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Abstract

We present the first diffusion-based framework that can learn an unknown dis-
tribution using only highly-corrupted samples. This problem arises in scientific
applications where access to uncorrupted samples is impossible or expensive to
acquire. Another benefit of our approach is the ability to train generative models
that are less likely to memorize individual training samples since they never ob-
serve clean training data. Our main idea is to introduce additional measurement
distortion during the diffusion process and require the model to predict the original
corrupted image from the further corrupted image. We prove that our method
leads to models that learn the conditional expectation of the full uncorrupted image
given this additional measurement corruption. This holds for any corruption pro-
cess that satisfies some technical conditions (and in particular includes inpainting
and compressed sensing). We train models on standard benchmarks (CelebA,
CIFAR-10 and AFHQ) and show that we can learn the distribution even when all
the training samples have 90% of their pixels missing. We also show that we can
finetune foundation models on small corrupted datasets (e.g. MRI scans with block
corruptions) and learn the clean distribution without memorizing the training set.

1 Introduction

Diffusion generative models [48, 24, 51] are emerging as versatile and powerful frameworks for
learning high-dimensional distributions and solving inverse problems [34, 11, 35, 28]. Numerous
recent developments [52, 30] have led to text conditional foundation models like Dalle-2 [41], Latent
Diffusion [45] and Imagen [47] with incredible performance in general image domains. Training
these models requires access to high-quality datasets which may be expensive or impossible to obtain.
For example, direct images of black holes cannot be observed [12, 19] and high-quality MRI images
require long scanning times, causing patient discomfort and motion artifacts [28].

Recently, Carlini et al. [8], Somepalli et al. [49], and Jagielski et al. [27] showed that diffusion models
can memorize examples from their training set. Further, an adversary can extract dataset samples
given only query access to the model, leading to privacy, security and copyright concerns. For many
applications, we may want to learn the distribution but not individual training images e.g. we might
want to learn the distribution of X-ray scans but not memorize images of specific patient scans from
the dataset. Hence, we may want to introduce corruption as a design choice. We show that it is
possible to train diffusions that learn a distribution of clean data by only observing highly corrupted
samples.

Preprint. Work in progress.
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Figure 1: Left panel: Baseline method of vanilla finetuning Deepfloyd IF using 3000 images from
CelebA-HQ. We show generated sample images and nearest neighbors from the finetuning set. As
shown, the generated samples are often near-identical copies from training data. This verifies related
work Carlini et al. [8], Somepalli et al. [49], and Jagielski et al. [27] that pointed out that diffusions
often generate training samples. Right panel: We finetune the same foundation model (Deepfloyd
IF) using our method and 3000 highly corrupted training images. The corruption adds noise and
removes 80 percent random pixels. We show generated samples and nearest neighbors from the
training set. Our method still learns the clean distribution of faces (with some quality deterioration,
as shown) but does not memorize training data. We emphasize that our training is performed without
ever accessing clean training data.

Prior work in supervised learning from corrupted data. The traditional approach to solving
such problems involves training a restoration model using supervised learning to predict the clean
image based on the measurements [43, 44, 57, 39]. The seminal Noise2Noise [38] work introduced
a practical algorithm for learning how to denoise in the absence of any non-noisy images. This
framework and its generalizations [5, 37, 53] have found applications in electron microscopy [16],
tomographic image reconstruction [56], fluorescence image reconstruction [59], blind inverse prob-
lems [20, 5], monocular depth estimation and proteomics [6]. Another related line of work uses
Stein’s Unbiased Risk Estimate (SURE) to optimize an unbiased estimator of the denoising objective
without access to non-noisy data [18]. We stress that the aforementioned research works study the
problem of restoration, whereas are interested in the problem of sampling from the clean distribution.
Restoration algorithms based on supervised learning are only effective when the corruption level is
relatively low [15]. However, it might be either not possible or not desirable to reconstruct individual
samples. Instead, the desired goal may be to learn to generate fresh and completely unseen samples
from the distribution of the uncorrupted data but without reconstructing individual training samples.

Indeed, for certain corruption processes, it is theoretically possible to perfectly learn a distribution
only from highly corrupted samples (such as just random one-dimensional projections), even though
individual sample denoising is usually impossible in such settings. Specifically, AmbientGAN [7]
showed that general d dimensional distributions can be learned from scalar observations, by observing
only projections on one-dimensional random Gaussian vectors, in the infinite training data limit. The
theory requires an infinitely powerful discriminator and hence does not apply to diffusion models.

Our contributions. We present the first diffusion-based framework to learn an unknown distribution
D when the training set only contains highly-corrupted examples drawn from D. Specifically, we
consider the problem of learning to sample from the target distribution p0(x0) given corrupted
samples Ax0 where A ∼ p(A) is a random corruption matrix (with known realizations and prior
distribution) and x0 ∼ p0(x0). Our main idea is to introduce additional measurement distortion
during the diffusion process and require the model to predict the original corrupted image from the
further corrupted image.
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Random inpainting Further corruption Block inpainting Further corruption

Figure 2: Illustration of our method: Given training data with deleted pixels, we corrupt further by
erasing more (illustrated with green color). We feed the learner the further corrupted images and we
evaluate it on the originally observed pixels. We can do this during training since the green pixel
values are known to us. The score network learner has no way of knowing whether a pixel was
missing from the beginning or whether it was corrupted by us. Hence, the score network learns to
predict the clean image everywhere. Our method is analogous to grading a random subset of the
questions in a test, but the students not knowing which questions will be graded.

• We provide an algorithm that provably learns E[x0|Ã(x0 + σtη), Ã], for all noise levels t
and for Ã ∼ p(Ã | A) being a further corrupted version of A. The result holds for a general
family of corruption processes A ∼ p(A). For various corruption processes, we show that
the further degradation introduced by Ã can be very small.

• We use our algorithm to train diffusion models on standard benchmarks (CelebA, CIFAR-10
and AFHQ) with training data at different levels of corruption.

• Given the learned conditional expectations we provide an approximate sampler for the target
distribution p0(x0).

• We show that for up to 90% missing pixels, we can learn reasonably well the distribution
of uncorrupted images. We outperform the previous state-of-the-art AmbientGAN [7] and
natural baselines.

• We show that our models perform on par or even outperform state-of-the-art diffusion
models for solving certain inverse problems even without ever seeing a clean image during
training. Our models do so with a single prediction step while our baselines require hundreds
of diffusion steps.

• We use our algorithm to finetune foundational pretrained diffusion models. Our finetuning
can be done in a few hours on a single GPU and we can use it to learn distributions with a
few corrupted samples.

• We show that models trained on sufficiently corrupted data do not memorize their training
set. We measure the tradeoff between the amount of corruption (that controls the degree of
memorization), the amount of training data and the quality of the learned generator.

• We open-source our code and models: https://github.com/giannisdaras/ambient-diffusion.

2 Background

Training a diffusion model involves two steps. First, we design a corruption process that transforms
the data distribution gradually into a distribution that we can sample from [52, 14]. Typically, this
corruption process is described by an Ito SDE of the form: dx = f(x, t)dt+ g(t)dw, where w is
the standard Wiener process. Such corruption processes are reversible and the reverse process is
also described by an Ito SDE [3]: dx =

(
f(x, t)− g2(t)∇x log pt(x)

)
dt+ g(t)dw. The designer

of the diffusion model is usually free to choose the drift function f(·, ·) and the diffusion function

g(·). Typical choices are setting f(x, t) = 0, g(t) =

√
dσ2

t

dt (Variance Exploding SDE) or setting

f(x, t) = −β(t)x, g(t) =
√

β(t) (Variance Preserving SDE). Both of these choices lead to a
Gaussian terminal distribution and are equivalent to a linear transformation in the input. The goal of
diffusion model training is to learn the function ∇x log pt(x), which is known as the score function.
To simplify the presentation of the paper, we will focus on the Variance Exploding SDE that leads to
conditional distributions xt = x0 + σtη.
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Vincent [55] showed that we can learn the score function at level t by optimizing for the score-
matching objective:

J(θ) =
1

2
E(x0,xt) ||hθ(xt, t)− x0||

2
. (2.1)

Specifically, the score function can be written in terms of the minimizer of this objective as:

∇xt
log pt(xt) =

hθ∗(xt, t)− xt

σt

. (2.2)

This result reveals a fundamental connection between the score-function and the best restoration
model of x0 given xt, known as Tweedie’s Formula [17]. Specifically, the optimal hθ∗(xt, t) is
given by E[x0|xt], which means that

∇xt
log pt(xt) =

best restoration
︷ ︸︸ ︷

E[x0|xt] − xt

σt

. (2.3)

Inspired by this restoration interpretation of diffusion models, the Soft/Cold Diffusion works [14,
4] generalized diffusion models to look at non-Markovian corruption processes: xt = Ctx0 + σtη.
Specifically, Soft Diffusion proposes the Soft Score Matching objective:

Jsoft(θ) =
1

2
E(x0,xt) ||Ct (hθ(xt, t)− x0)||

2
, (2.4)

and shows that it is sufficient to recover the score function via a generalized Tweedie’s Formula:

∇xt
log pt(xt) =

CtE[x0|xt]− xt

σt

. (2.5)

For these generalized models, the matrix Ct is a design choice (similar to how we could choose the
functions f , g). Most importantly, for t = 0, the matrix Ct becomes the identity matrix and the noise
σt becomes zero, i.e. we observe samples from the true distribution.

3 Method

As explained in the introduction, in many cases we do not observe uncorrupted images x0, either by
design (to avoid memorization and leaking of sensitive data) or because it is impossible to obtain
clean data. Here we study the case where a learner only has access to linear measurements of the
clean data, i.e. y0 = Ax0, and the corruption matrices A : Rm×n. We note that we are interested in
non-invertible corruption matrices. We ask two questions:

1. Is it possible to learn E[x0|A(x0 + σtη), A] for all noise levels t, given only access to
corrupted samples (y0 = Ax0, A)?

2. If so, is it possible to use this restoration model E[x0|A(x0 + σtη), A] to recover E[x0|xt]
for any noise level t, and thus sample from the true distribution through the score function
as given by Tweedie’s formula (Eq. 2.3)?

We investigate these questions in the rest of the paper. For the first, the answer is affirmative but only
after introducing additional corruptions, as we explain below. For the second, at every time step t,
we approximate E[x0|xt] directly using E[x0|Axt, A] (for a chosen A) and substitute it into Eq. 2.3.
Empirically, we observe that the resulting approximate sampler yields good results.

3.1 Training

For the sake of clarity, we first consider the case of random inpainting. If the image x0 is viewed as a
vector, we can think of the matrix A as a diagonal matrix with ones in the entries that correspond to
the preserved pixels and zeros in the erased pixels. We assume that p(A) samples a matrix where
each entry in the diagonal is sampled i.i.d. with a probability 1− p to be 1 and p to be zero.

We would like to train a function hθ which receives a corruption matrix A and a noisy version
of a corrupted image, yt = A (x0 + σtη)

︸ ︷︷ ︸
xt

where η ∼ N (0, I), and produces an estimate for the
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conditional expectation. The simplest idea would be to simply ignore the missing pixels and optimize
for:

Jcorr
naive(θ) =

1

2
E(x0,xt,A) ||A (hθ(A,Axt, t)− x0)||

2
, (3.1)

Despite the similarities with Soft Score Matching (Eq 2.4), this objective will not learn the conditional
expectation. The reason is that the learner is never penalized for performing arbitrarily poorly in
the missing pixels. Formally, any function hθ′ satisfying Ahθ′(A,yt, t) = AE[x0|Axt, A] is a
minimizer.

Instead, we propose to further corrupt the samples before feeding them to the model, and ask the
model to predict the original corrupted sample from the further corrupted image.

Concretely, we randomly corrupt A to obtain Ã = BA for some matrix B that is selected randomly
given A. In our example of missing pixels, Ã is obtained from A by randomly erasing an additional
fraction δ of the pixels that survive after the corruption A. Here, B will be diagonal where each
element is 1 with probability 1− δ and 0 w.p. δ. We will penalize the model on recovering all the
pixels that are visible in the sample Ax0: this includes both the pixels that survive in Ãx0 and those
that are erased by Ã. The formal training objective is given by minimizing the following loss:

Jcorr(θ) =
1

2
E(x0,xt,A,Ã)

∣
∣
∣

∣
∣
∣A

(

hθ(Ã, Ãxt, t)− x0

)∣
∣
∣

∣
∣
∣

2

, (3.2)

The key idea behind our algorithm is as follows: the learner does not know if a missing pixel is missing
because we never had it (and hence do not know the ground truth) or because it was deliberately
erased as part of the further corruption (in which case we do know the ground truth). Thus, the best
learner cannot be inaccurate in the unobserved pixels because with non-zero probability it might
be evaluated on some of them. Notice that the trained model behaves as a denoiser in the observed
pixels and as an inpainter in the missing pixels. We also want to emphasize that the probability δ of
further corruption can be arbitrarily small as long as it stays positive.

The idea of further corruption can be generalized from the case of random inpainting to a much
broader family of corruption processes. For example, if A is a random Gaussian matrix with m

rows, we can form Ã by deleting one row from A at random. If A is a block inpainting matrix
(i.e. a random block of fixed size is missing from all of the training images), we can create Ã by
corrupting further with one more non-overlapping missing block. Examples of our further corruption
are shown in Figure 2. In our Theory Section, we prove conditions under which it is possible to
recover E[x0|Ãxt, Ã] using our algorithm and samples (y0 = Ax0, A). Our goal is to satisfy this
condition while adding minimal further corruption, i.e. while keeping Ã close to A.

3.2 Sampling

Fixed mask sampling. To sample from p0(x0) using the standard diffusion formulation, we need
access to ∇xt

log pt(xt), which is equivalent to having access to E[x0|xt] (see Eq. 2.3). Instead, our
model is trained to predict E[x0|Ãxt, Ã] for all matrices A in the support of p(A).

We note that for random inpainting, the identity matrix is technically in the support of p(A). However,
if the corruption probability p is at least a constant, the probability of seeing the identity matrix is
exponentially small in the dimension of xt. Hence, we should not expect our model to give good
estimates of E[x0|Ãxt, Ã] for corruption matrices A that belong to the tails of the distribution p(A).

The simplest idea is to sample a mask Ã ∼ p(Ã) and approximate E[x0|xt] with E[x0|Ãxt, Ã].
Under this approximation, the discretized sampling rule becomes:

xt−∆t =
σt−∆t

σt
︸ ︷︷ ︸

γt

xt +
σt − σt−∆t

σt
︸ ︷︷ ︸

1−γt

E[x0|Ãxt, Ã]
︸ ︷︷ ︸

x̂0

. (3.3)

This idea works surprisingly well. Unless mentioned otherwise, we use it for all the experiments
in the main paper and we show that we can generate samples that are reasonably close to the true
distribution (as shown by metrics such as FID and Inception) even with 90% of the pixels missing.
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Sampling with Reconstruction Guidance. In the Fixed Mask Sampler, at any time t, the prediction
is a convex combination of the current value and the predicted denoised image. As t → 0, γt → 0.
Hence, for the masked pixels, the fixed mask sampler outputs the conditional expectation of their
value given the observed pixels. This leads to averaging effects as the corruption gets higher. To
correct this problem, we add one more term in the update: the Reconstruction Guidance term. The
issue with the previous sampler is that the model never sees certain pixels. We would like to evaluate
the model using different masks. However, the model outputs for the denoised image might be very
different when evaluated with different masks. To account for this problem, we add an additional
term that enforces updates that lead to consistency on the reconstructed image. The update of the
sampler with Reconstruction Guidance becomes:

xt−∆t = γtxt + (1− γt)E[x0|Ãxt, Ã]− wt∇xt
EA′ ||E[x0|Ãxt, Ã]− E[x0|Ã

′xt, Ã
′]||2. (3.4)

This sampler is inspired by the Reconstruction Guidance term used in Imagen [23] to enforce
consistency and correct for the sampling drift caused by imperfect score matching [13]. We see
modest improvements over the Fixed Mask Sampler for certain corruption ranges. We ablate this
sampler in the Appendix, Section E.3.

In the Appendix, Section A.1, we also prove that in theory, whenever it is possible to reconstruct
p0(x0) from corrupted samples, it is also possible to reconstruct it using access to E[x0|Axt, A].
However, as stated in the Limitations section, we were not able to find any practical algorithm to do
so.

4 Theory

As elaborated in Section 3, one of our key goals is to learn the best restoration model for the
measurements at all noise levels, i.e., the function h(A,yt, t) = E[x0|yt, A]. We now show that
under a certain assumption on the distribution of A and Ã, the true population minimizer of Eq. 3.2 is
indeed essentially of the form above. This assumption formalizes the notion that even conditional on
Ã, A has considerable variability, and the latter ensures that the best way to predict Ax0 as a function
of Ãxt and Ã is to optimally predict x0 itself. All proofs are deferred to the Appendix.

Theorem 4.1. Assume a joint distribution of corruption matrices A and further corruption Ã. If for

all Ã in the support it holds that EA|Ã[A
TA] is full-rank, then the unique minimizer of the objective

in equation 3.2 is given by

hθ∗(Ã,yt, t) = E[x0 | Ãxt, Ã] (4.1)

Two simple examples that fit into this framework (see Corollaries A.1 and A.2 in the Appendix) are:

• Inpainting: A ∈ R
n×n is a diagonal matrix where each entry Aii ∼ Ber(1− p) for some

p > 0 (independently for each i), and the additional noise is generated by drawing Ã|A such
that Ãii = Aii · Ber(1− δ) for some small δ > 0 (again independently for each i).1

• Gaussian measurements: A ∈ R
m×n consists of m rows drawn independently from

N (0, In), and Ã ∈ R
m×n is constructed conditional on A by zeroing out its last row.

Notice that the minimizer in Eq 4.1 is not entirely of the form we originally desired, which was
h(A,yt, t) = E[x0 | Axt, A]. In place of A, we now have Ã, which is a further degraded matrix.
Indeed, one trivial way to satisfy the condition in Theorem 4.1 is by forming Ã completely indepen-
dently of A, e.g. by always setting Ã = 0. However, in this case, the function we learn is not very
useful. For this reason, we would like to add as little further noise as possible and ensure that Ã
is close to A. In natural noise models such as the inpainting noise model, by letting the additional
corruption probability δ approach 0, we can indeed ensure that Ã follows a distribution very close to
that of A.

1Ber(q) indicates a Bernoulli random variable with a probability of q to equal 1 and 1− q for 0.
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5 Experimental Evaluation

5.1 Training from scratch on corrupted data

Our first experiment is to train diffusion models from scratch using corrupted training data at different
levels of corruption. The corruption model we use for these experiments is random inpainting: we
form our dataset by deleting each pixel with probability p. To create the matrix Ã, we further delete
each row of A with probability δ – this removes an additional δ-fraction of the surviving pixels.
Unless mentioned otherwise, we use δ = 0.1. We train models on CIFAR-10, AFHQ, and CelebA-
HQ. All our models are trained with corruption level p ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 0.9}. We use the
EDM [30] codebase to train our models. We replace convolutions with Gated Convolutions [58]
which are known to perform better for inpainting-type problems. To use the mask Ã as an additional
input to the model, we simply concatenate it with the image x. The full training details can be found
in the Appendix, Section C.

Dataset Corruption Probability Method LPIPS PSNR NFE

CelebA-HQ

0.6

Ours 0.037 31.51 1
DPS 0.053 28.21 100

DDRM
0.139 25.76 35
0.088 27.38 99
0.069 28.16 199

0.8

Ours 0.084 26.80 1
DPS 0.107 24.16 100

DDRM
0.316 20.37 35
0.188 22.96 99
0.153 23.82 199

0.9

Ours 0.152 23.34 1
DPS 0.168 20.89 100

DDRM
0.461 15.87 35
0.332 18.74 99
0.242 20.14 199

AFHQ

0.4

Ours 0.030 33.27 1
DPS 0.020 34.06 100

DDRM
0.122 25.18 35
0.091 26.42 99
0.088 26.52 199

0.6

Ours 0.062 29.46 1
DPS 0.051 30.03 100

DDRM
0.246 20.76 35
0.166 22.79 99
0.160 22.93 199

0.8

Ours 0.124 25.37 1
DPS 0.107 25.30 100

DDRM
0.525 14.56 35
0.295 18.08 99
0.258 18.86 199

Table 1: Comparison of our model (trained on corrupted data) with state-of-the-art diffusion models
on CelebA (DDIM [50] model) and AFHQ (EDM [30] model) for solving the random inpainting
inverse problem. Our model performs on par with state-of-the-art diffusion inverse problem solvers,
even though it has never seen uncorrupted training data. Further, this is achieved with a single score
function evaluation. To solve this problem with a standard pre-trained diffusion model we need to
use a reconstruction algorithm (such as DPS [11] or DDRM [34]) that typically requires hundreds of
steps.

We first evaluate the restoration performance of our model for the task it was trained on (random
inpainting and noise). We compare with state-of-the-art diffusion models that were trained on
clean data. Specifically, for AFHQ we compare with the state-of-the-art EDM model [30] and for
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To quantify the memorization, we follow the methodology of Somepalli et al. [49]. Specifically, we
generate 10000 images from each model and we use DINO [9]-v2 [42] to compute top-1 similarity to
the training images. Results are shown in Figure 6. Similarity values above 0.95 roughly correspond
to the same person while similarities below 0.75 typically correspond to random faces. The standard
finetuning (Red) often generates images that are near-identical with the training set. Instead, fine-
tuning with corrupted samples (blue) shows a clear shift to the left. Visually we never observed a
near-copy generated from our process – see also Figure 1.

We repeat this experiment for models trained on the full CelebA dataset and at different levels of
corruption. We include the results in Figure 8 of the Appendix. As shown, the more we increase the
corruption level the more the distribution of similarities shifts to the left, indicating less memorization.
However, this comes at the cost of decreased performance, as reported in Table 4.

New domains and different corruption. We show that we can also finetune a pre-trained foundation
model on a new domain given a limited-sized dataset in a few hours in a single GPU. Figure 5 shows
generated samples from a finetuned model on a dataset containing 155 examples of brain tumor MRI
images [26]. As shown, the model learns the statistics of full brain tumor MRI images while only
trained on brain-tumor images that have a random box obfuscating 25% of the image. The training
set was resized to 64× 64 but the generated images are at 256× 256 by simply leveraging the power
of the cascaded Deepfloyd IF.

Limitations. Our work has several limitations. First, there is a tradeoff between generator quality and
corruption levels. For higher corruption, it is less likely that our generator memorizes parts of training
examples, but at a cost of degrading quality. Precisely characterizing this trade-off is an open research
problem. Further, in this work, we only experimented with very simple approximation algorithms to
estimate E[x0|xt] using our trained models. Additionally, we cannot make any strict privacy claim
about the protection of any training sample without making assumptions about the data distribution.
We show in the Appendix that it is possible to recover E[x0|xt] exactly using our restoration oracle,
but we do not have an algorithm to do so. Finally, our method cannot handle measurements that also
have noise. Future work could potentially address this limitation by exploiting SURE regularization
as in [1].
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A Proofs

Proof of Theorem 4.1. Let hθ∗ be a minimizer of equation 3.2, and for brevity let

f(Ãxt, Ã) = hθ∗(Ãxt, Ã)− E[x0 | Ãxt, Ã]

be the difference between hθ∗ and the claimed optimal solution. We will now argue that f must be
identically zero.

First, by adding and subtracting AE[x0 | Ãxt, Ã], we can expand the objective value achieved at
θ = θ∗ in equation 3.2 as follows:

Jcorr(θ∗) = Ex0,xt,A,Ã

[∥
∥
∥(Ax0 −AE[x0 | Ãxt, Ã])−Af(Ãxt, Ã))

∥
∥
∥

2
]

= Ex0,xt,A,Ã

[∥
∥
∥Ax0 −AE[x0 | Ãxt, Ã]

∥
∥
∥

2
]

+ Ex0,xt,A,Ã

[∥
∥
∥Af(Ãxt, Ã)

∥
∥
∥

2
]

− 2Ex0,xt,A,Ã

[

(Ax0 −AE[x0 | Ãxt, Ã])TAf(Ãxt, Ã)
]

.

Here the first term is the irreducible error, while the third term vanishes by the tower law of expecta-
tions:

Ex0,xt,A,Ã

[

(Ax0 −AE[x0 | Ãxt, Ã])
TAf(Ãxt, Ã)

]

= Ex0,A,Ã,Ãxt

[

(x0 − E[x0 | Ãxt, Ã])TATAf(Ãxt, Ã)
]

= EA,Ã,Ãxt

[

Ex0|A,Ã,Ãxt

[

x0 − E[x0 | Ãxt, Ã]
]T

ATAf(Ãxt, Ã)

]

= EA,Ã,Ãxt

[

(E[x0 | Ãxt, Ã]− E[x0 | Ãxt, Ã])TATAf(Ãxt, Ã)
]

= 0.

Thus the only part of Jcorr(θ∗) that actually depends on the parameter value θ∗ is the second term.
We now show that the second term can be made to vanish and that this occurs precisely when f is
identically 0:

Ex0,xt,A,Ã

[∥
∥
∥Af(Ãxt, Ã)

∥
∥
∥

2
]

= Ex0,xt,A,Ã

[

f(Ãxt, Ã)TATAf(Ãxt, Ã)
]

= Ex0,xt,Ã

[

f(Ãxt, Ã)
T
EA|x0,xt,Ã

[
ATA

]
f(Ãxt, Ã)

]

= Ex0,xt,Ã

[

f(Ãxt, Ã)
T
EA|Ã

[
ATA

]
f(Ãxt, Ã)

]

.

For every Ã and x0,xt, by assumption we have that EA|Ã

[
ATA

]
is full-rank, and so the inner

quadratic form is minimized when f(Ãxt, Ã) = 0. Further, the term as a whole vanishes exactly
when this holds for every Ã and x0,xt in the support, which means f must be identically zero.

Corollary A.1 (Inpainting noise model). Consider the following inpainting noise model: A ∈ R
n×n

is a diagonal matrix where each entry Aii ∼ Ber(1− p) for some p > 0 (independently for each i),

and the additional noise is generated by drawing Ã|A such that Ãii = Aii Ber(1− δ) for some small
δ > 0 (again independently for each i). Then the unique minimizer of the objective in equation 3.2 is

hθ∗(Ãxt, Ã) = E[x0 | Ãxt, Ã].

Proof. By Theorem 4.1, what we must show is that for any Ã in the support, EA|Ã[A
TA] is full-rank.

Fix any particular realization of Ã, which will be a diagonal matrix with only 0s and 1s. For indices i
where Ãii = 1, we know that for any A drawn conditional on Ã, Aii = 1 as well, i.e.

Pr(Aii = 1 | Ãii = 1) = 1.
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And for indices i where Ãii = 0, by Bayes’ rule we have

Pr(Aii = 1 | Ãii = 0) =
Pr(Aii = 1, Ãii = 0)

Pr(Aii = 0, Ãii = 0) + Pr(Aii = 1, Ãii = 0)
=

(1− p)δ

(1− p)δ + p
=: q.

Thus we see that EA|Ã[A
TA] = EA|Ã[A] is a diagonal matrix whose entries are 1 wherever Ãii = 1

and q wherever Ãii = 0. This is clearly of full rank since q > 0.

Corollary A.2 (Gaussian measurements noise model). Consider the following noise model where
we only observe m independent Gaussian measurements of the ground truth, and then one of the
measurements is further omitted: A ∈ R

m×n consists of m rows drawn independently from N (0, In),

and Ã ∈ R
m×n is constructed conditional on A by zeroing out its last row. Then the unique minimizer

of the objective in equation 3.2 is

hθ∗(Ãxt, Ã) = E[x0 | Ãxt, Ã].

Proof. Again by Theorem 4.1, we must show that for any Ã in the support, EA|Ã[A
TA] is full-rank.

Fix any realization of Ã, which will have the following form:

Ã =








aT
1
...

aT
m−1

0
T







.

Then it is clear that conditional on Ã, A has the following distribution:

A | Ã =








aT
1
...

aT
m−1

bTm








where bm ∼ N (0, In).

Here bm is drawn entirely independently from N (0, In). Elementary manipulations now reveal that
EA|Ã[A

TA] = Ebm∼N (0,In)[Ã
T Ã+ bmbTm] = ÃT Ã+ In, which is clearly full rank (indeed, it is

PSD with strictly positive eigenvalues).

A.1 Reduction

In this section we argue that if there is an algorithm that recovers the target distribution p0(x0) from
i.i.d. samples (Ax0, A) where A ∼ p(A) and x0 ∼ p0(x0), then, there is an algorithm that recovers
p0(x0) without sample access, but instead, using access to an oracle that given t,x and A in the
support of p(A), returns E[x0 | Axt].

Indeed, for any A, Chen et al. [10] show that it is possible to recover the distribution of Ax0 given
access to E[Ax0 | Axt] for any t and x under some minimal assumptions on the data distribution
p0(x0), see [10, Assumptions 1-3]. Using our oracle and using this theorem, we can recover the
distribution of Ax0 for all A in the support. By sampling from these distributions, one can as well
obtain samples of Ax0 for A ∼ p(A) and x0 ∼ p0(x0). Hence, if these samples are sufficient to
recover p0(x0), then, having an oracle to these conditional expectations is sufficient as well.

This intuition can be formalized as follows. Fix a distribution pA(A) over corruption matrices.
For a distribution p0(x0), denote by corrupt(pA, p0) the distribution over pairs (A,Ax0) where
A ∼ pA(A) and x0 ∼ p0(x0). We say that it is possible to reconstruct p0(x0) from random
corruptions A ∼ pA(A) if the following holds: for any two distributions, p0(x0) and p′0(x

′
0) that

satisfy Assumptions 1-3 of Chen et al. [10], if corrupt(pA, p0) = corrupt(pA, p
′
0), then p0 = p′0.

Similarly, we say that it is possible to reconstruct p0(x0) from conditional expectations given
A ∼ p(A) if the following holds: for any distribution p0(x0) and p′0(x

′
0) that satisfy Assumptions

1-3 of Chen et al. [10], if for all x, t and A in the support of pA,

E(x0,xt)∼p0,t(x0,xt)[x0 | Axt = x] = E(x′

0
,x′

t)∼p′

0,t
(x′

0
,x′

t)
[x′

0 | Ax′
t = x] (A.1)

15



then p0 = p′0. Here, p0,t(x0,xt) is obtained by sampling x0 ∼ p0 and xt = x0 + σtη where
η ∼ N (0, I). Similarly, p′0,t(x

′
0,x

′
t) is obtained by the same process where x′

0 is instead sampled
from p′0. We state the following lemma:

Lemma A.3. Fix a distribution pA(A). If it is possible to reconstruct p0(x0) from random corruptions
y0 = Ax0, A ∼ pA(A), then it is possible to reconstruct p0(x0) given access to an oracle that
computes the conditional expectations E[x0|Axt, A], for A ∼ pA(A) and xt = x0 + σtη.

Proof. Assume that it is possible to reconstruct p0(x0) from random corruptions A ∼ pA(A) and we
will prove that it is possible to reconstruct p0(x0) from conditional expectations given A ∼ pA(A).
To do so, let p0(x0) and p′0(x

′
0) be two distributions that satisfy Assumptions 1-3 of Chen et al. [10].

Assume that equation A.1 holds. We will prove that p0 = p′0. Fix some A in the support of pA.
By Chen et al. [10], there is an algorithm that samples from the distribution of Ax0, x0 ∼ p0(x0),
that only has access to E[Ax0 | Axt, A] and similarly, there is an algorithm that samples from
the distribution of Ax′

0 that only has access to E[Ax′
0 | Ax′

t, A]. Since these two conditional
expectations are assumed to be the same, then the distribution of Ax0 equals the distribution of
Ax′

0. Consequently, corrupt(pA, p0) = corrupt(pA, p
′
0). By the assumption that it is possible to

reconstruct p0(x0) from random corruptions A ∼ pA(A), this implies that p0 = p′0. This completes
the proof.

B Broader Impact and Risks

Generative models in general hold the potential to have far-reaching impacts on society in a variety of
forms, coupled with several associated risks [40, 32, 33, 31]. Among other potential applications, they
can be utilized to create deceptive images and perpetuate societal biases. To the best of our knowledge,
our paper does not amplify any of these existing risks. Regarding the included MRI results, we want
to clarify that we make no claim that such results are diagnostically useful. This experiment serves
only as a toy demonstration that it can be potentially feasible to learn the distribution of MRI scans
with corrupted samples. Significant further research must be done in collaboration with radiologists
before our algorithm gets tested in clinical trials. Finally, we want to underline again that even though
our approach seems to mitigate the memorization issue in generative models, we cannot guarantee
the privacy of any training sample unless we make assumptions about the data distribution. Hence,
we strongly discourage using this algorithm in applications where privacy is important before this
research topic is investigated further.

C Training Details

We open-source our code and models to facilitate further research in this area:
https://github.com/giannisdaras/ambient-diffusion.

Models trained from scratch. We trained models from scratch at different corruption levels on
CelebA-HQ, AFHQ and CIFAR-10. The resolution of the first two datasets was set to 64× 64 and
for CIFAR-10 we trained on 32× 32.

We started from EDM’s [30] official implementation and made some necessary changes. Architec-
turally, the only change we made was to replace the convolutional layers with Gated Convolutions [58]
that are known to perform well for inpainting problems. We observed that this change stabilized the
training significantly, especially in the high-corruptions regime. As in EDM, we use the architecture
from the DDPM++ [36] paper.

To avoid additional design complexity, we tried to keep our hyperparameters as close as possible to
the EDM paper. We observed that for high corruption levels, it was useful to add gradient clipping,
otherwise, the training would often diverge. For all our experiments, we use gradient clipping with
max-norm set to 1.0. We underline that unfortunately, even with gradient clipping, the training at
high corruption levels (p ≥ 0.8), still diverges sometimes. Whenever this happened, we restarted the
training from an earlier checkpoint. We list the rest of the hyperparameters we used in Table 2.

Training diffusion models from scratch is quite computationally intensive. We trained all our models
for 200000 iterations. Our CIFAR-10 models required ≈ 2 days of training each on 6 A100 GPUs.
Our AFHQ and CelebA-HQ models required ≈ 6 days of training each on 6 A100 GPUs. These
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Table 2: Training Hyperparameters
Dataset Iters Batch LR SDE p δ Aug. Prob. Ch. Multipliers Dropout

CIFAR-10

200000

512 1e-3

VP

{0.2, 0.4, 0.6, 0.8}
0.1

0.12 (1, 1, 1, 1) 0.13
AFHQ

256 2e-4
{0.2, 0.4, 0.6, 0.8, 0.9}

0.15 (1, 2, 2, 2)
0.25

CelebA-HQ
{0.2, 0.6, 0.8}

0.1
0.9 0.3

numbers roughly match the performance reported in the EDM paper, indicating that the extra
corruption we need to do on matrix A does not increase training time.

Due to the increased computational complexity of training these models, we could not extensively
optimize the hyperparameters, e.g. the δ probability in our extra corruption. For higher corruption,
e.g. for p = 0.9, we noticed that we had to increase δ in order for the model to learn to perform well
on the unobserved pixels.

Finetuning Deepfloyd’s IF. We access Deepfloyd’s IF [2] model through the diffusers library.
The model is a Cascaded Diffusion Model [25]. The first part of the pipeline is a text-conditional
diffusion model that outputs images at resolution 64×64. Next in the pipeline, there are two diffusion
models that are conditioned both in the input text and the low-resolution output of the previous stage.
The first upscaling module increases the resolution from 64× 64 to 256× 256 and the final one from
256× 256 to 1024× 1024.

To reduce the computational requirements of the finetuning, we only finetune the first text-conditional
diffusion model that works with 64× 64 resolution images. Once the finetuning is completed, we use
again the whole model to generate high-resolution images.

For the finetuning, we set the training batch size to 32 and the learning rate to 3e− 6. We train for a
maximum of 15000 steps and we keep the checkpoint that gives the lowest error on the pixels that we
further corrupted. To further reduce the computational requirements, we use an 8-bit Adam Optimizer
and we train with half-precision.

For our CelebA finetuning experiments, we set δ = 0.1 and p = 0.8. We experiment with the full
training set, a subset of size 3000 (see Figure 1) and a subset of 300. For the model trained with
only 300 heavily corrupted samples, we did not observe memorization but the samples were of very
low quality. Intuitively, our algorithm provides a way to control the trade-off between memorization
and fidelity. Fully exploring this trade-off is a very promising direction for future work. For our
MRI experiments, we use two non-overlapping blocks that each obfuscate 25% of the image and we
evaluate the model in one of them.

All of our fine-tuning experiments can be completed in a few hours. Training for 15000 iterations
takes ≈ 10 hours on an A100 GPU, but we usually get the best checkpoints earlier in the training.

D Evaluation Details

FID evaluation. Our FID [22] score is computed with respect to the training set, as is standard
practice, e.g. see [24, 30, 52]. For each of our models trained from scratch, we generate 50000
images using the seeds 0− 49999. Once we generate our images, we use the code provided in the
official implementation of the EDM [30] paper for the FID computation.

E Additional Experiments

E.1 Restoration performance with noisy measurements

In Table 1 of the main paper, we compare the restoration performance of our models and vanilla
diffusion models (trained with uncorrupted images). We compare the restoration performance in the
task of random inpainting because it is straightforward to use our models to solve this inverse problem.
It is potentially feasible to use our trained generative models to solve any (linear or non-linear) inverse
problem but we leave this direction for future work.
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In this section, we further compare our models (trained with randomly inpainted images) in the task
of inpainting with noisy measurements. Concretely, we want to predict x0, given measurements
yt = A(x0 + σyt

η), η ∼ N (0, I). As in the rest of the paper, we assume that the mask matrix
A is known. We can solve this problem with one model prediction using our trained models since
according to Eq. 4.1, we are learning: hθ(yt, A, t) = E[x0|Axt = yt, A].

We use the EDM [30] state-of-the-art model trained on AFHQ as our baseline (as we did in the main
paper). To use this pre-trained model to solve the noisy random inpainting inverse problem, we need a
reconstruction algorithm. We experiment again with DPS and DDRM which can both handle inverse
problems with noise in the measurements. We present our results in Table 3. As shown, our models
significantly outperform the EDM models that use the DDRM reconstruction algorithm and perform
on par with the EDM models that use the DPS reconstruction algorithm.

Dataset Corruption Probability Measurement Noise (σy0
) Method LPIPS PSNR NFE

AFHQ

0.4 0.05

Ours 0.0861 29.46 1
DPS 0.0846 29.83 100

DDRM
0.2061 24.47 35
0.1739 25.38 99
0.1677 25.58 199

0.6 0.05

Ours 0.1031 27.40 1
DPS 0.0949 27.92 100

DDRM
0.4066 18.73 35
0.3626 19.49 99
0.3506 19.70 199

0.8 0.05

Ours 0.1792 23.21 1
DPS 0.1778 23.01 100

DDRM
0.5879 13.65 35
0.5802 13.99 99
0.5753 14.09 199

Table 3: Comparison of our model (trained on corrupted data) with state-of-the-art diffusion models on CelebA
(DDIM [50] model) and AFHQ (EDM [30] model) for solving the random inpainting inverse problem with
noise.

E.2 Comparison with Supervised Methods

For completeness, we include a comparison with Masked AutoEncoders [21], a state-of-the-art
supervised method for solving the random inpainting problem. The official repository of this paper
does not include models trained on AFHQ. We compare with the available models that are trained on
the iNaturalist dataset which is the most semantically close dataset we could find. We emphasize that
this model was trained with access to uncorrupted images. Results are shown in 4. As shown, our
method and DPS outperform this supervised baseline. We underline that this experiment is included
for completeness and does not exclude the possibility that there are more performant supervised
alternatives for random inpainting.

Corruption Probability Method LPIPS PSNR NFE

0.4
Ours 0.0304 33.27 1
DPS 0.0203 34.06 100
MAE 0.0752 28.88 1

0.6
Ours 0.0628 29.46 1
DPS 0.0518 30.03 100
MAE 0.0995 25.89 1

0.8
Ours 0.1245 25.37 1
DPS 0.1078 25.30 100
MAE 0.1794 22.01 1

Table 4: Comparison with the MAE [21], a state-of-the-art supervised method for solving the
restoration task of random inpainting.
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E.3 Sampler Ablation

By Lemma A.3, if it is possible to learn p0(x0) using corrupted samples then it is also possible to use
our learned model to sample from p0(x0). Even though such an algorithm exists, we do not know
which one it is.

In the paper, we proposed to simple ideas for sampling, the Fixed Mask Sampler and the Reconstruc-
tion Guidance Sampler. The Fixed Mask Sampler fixes a mask throughout the sampling process.
Hence, sampling with this algorithm is equivalent to first sampling some pixels from the marginals
of p0(x0) and then completing the rest of the pixels with the best reconstruction (the conditional
expectation) in the last step. This simple sampler performs remarkably well and we use it throughout
the main paper.

To demonstrate that we can further improve the sampling performance, we proposed the Reconstruc-
tion Guidance sampler that takes into account all the pixels by forcing predictions of the model with
different masks to be consistent. In Table 5 we ablate the performance of this alternative sampler. For
the reconstruction guidance sampler, we select each time four masks at random and we add an extra
update term to the Fixed Mask Sampler that ensures that the predictions of the Fixed Mask Sampler
are not very different compared to the predictions with the other four masks (that have different
context regarding the current iterate xt). We set the guidance parameter wt to the value 5e− 4. As
shown, this sampler improves the performance, especially for the low corruption probabilities where
the extra masks give significant information about the current state to the predictions given only
one fixed mask. However, the benefits of this sampler are vanishing for higher corruption. Given
that the two samples perform on par and that the Reconstruction Guidance Sampler is much more
computationally intensive (we need one extra prediction per step for each extra mask), we choose to
use the Fixed Mask Sampler for all the experiments in the paper.

Sampler Type Corruption Probability FID Inception Score

Fixed Mask

0.2 11.70 7.97
0.4 18.85 7.45
0.6 28.88 6.88
0.8 46.27 6.14

Reconstruction Guidance

0.2 11.59 8.01
0.4 18.52 7.51
0.6 28.90 6.91
0.8 46.31 6.13

Table 5: Comparison between the Fixed Mask sampler and the Reconstruction Guidance Sampler.

E.4 Additional Figures

Figure 7 shows reconstructions of AFHQ corrupted images with the EDM AFHQ model trained on
clean data (columns 3, 4) and our model trained on corrupted data (column 5). The restoration task
is random inpainting at probability p = 0.8. The last two rows also have measurement noise with
σy0

= 0.05.

In Figure 8, we repeat the experiment of Figure 6 of the main paper but for models trained on the full
CelebA dataset and at different levels of corruption. As shown, increasing the corruption level leads
to a clear shift of the distribution to the left, indicating less memorization. This comes at the cost of
decreased performance, as reported in Table 4.

In the remaining pages, we include uncurated unconditional generations of our models trained at
different corruption levels p. Results are shown in Figures 9,10,11.
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CelebA dataset, p = 0.6, δ = 0.1 Uncurated samples from our model

CelebA dataset, p = 0.8, δ = 0.1 Uncurated samples from our model

CelebA dataset, p = 0.9, δ = 0.3 Uncurated samples from our model

Figure 9: Left column: CelebA-HQ training dataset with random inpainting at different levels of
corruption p (the survival probability is (1− p) · (1− δ)). Right column: Unconditional generations
from our models trained with the corresponding parameters. As shown, the generations become
slightly worse as we increase the level of corruption, but we can reasonably well learn the distribution
even with 93% pixels missing (on average) from each training image.
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AFHQ dataset, p = 0.4, δ = 0.1 Uncurated samples from our model

AFHQ dataset, p = 0.6, δ = 0.1 Uncurated samples from our model

AFHQ dataset, p = 0.8, δ = 0.1 Uncurated samples from our model

22



AFHQ dataset, p = 0.9, δ = 0.1 Uncurated samples from our model

Figure 10: Left column: AFHQ training dataset with random inpainting at different levels of
corruption p (the survival probability is (1− p) · (1− δ)). Right column: Unconditional generations
from our models trained with the corresponding parameters. As shown, the generations become
slightly worse as we increase the level of corruption, but we can reasonably well learn the distribution
even with 91% pixels missing (on average) from each training image.

23




