

b∈{0,1}
(b− α)

∑

t∈T (b)

Dt(α)

=
T
∑

t=1

(xt − α)Dt(α) = 0.

The second step follows from our construction ofD′, while the last step holds sinceD ∈ C(x). This

proves D′ ∈ C(x).

D′ does not have a higher cost. Fix b ∈ {0, 1}. Let a0 < a1 < · · · < am be the distinct elements

in {p1, . . . , pT } ∪ S. For each i ∈ [m], define

Fi :=
∑

t∈T (b)

✶ [pt < ai] and Gi :=
∑

t∈T (b)

Pr
qt∼Dt

[qt < ai] .

We claim that

∑

t∈T (b)

E
qt∼D′

t

[|pt − qt|] =
m
∑

i=1

(ai − ai−1) · |Fi −Gi| ≤
∑

t∈T (b)

E
qt∼Dt

[|pt − qt|] . (3)

Summing over b ∈ {0, 1} proves ‖p−D′‖1 ≤ ‖p−D‖1.
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We first prove the first step in Equation (3). For each i ∈ [m], let δi denote the amount of mass

transported across the interval [ai−1, ai] according to D′. Formally, we define

δi :=
∑

t∈T (b)

Pr
qt∼D′

t

[[ai−1, ai] ⊆ [min{pt, qt},max{pt, qt}]] .

For any p, q ∈ {a0, a1, . . . , am}, we have the identity

|p− q| =
m
∑

i=1

(ai − ai−1) · ✶ [[ai−1, ai] ⊆ [min{p, q},max{p, q}]] .

Thus, we can re-write the cost
∑

t∈T (b) Eqt∼D′

t
[|pt − qt|] as

∑m
i=1(ai− ai−1) · δi, and it remains to

prove that δi = |Fi −Gi| for every i ∈ [m].
Fix i ∈ [m]. Let t1 ≺ t2 ≺ · · · be the elements of T (b) sorted according to total order≺. Recall

that Fi is the number of values among {pt : t ∈ T (b)} that are strictly smaller than ai, so we have

ptj ≤ ai−1 for every j ≤ Fi and ptj ≥ ai for every j > Fi.

Suppose that Fi ≥ Gi. By construction of D′
t, for every j ≤ ⌊Gi⌋, the support of D′

tj is

contained in [0, ai−1] while ptj ∈ [0, ai−1], so they do not contribute to δi. For j ∈ {⌈Gi⌉ +
1, . . . , Fi}, the support of D′

tj is completely contained in [ai, 1] while ptj ∈ [0, ai−1], so they

contribute Fi − ⌈Gi⌉ to δi. Finally, when Gi is not integral, for j = ⌈Gi⌉, we have ptj ∈ [0, ai−1]
and D′

tj assigns a probability mass of ⌈Gi⌉ − Gi to [ai, 1]. This contributes ⌈Gi⌉ − Gi to δi.
Therefore, we conclude that, in this case,

δi = (Fi − ⌈Gi⌉) + (⌈Gi⌉ −Gi) = |Fi −Gi|.

The Fi < Gi case is similar. For j ≤ Fi, we have ptj ∈ [0, ai−1], while the support of D′
tj is

also contained in [0, ai−1], so these values of j do not contribute to δi. When Fi + 1 ≤ j ≤ ⌊Gi⌋,
the support of D′

tj is still contained in [0, ai−1], whereas ptj ≥ ai. This contributes ⌊Gi⌋ − Fi to

δi. Finally, when Gi is not integral, for j = ⌈Gi⌉, D′
tj assigns a probability mass of Gi − ⌊Gi⌋ to

[0, ai−1], and this contributes Gi − ⌊Gi⌋ to δi. Again, we have δi = Gi − Fi = |Fi −Gi|.
Next, we prove the second step in Equation (3), i.e.,

∑

t∈T (b) Eqt∼Dt [|pt − qt|] is lower bounded

by
∑m

i=1(ai − ai−1) · |Fi −Gi|. Similarly, we define

δi :=
∑

t∈T (b)

Pr
qt∼Dt

[[ai−1, ai] ⊆ [min{pt, qt},max{pt, qt}]]

as the total mass transported across [ai−1, ai] according to D, and it suffices to show that δi ≥
|Fi −Gi| for every i ∈ [m].

Fix i ∈ [m] and suppose that Fi ≥ Gi. Note that for any p, q ∈ {a0, a1, . . . , am}, we have the

inequality

✶ [p ≤ ai−1 ∧ q ≥ ai] ≥ ✶ [p < ai]− ✶ [q < ai] .

Then, by definition of δi, we have

δi ≥
∑

t∈T (b)

Pr
qt∼Dt

[pt ≤ ai−1 ∧ qt ≥ ai] ≥
∑

t∈T (b)

✶ [pt < ai]−
∑

t∈T (b)

Pr
qt∼Dt

[qt < ai] = |Fi −Gi|.

Similarly, when Fi < Gi, using the inequality

✶ [p ≥ ai ∧ q ≤ ai−1] ≥ ✶ [p ≥ ai]− ✶ [q ≥ ai] ,
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we get

δi ≥
∑

t∈T (b)

Pr
qt∼Dt

[pt ≥ ai ∧ qt ≤ ai−1] ≥
∑

t∈T (b)

✶ [pt ≥ ai]−
∑

t∈T (b)

Pr
qt∼Dt

[qt ≥ ai]

=
(∣

∣

∣T (b)
∣

∣

∣− Fi

)

−
(∣

∣

∣T (b)
∣

∣

∣−Gi

)

= |Fi −Gi|.

This concludes the proof of the inequality ‖p−D′‖1 ≤ ‖p−D‖1, and shows that D′ indeed has all

the desired properties.

The rounding scheme. Now that the distributions D′
1, . . . ,D′

T have all the nice properties, it

remains to find q ∈ C(x) such that ‖p − q‖1 ≤ ‖p − D′‖1 + 4|S|, since the lemma would then

follow from

CalDist(x, p) ≤ ‖p− q‖1 ≤ ‖p−D′‖1 + 4|S| ≤ ‖p−D‖1 + 4|S|.

Let T pure be the set of indices t ∈ [T ] such that D′
t is degenerate (i.e., with a size-1 support).

We call each t ∈ T pure a “pure step”, and each t ∈ T mixed := [T ] \ T pure a “mixed step”. For each

pure step t ∈ T pure, let βt ∈ [0, 1] be the (only) element in the support of D′
t.

We choose q ∈ [0, 1]T as follows:

• For each pure step t ∈ T pure, set qt to

g(βt) :=

∑

t′∈T pure xt′ · ✶ [βt′ = βt]
∑

t′∈T pure ✶ [βt′ = βt]
.

• For each mixed step t ∈ T mixed, set qt = xt.

In the remainder of the proof, we verify that q ∈ C(x) and then upper bound ‖p− q‖1.

q is perfectly calibrated. For every α ∈ [0, 1], we can write

T
∑

t=1

(xt − qt) · ✶ [qt = α] =
∑

t∈T pure

(xt − qt) · ✶ [qt = α] +
∑

t∈T mixed

(xt − qt) · ✶ [qt = α] .

The second summation is 0, since qt = xt holds for every t ∈ T mixed. By our choice of q, the first

summation can be written as

∑

t∈T pure

(xt − qt) · ✶ [g(βt) = α]

=
∑

α′∈S
✶
[

g(α′) = α
]

∑

t∈T pure

(xt − α) · ✶
[

βt = α′]

=
∑

α′∈S
✶
[

g(α′) = α
]

·
[

∑

t∈T pure

xt · ✶
[

βt = α′]− g(α′) ·
∑

t∈T pure

✶
[

βt = α′]
]

= 0,

where the last step follows from the definition of g(·). This verifies q ∈ C(x).
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Upper bound ‖p− q‖1. Note that

‖p− q‖1 =
∑

t∈T pure

|pt − qt|+
∑

t∈T mixed

|pt − qt|

≤
∑

t∈T pure

|pt − βt|+
∑

t∈T pure

|qt − βt|+
∣

∣

∣T mixed
∣

∣

∣

≤
T
∑

t=1

E
qt∼D′

t

[|pt − qt|] +
∑

t∈T pure

|qt − βt|+
∣

∣

∣T mixed
∣

∣

∣ .

In the following, we will show that both
∑

t∈T pure |qt−βt| and
∣

∣T mixed
∣

∣ are upper bounded by 2|S|,
which would conclude the proof.

Bound the number of mixed steps. We start by showing |T mixed| ≤ 2|S|. Fix t ∈ T mixed. Let

b = xt and s ∈ S be the largest element in the support of D′
t. Since D′

t is not degenerate, the

support of D′
t contains another element s′ < s. Recall that T (b) is associated with a total order ≺

that is consistent with both pt’s and the supports of D′
t. Then, with respect to order ≺, t must be

the smallest index in T (b) such that D′
t(s) 6= 0. Indeed, if there exists t′ ≺ t such that D′

t′(s) > 0,

the fact that the support of D′
t contains a smaller element s′ < s contradicts the monotonicity.

Therefore, we showed that every t ∈ T mixed corresponds to a unique pair (b, s) ∈ {0, 1} × S. This

implies |T mixed| ≤ 2|S|.
Bound the additional cost on the pure steps. Fix s ∈ S. For each b ∈ {0, 1}, let

nb :=
∑

t∈T pure

✶ [βt = s ∧ xt = b] and ǫb :=
∑

t∈T mixed

D′
t(s) · ✶ [xt = b] .

We claim that

s =
n1 + ǫ1

n0 + n1 + ǫ0 + ǫ1

and

g(s) =
n1

n0 + n1
.

The latter follows immediately from the definition of g(·), n0 and n1. The former holds since

D′ ∈ C(x) implies

0 =

T
∑

t=1

(xt − s) · D′
t(s)

=
∑

t∈T pure

(xt − s) · D′
t(s) +

∑

t∈T mixed

(xt − s) · D′
t(s)

= [n1 − s · (n0 + n1)] + [ǫ1 − s · (ǫ0 + ǫ1)],

which, after rearrangement, gives the expression of s.

We also argue that ǫ0, ǫ1 ∈ [0, 2]. Fix b ∈ {0, 1}, and let t1, t2 ∈ T (b) be the smallest and the

largest index t ∈ T (b) (with respect to total order ≺) such that D′
t(s) 6= 0. By monotonicity, for

any t ∈ T (b) such that t1 ≺ t ≺ t2, the support of D′
t can only contain s, which impies t ∈ T pure.

Therefore, ǫb is exactly given by
∑

t∈{t1,t2}D′
t(s), which clearly lies in [0, 2].
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Then, we have

(n0 + n1) · |s− g(s)| = (n0 + n1) ·
∣

∣

∣

∣

n1 + ǫ1
n0 + n1 + ǫ0 + ǫ1

− n1

n0 + n1

∣

∣

∣

∣

.

For fixed n0 and n1, the last expression is maximized when either (ǫ0, ǫ1) = (2, 0) or (ǫ0, ǫ1) =
(0, 2). A simple calculation shows that the expression is upper bounded by 2 in both cases.

Finally, we note that

∑

t∈T pure

|qt − βt| =
∑

s∈S

∑

t∈T pure

|qt − βt| · ✶ [βt = s] =
∑

s∈S
|g(s)− s| ·

∑

t∈T pure

✶ [βt = s] .

Therefore, the contribution of each s ∈ S to
∑

t∈T pure |qt−βt| is exactly (n0+n1) · |s− g(s)| ≤ 2.

Thus, we have
∑

t∈T pure |qt − βt| ≤ 2|S|.

A.3. Proof of the Additive Gap

With Lemma 10 in hand, we prove the first part of Theorem 2, which upper bounds the gap between

CalDist(x, p) and LowerCalDist(x, p) by O(
√
T ).

The proof starts by finding T distributions D̂1, . . . , D̂T that (approximately) achieve the lower

calibration distance LowerCalDist(x, p). We refine these distributions to D1, . . . ,DT , so that: (1)

the support of every Dt is contained in the same set of size O(
√
T ); (2) D still approximately

achieves LowerCalDist(x, p) up to an O(
√
T ) slack. This allows us to invoke our rounding lemma

(Lemma 10) to show CalDist(x, p) ≤ LowerCalDist(x, p) +O(
√
T ).

Before proceeding with the proof below, it would be helpful to recall the connection between

the lower calibration distance and optimal transport (Remark 7). In particular, during the proof we

will sometimes refer to the distributions (D1, . . . ,DT ) ∈ C(x) and the corresponding transportation

of the bits interchangeably.

Lemma 11 For any x ∈ {0, 1}T , p ∈ [0, 1]T , there exists a set S ⊆ [0, 1] of size at most O(
√
T )

along with distributions D1, . . . ,DT over S, such that (D1,D2, . . . ,DT ) ∈ C(x) and

‖p−D‖1 ≤ LowerCalDist(x, p) +O(
√
T ).

Proof By definition of the lower calibration distance, there exists D̂ = (D̂1, D̂2, . . . , D̂T ) ∈ C(x)
such that ‖p− D̂‖1 ≤ LowerCalDist(x, p) + 1.8

Pick an integer m = Θ(
√
T ) and define intervals Ii := [(i − 1)/m, i/m) for i ∈ [m − 1]

and Im := [(m − 1)/m, 1]. Roughly speaking, for each i ∈ [m], we will examine the bits that

are transported into the interval Ii according to D̂. We then consolidate these bits into a single

destination. The perfect calibration of D̂ implies that the new destination still falls into Ii, so our

change increases the cost by at most T/m = O(
√
T ). Furthermore, the new transportation only

involves at most m different destinations (one for each interval Ii).

8. We need the “+1” term in case that the infimum in the definition of LowerCalDist(x, p) cannot be achieved.
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The new destinations. For each i ∈ [m], we define

µi :=

∑T
t=1 xt · D̂t(Ii)
∑T

t=1 D̂t(Ii)
=

∑

α∈Ii
∑T

t=1 xt · D̂t(α)
∑

α∈Ii
∑T

t=1 D̂t(α)
.

By definition of C(x), each D̂t has a finite support, so both
∑T

t=1 xt · D̂t(α) and
∑T

t=1 D̂t(α) take

non-zero values only on finitely many choices of α. Therefore, the summations over α in the last

expression above are actually finite and thus well-defined.

We argue that for every i ∈ [m], µi falls into [(i− 1)/m, i/m]. Indeed, we can re-write µi as

µi =
∑

α∈Ii

∑T
t=1 xt · D̂t(α)

∑

β∈Ii
∑T

t=1 D̂t(β)
=
∑

α∈Ii

∑T
t=1 D̂t(α)

∑

β∈Ii
∑T

t=1 D̂t(β)
·
∑T

t=1 xt · D̂t(α)
∑T

t=1 D̂t(α)
. (4)

For each α ∈ Ii, it follows from D̂ ∈ C(x) that
∑T

t=1(xt − α) · D̂t(α) = 0 and, equivalently,
∑T

t=1 xt·D̂t(α)
∑T

t=1 D̂t(α)
= α ∈ Ii. Therefore, Equation (4) states that µi is a convex combination of values

that lie in interval Ii, which ensures that (i− 1)/m ≤ µi ≤ i/m.

The updated transportation. We define another T distributions D1,D2, . . . ,DT as follows. Let

φ : [0, 1] → [0, 1] be the function that maps every value in each Ii to µi. Then, each Dt is defined

as the distribution of φ(qt) when qt ∼ D̂t. We will argue thatD = (D1, . . . ,DT ) is in C(x) and that

‖p−D‖1 is comparable to the cost ‖p− D̂‖1.

To show that D ∈ C(x), we note that for any α ∈ [0, 1], we have

T
∑

t=1

(xt − α) · Dt(α) =

T
∑

t=1

(xt − α) · Pr
qt∼D̂t

[φ(qt) = α] (definition of Dt)

=

T
∑

t=1

(xt − α) ·
m
∑

i=1

✶ [µi = α] · D̂t(Ii) (definition of φ)

=
m
∑

i=1

✶ [µi = α] ·
[

T
∑

t=1

xt · D̂t(Ii)− µi ·
T
∑

t=1

D̂t(Ii)
]

= 0.

(definition of µi)

This proves D ∈ C(x).
To show the latter property, we note that since φ(x) and x always fall into the same interval Ii,

we have |φ(x)− x| ≤ 1/m for every x ∈ [0, 1]. Then,

T
∑

t=1

E
qt∼Dt

[|pt − qt|] =
T
∑

t=1

E
qt∼D̂t

[|pt − φ(qt)|] (definition of Dt)

≤
T
∑

t=1

E
qt∼D̂t

[|pt − qt|] +
T
∑

t=1

E
qt∼D̂t

[|qt − φ(qt)|] (triangle inequality)

≤ [LowerCalDist(x, p) + 1] + T · 1
m

(choice of D̂ and |x− φ(x)| ≤ 1/m)

≤ LowerCalDist(x, p) +O(
√
T ). (m = Θ(

√
T ))
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Finally, note that each Dt is over the same set of size ≤ m = O(
√
T ), namely, {µ1, µ2, . . . , µm}.

This concludes the proof.

The first bound in Theorem 2 then follows easily.

Proof of the first part of Theorem 2 By Lemma 11, there exists D = (D1,D2, . . . ,DT ) ∈ C(x)
such that ‖p − D‖1 ≤ LowerCalDist(x, p) + O(

√
T ), and each Dt is over the same set of size

O(
√
T ). By Lemma 10, we have

CalDist(x, p) ≤ ‖p−D‖1 +O(
√
T ) ≤ LowerCalDist(x, p) +O(

√
T ).

A.4. Approximation Guarantee in the Sparse Case

Now we deal with the second part of Theorem 2, where we have a prediction sequence p ∈ [0, 1]T

with only m different entries. In order to invoke our Lemma 10, however, we need to show that

the lower calibration distance LowerCalDist(x, p) can be approximately achieved by distributions

D1, . . . ,DT over a small set S ⊂ [0, 1] (more concretely, of size O(m)). This step, stated as the

lemma below, turns out to be much more complicated.

Lemma 12 For any x ∈ {0, 1}T , p ∈ [0, 1]T , m = |{p1, p2, . . . , pT }| and ǫ > 0, there exists a set

S ⊂ [0, 1] of size at most 2m+ 3 along with distributions D1, . . . ,DT over S, such that

(D1,D2, . . . ,DT ) ∈ C(x)

and

‖p−D‖1 ≤ 20 · LowerCalDist(x, p) + ǫ.

We first show how Lemmas 10 and 12 together imply the second part of Theorem 2.

Proof of the second part of Theorem 2 Applying Lemma 12 with ǫ = 1 gives a set S ⊂ [0, 1] of

size ≤ 2m+ 3, together with distributions D1, . . . ,DT over S such that D ∈ C(x) and

‖p−D‖1 ≤ 20 · LowerCalDist(x, p) + 1.

Then, by Lemma 10,

CalDist(x, p) ≤ ‖p−D‖1 + 4 · (2m+ 3) ≤ 20 · LowerCalDist(x, p) + (8m+ 13).

Before we prove Lemma 12, again, we recommend the reader to review Remark 7. In the

following proof, we will frequently mention the transportation of the bits in lieu of the explicit

expressions for the probability distributions.

As in the proof of the first part of Theorem 2, we start by picking D̂ ∈ C(x) that approximately

achieves LowerCalDist(x, p), and then consolidate the transportation specified by D̂ such that there

will be at most O(m) destinations.

Let s1 < s2 < · · · < sm be the m values that appear in the entries of p. A natural first attempt

would be to examine the bits that are transported into each interval [si, si+1] and merge them to a
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single destination. Unfortunately, as we show in Appendix F, this naı̈ve consolidation could blow

up the cost. Instead, our proof of Lemma 12 involves a much more complicated case analysis based

on the amounts of zeros and ones being transported into [si, si+1] on both directions.

Proof of Lemma 12 By definition of LowerCalDist(x, p), there are T distributions D̂1, D̂2, . . . , D̂T

such that:

• Each D̂t is supported over a finite subset of [0, 1].

• D̂1, . . . , D̂T are perfectly calibrated, i.e.,
∑T

t=1(xt−α)·D̂t(α) = 0 holds for every α ∈ [0, 1].

• The cost is close to LowerCalDist(x, p): ‖p− D̂‖1 ≤ LowerCalDist(x, p) + ǫ/20.9

Proof overview. Let 0 = s1 < s2 < · · · < sm′ = 1 be the distinct values among {p1, p2, . . . , pT }∪
{0, 1}. Note that m′ ≤ |{p1, p2, . . . , pT }|+2 = m+2. We will transform D̂1, . . . , D̂T into another

T distributions, denoted by D1, . . . ,DT , over a set S ⊂ [0, 1], such that:

• |S| ≤ 2m′ − 1 ≤ 2m+ 3;

• (D1, . . . ,DT ) ∈ C(x);

• ‖p−D‖1 ≤ 20 · ‖p− D̂‖1.

Note that doing so would prove the lemma, since the last condition implies that

‖p−D‖1 ≤ 20‖p− D̂‖1 ≤ 20 · (LowerCalDist(x, p) + ǫ/20) = 20 · LowerCalDist(x, p) + ǫ.

To ensure the first property, we examine the probability masses that D̂1 through D̂T assign to

the interval (si, si+1) for each i ∈ [m′−1]. These can be interpreted as a way of transporting certain

fractions of the bits x1, . . . , xT to the interval, so that the resulting configuration is calibrated. A

priori, the bits might be transported to many different destinations within the interval (si, si+1). We

will reroute the transportation, so that the bits will only arrive at five different destinations: 0, 1, si,
si+1, and another unique value assigned for this interval. In the end, the supports of D1 through DT

will be among s1, s2, . . . , sm′ along with m′ − 1 other values. Therefore, the corresponding set S
will have size at most 2m′ − 1.

Decomposition of costs. Our first step is to decompose the cost ‖p − D̂‖1 into a few parts. Let

Ii := [si, si+1) for every i ∈ [m′ − 2] and Im′−1 := [sm′−1, sm′ ] = [sm′−1, 1]. The total cost

associated with interval Ii is defined as

Costi :=
T
∑

t=1

E
qt∼D̂t

[|pt − qt| · ✶ [qt ∈ Ii]] .

Furthermore, for each interval Ii, we decompose the cost according to whether the transportation

is from the left or from the right (we view the interval [0, 1] as a line segment in which the small

9. Again, we need the “ǫ/20” term because the infimum in the definition of LowerCalDist(x, p) might not be achieved

by any D ∈ C(x).
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values lie on the left):

Cost
L
i :=

T
∑

t=1

E
qt∼D̂t

[|pt − qt| · ✶ [qt ∈ Ii ∧ pt ≤ si]] ,

Cost
R
i :=

T
∑

t=1

E
qt∼D̂t

[|pt − qt| · ✶ [qt ∈ Ii ∧ pt ≥ si+1]] .

Finally, note that whenever the condition qt ∈ Ii ∧ pt ≤ si holds in the definition of Cost
L
i ,

we have pt ≤ si ≤ qt, which gives |pt − qt| = |pt − si| + |qt − si|. Therefore, we can write

Cost
L
i = Cost

L,out
i + Cost

L,in
i , where

Cost
L,out
i :=

T
∑

t=1

E
qt∼D̂t

[|pt − si| · ✶ [qt ∈ Ii ∧ pt ≤ si]] ,

Cost
L,in
i :=

T
∑

t=1

E
qt∼D̂t

[|qt − si| · ✶ [qt ∈ Ii ∧ pt ≤ si]] .

Here the superscripts “out” and “in” specify whether the cost is for the transportation outside or

inside the interval Ii. Similarly, we decompose Cost
R
i into the following two terms:

Cost
R,out
i :=

T
∑

t=1

E
qt∼D̂t

[|pt − si+1| · ✶ [qt ∈ Ii ∧ pt ≥ si+1]] ,

Cost
R,in
i :=

T
∑

t=1

E
qt∼D̂t

[|qt − si+1| · ✶ [qt ∈ Ii ∧ pt ≥ si+1]] .

Our use of the word “decompose” can be justified by the following identity:

T
∑

t=1

E
qt∼D̂t

[|pt − qt|] =
m′−1
∑

i=1

Costi

=

m′−1
∑

i=1

(CostLi + Cost
R
i )

=

m′−1
∑

i=1

(CostL,outi + Cost
L,in
i + Cost

R,out
i + Cost

R,in
i ).

The first step holds since I1, . . . , Im′−1 form a partition of [0, 1], which implies that for any x ∈
[0, 1], 1 =

∑m′−1
i=1 ✶ [x ∈ Ii]. The second step follows from the observation that pt never falls into

(si, si+1), so we have ✶ [qt ∈ Ii] = ✶ [qt ∈ Ii ∧ pt ≤ si] + ✶ [qt ∈ Ii ∧ pt ≥ si+1].

Lower bound the cost of the second phase. For b ∈ {0, 1}, let unitLi,b denote the amount of bit b
that is transported into interval Ii from [0, si]. Formally,

unit
L
i,b :=

T
∑

t=1

D̂t(Ii) · ✶ [xt = b ∧ pt ≤ si] .
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Similarly, unitRi,b is defined as the amount of bit b moved from [si+1, 1] to Ii:

unit
R
i,b :=

T
∑

t=1

D̂t(Ii) · ✶ [xt = b ∧ pt ≥ si+1] .

Intuitively, D̂1 through D̂T specify the following transportation of bits:

• For each i ∈ [m′ − 1], we spend a total cost of Cost
L,out
i + Cost

R,out
i to transport zeros and

ones from [0, si] ∪ [si+1, 1] to either si and si+1 (“the first phase”).

• At this point, there are unitLi,0 (resp., unitLi,1) units of zeros (resp., ones) at si, and unit
R
i,b units

of bit b at si+1.

• Then, we further distribute these bits to values within Ii so that the outcomes are calibrated

(“the second phase”), at a total cost of Cost
L,in
i + Cost

R,in
i .

The distributions D1, . . . ,DT that we will define is based on a new transportation that keeps the

total cost of the first phase (outside of Ii). We will change the second phase, so that there will be

at most one destination outside {s1, s2, . . . , sm′}. Furthermore, we make sure that this change only

blows up the cost of the second phase by a constant factor.

For this purpose, we start by lower bounding Cost
L,in
i +Cost

R,in
i . Let ∆L

i := unit
L
i,1− (unitLi,0+

unit
L
i,1) · si and ∆R

i := unit
R
i,1 − (unitRi,0 + unit

R
i,1) · si+1 denote the biases incurred at point si

and si+1 between the first and the second phases. We will prove the following inequality: For any

1-Lipschitz function f : [0, 1]→ [−1, 1],

2
(

Cost
L,in
i + Cost

R,in
i

)

≥ f(si) ·∆L
i + f(si+1) ·∆R

i . (5)

The following proof is the same as the one in (Błasiok et al., 2023) for lower bounding the lower

distance from calibration by the smooth calibration error. We include the proof for completeness.

Fix a 1-Lipschitz function f : [0, 1] → [−1, 1]. Consider the function gb(v) := f(v) · (b − v)
defined over [0, 1] for b ∈ {0, 1}. Since |g′b(v)| = |f ′(v)(b − v) − f(v)| ≤ 2 for any v ∈ [0, 1], gb
is 2-Lipschitz. Then, we have

2CostL,ini =

T
∑

t=1

E
qt∼D̂t

[2|qt − si| · ✶ [qt ∈ Ii ∧ pt ≤ si]]

≥
T
∑

t=1

E
qt∼D̂t

[[f(si) · (xt − si)− f(qt) · (xt − qt)] · ✶ [qt ∈ Ii ∧ pt ≤ si]]

(v 7→ f(v) · (xt − v) is 2-Lipschitz)

=
T
∑

t=1

E
qt∼D̂t

[f(si) · (xt − si) · ✶ [qt ∈ Ii ∧ pt ≤ si]]

−
T
∑

t=1

E
qt∼D̂t

[f(qt) · (xt − qt) · ✶ [qt ∈ Ii ∧ pt ≤ si]] .
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The first summation in the last expression above can be further simplified into:

f(si) ·
T
∑

t=1

E
qt∼D̂t

[xt · ✶ [qt ∈ Ii ∧ pt ≤ si]]− f(si) · si ·
T
∑

t=1

E
qt∼D̂t

[✶ [qt ∈ Ii ∧ pt ≤ si]]

= f(si) ·
T
∑

t=1

D̂t(Ii) · ✶ [xt = 1 ∧ pt ≤ si]− f(si) · si ·
T
∑

t=1

D̂t(Ii) · ✶ [pt ≤ si]

= f(si) · [unitLi,1 − si · (unitLi,0 + unit
L
i,1)] = f(si) ·∆L

i ,

and thus,

2CostL,ini ≥ f(si) ·∆L
i −

T
∑

t=1

E
qt∼D̂t

[f(qt) · (xt − qt) · ✶ [qt ∈ Ii ∧ pt ≤ si]] . (6)

An analogous argument gives

2CostR,ini ≥ f(si+1) ·∆R
i −

T
∑

t=1

E
qt∼D̂t

[f(qt) · (xt − qt) · ✶ [qt ∈ Ii ∧ pt ≥ si+1]] . (7)

Finally, Inequality (5) follows from Inequalities (6) and (7), together with the observation that the

two summations on the right-hand sides of (6) and (7) sum up to

T
∑

t=1

E
qt∼D̂t

[f(qt) · (xt − qt) · ✶ [qt ∈ Ii]] =
∑

α∈Ii

T
∑

t=1

E
qt∼D̂t

[f(qt) · (xt − qt) · ✶ [qt = α]]

=
∑

α∈Ii
f(α) ·

T
∑

t=1

(xt − α) · D̂t(α) = 0,

where the last step follows from D̂ ∈ C(x).
Given Inequality (5), we apply Lemma 28 from Appendix F to lower bound Cost

L,in
i + Cost

R,in
i

by a closed-form expression of ∆L
i , ∆R

i , si, and si+1.

2
(

Cost
L,in
i + Cost

R,in
i

)

≥
{

|∆L
i |+ |∆R

i |, ∆L
i ·∆R

i ≥ 0,

|∆L
i +∆R

i |+ (si+1 − si) ·min{|∆L
i |, |∆R

i |}, ∆L
i ·∆R

i < 0.
(8)

Handle the same-sign situation. It remains to change the second phase of the transportation

inside interval Ii, so that there will be at most one destination (in addition to s1, s2, . . . , sm′), while

the cost is bounded by 20 · (CostL,ini + Cost
R,in
i ).

We start by noting that we may assume min
{

unit
L
i,0, unit

L
i,1

}

= min
{

unit
R
i,0, unit

R
i,1

}

= 0

without loss of generality. This is because, for example, when both unit
L
i,0 and unit

L
i,1 are positive,

we may take µ := min{unitLi,0/(1− si), unit
L
i,1/si}, and let µ · si units of ones and µ · (1− si) units

of zeros be “settled” at si. After this, either unitLi,0 or unitLi,1 becomes zero, and the quantity ∆L
i is

unchanged. The same argument applies to unit
R
i,0 and unit

R
i,1 as well.

27



QIAO ZHENG

We first deal with the case that ∆L
i ,∆

R
i ≥ 0. In this case, we have unit

L
i,0 = unit

R
i,0 = 0, i.e.,

there are no extra zeros at either si or si+1, though there might be extra ones. We will transport

these ones to 1, at a cost of

unit
L
i,1 · (1− si) + unit

R
i,1 · (1− si+1) = ∆L

i +∆R
i = |∆L

i |+ |∆R
i | ≤ 2

(

Cost
L,in
i + Cost

R,in
i

)

.

The last step above follows from Equation (8). Similarly, if ∆L
i ,∆

R
i ≤ 0, we have unit

L
i,1 =

unit
R
i,1 = 0. We will transport all the extra zeros to 0, and the total cost will be

unit
L
i,0 · si + unit

R
i,0 · si+1 = −∆L

i −∆R
i = |∆L

i |+ |∆R
i | ≤ 2

(

Cost
L,in
i + Cost

R,in
i

)

.

In both cases, we settle all the bits that were originally associated with interval Ii at a total cost

of at most 2Costi. Furthermore, all the destinations lie in the set {0, si, si+1, 1}.
Handling opposite signs, the first part. The case that ∆L

i · ∆R
i < 0 is more involved. We first

deal with the case that ∆L
i > 0 and ∆R

i < 0. Recall that we assumed min{unitLi,0, unitLi,1} =

min{unitRi,0, unitRi,1} = 0 without loss of generality. This means that unitLi,1, unit
R
i,0 > 0, while

unit
L
i,0 = unit

R
i,1 = 0.

We shorthand x := unit
L
i,1 and y := unit

R
i,0. Our strategy is to move all the bits—the x units of

ones at si and the y units of zeros at si+1—to value p := x
x+y . The total cost would be

x · |p− si|+ y · |p− si+1| = (x+ y) · [p · |p− si|+ (1− p) · |p− si+1|] .

Note that ∆L
i = x · (1− si) and ∆R

i = −y · si+1. The right-hand side of Inequality (8) can then

be re-written as

|x · (1− si)− y · si+1|+ (si+1 − si) ·min{x · (1− si), y · si+1}
= (x+ y) · [|p · (1− si)− (1− p) · si+1|+ (si+1 − si) ·min{p · (1− si), (1− p) · si+1}] .

Then, applying Lemma 29 from Appendix F with α = si and β = si+1 shows that the cost of

the new transportation is at most

2 ·
[

|∆L
i +∆R

i |+ (si+1 − si) ·min{|∆L
i |, |∆R

i |}
]

≤ 4 ·
(

Cost
L,in
i + Cost

R,in
i

)

.

Handling opposite signs, the second part. It remains to handle the case that ∆L
i < 0 and ∆R

i >
0. In this case, we have unit

L
i,0, unit

R
i,1 > 0, while unit

L
i,1 = unit

R
i,0 = 0.

Again, shorthand x := unit
L
i,0 and y := unit

R
i,1. The key difference is that we will consider the

following two strategies, and use the one with a lower cost:

• Strategy 1: Again, move all the bits—the x units of zeros at si and the y units of ones at

si+1—to value p := y
x+y . The total cost would be

x ·
∣

∣

∣

∣

y

x+ y
− si

∣

∣

∣

∣

+ y ·
∣

∣

∣

∣

y

x+ y
− si+1

∣

∣

∣

∣

= (x+ y) · [(1− p) · |p− si|+ p · |p− si+1|] .

• Strategy 2: Move all the zeros at si to 0, and all the ones at si+1 to 1. The total cost is

x · si + y · (1− si+1) = (x+ y) · [(1− p) · si + p · (1− si+1)] .
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In this case, ∆L
i = −x · si, ∆R

i = y · (1 − si+1), and the right-hand side of Inequality (8) is

given by

|x · si − y · (1− si+1)|+ (si+1 − si) ·min{x · si, y · (1− si+1)}
= (x+ y) · [|(1− p) · si − p · (1− si+1)|+ (si+1 − si) ·min{(1− p) · si, p · (1− si+1)}] .

We apply Lemma 30 from Appendix F with α = si and β = si+1 to show that the cost of the

new transportation is at most

10 ·
[

|∆L
i +∆R

i |+ (si+1 − si) ·min{|∆L
i |, |∆R

i |}
]

≤ 20 ·
(

Cost
L,in
i + Cost

R,in
i

)

.

Appendix B. Proof of the Upper Bound

We prove Theorem 3 in this section. We first note that it is sufficient to give an algorithm that

achieves an O(
√
T ) smooth calibration error, since this would imply the desired upper bound as

follows:

E [CalDist(x, p)] ≤ E [LowerCalDist(x, p)] +O(
√
T ) (Theorem 2)

≤ 2E [smCE(x, p)] +O(
√
T ) (Lemma 8)

≤ O(
√
T ).

Our approach is based on a minimax argument similar to that of Hart (2022) for upper bounding

the ECE in sequential calibration. Suppose we already know the adversary’s strategy, which might

be adaptive and randomized. At each step t, based on the previous outcomes x1, . . . , xt−1 and

predictions p1, . . . , pt−1, we can calculate the conditional probability of xt = 1. The natural strategy

is then to predict this value exactly. Then, we may the view the sequences x ∈ {0, 1}T and p ∈
[0, 1]T as generated as below:

• At each step t, pt is adversarially chosen based on x1:(t−1) and p1:(t−1).

• Then, we draw xt ∼ Bernoulli(pt).

Recall that the smooth calibration error smCE(x, p) is defined as

sup
f∈F

T
∑

t=1

f(pt) · (xt − pt),

where F is the family of 1-Lipschitz functions from [0, 1] to [−1, 1]. For each fixed f ∈ F , the

random process (X0, X1, . . . , XT ) defined as Xt :=
∑t

t′=1 f(pt′) · (xt′ − pt′) is a martingale with

bounded differences, so XT =
∑T

t=1 f(pt) · (xt − pt) is bounded by O(
√
T ) with high probability.

The difficulty, however, is to show that the same upper bound holds even if we take a supremum

over all functions f ∈ F .
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B.1. An Online Learning Setting

Our proof is based on viewing the discussion above as an instance of online learning. In particular,

we follow a formulation in (Rakhlin et al., 2015a).

An “adversary” and a “player” play a game with T steps. At each step t ∈ [T ], the following

happen in sequential order:

• The adversary picks an “instance” p∗t ∈ [0, 1].

• The player, knowing p∗t , commits to a distribution Dt over [−1, 1], from which the predicted

label ŷt will be drawn.

• The adversary, knowing Dt, generates the true label yt ∈ [−1, 1].

• The player draws prediction ŷt ∼ Dt and incurs a loss of ℓ(ŷt, yt).

The player’s objective is to minimize the cumulative regret, defined as the difference between

the player’s total loss and the total loss incurred by the best hypothesis in hindsight:

E

[

T
∑

t=1

ℓ(ŷt, yt)

]

− E

[

inf
f∈F

T
∑

t=1

ℓ(f(p∗t ), yt)

]

.

The adversary aims to maximize this regret. This setup exactly matches the learning setting defined

in (Rakhlin et al., 2015a, Equation (10)).

B.2. Regret Bound and Sequential Rademacher Complexity

The work of Rakhlin et al. (2015a) gives an upper bound on the optimal regret in the above online

learning setting in terms of the sequential Rademacher complexity of the function class F .

Definition 13 (Sequential Rademacher Complexity) The sequential Rademacher complexity of a

family F of functions over [0, 1] is

SRT (F) := sup
z1,...,zT

E
σ∼{±1}T

[

sup
f∈F

T
∑

t=1

σtf(zt(σ1, σ2, . . . , σt−1))

]

,

where the outer supremum is taken over all (z1, . . . , zT ) such that each zt : {±1}t−1 → [0, 1].

Theorem 14 (Theorem 8 of (Rakhlin et al., 2015a)) Suppose that for any y ∈ [−1, 1], the loss

function ℓ(·, y) is convex and L-Lipschitz. Then, the optimal regret is at most 2L · SRT (F).

Finally, we will use the following result that upper bounds SRT (F) in terms of the covering

numbers of F .

Theorem 15 (Theorem 4 of (Rakhlin et al., 2015b)) Let F be a family of functions over [0, 1].
With respect to z = (z1, z2, . . . , zT ) where zt : {±1}t−1 → [0, 1], a family F ′ is a δ-cover of F if,

for any σ ∈ {±1}T and f ∈ F , there exists f ′ ∈ F ′ such that

√

√

√

√

1

T

T
∑

t=1

(f(zt(σ1:(t−1)))− f ′(zt(σ1:(t−1))))2 ≤ δ.

30



ON THE DISTANCE FROM CALIBRATION IN SEQUENTIAL PREDICTION

Let N (δ,F , z) denote the size of the smallest δ-cover of F with respect to z. Then,

SRT (F) ≤ sup
z1,z2,...,zT

inf
α∈[0,1]

{

4αT + 12
√
T ·
∫ 1

α

√

logN (δ,F , z) dδ
}

.

We apply Theorem 15 to upper bound the sequential Rademacher complexity of the class of

Lipschitz functions.

Lemma 16 Let F be the family of 1-Lipschitz functions from [0, 1] to [−1, 1]. Then,

SRT (F) = O(
√
T ).

The lemma is proved by a standard construction of covers for the class of Lipschitz functions.

Proof By Theorem 15, SRT (F) is upper bounded by

sup
z1,z2,...,zT

inf
α∈[0,1]

{

4αT + 12
√
T ·
∫ 1

α

√

logN (δ,F , z) dδ
}

. (9)

We fix z = (z1, . . . , zT ) and δ ∈ (0, 1], and give an upper bound onN (δ,F , z). Let k = ⌈2/δ⌉.
For a function f ∈ F , we construct another function f̂ that takes value

⌊f(i/k)·k⌋
k at i/k for each

i ∈ {0, 1, . . . , k}. On each interval [(i−1)/k, i/k], f̂ is the linear interpolation between f((i−1)/k)
and f(i/k).

We first note that f̂ is 1-Lipschitz. For each i ∈ [k], since f is 1-Lipschitz, we have

∣

∣

∣

∣

f

(

i− 1

k

)

· k − f

(

i

k

)

· k
∣

∣

∣

∣

= k ·
∣

∣

∣

∣

f

(

i− 1

k

)

− f

(

i

k

)∣

∣

∣

∣

≤ k · 1
k
= 1.

It follows that ⌊f((i−1)/k) ·k⌋ and ⌊f(i/k) ·k⌋ differ by at most 1, which implies |f̂((i−1)/k)−
f̂(i/k)| ≤ 1/k. Thus, the linear interpolation on the interval [(i − 1)/k, i/k] has a slope between

±1. This shows that f̂ is 1-Lipschitz.

Then, we argue that f̂ is point-wise close to f . For each i ∈ {0, 1, . . . , k}, we have

∣

∣

∣f̂(i/k)− f(i/k)
∣

∣

∣ ≤ 1

k
≤ δ

2
.

For general x ∈ [0, 1], there exists i ∈ {0, 1, . . . , k} such that |x− i/k| ≤ 1/(2k). It follows that

|f̂(x)− f(x)| ≤ |f̂(x)− f̂(i/k)|+ |f̂(i/k)− f(i/k)|+ |f(i/k)− f(x)|

≤ |x− i/k|+ δ

2
+ |x− i/k| (f and f̂ are 1-Lipschitz)

≤ 1

2k
+

δ

2
+

1

2k
≤ δ.

In particular, regardless of the value of σ ∈ {±1}T , we have

√

√

√

√

1

T

T
∑

t=1

(f(zt(σ1:(t−1)))− f̂(zt(σ1:(t−1))))2 ≤
√

1

T
· Tδ2 = δ.
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Then, we show that the resulting function f̂ falls into a small set. f̂ is uniquely determined by

its value on {0, 1/k, 2/k, . . . , 1}. f̂(0) is one of the 2k + 1 multiples of 1/k in [−1, 1]. For each

i ∈ [k], f̂(i/k)− f̂((i−1)/k) falls into {−1/k, 0, 1/k}. Therefore, f̂ falls into a set of size at most

(2k + 1) · 3k ≤ 32k ≤ 36/δ.

This gives N (δ,F , p) ≤ 36/δ.

Finally, picking α = 0 in the expression in (9) shows that

SR(F) ≤ 12
√
T

∫ 1

0

√

6 log 3

δ
dδ = O(

√
T ).

B.3. Proof of Theorem 3

Now we proceed to the proof. A technical issue with the discussion earlier in this section is that,

to apply the minimax theorem, the action spaces of the two players need to be finite. This is not

true since the forecaster is allowed to make arbitrary predictions between 0 and 1. To deal with this

issue, we will force the forecaster to restrict its predictions to a 1/T -net of [0, 1]. Since the smooth

calibration error smCE(x, p) is continuous in p, this rounding does not blow up the error by much.

Proof of Theorem 3 We will show that, even if the forecaster is only allowed to predict the values

in P := {0, 1/T, 2/T, . . . , 1}, it is still possible to achieve an O(
√
T ) smooth calibration error. By

Theorem 2 and Lemma 8, this would give the desired O(
√
T ) bound on the calibration distance.

After restricting the space of predictions, a deterministic strategy of the adversary (resp., the

forecaster) is simply a function from
⋃T

t=1({0, 1}×P )t−1 to {0, 1} (resp., to P ). Both sets are finite

(albeit of a doubly exponential size). In general, both players may play a mixture of deterministic

strategies. By von Neumann’s minimax theorem, it suffices to prove that for every fixed (possibly

mixed) strategy of the adversary, the forecaster can achieve an O(
√
T ) smooth calibration error.

The forecaster’s algorithm. Now, we describe one such strategy for the forecaster:

• At each step t ∈ [T ], based on x1:(t−1) and p1:(t−1), compute the conditional probability for

the adversary to play xt = 1. Let p∗t denote this value.

• Predict pt :=
⌊T ·p∗t ⌋

T , which is p∗t rounded down to the nearest value in P .

We note that it is, in turn, sufficient to upper bound the expected value of smCE(p∗, x). This is

because, by Lemma 27 from Appendix E,

E [smCE(x, p)] ≤ E [smCE(x, p∗)] + 2E [‖p− p∗‖1] ,

whereas by our choice of p, ‖p− p∗‖1 is always at most 1
T · T = 1.

After fixing the forecaster’s strategy, the “game” between the adversary and the forecaster

can be equivalently described as the following procedure. At the beginning, a function g from
⋃T

t=1({0, 1}t−1 × [0, 1]t−1) to [0, 1] is adversarially chosen. Then, for t = 1, 2, . . . , T :

• Pick p∗t = g
(

x1:(t−1), p
∗
1:(t−1)

)

.
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• Draw xt from Bernoulli(p∗t ).

Note that the first step above is equivalent to the original game, since the predictions p1:(t−1) are

determined by p∗1:(t−1).

Reduction to online learning. Now, we further rephrase the procedure described above as an

online learning setup in Section B.1. At each step t ∈ [T ], the adversary picks the “instance” p∗t
as g

(

x1:(t−1), p
∗
1:(t−1)

)

. The player then commits to an arbitrary distribution Dt over [−1, 1]. (We

will show later that the choice of Dt is inconsequential.) The adversary picks the true label yt by

drawing xt ∼ Bernoulli(p∗t ) and setting yt = xt − p∗t . Finally, the player draws ŷt ∼ Dt and incurs

a loss of ℓ(ŷt, yt) := ŷt · yt.
The regret in the above setup can be simplified into

E

[

T
∑

t=1

ŷt · (xt − p∗t )

]

− E

[

inf
f∈F

T
∑

t=1

f(p∗t ) · (xt − p∗t )

]

. (10)

By the definition of the learning procedure and the choice of xt, we have

E [ŷt · (xt − p∗t )] = E
p∗t ,ŷt

[

ŷt · (E [xt|p∗t , ŷt]− p∗t )
]

= E
p∗t ,ŷt

[ŷt · (p∗t − p∗t )] = 0

for every t ∈ [T ], so the first term in (10) is always 0 regardless of how the player picks Dt (which

determines ŷt). Note that f ∈ F if and only if −f ∈ F , so the expression in (10) is equal to

−E

[

inf
f∈F

T
∑

t=1

f(p∗t ) · (xt − p∗t )

]

= E

[

sup
f∈F

T
∑

t=1

f(p∗t ) · (xt − p∗t )

]

= E [smCE(x, p∗)] .

So far, we proved that in our online learning setting, when the adversary plays a specific strategy

(namely, pick the instance p∗t as g(x1:(t−1), p1:(t−1)) and the true label yt as xt − p∗t , where xt ∼
Bernoulli(p∗)), the regret of any player is given by E [smCE(x, p∗)]. Therefore, E [smCE(x, p∗)] is

upper bounded by the optimal regret for this setup. Note that for any yt ∈ [−1, 1], the loss function

ℓ(·, yt) is convex and 1-Lipschitz in the first parameter. By Theorem 14 and Lemma 16, the optimal

regret is at most 2SR(F) = O(
√
T ). This concludes the proof.

Appendix C. Improved Forecasters for Random Bits

In this section, we prove Proposition 4, which gives a polylog(T ) calibration distance when the

adversary plays T independent random bits. We will first present a simple forecasting algorithm

with an O(T 1/3) calibration distance in expectation. Then, we use the same idea to further improve

the calibration distance to O(log3/2 T ).

C.1. A Sub-Square-Root Upper Bound for Random Bits

Algorithm 1 gives a forecasting strategy that achieves an O(T 1/3) smooth calibration error on a

sequence of T random bits.
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Algorithm 1: Fixed-Bias Forecaster for Random Bits

Input: Time horizon T . Parameter ǫ > 0. Online access to x1, x2, . . . , xT .

Output: Predictions p1, p2, . . . , pT .

S0 ← 0;

for t ∈ [T ] do

pt ← 1/2 + ǫ · sgn(St−1);
Predict pt;
Observe xt;
St ← St−1 + (xt − pt);

end

The algorithm keeps track of St =
∑t

t′=1(xt′ − pt′), the difference between the total outcomes

and the total predictions in the first t steps. If St−1 > 0 (resp., St−1 < 0), the forecaster predicts a

value slightly higher (resp., lower) than 1/2, in the hope that St will get closer to 0.

Now we analyze the deviation from calibration incurred by the above algorithm. We will start

by upper bounding the smooth calibration error of Algorithm 1, and then invoke Theorem 2 and

Lemma 8 to get an upper bound on the calibration distance.

We start with the following simple upper bound on the smooth calibration error. Recall the

definition of smCE and ∆α from Section 2.

Lemma 17

smCE(x, p) ≤

∣

∣

∣

∣

∣

∣

∑

α∈[0,1]
∆α

∣

∣

∣

∣

∣

∣

+
∑

α∈[0,1]
|α− 1/2| · |∆α|.

Proof By definition, we have

smCE(x, p) = sup
f∈F

∑

α∈[0,1]
f(α) ·∆α

= sup
f∈F



f(1/2) ·
∑

α∈[0,1]
∆α +

∑

α∈[0,1]
(f(α)− f(1/2)) ·∆α





≤ sup
f∈F



f(1/2) ·
∑

α∈[0,1]
∆α



+
∑

α∈[0,1]
sup
f∈F

[(f(α)− f(1/2)) ·∆α]

≤

∣

∣

∣

∣

∣

∣

∑

α∈[0,1]
∆α

∣

∣

∣

∣

∣

∣

+
∑

α∈[0,1]
|α− 1/2| · |∆α|.

The last step holds since the functions in F are both bounded and 1-Lipschitz.

Note that the
∑

α∈[0,1]∆α term in Lemma 17 is exactly ST =
∑T

t=1(xt − pt) in Algorithm 1.

The following lemma gives a bound on the stochastic process (S0, S1, . . . , ST ).

Lemma 18 For ǫ ∈ (0, 12 ], consider the stochastic process (X0, X1, X2, . . .) defined as follows:
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• X0 = 0.

• x1, x2, x3, . . . are independent samples from Bernoulli(1/2).

• For t ≥ 1, Xt = Xt−1 + xt −
(

1
2 + ǫ · sgn(Xt−1)

)

.

Then, for any t ≥ 0, ∆ ≥ 0 and C = e1/2, it holds that

Pr [|Xt| ≥ ∆] ≤ C · e−ǫ∆.

Proof We prove the lemma by an induction on t. The inequality clearly holds for t = 0 and all

∆ ≥ 0. Now, assuming the inequality for Xt−1 and all ∆ ≥ 0, we prove the Xt case. When ∆ ≤ 1,

the inequality holds trivially, since we have ǫ∆ ≤ 1/2, which implies

Pr [|Xt| ≥ ∆] ≤ 1 = C · e−1/2 ≤ C · e−ǫ∆.

It remains to handle the ∆ > 1 case. In order to reach |Xt| ≥ ∆ > 1, we must have Xt−1 6= 0;

otherwise we would have Xt ∈ {−1/2, 1/2}. Furthermore, one of the following two must hold:

• |Xt−1| ≥ ∆− (1/2− ǫ) and sgn(xt − 1/2) = sgn(Xt−1).

• |Xt−1| ≥ ∆+ (1/2 + ǫ) and sgn(xt − 1/2) = −sgn(Xt−1).

Note that by the inductive hypothesis, |Xt−1| ≥ ∆ − (1/2 − ǫ) holds with probability at most

C · e−ǫ[∆−(1/2−ǫ)]. In addition, conditioning on this event, the probability of sgn(xt − 1/2) =
sgn(Xt−1) is still 1/2 by independence. So, the probability of the former is at most C

2 e
−ǫ∆+ǫ/2−ǫ2 .

An analogous argument upper bounds the probability of the latter condition by C
2 e

−ǫ∆−ǫ/2−ǫ2 .

To conclude the inductive step, we need the inequality

C

2
e−ǫ∆+ǫ/2−ǫ2 +

C

2
e−ǫ∆−ǫ/2−ǫ2 ≤ C · e−ǫ∆,

which is equivalent to

eǫ/2 + e−ǫ/2 ≤ 2eǫ
2
.

The last inequality can be shown to hold for all ǫ ≥ 0 via Taylor expansion. This completes the

proof.

Lemma 19 On a sequence of T independent random bits, the smooth calibration error incurred

by Algorithm 1 with ǫ = T−1/3 is O(T 1/3) in expectation.

Proof Note that Algorithm 1 only predicts three different values: 1/2, 1/2 + ǫ, and 1/2 − ǫ. In

light of Lemma 17, it suffices to upper bound the expectation of the following three terms at time

T : (1) |∆1/2 +∆1/2+ǫ +∆1/2−ǫ|; (2) |∆1/2+ǫ|; (3) |∆1/2−ǫ|.

The first term. The first part is done by Lemma 18: The stochastic process St :=
∑t

t′=1(xt′−pt′)
exactly matches the one defined in Lemma 18. Therefore, the first term is exactly the absolute value

of ST =
∑T

t=1(xt − pt). By Lemma 18, we have

E [|ST |] =
∫ +∞

0
Pr [|ST | ≥ τ ] dτ ≤ e1/2

∫ +∞

0
e−ǫτ dτ =

e1/2

ǫ
= O(T 1/3).
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The second term. To analyze the second part, it is convenient to assume that the nature samples

random bits b1, b2, . . . , bT ∼ Bernoulli(1/2) independently at the beginning, and uses these bits one

by one as the outcomes for the steps on which 1/2 + ǫ is predicted. More formally, whenever the

forecaster predicts 1/2 + ǫ at time t, the nature calculates k =
∑t

t′=1 ✶ [pt′ = 1/2 + ǫ] and sets

xt = bk. Note that this change does not alter the distribution of the random outcomes, and thus the

execution of Algorithm 1 remains unchanged.

Then, we note that ∆1/2+ǫ can be written as

m
∑

i=1

bi −m · (1/2 + ǫ),

where m is the number of times 1/2 + ǫ is predicted. By a Chernoff bound and a union bound over

m ∈ [T ], for any δ ∈ (0, 1), it holds with probability 1− δ that for all m ∈ [T ],

∣

∣

∣

∣

∣

m
∑

i=1

bi −
m

2

∣

∣

∣

∣

∣

≤
√

T ln(2T/δ)

2
.

The above implies

|∆1/2+ǫ| ≤
∣

∣

∣

∣

∣

m
∑

i=1

bi −
m

2

∣

∣

∣

∣

∣

+mǫ ≤
√

T ln(2T/δ)

2
+ Tǫ.

Setting δ = 1/T and ǫ = 1/T 1/3 shows that |∆1/2+ǫ| = O(T 2/3) with probability 1−1/T . Finally,

since |∆1/2+ǫ| is always upper bounded by T , we have

E
[

|∆1/2+ǫ|
]

= O(T 2/3) + δ · T = O(T 2/3).

Wrapping up. By an analogous argument to the above, we have E
[

|∆1/2−ǫ|
]

= O(T 2/3). Fi-

nally, by Lemma 17, the expected smooth calibration error is upper bounded by

E [|ST |] + ǫE
[

|∆1/2+ǫ|
]

+ ǫE
[

|∆1/2−ǫ|
]

≤ O(T 1/3) + 2T−1/3 ·O(T 2/3) = O(T 1/3).

Corollary 20 The calibration distance incurred by Algorithm 1 with ǫ = T−1/3 is O(T 1/3) in

expectation.

Proof Lemmas 8 and 19 imply that Algorithm 1 incurs an O(T 1/3) lower calibration distance in

expectation. Since Algorithm 1 predicts at most three different values, the corollary follows from

the second part of Theorem 2.
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C.2. A Polylogarithmic Calibration Distance for Random Bits

In the previous section, we saw how a simple strategy improves the calibration distance from

Θ(T 1/2) to O(T 1/3) on a random bit sequence of length T . It turns out that applying the same

idea in a slightly more involved way would reduce the distance significantly, to O(log3/2 T ).

The forecaster’s strategy starts by predicting the value 1/2 for T/2 steps. After that, we expect

an O(
√
T ) gap between the counts of ones and zeros so far. Say that the number of ones is larger.

Then, in the remaining T/2 steps, the forecaster keeps predicting 1/2 +
√

lnT/T , until the sum

of xt’s and the sum of pt’s are roughly the same. The key observation is that, when the forecaster

succeeds in bringing this difference down to zero, the expected smooth calibration error so far is

merely O(
√
log T ). For the remaining time steps, we recursively apply the same strategy (with a

smaller value of T ), and the process must end in O(log T ) rounds. It is relatively easy to show that

the errors in different rounds can be aggregated together to give the O(log3/2 T ) upper bound.

Formally, we state the strategy of the forecaster in Algorithm 2.

Algorithm 2: Adaptive-Bias Forecaster for Random Bits

Input: Time horizon T . Parameter ǫ > 0. Online access to x1, x2, . . . , xT .

Output: Predictions p1, p2, . . . , pT .

t← 0;

for r = 1, 2, 3, . . . do

T (r) ← T − t;

for i = 1, 2, . . . , T (r)/2 do

t← t+ 1;

pt ← 1/2; p
(r)
i ← 1/2; Predict pt;

Observe xt; x
(r)
i ← xt;

end

∆(r) ←∑T (r)/2
i=1 (x

(r)
i − p

(r)
i );

ǫ(r) ← sgn
(

∆(r)
)

·min

{

2|∆(r)|
T (r) +

√

lnT (r)

T (r) , 12

}

;

for i = T (r)/2 + 1, . . . , T (r) do

t← t+ 1;

pt ← 1/2 + ǫ(r); p
(r)
i ← 1/2 + ǫ(r); Predict pt;

Observe xt; x
(r)
i ← xt;

if
∑i

j=1

(

x
(r)
j − p

(r)
j

)

∈ [−1, 1] then break;

end

if t = T then break;

end

We will prove the following bound, which immediately implies Proposition 4.

Lemma 21 On a sequence of T independent random bits, the smooth calibration error incurred

by Algorithm 2 is O(log3/2 T ) in expectation.
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Proof of Proposition 4 Note that in Algorithm 2, the outer for-loop is executed at most O(log T )

times. Furthermore, each prediction made by the forecaster is either 1/2, or a value p
(r)
i specific to

a round r. Therefore, p1, p2, . . . , pT contain at most O(log T ) different values. Then, by Lemma 8,

Lemma 21 and the second part of Theorem 2, Algorithm 2 achieves

E [CalDist(x, p)] ≤ O(1) · E [smCE(x, p)] +O(log T ) = O(log3/2 T ).

Our proof Lemma 21 is decomposed into two parts: First, we argue that it suffices to bound

the expected smooth calibration error on outcomes x(r) and predictions p(r), and their sum gives an

upper bound on smCE(x, p). Second, we show that for every r, the error is bounded by O(
√
log T )

in expectation. Lemma 21 then directly follows, since there are at most O(log T ) rounds.

Formally, we have the following two lemmas. The first lemma simply states that the smooth

calibration error is subadditive with respect to sequence concatenation.

Lemma 22 Let x(1) ∈ {0, 1}len(1) , . . ., x(R) ∈ {0, 1}len(R)
be binary sequences, and p(1) ∈

[0, 1]len
(1)

, . . ., p(R) ∈ [0, 1]len
(R)

be sequences with the corresponding lengths. Let x and p be the

concatenations of x(r) and p(r) in ascending order. Then,

smCE(x, p) ≤
R
∑

r=1

smCE(x(r), p(r)).

The second lemma bounds the expected smooth calibration error in each round.

Lemma 23 Let R := ⌈log2 T ⌉. Over the randomness in the execution of Algorithm 2, define

random variables X1, X2, . . . , XR as follows: For every r ∈ [R], if the algorithm reaches the r-th

round, Xr = smCE(x(r), p(r)); otherwise, Xr = 0. Then, for every r ∈ [R],

E [Xr] = O(
√

log T ),

where O(·) hides a universal constant that is independent of T and r.

It is clear that Lemma 21 is a directly corollary of Lemmas 22 and 23.

Proof of Lemma 22 By definition of the smooth calibration error, we have

smCE(x, p) = sup
f∈F





R
∑

r=1

len(r)
∑

t=1

f(p
(r)
t ) · (x(r)t − p

(r)
t )





≤
R
∑

r=1

sup
f∈F





len(r)
∑

t=1

f(p
(r)
t ) · (x(r)t − p

(r)
t )





=

R
∑

r=1

smCE(x(r), p(r)).
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Proof of Lemma 23 We fix a round r ∈ [R], and condition on the event that T (r) = L holds at the

beginning of the r-th iteration of the outer for-loop in Algorithm 2. Note that the event T (r) = L
only depends on the first T −L bits x1, x2, . . . , xT−L, so conditioning on T (r) = L does not change

the distribution of the remaining random bits xT−L+1 through xT .

We say that Round r of Algorithm 2 succeeds if the round ends by taking the break on Line 2

in the inner for-loop; Round r fails otherwise.

The case that Round r succeeds. We start by upper bounding the value of Xr assuming that the

r-th round succeeds. Let len(r) denote the number of steps in Round r. For α ∈ {1/2, 1/2 + ǫ(r)},
we define ∆α as the total bias incurred by the steps on which α is predicted during Round r, i.e.,

∆α :=

len(r)
∑

i=1

(

x
(r)
i − p

(r)
i

)

· ✶
[

p
(r)
i = α

]

.

By definition of the smooth calibration error, we have

Xr = smCE

(

x(r), p(r)
)

= sup
f∈F

[

f(1/2)∆1/2 + f(1/2 + ǫ(r))∆1/2+ǫ(r)

]

= sup
f∈F

[

f(1/2)(∆1/2 +∆1/2+ǫ(r)) + (f(1/2 + ǫ(r))− f(1/2))∆1/2+ǫ(r)

]

≤ sup
f∈F

[

f(1/2)(∆1/2 +∆1/2+ǫ(r))
]

+ sup
f∈F

[

(f(1/2 + ǫ(r))− f(1/2))∆1/2+ǫ(r)

]

≤
∣

∣

∣
∆1/2 +∆1/2+ǫ(r)

∣

∣

∣
+
∣

∣

∣
ǫ(r)
∣

∣

∣
·
∣

∣

∣
∆1/2+ǫ(r)

∣

∣

∣
,

where the last step follows since every f ∈ F is 1-Lipschitz and bounded between −1 and +1.

When Round r succeeds, we have

∆1/2 +∆1/2+ǫ(r) =
len(r)
∑

i=1

(

x
(r)
i − p

(r)
i

)

∈ [−1, 1],

which further implies

∣

∣

∣
∆1/2+ǫ(r)

∣

∣

∣
≤ |∆1/2|+ 1.

Therefore, assuming the success of Round r, we have

Xr ≤ 1 +
∣

∣

∣ǫ(r)
∣

∣

∣ ·
(∣

∣∆1/2

∣

∣+ 1
)

≤ 3

2
+

2∆2
1/2

L
+ |∆1/2|

√

lnL

L
.

Control the failure probability. To show that Round r succeeds with high probability, we first

argue that when Algorithm 2 chooses ǫ(r) in Line 2, the minimum takes the first value with high

probability. Indeed, this is true as long as

2|∆(r)|
L

+

√

lnL

L
≤ 1

2
,

which is equivalent to

|∆(r)| ≤
(

1

4
− 1

2

√

lnL

L

)

· L.
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For sufficiently large L, we have 1
2

√

lnL/L ≤ 1/8, so the above is true as long as |∆(r)| ≤ L/8.

Noting that ∆(r) is the difference between a sample from Binomial(L/2, 1/2) and its mean L/4, it

follows from a Chernoff bound that |∆(r)| ≤ L/8 holds with probability 1− e−Ω(L).

Now, assuming that ǫ(r) satisfies the aforementioned condition, what is the probability for

Round r to fail? Without loss of generality, assume that ∆(r) ≥ 0. Then, the failure of Round r

would imply ∆(r)+
∑L

i=L/2+1(x
(r)
i −p

(r)
i ) ≥ 0; otherwise there must be a time step i ∈ [L/2+1, L]

at which
∑i

j=1(x
(r)
j − p

(r)
j ) falls into the interval [−1, 1], which allows the round to end. Re-

calling that p
(r)
i = 1/2 + ǫ(r) for every i ∈ [L/2 + 1, L], we can rewrite the inequality ∆(r) +

∑L
i=L/2+1(x

(r)
i − p

(r)
i ) ≥ 0 as

L
∑

i=L/2+1

x
(r)
i −

L

4
≥ −∆(r) +

L

2
ǫ(r) =

1

2

√
L lnL,

where the second step applies ǫ(r) = 2∆(r)/L +
√

lnL/L. Again, since the left-hand side above

is a Binomial random variable (from Binomial(L/2, 1/2)) minus its mean, the probability for the

above inequality to hold is, by a Chernoff bound, at most

exp



−2 · L
2
·
(√

L lnL/2

L/2

)2


 =
1

L
.

Therefore, we conclude that the probability for Round r to fail (conditioning on T (r) = L) is at

most e−Ω(L) + 1
L = O(1/L).

Put everything together. Our analysis for the case that Round r succeeds, together with the ob-

servation that Xr is always at most L, implies that when T (r) = L,

Xr ≤
3

2
+

2∆2
1/2

L
+ |∆1/2|

√

lnL

L
+ L · ✶ [Round r fails]

always holds. Therefore, we have

E

[

Xr|T (r) = L
]

≤ E

[

3

2
+

2∆2
1/2

L
+ |∆1/2|

√

lnL

L

∣

∣

∣

∣

∣

T (r) = L

]

+ L · Pr
[

Round r fails

∣

∣

∣T (r) = L
]

≤ O(
√

logL) + L ·O(1/L)

= O(
√

log T ). (L ≤ T )

The second step above applies the observation that conditioning on T (r) = L, ∆1/2 is the difference

between a sample from Binomial(L/2, 1/2) and its mean L/4, which implies E

[

∆2
1/2

]

= O(L)

and E
[

|∆1/2|
]

= O(
√
L).

Finally, the bound on E [Xr] follows from taking an expectation over the value of L = T (r).
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Appendix D. Proof of the Lower Bound

We prove Theorem 5 in this section. It is sufficient to lower bound the smooth calibration error

incurred by the forecaster, since by Remark 7 and Lemma 8, we have

CalDist(x, p) ≥ LowerCalDist(x, p) ≥ 1

2
smCE(x, p).

Recall from Lemma 21 that, on a random bit sequence, a forecaster might achieve an o(T 1/3)
smooth calibration error in the end. The following lemma states that, in this case, the forecaster

must incur an Ω(T 1/3) bias—defined as the difference between the total outcome and the total

predictions—at some point. Later, we prove Theorem 5 by giving a simple adaptive strategy for the

adversary that aims to catch this large bias.

Lemma 24 There exists a universal constant c > 0 such that the following holds for all sufficiently

large T and every forecasterA: For t ∈ [T ], let random variable St denote the value of
∑t

t′=1(xt′−
pt′) when A is executed against T independent random bits. Then, at least one of the following two

holds:

Pr

[

max
t∈[T ]
|St| ≥ cT 1/3

]

≥ c

or

E [smCE(x, p)] ≥ cT 1/3,

where the probability and expectation are over the randomness in both the random bits and the

algorithm A.

We first show how Theorem 5 follows from Lemma 24. Given an algorithm for the forecaster,

if the second condition in the lemma holds, we immediately get the desired lower bound. If the first

condition holds, we let the adversary keep outputting independent random bits until |St| reaches

cT 1/3, at which point the adversary deviates from giving random bits, and starts outputting a fixed

bit instead. The key is to ensure that after the adversary deviates, the smooth calibration error at the

end of the T steps is still Ω(T 1/3).
Proof of Theorem 5 Let c be the constant in Lemma 24. Consider the following mixed adversary:

• First, the adversary decides whether it is oblivious or adaptive uniformly at random.

• If the adversary decides to be oblivious, output T independent random bits; otherwise, pro-

ceed with the following steps.

• At each step t, independently draw the outcome xt ∼ Bernoulli(1/2), until the game ends or

St ≥ cT 1/3 holds at some point.

• If St > 0, keep outputting bit 1 for the remaining T − t steps; otherwise, output zeros for the

rest of the game.

Fix an arbitrary algorithmA. Since CalDist(x, p) ≥ 1
2smCE(x, p), it suffices to prove thatA in-

curs an Ω(T 1/3) smooth calibration error against the mixed adversary defined above. By Lemma 24,

at least one of the two conditions in the lemma must hold when A runs on T random bits. If the

latter holds, i.e., E [smCE(x, p)] ≥ cT 1/3, we get the desired lower bound. This is because the
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mixed adversary chooses to be oblivious with probability 1/2, which implies a lower bound of

cT 1/3/2 = Ω(T 1/3) on the expected smooth calibration error.

Otherwise, assume that the former condition holds. Consider two instances of the algorithm,

denoted by A1 and A2, such that A1 runs on the oblivious adversary, whereas A2 runs against the

adaptive adversary. Importantly, the two instances are coupled such that the two adversaries use the

same random bits, and A1 and A2 share their internal randomness.

Let E denote the event that, for instance A1, maxt∈[T ] |St| ≥ cT 1/3 holds. We will show that,

whenever event E happens, the other instance A2 gives smCE(x, p) ≥ cT 1/3. It would then follow

from the first condition in Lemma 24 that

Pr
A2

[

smCE(x, p) ≥ cT 1/3
]

≥ Pr
A1

[E ] ≥ c.

Finally, since the mixed adversary decides to be adaptive with probability 1/2, we have a lower

bound of c
2 · cT 1/3 = Ω(T 1/3) on the smooth calibration error when A faces the mixed adversary.

Now assume that E happens. Let t be the first time step at which |St| ≥ cT 1/3 holds. By

definition, the adaptive adversary in the A2 instance deviates from the random bits at time t. If

St > 0, we have xt+1 = xt+2 = · · · = xT = 1, which implies

smCE(x, p) ≥
T
∑

t′=1

(xt′ − pt′) ≥
t
∑

t′=1

(xt′ − pt′) = St ≥ cT 1/3.

Similarly, if St < 0, we get xt+1 = · · · = xT = 0, which gives

smCE(x, p) ≥
T
∑

t′=1

(−1) · (xt′ − pt′) =

T
∑

t′=1

(pt′ − xt′) ≥
t
∑

t′=1

(pt′ − xt′) = −St ≥ cT 1/3.

This completes the proof.

To prove Lemma 24, we use the following standard anti-concentration bound for Binomial

distributions, for which we give a proof in Appendix G for completeness.

Lemma 25 For all sufficiently large integer n,

Pr
X∼Binomial(n,1/2)

[

|X − n/2| ≥ √n/10
]

≥ 3

4
.

Now, we prove Lemma 24.

Proof of Lemma 24 We prove the lemma for c = 1/3600. Fix an algorithmA. Let random variable

ǫt denote the value of pt − 1/2 when we run A on a sequence of T random bits. The key quantity

in our proof will be X :=
∑T

t=1 ǫ
2
t .

Case 1. X is large in expectation. If E [X] ≥ cT 1/3, we argue that smCE(x, p) will be large as

well. Consider the function f : v 7→ 1/2 − v over [0, 1], which is clearly 1-Lipschitz and bounded

between −1 and 1. By definition of the smooth calibration error,

smCE(x, p) ≥
T
∑

t=1

f(pt) · (xt − pt) =

T
∑

t=1

(1/2− pt) · (xt − pt).
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For every t ∈ [T ], note that xt and pt are independent conditioning on x1:(t−1) and p1:(t−1). Thus,

we have E [(1/2− pt) · (xt − 1/2)] = 0, which implies

E [(1/2− pt) · (xt − pt)] = E [(1/2− pt) · (xt − 1/2)]− E [(1/2− pt) · (pt − 1/2)] = E
[

ǫ2t
]

.

We conclude that E [smCE(x, p)] ≥ E

[

∑T
t=1 ǫ

2
t

]

= E [X] ≥ cT 1/3.

Case 2. X is small in expectation. Pick L = ⌊T 2/3⌋ and let m = ⌊T/L⌋ ≥ T 1/3. We divide the

first mL ≤ T steps into m epochs, each of length L. For i ∈ [m], let Ti := {(i − 1) · L + 1, (i −
1) · L+ 2, . . . , i · L} denote the time steps in the i-th epoch. We say that the i-th epoch is good, if

∣

∣

∣

∣

∣

∣

∑

t∈Ti
xt −

L

2

∣

∣

∣

∣

∣

∣

≥
√
L

10
.

The i-th epoch is called weak, if
∑

t∈Ti
ǫ2t ≤

1

400
.

We first note that with high probability, there are many good epochs and many weak epochs.

For good epochs, the claim follows from Lemma 25 and a Chernoff bound: The quantity
∑

t∈Ti xt
follows the Binomial distribution Binomial(L, 1/2). By Lemma 25, the probability for each epoch

to be good is at least 3/4, as long as L is sufficiently large. By a Chernoff bound, with probability

at least 1 − exp(−Ω(m)), there are at least 2
3m good epochs. Again, when T is sufficiently large,

the failure probability exp(−Ω(m)) is at most 1/3.

For weak epochs, recall that we are under the assumption that E [X] = E

[

∑T
t=1 ǫ

2
t

]

≤ cT 1/3 =

T 1/3/3600. The expected number of epochs that are not weak is then at most
T 1/3/3600

1/400 = 1
9T

1/3.

By Markov’s inequality, the probability that there are ≥ 1
3T

1/3 epochs that are not weak is at most
1
9
T 1/3

1
3
T 1/3 = 1

3 . In other words, with probability at least 2/3, there are at least 2
3T

1/3 ≥ 2
3m weak

epochs.

By a union bound, with probability at least 1/3, there are at least 2
3m good epochs and at least

2
3m weak epochs. In particular, with probability at least 1/3, there exists an epoch i that is both

good and weak. Recall that St is the partial sum of (xt − pt). We have

SiL − S(i−1)L =
∑

t∈Ti
(xt − pt) =

∑

t∈Ti
(xt − 1/2)−

∑

t∈Ti
(pt − 1/2) =





∑

t∈Ti
xt −

L

2



−
∑

t∈Ti
ǫt.

By definition of good and weak epochs, we have
∣

∣

∑

t∈Ti xt −
L
2

∣

∣ ≥
√
L

10 and
∣

∣

∑

t∈Ti ǫt
∣

∣ ≤
√
L ·

√

∑

t∈Ti ǫ
2
t ≤

√
L

20 , where the second bound follows from the Cauchy-Schwarz inequality. These

two bounds further imply

|SiL − S(i−1)L| ≥
√
L

10
−
√
L

20
=

√
L

20
,
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and thus,

max
t∈[T ]
|St| ≥ max{SiL, S(i−1)L} ≥

√
L

40
.

Recall that L = ⌊T 2/3⌋ and c = 1/3600. For all sufficiently large T , the above gives a stronger

guarantee than Pr
[

maxt∈[T ] |St| ≥ cT 1/3
]

≥ c. This completes the proof.

Appendix E. Basic Facts about Calibration Measures

We first show that the calibration distance is always upper bounded by the ECE.

Proposition 26 For any x ∈ {0, 1}T and p ∈ [0, 1]T ,

CalDist(x, p) ≤ ECE(x, p).

Proof For each t ∈ [T ], define

qt := g(pt) :=

∑T
t′=1 xt′ · ✶ [pt′ = pt]
∑T

t′=1 ✶ [pt′ = pt]

as the actual frequency of ones when the value pt is predicted. Note that qt is completely determined

by pt.

We first show that q is in C(x): For any α ∈ [0, 1], it holds that

T
∑

t=1

(xt − qt) · ✶ [qt = α] =
∑

β∈[0,1]
✶ [g(β) = α]

T
∑

t=1

(xt − α) · ✶ [pt = β]

=
∑

β∈[0,1]
✶ [g(β) = α]

[

T
∑

t=1

xt · ✶ [pt = β]− g(β) ·
T
∑

t=1

✶ [pt = β]

]

= 0,

where the last step follows from the definition of g(·). This shows q ∈ C(x).
Then, we compute the distance ‖p− q‖1:

‖p− q‖1 =
T
∑

t=1

|pt − qt| =
∑

β∈[0,1]

T
∑

t=1

|pt − qt| · ✶ [pt = β] .
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Fix β ∈ {p1, p2, . . . , pT }. We note that pt = β implies qt = g(β). It follows that

T
∑

t=1

|pt − qt| · ✶ [pt = β] = |β − g(β)| ·
T
∑

t=1

✶ [pt = β]

=

∣

∣

∣

∣

∣

β ·
T
∑

t=1

✶ [pt = β]− g(β) ·
T
∑

t=1

✶ [pt = β]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T
∑

t=1

pt · ✶ [pt = β]−
T
∑

t=1

xt · ✶ [pt = β]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T
∑

t=1

(xt − pt) · ✶ [pt = β]

∣

∣

∣

∣

∣

.

Summing over β ∈ [0, 1] gives

‖p− q‖1 =
∑

β∈[0,1]

∣

∣

∣

∣

∣

T
∑

t=1

(xt − pt) · ✶ [pt = β]

∣

∣

∣

∣

∣

= ECE(x, p).

Since we showed that q ∈ C(x) and ‖p − q‖1 = ECE(x, p), the definition of CalDist(x, p)
immediately implies CalDist(x, p) ≤ ECE(x, p).

The following lemma states the Lipschitz continuity of CalDist, LowerCalDist and smCE.

Lemma 27 The following inequalities hold for any x ∈ {0, 1}T and p, p̃ ∈ [0, 1]T :

|CalDist(x, p)− CalDist(x, p̃)| ≤ ‖p− p̃‖1,

|LowerCalDist(x, p)− LowerCalDist(x, p̃)| ≤ ‖p− p̃‖1,
|smCE(x, p)− smCE(x, p̃)| ≤ 2‖p− p̃‖1.

Proof By definition,

CalDist(x, p) = min
q∈C(x)

‖p− q‖1 ≤ min
q∈C(x)

(‖p− p̃‖1 + ‖p̃− q‖1) = CalDist(x, p̃) + ‖p− p̃‖1.

By symmetry, we have CalDist(x, p̃) ≤ CalDist(x, p) + ‖p− p̃‖1. This proves the first inequality.

The proof for LowerCalDist is analogous:

LowerCalDist(x, p) = inf
D∈C(x)

T
∑

t=1

E
qt∼Dt

[|pt − qt|]

≤ inf
D∈C(x)

[

T
∑

t=1

E
qt∼Dt

[|pt − p̃t|+ |p̃t − qt|]
]

= inf
D∈C(x)

[

T
∑

t=1

E
qt∼Dt

[|p̃t − qt|]
]

+ ‖p− p̃‖1

= LowerCalDist(x, p̃) + ‖p− p̃‖1.
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Again, we also have LowerCalDist(x, p̃) ≤ LowerCalDist(x, p)+ ‖p− p̃‖1. This proves the second

inequality.

Let f be a 1-Lipschitz function from [0, 1] to [−1, 1]. Note that for any p, q ∈ [0, 1] and x ∈
{0, 1}, we have

|f(p) · (x− p)− f(q) · (x− q)|
≤ |f(p) · (x− p)− f(p) · (x− q)|+ |f(p) · (x− q)− f(q) · (x− q)|
= |f(p)| · |p− q|+ |f(p)− f(q)| · |x− q|
≤ 2|p− q|.

The last step follows from |f(p)| ≤ 1, |f(p)− f(q)| ≤ |p− q|, and |x− q| ≤ 1.

Thus, by definition of the smooth calibration error,

smCE(x, p) = sup
f∈F

T
∑

t=1

f(pt) · (xt − pt)

≤ sup
f∈F

T
∑

t=1

[f(p̃t) · (xt − p̃t) + 2|pt − p̃t|]

= sup
f∈F

T
∑

t=1

f(p̃t) · (xt − p̃t) + 2‖p− p̃‖1

= smCE(x, p̃) + 2‖p− p̃‖1.

By symmetry, we also have smCE(x, p̃) ≤ smCE(x, p) + 2‖p− p̃‖1. This completes the proof.

Appendix F. Proofs for Section A

F.1. Failure of Naı̈ve Consolidation

In the context of Lemma 12, we give a concrete example in which the straightforward way of

merging the transportation fails to keep the cost low. This explains why the proof of Lemma 12

involves a complicated consolidation strategy.

Let T = 2k. The outcomes x = (1, 0, . . . , 0, 1, 1, . . . , 1, 0) consist of 1 followed by k−1 copies

of zeros, k−1 copies of ones and a single zero. The predictions p = (ǫ, ǫ, . . . , ǫ, 1−ǫ, 1−ǫ, . . . , 1−ǫ)
contain k copies of ǫ followed by k copies of 1−ǫ, where ǫ = 1/(2k). LetD1, . . . ,Dk be degenerate

distributions over {1/k} and Dk+1, . . . ,D2k be degenerate distributions over {1 − 1/k}. Clearly,

we have D ∈ C(x). Furthermore, the cost of D is given by

T
∑

t=1

E
qt∼Dt

[|pt − qt|] = T · 1

2k
= 1.

With the notation in Section A.4, we have s1 = ǫ, s2 = 1−ǫ, and all the transportation (specified

by D) are into the interval [s1, s2]. However, if we consolidate all these transportation, we would

end up with a new destination of 1/2, and the cost would surge to Ω(T ).
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F.2. Technical Lemmas

We state and prove all the technical lemmas used in Section A here.

Lemma 28 For any x, y ∈ [0, 1] and ∆x,∆y ∈ R, there exists a 1-Lipschitz function f : [0, 1] →
[−1, 1] such that

f(x) ·∆x + f(y) ·∆y =

{

|∆x|+ |∆y|, ∆x∆y ≥ 0,

|∆x +∆y|+ |x− y| ·min{|∆x|, |∆y|}, ∆x∆y < 0.

Proof First, suppose that ∆x∆y ≥ 0, in which case there exists s ∈ {±1} such that s ·∆x = |∆x|
and s ·∆y = |∆y|. Then, for the constant function f(v) := s, we have

f(x) ·∆x + f(y) ·∆y = |∆x|+ |∆y|.

Then, suppose that ∆x∆y < 0 and |∆x| ≥ |∆y|. We take f(v) := sgn(∆x) · (1 − |v − x|),
which is clearly 1-Lipschiz and bounded between −1 and +1. This gives

f(x) ·∆x + f(y) ·∆y = sgn(∆x) ·∆x + sgn(∆x) · (1− |x− y|) ·∆y

= |∆x| − (1− |x− y|) · |∆y|
= (|∆x| − |∆y|) + |x− y| · |∆y|
= |∆x +∆y|+ |x− y| ·min{|∆x|, |∆y|}.

Similarly, when ∆x∆y < 0 and |∆x| < |∆y|, taking f(v) := sgn(∆y) · (1− |v − y|) also gives

f(x) ·∆x + f(y) ·∆y = sgn(∆y) ·∆y + sgn(∆y) · (1− |x− y|) ·∆x

= |∆y| − (1− |x− y|) · |∆x|
= (|∆y| − |∆x|) + |x− y| · |∆x|
= |∆x +∆y|+ |x− y| ·min{|∆x|, |∆y|}.

Lemma 29 For any 0 ≤ α ≤ β ≤ 1 and p ∈ [0, 1], we have

p · |p− α|+ (1− p) · |p− β|
≤ 2 · [|p · (1− α)− (1− p) · β|+ (β − α) ·min{p · (1− α), (1− p) · β}] .

Proof We prove the inequality for the following three cases separately.

Case 1: p ≤ α. In this case, the left-hand side of the inequality gets reduced to

p · (α− p) + (1− p) · (β − p) = (1− p) · β − p · (1− α) ≤ |p · (1− α)− (1− p) · β|,

which is clearly upper bounded by the right-hand side.

Case 2: p ≥ β. Similarly, we can simplify the left-hand side to

p · (p− α) + (1− p) · (p− β) = p · (1− α)− (1− p) · β ≤ |p · (1− α)− (1− p) · β|,

which is, again, upper bounded by the right-hand side.
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Case 3: p ∈ (α, β). In this case, using the identities x+ y = |x− y|+ 2min{x, y} and

p · (1− α)− p · (p− α) = (1− p) · β − (1− p) · (β − p) = p(1− p),

we can write the left-hand side as:

|p · (p− α)− (1− p) · (β − p)|+ 2 ·min{p · (p− α), (1− p) · (β − p)}
= |p · (1− α)− (1− p) · β|+ 2 ·min{p · (p− α), (1− p) · (β − p)}.

Thus, to prove the lemma, it remains to show that:

min{p · (p− α), (1− p) · (β − p)} ≤ (β − α) ·min{p · (1− α), (1− p) · β}. (11)

If p · (p− α) ≤ (1− p) · (β − p), the minimum on the right-hand side of (11) is also achieved

by the first term. Then, it is sufficient to prove that p · (p − α) ≤ (β − α) · p · (1 − α), which is

equivalent to

p ≤ β − αβ + α2.

Note that the assumption p · (p− α) ≤ (1− p) · (β − p) is equivalent to

p+ p · (β − α) ≤ β.

Since β − α ≥ 0 and p ≥ α, we have

α · (β − α) ≤ p · (β − α).

Adding the two inequalities above together gives the desired inequality p ≤ β − αβ + α2.

The remaining case that p · (p − α) > (1 − p) · (β − p) can be dealt with in a similar way. In

this case, Inequality (11) is equivalent to

β − p ≤ β2 − αβ.

The assumption p · (p− α) > (1− p) · (β − p) implies

β − p ≤ p · (β − α).

Applying β − α ≥ 0 and p ≤ β to the above, we get

β − p ≤ β2 − αβ

as desired.

Lemma 30 For any 0 ≤ α ≤ β ≤ 1 and p ∈ [0, 1], we have

min {(1− p) · |p− α|+ p · |p− β|, (1− p) · α+ p · (1− β)}
≤ 10 · [|(1− p) · α− p · (1− β)|+ (β − α) ·min{(1− p) · α, p · (1− β)}] .

Proof As in the proof of Lemma 29, we consider the following three cases.
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Case 1: p ≤ α. The left-hand side is upper bounded by the first term in the minimum, which, in

this case, is given by

(1− p) · (α− p) + p · (β − p) = (1− p) · α− p · (1− β) ≤ |(1− p) · α− p · (1− β)|.
Clearly, this is upper bounded by the right-hand side.

Case 2: p ≥ β. Similarly, we can upper bound the left-hand side by

(1− p) · (p− α) + p · (p− β) = −(1− p) · α+ p · (1− β) ≤ |(1− p) · α− p · (1− β)|,
which, in turn, is at most the right-hand side.

Case 3: p ∈ (α, β). We first consider the case that β − α is large. Concretely, suppose that

β − α ≥ 1/5. If so, by the identity x+ y = |x− y|+ 2min{x, y}, we have

(1− p) · α+ p · (1− β)

= |(1− p) · α− p · (1− β)|+ 2min{(1− p) · α, p · (1− β)}
≤ 10|(1− p) · α− p · (1− β)|+ 10(β − α)min{(1− p) · α, p · (1− β)},

which implies the desired inequality.

We then focus on the case that β − α < 1/5. We write x := p − α > 0 and y := β − p > 0.

Note that

(1− p) · α− p · (1− β) = p · (β − p)− (1− p) · (p− α) = py − (1− p)x.

We claim that if (1−p)x and py are not close (up to a multiplicative factor), we are done. Formally,

suppose that
min{(1− p)x, py}
max{(1− p)x, py} ≤

2

3
.

Then, we may upper bound the left-hand side of the desired inequality by

(1− p)x+ py = max{(1− p)x, py}+min{(1− p)x, py} ≤ 5

3
max{(1− p)x, py}.

On the other hand, the right-hand side is lower bounded by its first term, namely,

10|(1− p) · α− p · (1− β)| = 10|py − (1− p)x|
= 10max{(1− p)x, py} − 10min{(1− p)x, py}

≥
(

10− 10 · 2
3

)

·max{(1− p)x, py}

≥ 5

3
·max{(1− p)x, py}.

This proves the inequality when min{(1− p)x, py} ≤ 2
3 max{(1− p)x, py} holds.

Finally, we deal with the case that both β − α < 1/5 and min{(1 − p)x, py} > 2
3 max{(1 −

p)x, py} hold. Note that the second condition implies
(1−p)x

py > 2
3 and py

(1−p)x > 2
3 . Again, we

simplify and relax the desired inequality into

(1− p)x+ py ≤ 10(x+ y)min{(1− p) · α, p · (1− β)}
= 10(x+ y) · [p(1− p)−max{(1− p)x, py}].
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We argue that both (1 − p)x and py are at most 3
10p(1 − p). Otherwise, suppose that (1 − p)x >

3
10p(1− p). This implies x > 3

10p > p/5. Furthermore, we have

py >
2

3
(1− p)x >

2

3
· 3
10

p(1− p),

which implies y > (1− p)/5. We then obtain x+ y > p/5 + (1− p)/5 = 1/5, which contradicts

x+ y = β − α < 1/5. An analogous argument also rules out the possibility that py > 3
10p(1− p).

Therefore, it suffices to prove that

(1− p)x+ py ≤ 10(x+ y) ·
[

p(1− p)− 3

10
p(1− p)

]

= 7(x+ y) · p(1− p),

or, equivalently,

(1− p) · x

x+ y
+ p · y

x+ y
≤ 7p(1− p).

The first term on the left-hand side above can be upper bounded as follows:

(1− p) · x

x+ y
= (1− p) · 1

1 + y/x
≤ (1− p) · 1

1 + 2·(1−p)
3p

=
p(1− p)
2
3 + p

3

≤ 3

2
· p(1− p),

where the second step applies y/x > 2·(1−p)
3p , which follows from py

(1−p)x > 2
3 . Similarly, we have

p · y

x+ y
= p · 1

x/y + 1
≤ p · 1

2p
3·(1−p) + 1

=
p(1− p)

1− 1
3p
≤ 3

2
· p(1− p).

Adding the two inequalities above gives

(1− p) · x

x+ y
+ p · y

x+ y
≤ 3p(1− p) ≤ 7p · (1− p),

which implies the desired inequality for the last case, and thus completes the proof.

Appendix G. Proof for Section D

We prove Lemma 25, which is restated below.

Lemma 25. For all sufficiently large integer n,

Pr
X∼Binomial(n,1/2)

[

|X − n/2| ≥ √n/10
]

≥ 3

4
.

Proof The mode of Binomial(n, 1/2) is ⌊n/2⌋. When n = 2k is even, it holds for every j ∈
{0, 1, . . . , n} that

Pr
X∼Binomial(2k,1/2)

[X = j] ≤ Pr
X∼Binomial(2k,1/2)

[X = k]

= 2−2k (2k)!

(k!)2

= (1 + on(1)) · 2−2k ·
√
2π · 2k · (2k/e)2k
2πk · (k/e)2k

= (1 + on(1)) ·
√

2/π√
n

.

50



ON THE DISTANCE FROM CALIBRATION IN SEQUENTIAL PREDICTION

The third step applies Stirling’s approximation n!√
2πn(n/e)n

= 1 + on(1). Since
√

2/π < 1, for

sufficiently large n we have an upper bound of 1/
√
n. Similarly, when n = 2k + 1 is odd, we have

Pr
X∼Binomial(n,1/2)

[X = j] ≤ 2−(2k+1) · (2k + 1)!

k!(k + 1)!

= (1 + on(1)) · 2−(2k+1) ·
√

2π(2k + 1) ·
(

2k+1
e

)2k+1

√
2πk ·

√

2π(k + 1) · (k/e)k
(

k+1
e

)k+1

= (1 + on(1)) ·
1√
πk
·
(

1 +
1

2k

)k

·
(

1− 1

2(k + 1)

)k+1

= (1 + on(1)) ·
1√
πk
· (e1/2 + on(1)) · (e−1/2 + on(1))

= (1 + on(1)) ·
√

2/π√
n

.

Therefore,

Pr
X∼Binomial(n,1/2)

[

|X − n/2| < √n/10
]

=
n
∑

j=0

Pr
X∼Binomial(n,1/2)

[X = j] · ✶
[

|j − n/2| < √n/10
]

≤ 1√
n
·
(

2 ·
√
n

10
+ 1

)

≤ 1

4
,

where the last step holds for all sufficiently large n.
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