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Abstract

For min-max optimization and variational inequalities problems (VIP) encountered in diverse machine
learning tasks, Stochastic Extragradient (SEG) and Stochastic Gradient Descent Ascent (SGDA) have
emerged as preeminent algorithms. Constant step-size variants of SEG/SGDA have gained popularity, with
appealing benefits such as easy tuning and rapid forgiveness of initial conditions, but their convergence
behaviors are more complicated even in rudimentary bilinear models. Our work endeavors to elucidate
and quantify the probabilistic structures intrinsic to these algorithms. By recasting the constant step-size
SEG/SGDA as time-homogeneous Markov Chains, we establish a first-of-its-kind Law of Large Numbers
and a Central Limit Theorem, demonstrating that the average iterate is asymptotically normal with a
unique invariant distribution for an extensive range of monotone and non-monotone VIPs. Specializing
to convex-concave min-max optimization, we characterize the relationship between the step-size and the
induced bias with respect to the Von-Neumann’s value. Finally, we establish that Richardson-Romberg
extrapolation can improve proximity of the average iterate to the global solution for VIPs. Our probabilistic
analysis, underpinned by experiments corroborating our theoretical discoveries, harnesses techniques from
optimization, Markov chains, and operator theory.

1 Introduction

Variational inequalities problem (VIP) is a versatile framework that incorporates a broad range of problems
including loss minimization, min-max optimization, bilinear games and various fixed point problems. Many
problems in machine learning, such as training Generative Adversarial Networks (GANSs) [16], Actor-Critic
methods [40], multi-agent reinforcement learning [51] and robust learning [47], can be cast as VIPs.

In many applications of VIP, one is given only a stochastic oracle, typically constructed from finite data,
that provides noisy access to the underlying operator. Various stochastic algorithms for VIP have been
proposed and analyzed, with two prime examples being Stochastic Extragradient (SEG) [24] and Stochastic
Gradient Descent Ascent (SGDA) methods [38]. It has been well recognized that convergence properties
of stochastic VIP methods are more delicate than their deterministic and loss minimization counterparts.
Nevertheless, much progress has been made in recent years, on both SEG [3, 18, 22, 25, 32, 35] and SGDA
[4, 29, 31, 38, 49]. The closely related stochastic gradient descent (SGD) method [17], which can be viewed as
a special case of SGDA, has an even larger and still growing literature. Classical results on these stochastic
methods typically assume that a diminishing step-size is used, which allows for last-iterate convergence to
the global solution [2, 11, 27, 42].

In this paper, we focus on the constant step-size variants of SEG and SGDA. Constant step-sizes are
popular in practice, with several major benefits: the resulting algorithm is easy to tune with only a single
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parameter; it is insensitive to the initial condition, which is forgotten quickly; the algorithm makes substantial
progress even in the first few iterations. Empirically, the use of constant step-size often leads to good
performance in practical machine learning tasks and beyond.

The analysis of constant step-size SEG and SGDA, however,
is more complicated, with various non-convergent behaviors
even in rudimentary bilinear models [6, 7, 15, 22, 33]; see Fig-
ure 1 for an example. In particular, similar to SGD [10], these
algorithms in general do not converge to the exact solution of
the VIP. Rather, due to stochastic noise, the iterates fluctuate
within a neighborhood of the solution. Existing theoretical
results are typically in the form of an upper bound on the mean
squared error or dual gap of the iterations. Such upper bounds -
often compound the deterministic and stochastic aspects of the h
convergence behavior. .

In this work, we seek to elucidate and quantify the behav-
iors of SEG and SGDA with constant step-sizes. Rather than Figure 1: Example of divergent behavior in
treating the stochastic fluctuation as a nuisance, we fully em- 2 Cons.’tal?t step-size ZSEG over 2 ql?aSl'bihnefZ
brace the probabilistic nature of SEG and SGDA. By viewing Game: miny maxy ex” +xy —ey”, withe ~ 10
them as time-homogeneous Markov chains, we study their
fine-grained distributional properties, disentangling the deterministic and stochastic components. In particu-
lar, we show that while the iterate does not converge, its distribution does. Moreover, this perspective allows
us to use the information provided by their fluctuation for uncertainty quantification.

Our contributions. We consider a class of VIPs with weak quasi strongly monotonicity, which encom-
passes a broad range of structured non-monotone and non-convex problems. Under appropriate regularity
assumptions, we establish the following results.

* We prove that the iterates of SEG and SGDA form a Harris and positive recurrent Markov chain, which
admits a unique stationary distribution. Our results quantify the relationship between the step-size
and the regularity parameters of the VIP for ensuring recurrence.

* We show that the distribution of the iterates converges geometrically to the above stationary distri-
bution. More generally, we establish geometric convergence of the expectation of any Lipschitz test
function of the iterates.

* We derive an ergodic Law of Large Number and a Central Limit Theorem for the iterates, thereby
establishing the asymptotic normality of the ergodic average of the iterates.

¢ We show that induced bias—the distance between the mean of the stationary distribution and the
global solution of the VIP—is bounded by a linear function of the step-size and the weak monotonicity
parameter. Specializing to convex-concave min-max optimization, we quantify the relationship
between the step-size and the bias with respect to the Von-Neumann's value.

¢ For SGDA applied to quasi strongly monotone VIPs, we derive a first-order expansion of the induced
bias in terms of the step-size. This characterization shows that an order-wise reduction the bias of
SGDA can be achieved by the Richardson-Romberg refinement scheme.

Our challenges. Firstly, solving Variational Inequalities (VIs) consists in principal more daunting than
standard minimization tasks, primarily due to the absence of a clear potential function to measure closeness
to the optimal solution value. Furthermore, the stochastic Extragradient method, usually employed for
smooth operators, intensifies the complexity of the analysis due to the double random steps inherent in each
iteration. The interdependence between these steps, where the first random occurrence directly impacts the
subsequent one, necessitates more intricate maneuvering within a high-dimensional probabilistic landscape.
Amid this, our study into Richardson Extrapolation propels the discourse beyond the conventional confines
of co-coercive noisy gradient oracles, revealing a more nuanced proof under milder assumptions exclusively



for the expected gradient. This meticulous analysis expands the realm of what was previously comprehended
also in minimization tasks. Lastly, we strive to unify the stochastic analysis across minimization, min-max
scenarios, and generic Vls, paving the way in future work towards a more comprehensive understanding of
constrained case and different algorithms.

Our techniques. This research provides a novel proof that the average behavior of Stochastic Extragradient
(SEG) and Stochastic Gradient Descent Ascent (SGDA) methods, with a constant step-size, will converge
towards a typical trajectory over time, regardless of the initial conditions. By considering these methods as
continuous-state Markov Chains, the study exploits Markov Chain Central Limit Theorems, Richardson
extrapolation, and Meyn & Tweedie’s machinery to validate the existence of an invariant probability measure,
thereby confirming the ergodic behavior. This validation is realized through the application of non-uniform
versions of Doeblin’s bound and the Foster-Lyapunov inequality within a well-defined "small set" around the
solution set. Our study confirms that iterations will return to this small set infinitely many times, ensuring
geometric convergence to a unique stationary distribution over time, regardless of the initial conditions.

1.1 Related work

Below we review prior work on VIP with a focus on stochastic methods with constant step-sizes.

Variational Inequalities. VIP and its various special cases has been studied extensively, especially in the
deterministic setting where one has exact access to the operator. Many algorithms have been developed,
with both asymptotic convergence and finite-time guarantees. It is beyond the scope of this paper to survey
these results, but we mention that for VIPs with Lipschitz continuous and monotone operator, the works
[37] study a variant of Extra Gradient algorithm [26] and establishes optimal convergence rates for ergodic
average, and the work [15, 36] studies proximal point algorithm with geometric convergence results.

Most related to us are works for the stochastic setting, for which SEG [24] and SGDA [38] are two of
the most prominent algorithms. Non-convergent phenomena are observed even in unconstrained bilinear
games [6, 7, 15, 22, 33]. Complementarily, a growing line of work has been dedicated to better understanding
of SEG and SGDA and bridging the gap between the deterministic and the stochastic cases. The work
[24] provided the first analysis of SEG for monotone VIPs. Subsequent work has extended these results to
other settings [3, 18, 22, 25, 32, 35]. A parallel line of work studies SGDA and its variants under different
scenarios [29, 31, 38, 49]. Recently [4] proposed a unified convergence analysis that covers various SGDA
methods for regularized VIPs, where the operator is either quasi-strongly monotone or ¢-star-cocoercive. For
a quantitative summary of existing results, we refer the readers to [18] for SEG and [4] for SGDA.

In this paper we consider weakly quasi-strongly monotone VIPs, which is a class of structured non-monotone
operators under which one can bypass the the intractability issue that arises in general non-monotone regime
[8,9, 39]. Similar conditions have been considered in prior work to establish the convergence guarantee of
various algorithms [18, 22, 31, 44, 49].

Constant step-size SGD and Stochastic Approximation. The literature on SGD and stochastic approxima-
tion (SA) is vast. Within this literature, our work is most related to, and in fact motivated by, a recent line of
work that studies constant step-size SGD and SA through the lens of stochastic processes. The work [10]
studies SGD for smooth and strongly convex functions. Extensions to non-convex functions are considered in
[50], which establishes a central limit theorem that is similar in spirit to our results. More recently, [5] studies
SGD for non-smooth non-convex functions. The work [12] considers constant step-size SA on Riemannian
manifolds and studies the limiting behavior as the step-size approaches zero. The work [23] considers linear
SA with Markovian noise; see the references therein for other recent results on SA. We mention that both [10]
and [23] examine the Richardson-Romberg bias refinement scheme, which we also consider in this paper.



2 Problem setup

To provide a concrete foundation for our ensuing discussion, we first delineate the fundamental variational
inequality framework that forms the backbone of our investigation in the subsequent sections.

2.1 Variational inequalities

Let V : R? — RY be a single-valued operator. The variational inequality problem related to the operator V,
when no constraints are involved, is:

Find x* € R? such that V(x*) = 0. (VD)
Below, we provide a series of examples which showcase potential interpretations of the operator V.

Example 2.1 (Non-linear Systems of Equations). In this scenario, the operator V corresponds to the non-linear
function F : R? — R that represents the system of equations. Formally, we write V = F. The solution of
(VI), denoted as x*, is a root of F, i.e., it satisfies F(x*) = 0.

Example 2.2 (Loss minimization). In this case the operation V corresponds to the gradient of a function
that we try to minimize. Formally, we have V = V f for some smooth loss function f : R? — R. Then, the
solution of (VI), x*, is a critical point of f,i.e., V f(x*) = 0.

Example 2.3 (Saddle-point problems). Consider a smooth loss function £ : Rl x R%2 — R which assigns a
cost of £(x1,x3) to a player choosing x; € R% and a payoff £(x1, x) to a player choosing x, € R%2. Then,
the saddle-point problem associated with a £ aims to find (x*,y*) such that

L(x1%,x2) < L(x1%,x5) < L(x1,x3). €))]

The pair (x1*,x3) is a saddle point of £. With V = (Vy, £, — V, L) the solutions of (VI) correspond to
critical points of £, while if £ is also convex-concave it corresponds to a saddle point.

The above examples represent a broad spectrum of applications: Example 2.1 is related to Computational
Fluid Dynamics and Physics, where Navier-Stokes or Maxwell equations encapsulate non-linear systems
[19]; Example 2.2 is central to machine learning, reflecting model training via loss function minimization
[28]; Example 2.3 garners more and more attention due to developments in GANs [7, 15, 16], Actor-Critic
methods [40], and multi-agent Reinforcement Learning [51].

2.2 Assumptions
Our blanket assumptions concerning the operator V are the following:
Assumption 1. The set of solutions X* of (VI) is non-empty and 3x* € X*, R € R such that ||x*|| <R.

Assumption 2. The operator is A-weak p-quasi strongly monotone with A > 0, u > 0, i.e.,
(V(x),x —x*) > pllx — x*||> = A for all x € R? and some x* € X*. (2)

Remark. Notice that Eq. (2) implies directly that ||x} — x5[|2 < % for any xj, x5 € X*. Thus, Assumption 2
yields that X'* is actually contained in some ball of radius \/Z .

=

Our next assumption pertains to the two algorithms Stochastic Gradient Descent Ascent (SGDA) and
the Stochastic Extra Gradient (SEG), which are formally given in Section 3. Conforming to the customary
convention in variational inequality literature, we make the presumption that when SEG is employed, we
are dealing with a Lipschitz operator (so-called smooth case), while SGDA is used in scenarios that exhibit
just linear growth (so-called non-smooth case).



Assumption 3. Unless we state it differently, we adopt the following convention for the Lipschitzness/bounded
growth of the operator for different algorithms respectively:
e If (SEG) is run, we have that the operator V is ¢-Lipschitz continuous, i.e.,

|V(x') = V(x)| < £)|x" — x| forall x,x" € RY. 3)
¢ If (SGDA) is run, we have that the operator V has at most L-linear growth, i.e.,
|V (x)|| < L(1+ |x]) forall x € R%. 4)

Assumption 4. In the ensuing discussion, we presuppose that our algorithms have access to V at each stage
t > 0 through a stochastic oracle. Specifically, at each iteration t, the algorithm can pick a point x; and call a
black-box procedure that returns

Vi = V(Xt> + Ut(xt). (5)

Here, (U;(-))s>0 is a sequence of independent and identically distributed random fields that satisfy the
following conditions: there exists a filtration (denoting the history of x;) (F;);>0 on a certain probability
space (Q), F,IP), such that U;(x¢) is F;1—measurable, but not F; —measurable and corresponds to a noise
with (i) Zero mean: E[U;(x) | F;] = 0 and (ii) Bounded second moment: E[||U;(x)||? | F¢] < o2 for all x € RY
and some constant ¢ > 0.

Additional remarks on the above assumptions: Assumption 1 is standard and widely adopted in the literature
on VIP. Assumption 2 represents a further relaxation of y-quasi strongly monotonicity, inspired by weakly
dissipative dynamical systems and weakly convex optimization [13, 43]. This assumption is inclusive of
special cases of non-monotone games. It is worth mentioning that for A > 0,4 > 0, it could encompass
functions of the form a, |x[|? + b A 8in(|[x]|), as well as rescaled versions of the Rastrigin function or
various non-monotone operators frequently encountered in statistical learning [46]. In the context of A = 0,
this assumption has been explored in the literature of VIPs under various names, e.g., quasi-strongly
monotone problems [31], strong coherent VIPs [44], or VIPs satisfying the strong stability condition [32].
Assumption 3 corresponds to a well-established dichotomy on VIPs: we leverage (SEG) for its superior rates
in smooth optimization scenarios, whereas (SGDA) is employed in cases of non-smooth optimization. Finally,
Assumption 4 is standard for the analysis of stochastic algorithms in VIPs and optimization [21, 22, 32, 38, 49].

3 Algorithms

In this paper we focus on two of the most widely used algorithms for variational inequalities: Stochastic
Gradient Descent Ascent (SGDA) and Stochastic Extra Gradient (SEG).

Stochastic Gradient Descent Ascent. At each time-step t € IN, a vector x; € R? is maintained and
updated by accessing the stochastic oracle V;, using a constant step-size 7** € (0, o). Formally,

Xi41] = Xt — ’)’SGDAVt = Xt — ’)’SGDA(V(xt) + Ut(xt)), (SGDA)

where V and (U;);> satisfy Assumptions 2—4.

Double Step-size Stochastic Extra Gradient. As previously delineated, the preferred approach for
smooth variational inequality problems is the stochastic variants of the extragradient (EG) algorithm of
Korpelevich [26], where at each step it uses an extra gradient "look-ahead" step V;, 1/, to enhance convergence
towards the solution. Formally, the incarnation of SEG with double constant step-size (o™, ¥*¢) can be
defined as follows:

xt+1/2 — xt . ’YSEGVtr xt—l—l — xt _ D(SEG,.}/SEGVt_._l/z, (SEG)
41 = Fi.

Inspired by seminal work on stochastic gradient descent [10], here we study the trajectories of both

(SGDA) and (SEG) via the lens of Markov Chain theory. Indeed, their iterates (x;);>( can be cast as time-

homogeneous continuous Markov chains in IR¥.
Specifically, observe that:

where V and (U, Uy11/2)>0 satisfy Assumptions 2—4 with intermediate step filtration satisfying 7,



(i) The iterates (x¢)¢>o of (SGDA) and (SEG) constitute respectively a Markov chain: the subsequent
state x;;1 (post-update parameters) relies solely on the current state x;.
(if) The chain is time-homogeneous, meaning the transition kernel does not depend on time: this is
attributed to the constant step-size in the update rule applied at each step with i.i.d. random fields
(Ut (x))e=0
(iii) The chains lie in the general continuous state space IR, in contrast to the typical discrete ones.
For a formal proof of the above claims, we direct interested readers to our appendix. In parallel to the
study of Markov chains in a discrete finite state space, our analysis in the continuous state space primarily
focuses on three fundamental properties: irreducibility, aperiodicity, and recurrence [34]. Building on these
three properties, we establish limit theorems that shed light on the long-run behavior of the chains. The
forthcoming sections aim to grapple with the amplified challenges that arise due to our chain trajectories
navigating through multi-dimensional, uncountable domains.

3.1 Convergence up to constant factors

We begin by deriving a basic convergence result that resembles the classical descent inequalities. This result
serves as a robust tool for understanding the recurrent behavior of our chains.

As established in prior work [4, 18] and highlighted in the introduction, when the operator V is Lipschitz
and strongly monotone, the full-information/noiseless equivalent of SGDA /SEG attain exponential rate
of convergence to some solution in the solution set X'*. By relaxing the assumption of strong monotonicity
to the assumption of weakly quasi strong monotonicity (Assumption 2), we show that this result can be
achieved in the noisy setting as well up to an additive constant. The cornerstone of our proof hinges on the
construction of a quasi-descent inequality [30] and the appropriate determination of a step-size in order to
account for both the variance ¢ and the shift A of weakly quasi-monotonicity. The additive constant factor
corresponds to the bias introduced by the stochasticity and non-monotonicity of V, and it depends on the
constant step-sizes %", 4%*¢ used in the respective algorithms.

Formally, the following theorem holds:

Theorem 1. Consider that either (SGDA) or (SEG) is run with a stochastic oracle satisfying Assumptions 1-4

I/t SEG

respectively with step-sizes y**™* < 72 T < and a**¢ € (0,1) and let (x;);>0 be the iterations

1
2u+ V3¢
generated. Then, there exists a pair of constants' (cy, c;) 54} that depend on the choice of step-sizes, as well as the
parameters of the model, with ciSGDA’SEG} € (0,1) and céSGDA’SEG} € (0, +00) such that

t
]E[th+1 ot ”2] < (1 . CFGDA/SEG}> on . ”2 + CESGDA,SEG}, (6)

for any initial point xy € RY.
A byproduct of the above theorem’s proof is the following one-step “quasi-descent” inequality:

Corollary 1. Under the conditions of Theorem 1, for all x* € X* there exists an extended real-valued function
{scpasec}

& : R — [1, 0] and constants c, € (0, 1),c§SGDA’SEG} € (0,0) such that
IE[S(xt+1,x*) |~7:t] < CiscDA,SEc}g(xt/ X*) + CéSGDA,SEG}' @)

Specifically, € (x;, x*) = ||x; — x*[|* + 1.

Remark. The function £ is sometimes called an energy, potential or Lyapunov function. While the above
corollary applies to any x* € X*, for the sake of conciseness, we will assume a fixed but arbitrary x* and
omit its reference. From now on, we will simply write the energy function as £(x;).

IFor the explicit formula of the constants, we refer the reader to the proof at the supplement.



Understanding Markov chains in continuous domains requires a grasp of different types of recurrences:
(null)-recurrence, Harris recurrence, and positive recurrence, each progressively contributing to our insights
on the chain behavior. Recurrence indicates a state will infinitely visit nearby regions on expectation, but
without timing guarantees. Harris recurrence, specific to continuous state space Markov chains, ensures a
state revisits the nearby areas infinitely often almost surely. Positive recurrence, an orthogonal refinement,
promises a state’s recurrent visits within a finite expected time. (For their formal definitions, we refer to our
introductory appendix on Markov Chains.)

Harris and positive recurrence are the pivotal properties that underpin our key results on the existence of
(a) an invariant measure, (b) a law of large numbers, and (c) an ergodic central limit theorem.

4 Main Results

The main result of this section can be summarized as follows:

Informal Theorem (Main Result). Under Assumptions 1-4, the Stochastic Extragradient Stochastic Extra Gradient
and Stochastic Gradient Descent Ascent Stochastic Gradient Descent Ascent methods with constant step-size, behave
as strong aperiodic, positive Harris recurrent continuous-state Markov Chains, converging to a unique stationary
distribution over time regardless of the initial conditions. Moreover, their trajectory’s ergodic averages adhere to the
Law of Large Numbers and the Central Limit Theorem.

Proof Sketch. Our main objective is to showcase that, under constant step-size, the average trajectory
of SEG and SGDA methods converges to a typical path over time, validating their ergodic behavior. This
endeavor necessitates the fusion of optimization and probabilistic techniques.

Our investigation commences by observing that both SEG and SGDA methods, when operating under
a constant step-size, behave akin to continuous-state Markov Chains within the Euclidean space R?. To
further exploit machinery such as Markov Chain Central Limit Theorems, Richardson extrapolation, etc.,
our primary objective is to ascertain the existence of an invariant probability measure. We achieve this by
establishing properties like strong aperiodicity, positive Harris recurrence, and irreducibility—paralleling
the standard approach for finite discrete-state Markov chains. Our proof for these properties leans heavily
on a single-step probability minorization condition and arguments based on Lyapunov potential functions.
In addition, the application of the SEG method to VIs brings added complexities due to its intricate update
rule, contrasting the simpler case of Stochastic Gradient Descent (SGD) used for minimization task.

Focusing on our techniques, we extensively use a version of Doeblin’s bound. In words this minorization
condition posits that from any state, there’s a positive probability that the chain will transition into a
designated subset of states within one step. In mathematical terms, for all x € S and for all measurable
subsets A C S (where S is the state space), there’s a positive probability that P(x, A) is at least € - ;1(A) for
some € > 0 and a probability distribution (-). We then construct a coupling for two probability laws: Z;
distributed according to v(x) - P"(x, -) and Z; according to 7t(x) - P"(x, -), for any arbitrary x € S and the
stationary distribution 7t(-). This guarantees that the total variation distance between the laws of Z3, Z; is
bounded by (1 — €)" for any v probability measure.

While in discrete settings we could consider the entire state space, it is not feasible to do so in continuous
domains like R?. We navigate this challenge by applying the minorization condition within a bounded region
around the solution set, referred to as S* := Ball(X*, r*). Such regions are termed "small sets" in the literature
of Markov Chains. In the context of Markov Chains literature, such regions are commonly referred to as
"small sets". Given a state x that resides within §*, Doeblin’s condition ensures geometric convergence to the
invariant probability. To extend this convergence rate to R?, we employ the Foster-Lyapunov (FL) inequality
within a well-tailored small set. FL inequality —also known geometric drift property (See [45])—ensures
that the distance from the solution set remains bounded in expectation and diminishes according to a
quasi-descent inequality if the current state resides within a judiciously chosen attraction region. Using this
inequality, we establish that iterations outside a small set S will converge on expectation to S exponentially
fast, suggesting infinite visits to S and affirming geometric convergence to a unique stationary distribution,
independent of the initial state.



In order to employ our stochastic analysis toolkit, we embrace the following standard regularity assump-
tion regarding the nature of the noise [50].

Assumption 5. The random variable U;(x) can be decomposed as U;(x) = U#(x) + UP(x), such that the
probability distribution of Uf(x) has a density function, pdfu?( x)» With respect to the Lebesgue measure

satisfying infycc pdfy ) (t) > 0 for all bounded sets C C R? and for all t € R?.

Regarding the applicability of this assumption, observe that any Gaussian random field, among others,
satisfies Assumption 5.

4.1 Minorization Condition, Geometric Drift Property & Recurrence Classification

Inspired by the Markov chain stability framework in [34], we prove two important properties: the Minoriza-
tion Condition and the Geometric Drift Property. Both of them serve an important role in proving Harris and
Positive Recurrence respectively.

Lemma 1. Let the assumptions Assumptions 1-5 be satisfied for (SGDA) and (SEG). Then given the step-sizes
specified in Theorem 1, both algorithms satisfy the following minorization condition: there exist a constant 6 > 0, a
probability measure v and a set C dependent on the algorithm, such that v(C) =1, v(C®) = 0 and

Prlx;1 € Alx; = x] > 61c(x)v(A)  forall A€ B(RY), x € R%, 8)

If the set C encompassed the entire space, Eq. (8) would indicate that every subspace of R? is reachable
from any state. This would lead, through standard coupling arguments, to geometric convergence of the
distribution of x; towards a unique distribution. Although this scenario may not hold in our unbounded
state space, a subset C that satisfies this condition, known as a "small/petite" set, can still ensure geometric
convergence if a Foster-Lyapunov drift property is satisfied.

Corollary 2. Under the setting of Lemma 1, the function £ : R? — R presented in Corollary 1 satisfies the following
geometric drift property by (SGDA) or (SEG): there exists a measurable set C, and constants B > 0, b < co such that

AE(x) < —BE(x) +blc(x),x € RY, 9)

where AE(x) = fye]Rd P(z,dy)E(y) — E(x).

The above property is called the (V4) geometric drift property in [34]. In simple terms, the Foster-
Lyapunov inequality (9) controls how quickly the energy function decreases as the Markov chain transitions
between states. If r.h.s. of (9) is negative, it indicates an exponential rate of decrease, which in turn implies
that the chain “forgets” its initial state and exhibiting predictable and stationary behavior around minimum
of our energy function £(-).

Equipped with the Minorization condition and the geometric drift property, we are ready to show all the
necessary conditions for proving the ergodicity of (SGDA) and (SEG). Specifically,

Lemma 2. The Markov chain sequences (x;);>o corresponding to (SGDA) and (SEG) have the following properties:
e They are —irreducible for some non-zero o-finite measure  on R? over Borel o- algebra of RY.
* They are aperiodic.
* They are Harris and positive recurrent with an invariant measure.

Thus using generalizations of aperiodic ergodic theorem for Markov chains satisfying the geometric
drift property, we prove our first main result about the invariance measure. In the following, we let
Pr(RY) := {v: Jgra lIx][*v(dx) < oo} denote the set of square-integrable probability measures.



4.2 Invariant Measure, Law of Large Numbers & Central Limit Theorem

Theorem 2. Let Assumptions 1-5 be satisfied for (SGDA) and (SEG). Then given the step-sizes specified in Theorem 1,
it holds that

1. (SGDA) and (SEG) iterates admit a unique stationary distribution néSGDA'SEG} € P,(RY).

2. For each test function ¢ : R? — R satisfying that |¢(x)| < Le(1+ ||x||) for all x € R? and some Ly > 0 and

for any initialization xo € RY, there exist p;f,cym’sm} € (0,1) and Kiwfis,?m} € (0, 00) such that:

B 0] =, g 9009 < 5555 (o} a0

{sepasec}
g .

Hence, (SGDA) and (SEG) converges geometrically under the total variation distance to 7t
3. For each test function ¢ that is {y-Lipschitz, it holds that

|]Ex~7_[,{ySGD/\,SEC} [(P(x)] — (])(x*)\ < g(p \/D{TA/SEG}, (11)

for some constant DI5PA556} o max (A, y5P456) /.

The result outlined above provides critical insights into the behavior of constant step size Stochastic
Extragradient Stochastic Extra Gradient and Stochastic Gradient Descent Ascent Stochastic Gradient Descent
Ascent methods. Notably, it asserts the uniqueness of the stationary distribution of these methods, assuming
it has a bounded second moment. It further offers an analysis of the fluctuation patterns of a test function
¢ across the Stochastic Extra Gradient/Stochastic Gradient Descent Ascent iterations, even in the face of
non-smooth and non-convex objective functions. Elaborating on the convergence properties, the theorem
elucidates that the Stochastic Extra Gradient/Stochastic Gradient Descent Ascent algorithm, irrespective of
its initial point and provided the step size is suitably small, will gravitate towards its invariant distribution
at an exponential rate (See Eq. (10)). This effectively confirms the robustness of these algorithms under
various initialization scenarios and across a wide spectrum of step sizes. Lastly, for the class of smooth test
functions, (See Eq. (11)) the above result constrains the deviation of the expected value of the test function’s
asymptotic behavior from its optimal value, offering an explicit bound. This bound delineates a ball of
interest’, providing a tangible limit to the bias, thus enhancing our understanding of the overall performance
of these algorithms.

Following the influential work of Polyak and Juditcky [41], and having confirmed the uniqueness of
the stationary distribution, we now focuses on the question of asymptotic normality of the two algorithms.
To the best of our knowledge, such a result would be the first of its kind for stochastic approximation
methods within the variational inequalities framework, especially for extrapolation techniques like (SEG).
Establishing such results allows us to provide theoretical guarantees when constructing confidence intervals
in game scenarios, surpassing the sole dependence on empirical evidence, i.e., [1, 22, Section 7]. To streamline
our discussion, let us introduce a notation for any given function ¢:

Definition 1. We denote the average iterate of our methods, also known as the Césaro mean [20], evaluated
over a given function ¢ as St(¢) := +S7(¢) == + Y op(xr).

Our inquiry begins with establishing a Law of Large Numbers (LLN) for (SGDA) and (SEG). By em-
ploying the analogue of the Birkhoff-Khinchin ergodic theorem for continuous state space ergodic Markov
Chains, we can derive the ensuing LLN:

Theorem 3. Let the Assumptions 1-5 hold. Then for the choice of step-sizes specified in Theorem 2 and any function
¢ satisfying 1t (|p|) < oo, where 7w, (|¢|) = (scpaseey [|p(x)]|], it holds that
v

X~ TT.

1 1 ¢
Tlgrc}o fST(fp) = Tlgx;lo T ;)4)(3@ =m,(¢) as. (Law of Large Numbers for (SGDA),(SEG))



We next state a central limit theorem (CLT) for the sequences generated by (SGDA) and (SEG), establishing
the asymptotic normality of their averaged iterates:

Theorem 4. Let the Assumptions 1-5 hold. Then for the choice of step-sizes and a test function ¢ specified in
Theorem 2, we have that

T=1250(¢ — 00(9)) 5 N(0,0% (9)), (Central Limit Theorem for (SGDA),(SEG))

where 70,(¢) = E__(seonsec) [p(x)] and (77%7 (¢p) := lim7_,e0 %]En{scm,ssc} [S2(¢p — 7T, ())]. where E (scoasec}
v v v

denotes that the initial distribution of the Markov chain is nL{YSGDA’SEG}.

5 Applications and Experiments

In this section, we discuss the applications of our main theoretical results. We will focus our examination on
two interesting subcategories of quasi-strongly monotone problems: (i) min-max convex-concave games,
with locally quadratic region of attractions around the Nash Equilibria and (i) the application of Richardson-
Romberg (RR) bias refinement scheme for smooth quasi-strongly monotone operators. While the region
of attraction in the first instance could potentially be an artifact of our analysis, it is noteworthy that the
application of RR presupposes the existence of a unique solution to be viable. We conclude the section by
presenting a series of experiments validating our theoretical establishments.

5.1 Min-Max Convex-Concave Games
We now explore a specific class of operators that lie in the merely monotone regime:

Assumption 6. we assume that the operator V is monotone in the sense that

(V(x) = V(x'),x —x') > 0forall x,x’ € RY. (12)
Theorem 5. Let Assumptions 1-6 hold. Then the iterates of (SGDA), (SEG), when run with the step-sizes given in
Theorem 1, admit a stationary distribution n;{YSGDA'SEG} such that
]Ean_{SGDA/SEG} [Gapv(x)] < eternre, (13)
v

where Gapy, (x) is the restricted merit function Gapy,(x) := sup .. p«(V(x), x — x*) and c € R is a constant and
depends on the parameters of the problem.

For the particular case of convex-concave min-max games, the standard notion of duality gap, also
known as primal-dual optimality gap or Nash gap defined as Duality-Gapf(G,cp) = MaXy pd, f(6,¢") —

ming a4 f(6',¢), is upper bounded by the aforementioned Gapy, (x). Here, x = (6,¢), f : R x R2 — R
is a convex function with respect to the first argument and concave with respect to the second one, and
V = (Vgf,—Vyf) asin Example 2.3.

Consequently, let val* = min,_pq4 max PR £(6, ¢) denote the value of this convex-concave game. Then,

for the unique stationary distribution m{fGDA'SEG} of the iterates of (SGDA) and (SEG), we have

|1E(9 (P)NT[{SGDA’SEG} [f(@, (P)} - Va1*| S C')/SGDA'SEG. (14)
g Kz

From (13) and (14), we see that in this class of monotone games, (SGDA) and (SEG) converge to val® —the
unique value of the corresponding game at a Nash Equilibrium —within an expected error that is proportional
to the stepsize y*****¢, where the error is measured by the duality gap or the difference in the game value.
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5.2 Bias Refinement in Quasi-Monotone Operators

Here we focus on the case of quasi-monotone operators (i.e., A = 0 in Assumption 2), which encompasses
a variety of non-monotone and non-convex optimization problems. In this regime, we provide a refined
analysis of the stationary distribution induced by (SGDA) under some smoothness assumptions for the
operator and the nature of noise. Specifically, we provide an explicit expansion of the steady-state expectation
in terms of the stepsize, which allows us to employ the Richardson-Romberg (RR) bias refinement scheme
[14] to construct a new estimate provably closer to the optimal solution. Our result is a strict generalization
of [10], which requires co-coersive noisy first-order oracles.

Assumption 7. The operator V is (-Lipschitz and C*(IR?)-smooth (i.e., sup, ga[| V' V(x)|| < oo for all

i = 1,...,4). Furthermore, the noise has bounded kyrtosis, meaning that E[|U(x)||*] < 6%, for all
x € R? with the covariance tensor x — C(x) := E[U;(x)®2] being 3 times smoothly differentiable, meaning

Hc(l’)(x)H < G,Vx, fori € {1,2,3}.

Theorem 6. Suppose Assumptions 1-5 and 7 hold. There exists a threshold 6 such that if v € (0,0), then (SGDA)
admits a unique stationary distribution 71, and

IE‘XNT[W [x] —xt = ’YA(x*) + O(’)’Z)/ (15)
where A(x*) is a vector independent of the choice of step-size .

Note that Eq. (15) is an equality (up to a second order term). In the setting of Theorem 6, this equality
gives a more precise characterization of the bias than the upper bound (11) applied to ¢(x) = x.

An immediate implication of Theorem 6 is that one can use the following RR refinement scheme to obtain
a better estimate of x*. Consider running two (SGDA) recursions with step-size ¢y and 27y and denote the
corresponding averaged iterates by (¥/);>¢ and (f?v) t>0, respectively. Let us denote by 7, and 7y, the
resulting unique stationary distributions. By our result on LLN (cf. Theorem 3), the averaged iterates (/)=

and (%77) =0 converges to Ey~z,[x] and Eyn, [y], respectively. Note that Eq. (15) implies that
(Exr, [22] = By, [y]) — x° = O(7?).

Therefore, the RR refinement of the averaged iterates, (2, — J?%'y)tzo, converge to a limit that is closer to the
optimal solution x* by a factor of .

5.3 Experiments

We conduct a series of experiments to empirically observe and validate our results. We focus on strongly
convex-concave games with two players, for which we have adapted the code of the repository of [22]. In
particular, for the first two sets of experiments (Figs. 2—4), we consider a strongly convex-concave min-max
game, min, cgps Max,, cga f(x1,%2), with f : R? x R? — R given by

F(x1,x2) = x{ A1xy — x5 Apxa + (%] B1x1)? — (x; Boxp)? + x{ Cxp,

where d = 50, each of Ay, A, By, B, € R¥*? is a random positive definite matrix, and C is a random matrix.
Note that the global solution of the game is x* = (x},x3) = (0,0) with value f(x],x;) = 0. The operator
associated with the above game is

V(x) = V((x1,%2)) = (Va f(x1,%2), = Vi f (31, %2))-

The stochastic oracle outputs V(x) + Z, where Z ~ N (0,?1) is Gaussian noise with ¢ = 0.5.

We started by plotting in Figs. 2a and 2b the squared error ||x; — x*||? for (SGDA) and (SEG) for step-sizes
v € {0.1,0.05,0.01,0.001}, corresponding to the four curves from top to bottom; the parameter a** for (SEG)
is set to 0.5. We observe a decay of the steady-state error as a function of the step-size. In fact, the decay

11
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Figure 2: Convergence and squared error under different step-sizes for SGDA and SEG.
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Figure 3: Results for 100 (light purple), 200 (light green), 1000 (light blue) iterations (or from right to left).

is almost linear for both algorithms, which is consistent with our theoretical bound (11) applied to the test
function ¢(x) = [|x — x*|.

The second set of experiments examines the central limit theorem (CLT). We use as a test function the
value of the game f(x;) evaluate at the iterate, and we observe the behavior of its averaged evaluations after
100,200 and 1000 iterations. To do so we run both algorithms with step-size y = 0.005 for the aforementioned
number of iterations and keep the sum of the evaluations, normalized with v/iterations. We repeat this
experiment 2000 times and report the histograms in Fig. 3. We observe how the distributions are concentrated
closer to the actual value of the game (which is zero) as the number of iterations is increased. In Fig. 4 we
run both algorithms in the previous setting for 1000 iterations and two different step-sizes 0.1 and 0.001. We
observe how the histogram is concentrated closer to the actual value of the game for smaller step-size.

Lastly, to investigate the effect of the RR refinement scheme, we perform an experiment on a slightly

more complicated game. Define the scalar function h(z) := log(1 + ¢*), which is convex. Consider a strongly
convex-concave min-max game with f : R x R — R given by

F(x1,x2) = h(x) 4+ h(=2x1) — h(x2) — h(—2x) + 0.1x% — 0.1x3 + 0.1x1 x7.
The operator V and the stochastic oracle are defined in the same way as before. The global solution of this
game is x* = (x7,x;) ~ (0.3268,0.3801).
We run the (SGDA) algorithm with two different step-sizes o and 2y, where v = 0.1. In Fig. 5, we plot

the error ||%; — x*||? of the averaged iterate % := 1 !, x; with the two stepsizes, as well as that of the RR
refinement scheme (cf. Section 5.2). The error achieved by the RR refinement is an order of magnitude better

than vanilla (SGDA). This is consistent with the bias reduction effect predicted by our theoretical result in
Section 5.2.
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Figure 4: Histograms for two different step-sizes. Green: y = 0.1. Purple: v = 0.001.
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Figure 5: Errors of the average iterates of SGDA and RR refinement.

6 Concluding remarks

In this work, we delve into the probabilistic structures inherent in Stochastic Extragradient and Stochastic
Gradient Descent Ascent algorithms, widely used in min-max optimization and variational inequalities
problems. By treating constant step-size variants of SEG/SGDA as time-homogeneous Markov Chains, we
establish a Law of Large Numbers and a Central Limit Theorem, revealing the existence of a unique invariant
distribution and the asymptotic normality of the averaged iterate. For a wide class of convex-concave games,
we characterize the intrinsic bias of these methods w.r.t. the game’s value. Lastly, we demonstrate that
the Richardson-Romberg refinement scheme enhances the proximity of the averaged iterate to the global
solution for quasi-monotone variational inequalities.

As a result of this study, several intriguing open questions arise. The extension of Markovian analysis
to broader operator families, and their potential applications in statistical inference, adversarial training,
and robust machine learning present exciting research opportunities. Investigating how the methods used
in this study can be applied to other established optimization algorithms, such as Optimistic Gradient
Descent Ascent, which requires higher-order Markov process analysis, is another promising line of research.
Exploring different geometries and studying robustness in reinforcement learning also offer interesting
prospects.
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A Background in Continuous-Space Markov Chains

In this preliminary segment, we furnish the basic concepts and tools for studying Markov chains defined
on a continuous state space. These results subsequently form the foundational basis for the theorems we
establish regarding our algorithms.

A.1 Basic Setup

To explain various concepts for a Markov chain, we first set up our space and identify the events of interest.
This process is grounded in the conventional framework of a s-algebra, which facilitates the comprehension
of these events. Formally, we denote the (sub)-c-algebra of F of events up to the t-th iteration with F;
(including the t-th iteration). We denote by B(C) the o-algebra of Borel sets of C. We also denote the Markov
kernel (Generalized Transition Matrix) on R?, B (]Rd) associated either with (SGDA) or (SEG) to be?

P(x,S) = P(x;11 € S|x; = x) almost surely VS € B(RY),Vx € R?, vt € N. (A1)

We also define the m-th power of the kernel iteratively: P'(x,S) := P(x,S) and for m > 1, we define

P (x,5) = / s P dX)P"(,S) forall x € R and § € B(RY). (A2)

Additionally, for any function ¢ : RY — R and any m > 1, we define P"¢ : R — R as

P"p(x) = / . ¢(x')P™(x, dx') for all x € RY. (A.3)
x'e

Definition A.1 (Time-homogeneous). A stochastic process ® = (P;){2,, is called a time-homogeneous
Markov chain with transition probability kernel P(x, A) and initial distribution y if the finite dimensional
distributions of ® satisfy

Py (@ € Ay, @1 € Ay, ... D, € Ay) = / / u(dyo)P(yo, dy1) -+ Plyn_r, An)  (Ad)
Yo€Ao Yn-1€An—1
for any n and all A; € B(R?).

A.2 Irreducibility, Recurrence, and Aperiodicity
Irreducibility.

Definition A.2 (—irreducible). A Markov chain is g-irreducible if there exists a measure ¢ on B(IR¥) such
that for all x € RY whenever ¢(A) > 0, there exists n > 0, possible depending on x, A such that that
P"(x, A) > 0. Per convention, we always take ¢ to be a “maximal” irreducibility measure, denoted by v,
and say that the chain is ¢y—irreducible.

For this definition we combine Proposition 4.2.1 and Proposition 4.2.2 from [34]. Consider a p—irreducible
Markov chain, we use B (R?) to denote the set of sets A € B(IR?) such that ¢(A) > 0.

Recurrence.
Definition A.3 (Recurrent). Consider a Markov chain ® = (®;);2, with transition kernel P. Let 174 :=
Yoo 1{®; € A} for some set A. Assume that ® is ¢-irreducible, then we say that

* (null)-Recurrent: The set A is called recurrent if E[r74 | P9 = x] = oo for all x € A. If every set in
B*(RY) is recurrent then we call ® recurrent.

21t would be clear from the context in which algorithm we refer to. If not we will specify it using subscripts.
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* Positive recurrent: The set A is called positive if limsup,,_, ., P"(x, A) > 0 for all x € A. If every set
A € B*(RY) is positive then ® is called positive recurrent.

* Harris recurrent: The set A is called Harris recurrent if P(74 = oo | ®p = x) = 1 for all x € A. If every
set A € BT (IRY) is Harris recurrent, then @ is called Harris recurrent.

Aperiodicity.

Definition A.4 (Strongly Aperiodic). An irreducible chain is called strongly aperiodic if there exists a set
A, such that there exists a non-trivial measure v; on B(IR) satisfying v1(A) > 0, and for all x € A and
S € B(RY),
P(x,5) = ui(S). (A5)
Looking at the bigger picture and drawing insight from traditional discrete space Markov chains, if we
make a selection such that S <— A, then we achieve P(x, A) > v1(A) > 0. This suggests that the set A is
associated with a self-loop, as it has a positive probability of returning to itself.

A.3 Small Sets, Petite Sets, and Minorization Condition

We next introduce several concepts that pave the way for systematically and efficiently establishing the
convergence rate of a Markov chain, other than in an ad-hoc manner.

We first introduce the Minorization Condition. Using this condition is similar in a way as thinking about
coupling.

Definition A.5 (Minorization Condition). For some é > 0, some C € B(X) and some probability measure v
with v(C¢) =0and v(C) = 1:
P(x,A) > 61c(x)v(A) forall A € B(R?),x € R%. (A.6)

If C was the entire RY, the condition requires every state in the state space to be within reach of any other
state. We could then minorize the transition probability with a density v scaled by a parameter 4. This is
equivalent to finding a sliver of a probability distribution where all the transition probabilities “overlap”
with each other; see Figure 6 for an illustration. However, in continuous spaces having C = R is usually
impossible. The set where such a condition holds is called “small”.

Definition A.6 (Small Sets). A set C € B(IR?) is called a small set if there exists an m € IN; and a non-trivial
measure vy, on B(IRY) such that for all x € C, B € B(R?),

P"(x,B) > vy(B) (A7)
The set C is called v,,;,-small.

Leta = {a(n)} be a distribution or probability measure on IN; and consider the associated Markov chain
@, with probability transition kernel

K= Y P"(x,A)a(n) x € RY, A € B(RY).
n=0

@, is called the K;-chain with sampling distribution a. We can interpret ®, as the chain ® sampled in points
according to the distribution 2. When a = 4, is the Dirac measure with é,,(m) = 1, then the K;;, -chain is
called the m-skeleton with transitional kernel P™. With this at hand we define below the petite sets.

Definition A.7 (Petite Sets). We will call a set C € B(IR?) v,-petite if the sampled chain satisfies the bound
Ka(x,B) > v4(B) (A.8)
for all x € C, B € B(RY), where v, is a non-trivial measure on B(R?).

Proposition A.1 (Proposition 5.5.3 in [34]). Ifaset C € B(R?) is vy,-small then it is vs, -petite for some &, > O.
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A.4 Foster-Lyapunov Arguments

Given that only small sets can be found in our setting, in order to prove geometric convergence to a unique
stationary distribution we will leverage the generalized version of Foster-Lyapunov condition, dubbed as
(V4) in the cited book [34].

The following theorem gives a sufficient criterion for the positive recurrence and existence of an invariant
distribution of a Markov chain in terms of a Lyapunov function V. Intuitively, the value V(x) for any state x
attained by Markov chain denotes “energy” or “potential” of that state. The idea is that if the mean energy
decreases for all but some small set, the Markov chain keeps returning to level-sets close to minimum of the
energy. That is, the Markov chain is positive recurrent.

Definition A.8 (Geometric Drift Property). There exists an extended-real valued function f : R? — [1, 0], a
measurable set C, and constants f > 0, b < co such that

Af(x) < —Bf(x) + b1c(x),x € RY,

where Af(x) = [, gs P(z,dy)f(y) — f(x).

0.8 A1

0.6 -

0.4

0.2

0.0

-1.0 =05 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 6: Example of transition kernel P(x, C) for x € RY
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B Omitted Proofs of Section 3

B.1 (SGDA) and (SEG) are time-homogeneous Markov chains in R

Lemma B.1. Given a constant step-size, the stochastic gradient descent ascent and stochastic extra-gradient as
described by Equation (SGDA) and (SEG) can be equivalently modeled as a time-homogeneous continuous Markov
chain in RY.

Proof. We start with (SGDA) simple case:
Xip1 = Xt — ’)’SGDAVt = X; — ’)’SGDA(V(JCt) + Ut(xt)). (SGDA)
By this definition we get that

P(x,B) = P(xt41 € Blx; = x)
(xr = v(V(xt) + Ur(x1)) € Blxr = x)
(x —=7(V(x) + U(x)) € B)

_ <u<x) e (% —V(x) + (—}yB)),

where (Ui(x));~ ~ U(x), since we assume i.i.d noise random fields. Hence, P(x, B) is shown to be
independent of both time t and preceding iterations, given the current state. This affirms that the stochastic
gradient descent model described by Equation (SGDA) indeed exhibits the property of a time-homogeneity,
substantiating its classification as a Markov chain.
For the case of (SEG), an equivalent form which will come at hand throughout our analysis is given
below
xt+1 — xl’ _ “SEG,)/SEGW+1/2
— xt _ D(SEG,YSEG‘/t+1/2
=x; — aSEG,)/SEG‘/t+1/2
= xp = a0 (V(xp11/2) + U1 2(xi41/2))
= xp — a2 — ™ (V () + Ui(xr))
— &y Uy 10 (xr = 7y (V(xe) + Ur(x1r))).-

Thus for the transition kernel we get that

(B.1)

P(x,B) =P (x;41 € Blx; = x)
=P(xr —ayV(xe = yV(x) — yUr(xt))

— ayUpy12(xe — vV (xe) — yUe(xt)) € Blxy = x)

=P(x —ayV(x —7V(x) — yUi(x))

)

—ayUpa/2(x —7yV(x) — yUi(x)) € B),

where Uy (x) ~ law(U%(x)), Uy 1/2(x) ~ law(UB(x)) and U (x) L UB(x), identically distributed. Thus,

P(x,B) = /

R pdfya ) (4) ]P(x —ayV(x =7V (x) = 9§) —ayUP (x — 7V (x) = §) € B) dg.

So again, P(x, B) is shown to be independent of both time t and preceding iterations, given the current state.
This affirms that the stochastic gradient descent model described by Equation (SGDA) indeed exhibits the
property of a time-homogeneity, substantiating its classification as a Markov chain, completing the proof for
the case of (SEG). |
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B.2 Geometric convergence up to constant factor

Fact1. Leta,b,c € RY, then the following holds
la+ b+l < 3(/lall* + [[]1* + [[e]|?). (B.2)

We split Theorem 1 into two different lemmas for each of the algorithms. We start by presenting
Eq. (SGDA).

Lemma B.2. Suppose that Assumptions 1-4 hold then the iterations (x¢);>0 of (SGDA), if the step-size is ¥ < %,
satisfy:

E[llxe1 — x| F] < (1= )f[lxo — 2|2 + ¢!

for some constants ¢ € (0,1) and ¢’ € (0, +o0) that depend on the choice of step-size, as well as the parameters of the
problem.

Proof. For simplicity, we drop the exponent SGDA of the step-size and we write -y for the constant step-size
used while the algorithm is run. We now start by writing

xesr =21 = [lxe =y Ve — 2|2

(B.3)
= [lre = x> = 29 (Vi 2 — %) + 22| VA%
By taking the expectation condition on the filtration F;, we have that

E[[|xe41 — x* |2 | Fe] = |lxe — x*|12 = 29(V(xe), 20 — x*) + ¥ E[|| Vi ]|* | F]
= |lxr — x*[|* = 29(V (xe), x¢ — x*) + Y E[||V(x1)|%] (B.4)
+ P E[| U (xe)|1* | 7,

since x; is Fy—measurable and E[V; | 7] = V(x;). By Assumption 4 we have that
E[||Ur(x0)[|*| Fi] < 0%, (B.5)
while Assumption 2 implies that
—29(V(xp), ¢ — x*) < —2uy|jxr — x*||* 4+ 277 (B.6)

Finally, using the assumption that the operator has at most linear growth (Assumption 3) we have that for
all x € RY,

[V < LA+ [|x]]) < L+ [l + [|x = x¥]]) =
V()| < L2(1+ R+ [|lx — x*|))?
<2L2((14R)* + ||x — x*[|?). (B.7)
By substituting Egs. (B.5)-(B.7) to Eq. (B.4), we get that
E[||lxpe1 — x* |12 | Fi) < (1= 2py +292L2)||x¢ — x*|> + (2Ay 4+ 292L2(1 4+ R?) + 4202). (B.8)
Now if
1—2uy+29%L2 <1
212 < 2uy

»
L2’

& 2y

& 0<y<
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2Ay+292L2(14+R?) +920?
C

and by letting 1 —c =1—2uy +29?L* < land ¢’ =

, we can rewrite Eq. (B.8) as
E[[[xts1 — x** [ F] < (1 —c)llxo — x*[|* +cc.

Therefore, we have
E[||xpe1 — x*[|?] < (1 =¢)||xg — x*||? + ¢ forall t > 0.

We proceed on proving a similar lemma for the case of (SEG). To do so, we first introduce and analyze
two intermediate steps.

Proposition B.1. Consider that (SEG) is run and let x* € X*, ¢t = V110 = V(x411/2) + Upi1/2(X411/2), where
. . . . 1
V, U satisfy Assumptions 2—4, v € R is a constant step-size. If v < — then

V3¢
Y E[lgl? | 7] < 29 E[{ge, x — x*) | Fi] +2(Ay + 30%97).

Proof. Consider the auxiliary variable £;,1 = x; — vg:, then we have

1261 =212 = e = 212 = 29 {ge, e — x*) + eI
By taking the expectation given the filtration F;, we have
E[[| €41 — %2 | Fi] = [lxe — x*|> = 29 E[(g1, %t — x*) | Fi] + 9> Elllgel|* | 7). (B.9)

Notice that

E[(gt,xt —x*) [ Ft] = E(V(xt11/2) + Upg1/2(Xe11/2), %0 — X7) | Fi]
[(V(xt31/2), 20 — x*) | Fi]
[(V(xt = yVh), x¢e — x7) | Ft]

E
E

Thus, Eq. (B.9) becomes
E[||#141 — x*[* | 7] =[lxe = x* |2 = 29 E(V (5 = 7Vi), 50 = 7 Vi — ) | Fi)
=2V E[(V(xe — Vo), Vi) | Fi] + v E[ll gl | 7).
We can now use Assumption 2 and we get
E[| £ —x*|2 | ) <llxe = 27| = 2py Bll|xe — 9Ve — x*|2 | Fi] + 2y
=29 B{V (xt41/2) + Ur1/2(Xe41/2), Vi) | F2)

+ 7 E[|lg:l* | 7]
<|lxe — x* |12 + 2y — 292 E[(g1, Vi) | Ft] + Y E[llge)|* | 7.

By using the identity ||a — b||? = ||a||?> + ||b||*> — 2(a, b) we get
E[l|£1+1 — 2|2 F] < [lxe = 27|12 + 247 + 7 Ellgs = Vil* | 7] — v E[| Ve[| | 7). (B.10)
Furthermore, by using Fact 1 and Assumption 3 we have that

Vi = gell® = IV (xt) = Vi(xr = yVi) + Ur(x) = Upsa/2(xp11/2) |
<3(IV(xe) = V(e = V)P + UG |2+ U121 172) )

< 3(LAIVER + 1 Ur(er) 12 + U (51 /2) 1)
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Thus Eq. (B.10) becomes

E[l|£i41 = "2 [ F) < xe = x* |2+ 92 (3029% = D) B[] | Fi] +2(Ay + 30%97),

1
where we also used Assumption 4 to bound the variance of the noises Uy, Uy 1/5. Now if ¥ < —— we have

V3¢

that
E[[|#11 — x| | Fi] < [lxe — x*[2 + 2(Ay + 30297).

Finally, notice that
E[||£141 — x*[1* | ] = llxe — x* |2 — 29 E[(81, x¢ — x*) | Fi] + v Ell|ge1? | 7]
< lxe — x| 4+ 2(Ay 4 30%92).

Thus,
VE[|gil? | F] <2y E[(ge, x — x*) | Fi] + 2(Ay +30%97).
|

The above proposition shows how the energy descent inequality is weaken due to noise introduced by
the noisy oracle. The next proposition aims to analyze the drift, i.e., drift; = yE[(gs, x; — x*) | F¢].

Proposition B.2. Consider that (SEG) is run and let drift, = yIE[(g:, xt — x*) | Ft], where g; is defined as in

1
Proposition B.1. If v < —————— and Assumptions 2—4 holds then
P fy 2u+ /3¢ P

—drift, < —%th — x*||2 4 (YA +39%07). (B.11)

Proof. Recall that gy = V;1/2 = V(x441/2) + Upy1/2(Xp41/2). We have

—drifty = —yE[(g¢, x¢ — x*) | F]
= —vE[(V(xt11/2) + Urp1/2(xe11/2), X0 — x7) | Fi]
= —vE[(V(xt —7Vi), xt — x*) | Ft]
= —yE[V(xi —yVi), 2 — YV = x*) | Fi] = YV E[(V (x: — Vi), Vi) | Fi]

IN

—prElllxe = Vi = 2P| F] + 94 = P BLV (0 =9 V), Vi) | A,

where we used the fact that x;1,, = x; — 7V; and the property of weakly quasi strongly monotone
(Assumption 2). We now use again the identity ||a — b||> = ||a||> + ||b||*> — 2(a,]), for all a,b € R?, Fact 1 and
we get

—drifty < — uyE[||lxt — yV; — x*||? | Fi] +9A

2
v
— 2 (Ellg:l? | 7+ EI VeI | 7] — Elllg: — Vil 7]
< — Wy E(llx = Vi — x|2| F] + 92
2
Y
- L (Ellgel? | 7 + E[Vi)2 | 7]
121133 1% —V(x)|?+|u 2 u 2) | A
+ L EB(IV(xi11/2) = V)2 + (U )2 + [ Ura o ]2 | F
< — uyE[llxe — Vi — x*|? | Fi] + 1A
,YZ

- L (Blligel? | 7] + EVi2 | 7))
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3 2
+ L (2P EViIR | 7]+ 202).
o
2

Furthermore, it holds that ||a — b||> > — ||b||? for all a,b € R?; thus by using this inequality and

rearranging we have
—drift; < — }%’Y | — x*||> + YA + 39202

2
- (1—2my = 3*@) B[] | A
2
i
— = Elllg:l* | 7]
< - %th — X*||*+ YA + 39707
2
- L (1= 20y = 342 B[Vl | 7).

In order to cancel out the last term of the above inequality, we require that 1 — 2y — 39%¢% > 0 or equivalently

2 2 2 2
2432 P+W)_ Since v > 0, we need that

rel 3 307
< THH VI 30
- 3(2
3¢2

T 3C2(u+ iE 1 30)
1
TR/ T

0<y

Thus, if v < we get

1
2;{—4—\@6

—drift; < —% l|x¢ — x*[|2 4 (YA +39%02).

|
With this machinery at hand we proceed to prove the following lemma.
Lemma B.3. Suppose that Assumptions 1—4 hold then the iterations (x¢);>0 of (SEG), if the step-size v < ————,
- 2u + NEY
satisfy:
E[l|x141 — x| | Fi) < (1= ¢)'llxo — x*||* + ¢ (B.12)

for some constants ¢ € (0,1) and ¢’ € (0,4o00) that depend on the choice of step-size, as well as the parameters of the
problem.

Proof. We start by analyzing the norm of the difference between the iteration x;,1 and the solution x*. For
the updates of (SEG) we use -y to denote the step-size and « to denote the scaling parameter and drop the
exponent (SEG) for simplicity.

NP = llxe = ayVigaso — 27|12
* HZ

|l xp41 —x

=[xt = x*|1> = 22 (Vi jo, %0 = %) + 0292 | Vi |1
Now by taking the expectation on both sides given the filtration F; we get

E[llxer1 — x| | 7] = |lxe — 2||? — 2adrift; + a®o B[] ] | 7).
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where g, drift were defined in Propositions B.1 and B.2. Now from the same propositions we get that

E[||xt1 — x*||% | Fi] < ||xr — x*||> — 2adrift; + 2a2drift; + 2a% (A + 30°9?)
< lxr = x> = 2a(1 — a)drift; 4 2a? (A + 30292)

< lar = x| (1 — a(1 — a)yp) +20(3v%0% + qA). (B.13)

Now letc = a(l —a)ypand ¢’ = M Since y < ———— < i, it holds that ¢ < 1.Thus, we have
2u++/30  2u

E[[|lxi41 — x*|1%] < (1= ¢)'[lxg — x*[* + ¢ (B.14)

and the proof is completed. n

Theorem B.1 (Restated Theorem 1). Consider that either (SGDA) or (SEG) is run with a stochastic oracle satisfying

Assumptions 1—4 respectively with step-sizes "™ < L. rrEe < and o € (0,1) and let (x¢)¢>o be the

1
L2’ 2u+ /3¢
iterations generated. Then, there exists a pair of constants (c1, ) 5°45%} that depend on the choice of step-sizes, as
well as the parameters of the model, with ciSGDA’SEG} € (0,1) and CESGDA’SEG} € (0, 400) such that

N
Efllxee — 1) < (1— el ) g — 272 e, (B.15)
for any initial point xy € RY.

Proof. Proof follows by combining Lemma B.2 and B.3. |

B.3 One-step quasi-descent inequality
In this subsection, we provide the proof for one-step “quasi-descent” inequality stated in Corollary 1.

Corollary B.1 (Restated Corollary 1). Under the conditions of Theorem 1, for all x* € X* there exists an extended

{scpasec} {scpasec}

real-valued function € : RY — [1, 00] and constants c| €(0,1),¢c5 € (0, 00) such that

IE[E(XH_L x*) | ]:t] < Ciscm,sgc}g(xt, x*) + CéSGDA,SEG}'
Specifically, £ (x;, x*) = ||x¢ — x*[|2 + 1.
Proof. For (SGDA), by Eq. (B.8) in the proof of Lemma B.2, we have
Elllxe1 —x* 2+ 1] F] < (1 =207 +29212) (Jlxe = 2P +1) + (207 + 207 + 297 L2R2 + 7702).
Let c; = 1 —2uy +29°L? and ¢ = 2Ay + 2uy + 29*L?R? + 7?02, By the step-size condition, we have
c1 € (0,1) and ¢, € (0,00) and thus complete the proof for (SGDA).
For (SEG), by Eq. (B.13) in the proof of Lemma B.3, we have
Elllxis — 22+ 1] A < (1 a(l - a)m) (o — 22+ 1) +a(6720> + 294+ (1~ ) 7).

Now letc; = 1 — (1 —a)yp and c; = a(679%0% +29A + (1 — a)yu). Similarly, by the step-size condition,
we have c; € (0,1) and ¢, € (0, 00) and thus complete the proof for (SEG). [ |
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C Omitted Proofs of Section 4

C.1 Minorization Condition and Geometric Drift Property

Lemma C.1 (Restated Lemma 1). Let Assumptions 1-5 be satisfied for (SGDA) and (SEG). Then given the
step-sizes specified in Theorem 1 it holds that for both algorithms the minorization condition is satisfied. Namely there
exist constant 6 > 0, probability measure v and set C, dependent on the algorithm such that v(C) = 1 and v(C°) = 0
such that

Prlx; 1 € Alx; = x] > 61c(x)v(A)  forall A€ B(RY),x € R%, (C.1)

Proof. We again split the proof in two different parts for each one of the two algorithms. For the sequence
we fix a point x* € X* and we consider the energy function defined as £(x) = ||x — x*||? + 1.

SGDA: We start by observing that the Energy/Lyapunov function £(x) := ||x — x*||? + 1 is a function
unbounded off small sets, i.e., the sublevel sets C(r) := {x € R%|€(x) < r} are either empty or small for
all ¥ > 0. Indeed assume that C(r) = {x € R%&(x) < r} is non-empty (r > 1), then the sublevel sets
correspond to some ball B(x*,y/r — 1) for r > 1. We will prove that the ball B(x*,\/r — 1) for r > 1is
actually vq-small for m = 1 (see Definition A.6).

P(x,B) = P(x;41 € Blxt = x)

P(x; — y(V(x¢) + Ur(xt)) € Blxr = x)
=P(x —(V(x)+ U(x)) € B)
—r(uweE-vw)+(-:8),

r Y

where U;(x) ~ law(U(x)) for all + > 0. With this notation we want to emphasize that once x; is fixed the
distribution of the noise is independent of the time-step, since we have assumed that at each time-step the
noises are independent and identically distributed random fields. Thus, we have

P(x,B) = /I3 . Pdfu(x)(x ; P V(x))dp C2)
. x—8

= //SEB (b Py (= = V(x) dp (C3)

=v(B) (C4)

Notice that v;°"* is a non-trivial measure since if we set B = C(r), which is a non-empty and bounded set,

we have
MCr) = [, inf pdt
) = [, int g

which follows from Assumption 5.
We now fix r = rg > 1 and proceed in proving the minorization property. Consider the measure

x—x'

— V(x)) dx' >0,

SGDA

X

7N(X) = 1(X C C(ro))vsl/gg(c((rg)) for all X € B(R?). It is easy to verify that 7574 (C(r9)) = 1 and
1o

7;5P4(C(ro)€) = 0. Additionally, if {x & C(rg) or A & C(ro)} we have that P(x, A) > 5]1C(r0)(x)17,50GDA(A) =

0. Also, if {x € C(rg)and A C C(r0)} we have P(x,A) > v (A) = (S]IC(,O)(x)ﬁfOGDA(A), where § =

;P (C(r9)) > 0 and thus the proof is completed.

SEG: We continue with the proof when (SEG) is run. Similarly as before we have that
P(x,B) =P(x;41 € Blxt = x)
=P (xt —ayV(xe = yV(xt) — yUs(xt))
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— ayUpy12(xe — vV (xe) = yUe(xt)) € Blxy = x)
=P(x —ayV(x — 7V (x) — yUi(x)

)
—ayUp1ya(x —7V(x) = Ui(x)) € B)

where Ug(x) ~ law(UA(x)), Uy y1/2(x) ~ law(UB(x)) and U4 (x) L UB(x), identically distributed. Thus,

P(x,B) = /&W Pdfya ) (@) P (x =y V (x = 7V (x) = 98) — ayUP(x — 1V (x) = 78) € B) d¢

x—p

- /ﬁeB e P Py (m —V(x=V(x) - vé)) ag dp
x—p
= /;;EB /;;em,]) PAfia ) (E)PAfin (v (x)-ye) ( V=V - 76)) dg dp.
Notice that since x € C(r), we have that x — 7V (x) — ¢ € C(r) — 7V (C(r)) — vB(0,1). Thus pdfyay (t) >
infyec(r) PAfya gy (t) > 0 forall t € RY and pdfys(, () qg) () = infpeciry—qvic()—yBo1) PAus(p) (1)

Hence, we can define the following measure for any set B:

. . x—B
¢ (B) = f pdf f pdf — -V dc dp,
Vi (B) /,BEB /gelB(o,l) xec(n ¥ () (€) pec' ¥ UB(P)( ay (p>> ¢dp

where C' = C(r) — vV(C(r)) — vB(0,1). Notice that the measure is non-trivial since for some fixed

r =1y > 1 we have that 17:°(C(rp)) > 0 since C(r¢) is non-empty. As in the case of SGDA we define

_ .VSEG (X)
Tp(X) =1(X C C(fo))m'
1o
Thus, we have that
P(x,B) > 7;;°(B).
By repeating the exact same methodology as before the result follows. |

Corollary C.1 (Improved version of Corollary 2). Under the setting of Lemma 1 the functions fi := &, fo := V€,
f1, fo : R? — R presented in Corollary 1 satisfies the (V4) Geometric Drift Property of [34] for the Markov Chain
generated either by (SGDA) or (SEG). Namely it holds that there exist a measurable set C, and constants p > 0,
b < oo such that

Afi(x) < —Bfi(x) +blc(x),x € RY, (C.5)

where Afi(x) = f,cxs P(z,dy)fi(y) — filx) fori € {1,2}.

Proof. Based on Definition A.8 we need to show that there exists a function f : R? — [1, ), a measurable
set C and constants B > 0,b < oo such that Af(x) < —Bf(x) +blc(x) for all x € RY. We start with the
observation that

Af(x) = /yew P(x, dy)f(y) = f(x) = E[f (xp41) — f(xe) | Fi = {x¢ = x}]

where x; that is generated either through (SGDA) or (SEG). Furthermore, notice that the function defined in
Corollary 1, £ : R? — [1, ) is extended-real valued and also it holds that

]E[E(xt+l) |]'—t : {xt — x}] S Ci{SGDA,sEG}(E-(x) +C§SGDA,SEG}

with ¢} € (0,1) and i € (0, +c).
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Similarly, for the function V€ we have that

Ely/e(xa) | 7 (v = x}] < \JE[E (i) | 7 {3 = x)]
< \/CFGDA/SEG}E(X) + CéSGDA/SEG}

Now notice that for any function £ which is unbounded off small sets and for all x € RY satisfies

E[E(xp1) | Fr: {xr = x}] < c&(x) +,

or equivalently
E[E(x1) | Fi: {xe = x}] - £(x) < —(1 - )€(x) + ¢,

we have that it satisfies the geometric drift property for any set C = {x € R?: £(x) < ( 12jlc) } and constants
B = 1;C and b = ¢’. Indeed,
¢ <1c(x)d +1ce(x) - CE(x) for all x € RY.
Thus,
EIE(xi) | it (= x)] —£(x) < —(1 - 0€(x) + Le(x)e + Los (1) T “£(x)
< 1% () T e
The last inequality follows from the fact that 1¢c(x) < 1and c € (0,1). |

C.2 Invariant Measure, Total Variation Convergence and Limit Theorems

Lemma C.2 (Restated Lemma 2). The corresponding Markov chain sequences (xt)>o for (SGDA) and (SEG) have
the following properties:

e They are —irreducible for some non-zero o-finite measure  on R? over Borel o-algebra of RY.

* They are strongly aperiodic.

» They are Harris and positive recurrent with an invariant measure.

Proof. We prove each one of the properties above separately.
e (Irreducible): Consider any non-zero o-finite measure ¢ in Borel c-algebra of R¥. From the proof of
Lemma C.1 for (SGDA) we have
x—a
i

P(xi1 € Alx; = x) = / _ ey (= = V() da

By Assumption 5 and for any A C B(IRY) with (A) > 0 we have that {x} C B(x,1) and there exists
€ > 0 such that B(ag, ¢) C A, for some gy € A. Thus,

Pl A) > [ pdfy ("~ V() da
> [ infpdey (- V() da
d€B(agp,e) x€B(x,1)
> 0.
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Similarly, for the case of (SEG) and by repeating the same argument for some non-zero o-finite measure
@ in BR? algebra, we have that

X —a

P(x,A) = /a » /E;GB(OJ) Pdfya () (E)PAfus (v v () -9¢) ( oy Vv - 75)) 4¢ da

X—a
> inf df; ;4 - inf pdf — =V dc¢ di
- /ﬁEIB(aO,e) /cf,e]B(O,l) e uA () (8) pecP UB(P)( ay (‘0)> G da
>0,

where C = B(x,1) — vV (B(x,1)) — yB(0,1). The strict positivity for both cases follows from Assump-
tion 5. Thus, by Definition A.2 the sequences are ip-irreducible.

e (Strongly Aperiodic): This is an immediate consequence of the proof of Lemma C.1, since the sets C(r)
are small and have positive measure for the measure we constructed.

* (Recurrent with invariant measure): Given that the Markov chain is yp-irreducible and aperiodic, from

Theorem 15.0.1 (Geometric Ergodic Theorem) in [34] we have that the chain is positive recurrent and has
an invariant measure. This is true since we have proven the geometric drift property (cf. Corollary C.1)
for a small set, which is also a petite set by Proposition A.1.
The fact that the Markov chain is also Harris is a consequence of Theorem 9.1.8 of [34]. For completeness,
we mention here that if a chain is ip-irreducible and there exists a function f that is unbounded off
petite sets such that Af < 0 then the chain is Harris recurrent. All these requirements are direct
implications of the results presented so far, particularly the proof of Corollary C.1 and the current
lemma. As such, the Markov chains induced by the stochastic gradient descent models in Equations
(SGDA) and (SEG) are demonstrably Harris recurrent.

Theorem C.1 (Restated Theorem 2). Let Assumptions 1-5 be satisfied for (SGDA) and (SEG). Then given the
step-sizes specified in Theorem 1 it holds that

1. (SGDA) and (SEG) iterates admit a unique stationary distribution n;{fcm’sm} € Pz(le ).

2. For a test function ¢ : RY — R satisfying that |¢(x)| < Ly(1 + ||x]|) for all x € IR‘éO,for some Ly > 0 and

for any initialization xo € R? there exist p};frDA'SEG} € (0,1) and Kiﬁgﬁm} € (0, 00) such that:

]Ext [(P(Xt)] — ]Ex~7r§SGDA’SEG} [(P(X)] ‘ < K;fJ(C;OD:/SEG} (p;l{)fiDA/SEG})t. (C6)

{scpasec}
7 .

Hence, (SGDA) and (SEG) converge geometrically under the total variation distance to 7t
3. Finally, for any test function ¢ that is {y-Lipschitz we have that

B, sonseo [9(2)] — 9(x")| < b/ DLwovse), )

for some constant D{sepasec} o max (A, y)/ .

Proof. The first part of the theorem follows from the fact that the induced Markov chains are Harris recurrent
and aperiodic with invariant measure and have the geometric drift property; thus from Strong Aperiodic

Ergodic Theorem (See Theorem 13.0.1 in [34]) the measure is unique and finite. Additionally assume that

X ~ m{fGDA/SEG}. Then by the invariance property (x;);>0 ~ néSGDA'SEG}. Using Corollary 1 for some arbitrary

fixed x* € X*, there exist two corresponding constants (ciSGDA’SEG}, CESGDA’SEG}) such that CFGDA/SEG} € (0,1) and

CESGDA,SEG} € (0,00) that satisfy

]E[thJrl . x*HZ +1 ‘ }—t] < CiSGDA/SEG}(||xt _ x*HZ + 1) + CESGDA,SEG} = (C8)
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iSGDA/SEG} + CéSGDA/SEG} 1

E, _sonso [[[x = x°[[2] < = O(max(A,7)/p) < oo. 9)
v

. CiSGDA,SEG}

Since ||x*|| < R, the above inequality implies that ﬂiYSGDA'SEG} € Po(RY).
For the second part, we will use the geometric convergence theorem for Harris positive strongly aperiodic
Markov Chains endowed with geometric drift property (See 16.0.1 in [34])

[p(x)] < Lo(1+[[x[]) < Lp((R+1) + [lx —x™[) < Lp(R+1)(1 + [[x — x™[])
< V2Ly(R +1)1/E(x) < max(1, V2Ly(R +1)) - &' (x) = '€/ (x)

where ¢ := max(1, V2Ly(R + 1)) and €’(x) := /€(x). Notice that Corollary C.1 certifies that £ also
satisfies geometric drift property. Additionally, since ¢’ > 1, £”(x) := ¢’£'(x) also satisfies the geometric
drift property. Hence we can prove that (SEG),(SGDA) are £”-uniformly ergodic (Theorem 16.0.1 Condition
(iv) in [34]). Therefore, from the equivalent condition (ii) of the aforementioned theorem, there exist
r, . €(0,1),R, € (0,00)such that

Ly Lops

IPo9(x0) B, _ s [9(0))| < R, 16 1€ (x0)],

thus by setting «,, . N

variation distance it suffices to address only test functions that are bounded by 1. Thus there exist constants
r, € (0,1), R, € (0,00) independent of the function such that

fsconstc) , R, 1€ ""(x9)| and péﬁmm} i=r,,, we get the requirement. Finally for the total

up [PAp(s0) — B, o 99]] < Ry 1€ (o),
<1

which implies the geometric convergence under total variation distance via the dual representation of Radon
metric for bounded initial conditions [48].
For the last part, we start by linearity of expectation and Lipschitzness of ¢:

E, _conse [9(0)] = 9(6") = [E,__peonsir [9(3) — $(x")]
SE_ e [9() — ¢

< ]Ean_’{ySGDA,SEG} [&p”x —x* ||]

X~TT

< f(p \/]Exwm{yscDA,SEG} [Hx — x* HZ]

< 64)1 /D{SGDA/SEG}

where D145} o max(A, ) /i by Eq. (C.8).
]

Below we use the following notations. The distribution 7t refers to n,‘{YSGDA’SEG} for respective algorithms.

For any function ¢’ : RY — R, we introduce the shorthand
!/ L /
St(¢') ==} ¢'(xr);

t=1

in addition, we use 77(¢’) to denote the expected value of ¢’ over 7, i.e., T(¢') = Exr[¢p'(x)].
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Theorem C.2 (Restated Theorems 3 and 4). Let Assumptions 1-5 hold. Then for choice of step-sizes specified in
Theorem 2 and any function ¢ : R? — R satisfying 7t(|¢|) < oo, we have that

.1 1
Th_r}r;o TST((P) = Tlgrolo T tgé(p(xt) =n(¢p) as., (Law of Large Numbers for (SGDA),(SEG))
and that
T1250 (¢ — 71(9)) L N(0,0%(9)), (Central Limit Theorem for (SGDA),(SEG))

where 02 (¢) := limr_c0 + Ex[S2(¢ — 7t($))].

Proof. According to Theorem 17.0.1 in [34], the Law of Large Numbers and the Central Limit Theorem, as
described in Theorem C.2, hold for positive Harris chains with invariant measures, given that they exhibit
&*-uniform ergodicity. To complete the proof, it is necessary to demonstrate that a function ¢ with linear
growth fulfills the conditions of Theorem 17.0.1. This can be achieved by proving the existence of an energy
function £*(+) satisfying (i) the (V4) geometric drift property in [34] and (ii) |¢(x)[> < £*(x).

P(0)[> < L1+ [|1x])? < LA+ R+ [lx — x*[)* < LG+ R)>(1 + [|x — x*[|)?
<V2L3(1+R)2 /(14 |x — x*]]2)
< max(1, V2L3(1 4+ R)?)/ (1 + ||x — x*|2) 1= €% (x)

By Corollary C.1, we get that £* satisfies geometric drift property, thus proving that (SEG) and (SGDA) are
E*-uniformly ergodic. We complete the proof of Theorem C.2. |
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D Omitted Proofs of Section 5

D.1 Min-Max Convex-Concave Games

Theorem D.1 (Restated Theorem 5). Let Assumptions 1-5 hold then the iterates of (SGDA), (SEG) when run with

the step-sizes given in Theorem 1 admit a stationary distribution n,{ySGDA’SEG} such that

E, _ onsio [Gapy (x)] < ey, (D.1)

where Gapy, (x) is the restricted merit function Gapy, (x) := sup .. v« (V(x), x — x*) and c € R is a constant and
depends on the parameters of the problem.
Proof. From the analysis of (SGDA) in Lemma B.2 (cf. Egs. (B.4) and (B.7)) we have that
e =412 < e = 2112 = 29V (or), 2 = 2%) = 29 (Ui (2), 2 = 27) + 2V () + Ui (x0) |17,
V()2 < 2L2((1+R)? + [|lx — x*|%).

Since By, ~r, [ X411 — *[|?] = Ex,~r, [[|x: — x*[|*] we have that
1
by Exiorr, [(V(x0), 2 = 2)] € 2B, [L((1+R)? 4 [[xt — x*[[))] + 2 Ex o, [ U (x1) |17])
< 2L%((1+R)? + 2 Ey, o, [[| 20 — x*||?]) + 207
< 2L2((1+R)? +2¢5™) +20°
< max 2L2((1+4R)? +2c5™) + 202
I
'YE(Orgz)
<cC

where C = max ( n )[2L2((1 + R)? + 2¢5°4) + 202 (Recall that ¢ depends on the step-size).
1€(0, 5
/2
For the case of (SEG), it easy to see that Gapy,(x) < /||x; — x*|*>. So the rest of the proof is derived by
Theorem 1, using dominant convergence theorem for Ey,, ~x, [[[x1+1 — x*||*], as well as the invariance
property that xe ~ 77, if we initialize xo ~ 7. |

We next show the connection of Duality-Gap, and Gapy, for a convex-concave function fand V =
(Vof, =Vof):
Duality-Gap((6, ¢) = max f(6,¢') — min f(6',¢)
¢'€R%2 9'cR%

= (f(6,9) — min £(6',¢)) — (f(6,¢) — max V(6,¢))
0’'eR“ ¢'eR%2
< (V(6,9),(6,9) = (67,¢")),

where the last step holds since f is convex (resp. concave) in its first (resp. second) argument. Thus if we call
x = (0,¢), x* = (0*,¢*), we have

Duality-Gap (6, ) < Gapy, (x).
Additionally, it is easy to see that
V(0,¢) < max V(0,¢') = Duality-Gap(0,$) + min V(0',¢) < Duality-Gap(0,$) + max min V(¢',¢')

¢'eR%2 ¢'eR% ¢’'€R% ¢/ cRM
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and

V(0,¢) > min V(0',¢) = max V(6,¢’) — Duality-Gap(6, ¢) > — Duality-Gap(6,$) + min max V(¢',¢").
¢'eR%M ¢'€ER%2 0'eR™ ¢'cR%2

By applying the expectation with respect to the invariant distribution and Von-Neuman’s minimax theorem
we get the desired result in Eq. (14).
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D.2 Bias Refinement in Quasi-Monotone Operators

Lemma D.1. In the setting of Theorem 6 the moments Mom(k) = E[||x; — x*||¥] are bounded by a function of fi(7)
where vy is the step-size of (SGDA) for k € {1,2,3,4}.

Proof.
Second moment. We start by analyzing the second moment

xp1 — )12 =llxr — YV (xr) — yUp(xe) — x*|1?
<|Jxp — x| = 29 (V (xg), xp — x*) — 29 (Up(x¢), x¢ — x¥)
+ 2920 || xp — x*|| 4 29| U (xe) |-

We now apply the expectation and quasi strong monotonicity of the operator and get

E[[l 21 — x| | ] < lxe = 2P (142926 = 2p) + 29707

By choosing 1 + 2922 — 2ypu < 1 — yu equivalently v < 212 we have
E[]|x141 — x*[*] < o — 2" [2(1 = )" + 2970 Z,
2720
< lxg — x*[|2(1 — AL Nt S
I 171 =7m) T
2902
< flxo = P =)+ =

Thus if x ~ 71, where 71, is the invariant distribution of the iterates of (SGDA) we have that

oy
[lx — x> d(7(x)) <2—
/ I3
since lim; 0 Xt ~ 7T,.

Fourth moment. For the fourth moment, similarly as before we have that

241 = 1 =(llxea — x*%)?
= ([l — x* P = 29V (xt) + Us (xe), 36 — x*) + 72|V (xe) + Ui (x1)[|2)?
=[x = x|+ 42 ((V () + U (), 20 = ) + 9|V (xr) + Us(x) [|*
— dylxe — x|V (x) 4+ Up(x2), x — x¥)
— 473||V(xt) + Ut(xt)Hz(V(xt) + Up(x), xp — x*)
+ 292V (xr) + Us(x) ]| ||xr — x*|?

<l — ot |* + 4P [l — 22 € |xe — |2 + 2| U (x0) ) (D.2)
o B | — x| + 8] U () ) (D.3)
— deyplae — x| — 4yl — 2P (Un (), 2 — 1) (D.4)
+49° (468 o — P + 4 (x0) [P) e — 27| (D.5)
4P (e — 2 U o) 2| e — %), (D.6)

where we used in the second summand Eq. (D.2) the Cauchy-Schwarz inequality, Lipschitz continuity of
the operator and the identinty ||x + y||> < 2||x||? + 2||y||?. For the third one Eq. (D.3) we used the identity
lx +yl* < 8|x||* +8|ly||* Lipschitzness of the operator. For the fourth one Eq. (D.4) we used the quasi
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strong monotonicity of the operator. For the firth one Eq. (D.5) we used Cauchy-Schwarz inequality and
the identity ||x + y||> < 2||x||? + 2||y||? and Lipschitzness of the operator. Thus in the right-hand side of
the above inequality we have constant terms, the ||x; — x*||*, ||x; — x*||? and ||x; — x*||. Specifically, by
rearranging we get

|xp1 — X |1* <[l — x* |4 (1 + 89202 4+ 890 — dyp 4 167308 + 4+242)
+ e = 221292 | U (xe) )
+ e — 2 (167U () [P — 4llee — 2|2 (U (3r), 2 — x%)
+ 8% [ U (xe) |
Applying the expectation given the filtration F; and setting 7 = max{(2, £3, /*} we have
E[llxe — x*[*| A <Elllxeen — 2 *| F] (1 +162(7% +9° +9%) — 49p)
+E[||lxe — x*|?| A (129%07)
+E[l|lxe — ||| F) (1676 0m”) + 87 o™
By choosing step-size such that

{ . <1 for simplicity
16E(7> +9° + %) —dyu < —29p

we have that
E[||xp1 — x*[[* [ il (2yn) <E[|lx: — x*|*| F](129%07)
+ E[||x: — x*|| | Fi] (1670 ) + 8740 v

Now consider x ~ 7ty and let Eyxr, [[lx — x* ] = Mom(k). Notice that the first moment is also bounded by
O(\/y/ ) since from Eq. (B.3) and Lipschitzness of the operator we have

1 — 2|2 < (1= 2p7 + 92 e — ¥ |1+ [ U (x|
Thus, combining all these we have
Mom(4)2uy < Mom(2) O(7%) + Mom(1) O(7*) + O(7*4).
equivalently
Mom(4) < Mom(2) O(7/p) +Mom(1) O(v*/ ) + O(+*/ ).
But Mom(2) < O(v/p) and Mom(1) < O(y/7y/u), thus
Mom(4) < O(+*/?),
which implies that there exists ¢ < cg max{éKm3, S, 0, 02} such that
Mom(4) < cy?/u.
]

Theorem D.2. [Restated Theorem 6] Suppose Assumptions 1-5 and 7 hold. There exists a threshold 0 such that if
€ (0,0), (SGDA) admits unique stationary distribution 1, that depends on the choice of step-size, and

Ex~rlx] = x* = 7A(x*) + O(7%), (D.7)

where A(x*) is a vector independent of the choice of step-size .
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Proof. Let X = [pa X7y (x) dx = Exor, [x] and let v < min(ypg, 75Lg,) := 0 such that Lemma D.1 and
Theorem C.1 hold. Assume that we run (SGDA) (xt)>0 and xg ~ 77,; since the algorithm is initialized with
the invariant distribution, then all the iterations inevitably follow the invariant distribution. We start by
applying Taylor expansion, on the operator, of second and third order around the solution x*

V(ix)=VV(x")o[x—x*+ % V2V (x*) ® [x — x*]> 4 Ress(x), (A)

V(x) =V V(x*)®[x —x*] + Resp(x), (B)

where Res;(x), Resz(x) are the corresponding residuals of the Taylor expansion for which it holds that
sup, e {||Resz(x)[|/[lx — x*||3} < oo and sup, ga{[|Resz(x)||/||x — x*||*} < co. Notice also that

/ Resz(x) 7, (x) dx < C3/ |x — x*|37t, (x) dx < csMom(3) < O(y*/?), ©)
xeR4 x€R4
/ Res (x) 77, (x) dx < ¢ / x — %272, (x) dx < c;Mom(2) < O(y). (D)
x€R4 x€R?

Additionally, by definition of (SGDA) we get that x; = xo — YV (xg) — yUp(xp). Since xo ~ 77, we have that
x1 ~ 7 and thus we have

Ex~m, [x1] = Exy~m, [x0] — ’Y]Exowry[v(xo)] - 'Y]Ex()wry[uo(xo)}f

which implies that
lEme[V(x)] =0. (E)

With these equations at hand, we proceed and take the expectation of (A) with respect to the invariant
distribution, combining also (C) and (E) and we get

VV(x")ox—x"]+ 5 , V2V(x*) © [x — x* 2y (x) dx = O(7%/?). (D.8)
x€R
Again we focus on the first update of (SGDA) and we have
x1 = x0 —yV(x0) — yUo(x0)

x1—x"=xg—x" =y (VV(x")® [xg — x*] +Resa(xg)) — yUp(x0)

xp—x" = (I—y(V(x*)) ® [xg — x*] — yResa(x9) — yUo(xp)-
We now compute [x; — x*]?> = (x; — x*)(x; — x*) " and apply the expectation with respect to the invariant
distribution and the noise and we have

Exr, [[x = 2] = (I =y VV(x") © Exer, [(x = x*)?] © (I = 7V V(x")) + 9% Exyerr, [[Uo(x0))?]

o ’)//XG]Rd Res3(x) © (1= 7(V(x*)) © [xo — 2"ty (x) dx + 97 + -

75/2

This leads to
Exr, [[x — x*]%] = 7yQ(x*) Exgmr, [[Uo(x0) "] + O(v*/?),

where Q(x*) := (VV(x*) @I+ [0V V(x*) —yV V(x*) ® V V(x*)) !, which is invertible since
VVX*)OI+IoVV(") —yVVE)oVVE") =VV(E") oM+ Mx")oVV(x,
where M(x*) := [ — /2 V V(x*). By quasi-monotonicity around x* and by choosing v < min(2L,6") := 6

we get that the tensor Q(7*) is positive definite tensor.

36



By applying a second-order Taylor expansion about x* in Op(x) := [U;(x)]?, and utilizing the same
reasoning as above in combination with the differentiability of the noise tensor (see Assumption 7), we
derive the following:

B, [U(%)]7]
B, [[Us(x)]2 © [x — x°]]

[U(x*)]* + O(7) (D.9)
(Ut (x*)]? © [Exr[x] — x*] + O(7). (D.10)

Combining (D.8),(D.2),(D.9), we get that

£ox = SV VE T 0 VAV © (100) Bxper, [Uo(x0) ) + O(57/2) + 0(12),

which implies that

- = —%[V V)] o VAV (x) © (1Q(x*) @ {[U(x*)]* + O(1)} + O(1*3)) + O(7*?),

or equivalently
X —x* = yA(x*) + O(7?).

The rest of the proof has the goal to improve the last term the order to O(+?).
1. We have seen that via (D.2),(D.9),: Eyr, [[x — x*]?] = 7Q(x*) © [Ur(x*)] + v?Q(x*) + 0(7?)

2. With similar calculations we can prove that: Exr, [[x — x*]°] = ¥*B(x*) + 0(7?)
Using 4-th order taylor again we get the following equality

x1 —x* =xp—x*
1
—y(VV(*)ox—x"+ 51 V2V(x*) ® [x — x*]?
1
ta V3V (x*) ® [x — x*]* + Resy(x))
— Uo(x0)
Applying expectation in the above equality and combining the bounds (1.) and (2.), we have that
1
VV(x*)o[x—x*]+ 5 V2V(x*) © By, [[x — x*]7]
n =0 (D.11)
% V3V(x) e Exr, [[x — x*]3] + Exor, [Resa(x)]

By applying the fourth-moment bound for Ey, [Res(x)] = O(7?) we get the promised result. |
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