arXiv:2305.15804v1 [cs.DS] 25 May 2023

Smoothed Complexity of SWAP in Local Graph Partitioning

Xi Chen* Chenghao Guo®
Columbia University MIT
xichen@cs.columbia.edu chenghao@mit.edu

Emmanouil V. Vlatakis-Gkaragkounis? Mihalis Yannakakis$

University California, Berkeley Columbia University

emvlatakis@berkeley.edu mihalis@cs.columbia.edu

May 26, 2023
Abstract

We give the first quasipolynomial upper bound ¢nPY198(") for the smoothed complexity of the
SWAP algorithm for local Graph Partitioning (also known as Bisection Width), where 7 is the number
of nodes in the graph and ¢ is a parameter that measures the magnitude of perturbations applied
on its edge weights. More generally, we show that the same quasipolynomial upper bound holds for
the smoothed complexity of the 2-FLIP algorithm for any binary Maximum Constraint Satisfaction
Problem, including local Max-Cut, for which similar bounds were only known for 1-FLIP. Our results
are based on an analysis of cycles formed in long sequences of double flips, showing that it is unlikely
for every move in a long sequence to incur a positive but small improvement in the cut weight.

1 Introduction

Local search has been a powerful machinery for a plethora of problems in combinatorial optimization,
from the classical Simplex algorithm for linear programming to the gradient descent method for modern
machine learning problems, to effective heuristics (e.g. Kernighan-Lin) for basic combinatorial problems
such as the Traveling Salesman Problem and Graph Partitioning. A local search algorithm begins with an
initial candidate solution and then follows a path by iteratively moving to a better neighboring solution
until a local optimum in its neighborhood is reached. The quality of the obtained solutions depends of
course on how rich is the neighborhood structure that is explored by the algorithm. Local search is a
popular approach to optimization because of the general applicability of the method and the fact that the
algorithms typically run fast in practice. In contrast to their empirical fast convergence, however, many
local search algorithms have exponential running time in the worst case due to delicate pathological
instances that one may never encounter in practice. To bridge this striking discrepancy, Spielman and

*Supported by NSF 1IS-1838154, CCF-2106429 and CCF-2107187.

tSupported by NSF TRIPODS program award DMS-2022448 and by NSF Career Award CCF-1940205, CCE- 2131115.
Supported by Postdoctoral FODSI Simons-Fellowship.

SSupported by NSF CCF-2107187 and CCF-2212233.

Teng [1] proposed the framework of smoothed analysis, a hybrid of the classical worst-case and average-
case analyses. They used it to provide rigorous justifications for the empirical performance of the
Simplex algorithm by showing its smoothed complexity to be polynomial. Since then, the smoothed
analysis of algorithms and problems from combinatorial optimization [2, 3, 4], among many other
research areas such as numerical methods [5, 6, 4, 7], machine learning [8, 9, 10, 11] and algorithmic
game theory[12, 13, 14, 15], has been studied extensively .

In this paper we study the smoothed complexity of local search algorithms for the classical problem
of Graph Partitioning (also known as Bisection Width in the literature). In the problem we are given edge
weights X = (X, : e € Ep,) of a complete graph Ky, = (Va,, Ez,) with X, € [—1,1], and the goal is to
find a balanced partition (U, V) of V», into two equal-size subsets U and V to minimize the weight of
the corresponding cut (i.e., the sum of weights of edges with one node in U and the other node in V).
Graph Partitioning has been studied extensively, especially in practice. It forms the basis of divide and
conquer algorithms and is used in various application domains, for example in laying out circuits in
VLSI. It has also served as a test bed for algorithmic ideas [16].

Given its NP-completeness [17], heuristics have been developed to solve Graph Partitioning in prac-
tice. A commonly used approach is based on local search: starting with an initial balanced partition,
local improvements on the cut are made iteratively until a balanced partition that mimimizes the cut
within its neighborhood is reached. The simplest neighborhood is the SWAP neighborhood, where two
balanced partitions are neighbors if one can be obtained from the other by swapping two nodes, one
from each part. A locally optimal solution under the SWAP neighborhood can be found naturally by
the SWAP algorithm, which keeps swapping two nodes as long as the swap improves the cut. A more
sophisticated neighborhood structure, which yields much better locally optimal solutions in practice, is
that of the Kernighan-Lin (KL) algorithm which performs in each move a sequence of swaps [18].

These local search algorithms for Graph Partitioning typically converge fast in practice. (For a thor-
ough experimental analysis of their performance, and comparison with simulated annealing, regarding
both the quality of solutions and the running time, see [16].) In contrast, it is also known that the
worst-case complexity is exponential. (Finding a locally optimal solution for Graph Partitioning under
the sophisticated Kernighan-Lin neighborhood, and even under the SWAP neighborhood is complete in
PLS [19, 20]. The hardness reductions give instances on which these algorithms take exponential time
to converge.) This significant gap in our understanding motivates us to work on the smoothed complexity of the
SWAP algorithm for Graph Partitioning in this paper.

We work on the full perturbation model, under which edge weights are drawn independently from
a collection of distributions X = (&, : e € Ey;). Each &, is supported on [—1,1], and has its density
function bounded from above by a parameter ¢p > 0. Our goal is to understand the expected number
of steps the SWAP algorithm takes, as a function of n and ¢, against any edge weight distributions X.!
Note that the SWAP algorithm, similar to the Simplex algorithm, is a family of algorithms since one can
implement it using different pivoting rules, deterministic or randomized, to pick the next pair of nodes
to swap when more than one pairs can improve the cut. We would like to establish upper bounds that
hold for any implementation of the SWAP algorithm.

Note that any upper bound under the full perturbation model applies to the alternative, simpler model where an adver-
sary commits to a weight w, for each edge and then all edge weights are perturbed independently by a random noise Z, (for
example, drawn uniformly from a small interval), i.e. the weights are X, = w, + Z,. The parameter ¢ in the full perturbation
model is a bound on the pdf of the perturbations Z,.

1.1 Related work: Smoothed analysis of 1-FLIP for Max-Cut

There has not been any previous analysis on SWAP under the smoothed setting, as far as we are aware.
In contrast, much progress has been made on the smoothed analysis of the 1-FLIP algorithm for Max-
Cut [21, 22, 23, 24, 25]. The major challenge for the analysis of SWAP, as we discuss in more details
in Section 1.3, is to overcome substantial new obstacles posed by the richer neighborhood structure of
SWAP, which are not present in the simpler 1-change neighborhood behind 1-FLIP.

Recall in Max-Cut, we are given edge weights X = (X, : e € E,) of a complete graph K,, = (V,, E;;)
with X, € [—1,1] and the goal is to find a (not necessarily balanced) partition of V;, to maximize the cut. 2
The simplest neighborhood structure for local search on Max-Cut is the so-called 1-change neighborhood,
where two partitions are neighbors if one can be obtained from the other by moving a single node to the
other side. The 1-FLIP algorithm finds such a locally optimal solution by keeping moving nodes, one
by one, as long as each move improves the cut. For the structured perturbation model, where a graph G
(not necessarily a complete graph) is given and only weights of edges in G are perturbed, [22] showed
that the expected number of steps 1-FLIP takes to terminate is at most ¢n'°8". Subsequently, the bound
was improved by [23] to ¢ - poly(n) for the full perturbation model, with further improvements in [24]
on the\/p_olynomial part of n. The upper bound of [22] for the structured model was recently improved
to ¢n log" in [25].

1.2 Our Contributions

We present the first smoothed analysis of the SWAP algorithm for Graph Partitioning. Our main result

for SWAP is a quasipolynomial upper bound on its expected running time:>

Theorem 1.1. Let X = (X, : e € Ey,) be distributions of edge weights such that each X, is supported on [—1,1]
and has its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,(1)
over the draw of edge weights X ~ X, any implementation of SWAP takes at most 4)710(10‘510 ") steps to terminate.

The proof of Theorem 1.1 for SWAP is based on techniques we develop for a more challenging
problem: the smoothed analysis of 2-FLIP for Max-Cut. Starting with an initial partition (not necessarily
balanced), in each round, 2-FLIP can move either one node (like 1-FLIP) or two nodes (not necessarily
in different parts) as long as the cut is improved. If we restrict the algorithm to only use double flips in
every move, then we call this variant pure 2-FLIP. Feasible moves in SWAP are clearly feasible in pure
2-FLIP as well but not vice versa. Thus, an improving sequence of SWAP in the Graph Partitioning
problem is also an improving sequence of pure 2-FLIP in the Max-Cut problem on the same instance.

We do not make again any assumption on the pivoting rule used by 2-FLIP (i.e., which move is
selected in each step if there are multiple improving moves), except that if both single and double flips
are allowed, then the algorithm never moves a pair of nodes when moving only one of the two nodes
would yield a better cut. Clearly, any reasonable implementation of 2-FLIP satisfies this property. Our
main result on 2-FLIP is a similar quasipolynomial upper bound on its expected running time. The
same result holds also for any implementation of the pure 2-FLIP algorithm that performs only 2-flips.
This is the first smoothed analysis of 2-FLIP:

2Since we allow weights in [—1, 1], maximizing the cut is the same as minimizing the cut after negating all edge weights.
Hence the only difference of Max-Cut, from Graph Partitioning, is that the partition does not have to be balanced.
3We did not make an attempt to optimize the constant 10 in the polylog exponent.

Theorem 1.2. Let X = (X, : e € E,) be distributions of edge weights such that each X, is supported on [—1,1]
and has its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,(1)

O(log' n)

over the draw of edge weights X ~ X, any implementation of the 2-FLIP algorithm takes at most ¢n steps

to terminate.

A more general class of problems that is related to Max-Cut is the class of Maximum Binary Constraint
Satisfaction Problems (MAX 2-CSP). In a general Max-2CSP, the input consists of a set of Boolean variables
and a set of weighted binary constraints over the variables; the problem is to find an assignment to the
variables that maximizes the weight of the satisfied constraints. Max-Cut is the special case when every
constraint is a # (XOR) constraint. Other examples are Max 25AT and Max Directed Cut (i.e., the Max
Cut problem on weighted directed graphs). More generally, in a Binary Function Optimization Problem
(BFOP), instead of binary constraints the input has a set of weighted binary functions on the variables,
and the objective is to find an assignment that maximizes the sum of the weights of the functions (see
Section 7 for the formal definitions). It was shown in [25] that the results for 1-FLIP for Max-Cut
generalize to all Max 2-CSP and BFOP problems. We prove that this is the case also with 2-FLIP.

We say an instance of Max 2-CSP or BFOP is complete if it includes a constraint or function for every
pair of variables.

Theorem 1.3. Let I be an arbitrary complete instance of a MAX 2-CSP (or BFOP) problem with n variables
and m constraints (functions) with independent random weights in [—1, 1] with density at most ¢ > 0. Then,
with probability at least 1 — 0,(1) over the draw of the weights, any implementation of 2-FLIP takes at most
O(log' n)

meon steps to terminate.

For all the aforementioned problems, by controlling the tail-bound of the failure probability, we can
strengthen our analysis to derive the same bound for the expected number of steps needed to terminate
as in the standard smoothed analysis prototype (See Corollary 3.5).

1.3 Our Approach

Here, we give an overview of our proof approach, focusing on the analysis of the 2-FLIP algorithm for
Max-Cut (Theorem 1.2). Many details are omitted in this subsection, to help the reader get an overall
view of some of the key ideas and the structure of the proof. Note that 2-FLIP clearly subsumes 1-FLIP,
since it explores a much larger neighborhood structure. For example, a 2-FLIP algorithm could apply
improving 1-flips as long as possible, and only when the partition is locally optimal with respect to the
1-flip neighborhood apply an improving 2-flip. Therefore, the complexity (whether smoothed or worst-
case) of 2-FLIP is clearly at least as large as the complexity of 1-FLIP, and could potentially be much
larger. Similarly, the analysis of 2-FLIP has to subsume the analysis of 1-FLIP, but it needs to address
many more challenges, in view of the larger space of possible moves in each step (quadratic versus
linear). In a sense, it is analogous to the difference between a two-dimensional and a one-dimensional
problem.

First, let’s briefly review the approach of previous work [22] on the simpler 1-FLIP problem. Since
the edge weights are in [—1,1], the weight of any cut is in [-n%,1n?]. For the execution of the FLIP
algorithm to be long, it must have many moves where the gain in the cut weight is very small, in (0, €]
for some small € > 0. It is easy to see that any single move by itself has small probability (¢€) of this

being the case. If different moves were uncorrelated, then the probability that a sequence increases the
weight of the cut by no more than € would go down exponentially with the length of the sequence.
Of course, different moves are correlated. However, the same effect holds if the improvements of the
moves are linearly independent in the following sense. For any sequence of the FLIP algorithm, the
improvement vector of one move is the vector indexed by the edges with entries in {—1,0,1} indicating
whether each edge is added or removed from the cut as a result of the move. Most work along this
line of research is based on the following fact (see Corollary 2.1 for the formal statement): If the rank of
the set of improvement vectors is rank, then the sequence has improvement at most € with probability
at most (¢€)@k. On the other hand, if all sequences with length at most (1) have an improvement
of at least €, then the number of steps of FLIP is bounded by ®(n) - (2n%/€) = poly(n)/e, as the total
improvement cannot exceed 2n2. So a natural approach is to union bound over all possible sequences
of length ®(n) and all 2" possible initial configurations, which yields a probability upper bound of
2nn®(n)(¢€)rank'

Getting a quasi-polynomial complexity bound using the union bound above requires the rank of any
sequence of length ©(n) to be at least Q)(n/logn). However, this is not always true (consider, e.g., a
sequence in which only n%1 distinct nodes moved). One key idea of [22] is to avoid union bound over
all initial configurations and only union bound over initial configurations of active nodes (nodes that
move at least once in the sequence) by looking at arcs. An arc is defined to be two adjacent moves of the
same node. By taking the sum of improvement vectors of the two moves of an arc, edges that involve
inactive nodes are cancelled, so the union bound over sequences of length ¢ becomes 2¢ né((,be)ra”kafcs.

To lower bound the rank of arcs of sequence S, rankacs(S), they proved it is at least half of the number
of nodes that appear more than once in the sequence, denoted V,(S). The essential combinatorial claim
made by [22] is that for any sequence of length ()(n), there exists a substring of length ¢ with V»(S) at
least Q(¢/log n). This can be shown by bucketing arcs by length into buckets [2/,2/*1) and picking the
largest bucket as length of the substring. On average, a random substring would contain Q(¢/logn)
arcs with similar length, and therefore, ()(¢/log n) arcs with distinct nodes. The similar idea is used in
Case 1 of our Section 6 to handle 1-moves (moves that flip a single node).

Now let’s return to the case of the 2-FLIP algorithm. A step now can move two nodes at the same
time, and this fact poses qualitatively new challenges to the proof framework. Now we have to deal
not just with sets (e.g., the set of nodes that move more than once) but instead with relations (graphs).
Define an auxiliary graph H for the sequence of moves that contains K,, as vertices and an edge for each
2-move of the sequence. If we still want to eliminate the influence of inactive nodes in the improvement
vector by summing or subtracting two moves as in the 1-FLIP case, the moves have to contain the exact
same pair of nodes. This happens too sparsely in the improving sequence of 2-FLIP to provide enough
rank. To this end, we generalize the notion of arcs to cycles. A cycle is a set of 2-moves of the sequence
whose corresponding edges form a cycle in H. But not all cycles of H are useful. We are interested
only in cycles for which there is a linear combination of the improvement vectors of the moves of the
cycle that cancels all edges of K, that involve an inactive node (i.e., the corresponding entry in the linear
combination is 0); these are the cycles that are useful to the rank and we call them dependent cycles.

So the goal is to find a substring S of length £ where we can lower bound rankgyges(S) by £/polylog(n).
The ideal case would be the case where all nodes have O(polylog(n)) but at least 2 appearances in the
substring, i.e., all nodes have degree between 2 and O(polylog(n)) in H. In this case, we can repeat

the following process to find enough cycles. Find a dependent cycle in H, pick an edge in K, that is
non-zero in the improvement vector of the cycle (we call this the witness of the cycle) and delete both
nodes of the witness from H. This way the improvement vector of cycles of H we pick in the future
will not contain witnesses from previous cycles, and improvement vectors of cycles we pick would form
a triangular matrix that has full rank. Since any node has O(polylog(n)) degree in H, each iteration
deletes O(polylog(n)) edges. So the process can be repeated at least Q)(¢/polylog(n)) times.

However, it is not hard to construct sequences with polynomial length, such that any substring
consists mostly of moves involving one high-degree node (with degree even ()(¢)) and one degree-1
node, so deleting the high-degree node would have a significant impact on the graph and the process
can only repeat for a few rounds and lead to a few cycles. So the challenge is to run a similar process,
but reuse high-degree nodes carefully without repeating witnesses found in previous cycles. Suppose
we find a cycle C with witness edge (1, v). To avoid including the edge in another cycle C’, a sufficient
condition is that: (1) u is not included in C’. (2) For any two adjacent edges (edges in H, not K,) of
v in C’, u never moved between the two corresponding moves of the edges. To meet condition 1, we
can delete u from H. To meet condition 2, we can make multiple copies of v in H where each copy
corresponds to moves in S where u doesn’t move between them. We call this operation splitting since
the new graph is generated by deleting and splitting the original H. The new graph after splitting is
denoted by splitted auxiliary graph. Our algorithm for finding a large number of linearly independent
cycles can be described as repeatedly performing the following process. Find a cycle in the splitted
auxiliary graph with witness (u,v) by a tree-growing argument, delete u and split the graph by creating
multiple copies of v. We have to choose carefully the witness edges (1, v) and do the splitting, so that
the number of nodes does not proliferate in this process.

Compared to the original auxiliary graph, the number of edges deleted and the number of new nodes
introduced is proportional to the degree of 1, so the number of cycles for a sequence of length ¢ we can
find in the algorithm is bounded by ¢/deg(u). To find ¢/poly(log n) cycles, we need a window where
decent amount of moves involve a node u that has deg(u) bounded by poly(log n). The existence of such
window in an arbitrary sequence that is long enough can be proven via a sophisticated bucketing and
counting argument.

The overall argument then for 2-FLIP is that, given a sufficiently long sequence of improving moves
(specifically, of length n - poly(log n))), we can find a window (a substring) such that the rank of the arcs
and cycles in the window is within a poly(log n) factor of the length of the window. As a consequence,
with high probability the weight of the cut improves by a nontrivial amount € (1/quasi-polynomial)
during this window. This can happen at most 12 /e times, hence the length of the execution sequence of
2-FLIP is at most quasi-polynomial.

1.4 Organization of the paper.

The rest of the paper is organized as follows. Section 2 gives basic definitions of the problems and the
smoothed model, defines the central concepts of arcs and cycles, their improvement vectors, and proves
a set of basic lemmas about them that are used throughout in the subsequent analysis. Section 3 states
the main lemma on the existence of a nice window in the move sequence such that the arcs and cycles

in the window have high rank, and shows how to derive the main theorem from this lemma. Sections

4 and 5 prove the main lemma in the case that all the moves are 2-moves (this is the more challenging
case). First we show in Section 4 the existence of a nice window (in fact a large number of nice windows,
since this is needed in the general case) such that many moves in the window have the property that
both nodes of the move appear a substantial number of times in the window (at least polylog(r) times),
and one of them does not appear too many times (at most a higher polylog(rn)). In Section 5 we show
how to find in such a nice window a large number of cycles whose improvement vectors are linearly
independent. Section 6 extends the proof of the main lemma to the general case where the sequence of
moves generated by 2-FLIP contains both 1- and 2-moves. Finally, in Section 7 we extend the results to
the class of Maximum Binary Constraint Satisfaction and Function Optimization problems.

2 Preliminaries

We write [1] to denote {1,...,n}. Given two integers a < b, we write [a : b] to denote {a,...,b}. Given
7,7 € {£1}" we use d(v,7’) to denote the Hamming distance between y and 4/, i.e., the number of
entries i € [n] such that v; # /.

2.1 Local Max-Cut and the FLIP Algorithm

Let K, = (Vy, E;) with V;, = [n] be the complete undirected graph over n nodes. Given edge weights
X = (X, : e € E,) with X, € [—1,1], the k-local Max-Cut problem is to find a partition of V,, into two sets
Vi and V; such that the weight of the corresponding cut (the sum of weights of edges with one node in
Vi and the other in V,) cannot be improved by moving no more than k nodes to the other set. Formally,
the objective function of our interest is defined as follows: Given any configuration v € {£1}" (which
corresponds to a partition Vi, Vo with Vi = {u € V,, : y(u) = =1} and Vo = {u € V,, : y(u) = 1}), the
objective function is

ObJX(')’) = Z X(u,v) : 1{7(”) 7é ’)/(U)} =

(u,v)EE, (u,0)EE,

Xy * (1= 7)7(0)). (1)

N =

Our goal is to find a configuration v € {£1}" that is a k-local optimum, i.e., objy(y) > objx(y’) for
every configuration ¢’ € {£1}" with Hamming distance no more than k from 1.
A simple local search algorithm for k-Local Max-Cut is the following k-FLIP algorithm:

Start with some initial configuration v = yq € {£1}". While there exists a configuration v’
with d(y', v) < k such that objx (") > objx (), select one such configuration ' (according
to some pivoting criterion), set v = ' and repeat, until no such configuration <y exists.

The execution of k-FLIP on K,, with edge weights X depends on both the initial configuration vy and
the pivoting criterion used to select the next configuration in each iteration. The larger the value of k,
the larger the neighborhood structure that is being explored, hence the better the quality of solutions
that is expected to be generated. However, the time complexity of each iteration grows rapidly with
k: there are @(1n*) candidate moves, and with suitable data structures we can determine in O(n¥) if
there is an improving move and select one. Thus, the algorithm is feasible only for small values of k.
For k = 1, it is the standard FLIP algorithm. Here we are interested in the case k = 2. We will not
make any assumption on the pivoting criterion in our results, except that we assume that the algorithm

7

does not choose to flip in any step two nodes when flipping only one of them would produce a strictly
better cut. This is a natural property satisfied by any reasonable implementation of 2-FLIP. For example,
one approach (to optimize the time of each iteration) is to first check if there is an improving 1-flip (n
possibilities), and only if there is none, proceed to search for an improving 2-flip (O(1n?) possibilities).
Clearly any implementation that follows this approach satisfies the above property. Also, the greedy
approach, that examines all O(1n?) possible 1-flips and 2-flips and chooses one that yields the maximum
improvement, obviously satisfies the above property.

Our results hold also for the variant of 2-FLIP that uses only 2-flips (no 1-flips). We refer to this
variant as Pure 2-FLIP.

2.2 Graph Partitioning and the SWAP Algorithm

In the Graph Partitioning (or Bisection Width) problem, we are given a graph G on 2n nodes with
weighted edges; the problem is to find a partition of the set V' of nodes into two equal-sized subsets
V1, V, to minimize the weight of the cut.* As in the Max Cut problem, in this paper we will assume
the graph is complete and the edge weights are in [-1,1]. A simple local search algorithm is the
SWAP algorithm: Starting from some initial partition (V;,V2) with n nodes in each part, while there
is a pair of nodes u € Vi,v € V, whose swap (moving to the other part) decreases the weight of the
cut, swap u and v. We do not make any assumption on the pivoting rule, i.e. which pair is selected to
swap in each iteration if there are multiple pairs whose swap improves the cut. At the end, when the
algorithm terminates it produces a locally optimal balanced partition, i.e. one that cannot be improved
by swapping any pair of nodes. The SWAP algorithm is clearly a restricted version of Pure 2-FLIP
(restricted because the initial partition is balanced, and in each step the 2-flip must involve two nodes
from different parts of the partition).

The SWAP algorithm is the simplest local search algorithm for the Graph Partitioning problem, but
it is a rather weak one, in the sense that the quality of the locally optimal solutions produced may not
be very good. For this reason, more sophisticated local search algorithms have been proposed and are
typically used, most notably the Kernighan-Lin algorithm [18], in which a move from a partition to a
neighboring partition involves a sequence of swaps. If a partition has a profitable swap, then Kernighan-
Lin (KL) will perform the best swap; however, if there is no profitable swap then KL explores a sequence
of n greedy steps, selecting greedily in each step the best pair of nodes to swap that have not changed
sides before in the current sequence, and if this sequence of swaps produces eventually a better partition,
then KL moves to the best such partition generated during this sequence. A related variant, to reduce
the time cost of each iteration, was proposed by Fiduccia and Matheyses [26]. This idea of guided deep
neighborhood search is a powerful method in local search that was introduced first in the [18] paper of
Kernighan and Lin on Graph Partitioning, and was applied subsequently successfully to the Traveling
Salesman Problem and other problems.

4Gince the weights can be positive or negative, there is no difference between maximization and minimization. The Graph
Partitioning problem is usually stated as a minimization problem.

2.3 Smoothed Analysis

We focus on the 2-FLIP algorithm from now on. Under the smoothed complexity model, there is a
family X = (X, : e € E,) of probability distributions, one for each edge in K,, = (V,,, E;). The edge
weights X = (X, : e € E,) are drawn independently with X, ~ X.,. We assume that each X, is a
distribution supported on [—1,1] and its density function is bounded from above by a parameter ¢ > 0.
(The assumption that the edge weights are in [—1,1] is no loss of generality, since they can be always
scaled to lie in that range.) Our goal is to bound the number of steps the 2-FLIP algorithm takes to
terminate when running on K, with edge weights X ~ X, in terms of n and the parameter ¢.

2.4 Move Sequences

We introduce some of the key definitions that will be used in the smoothed analysis of 2-FLIP.

A move sequence S = (S1,...,8y) is an {-tuple for some ¢ > 1 such that S; is a subset of V,, of
size either one or two. We will refer to the i-th move in S as a 1-move if |S;] = 1 and a 2-move if
|Si| = 2, and write len(S) := ¢ to denote its length. Additionally, let 1-move(S) and 2-move(S) denote
the corresponding subsequence of single flip or double flips correspondingly. We say a node u € V,, is
active in S if u appears in S; for some i, and is inactive otherwise. We write V(S) C V,, to denote the set
of active nodes in S.

Given 7y € {£1}" as the initial configuration, a move sequence S = (S, ..., Sy) naturally induces a
sequence of configurations o, v1,...,7¢ € {£1}", where 7;;1 is obtained from +; by flipping the nodes
in Si11. We say (o, S) is improving with respect to edge weights X if

objx(7i) > objx(yi-1), forallie [/]
and is e-improving with respect to edge weights X, for some € > 0, if
0bjx(7i) —objx(vi-1) € (0,¢€l, foralli e [£].

For each i € [¢], the change objx(v;) — 0bjx(7v;_1) from the i-th move S; can be written as follows:

1. When S; = {u},
objx (i) —objx(vi-1) = Y. vii1(@)yio1(0)X(u,w)- (2)

weVyw#u

Figure 1: Example of a 1-move, showing edges in the cut only.
2. When S; = {u, v},

objx(7i) — objx(vi-1) = Yo (rica@)yica ()X @y + Ve (@)Yio1(0) Xaw,))- 3)
weVywé{uv}

Figure 2: Example of a 2-move , showing edges in the cut only.
For each i € [/], we write imprv, s(i) to denote the improvement vector in {0, £1}E# such that

objx (i) — Objx(7i-1) = imprv, <) - X. 4)

Next, let E(S) denote the set of edges (1,v) € E, such that both u and v are active in S. We write
imprvy, s(0) € {0, +1}F) to denote the projection of imprv,, s(i) on entries that correspond to edges
in E(S). We note that imprvfm, s(i) only depends on the initial configuration of active nodes V(S) in 7.
Given a (partial) configuration 19 € {£1}"®) of V(S), we let

imprvy, s(i) := imprv;, s(i) € {0, £1}F©),

where 9 € {£1}" is an arbitrary (full) configuration that is an extension of 1. (To aid the reader we
will always use 7y to denote a full configuration and 7 to denote a partial configuration in the paper.)

Note that if S is a sequence of moves generated by an execution of the 2-FLIP algorithm then S
must be improving, because every move must increase the weight of the cut and therefore every 1—
or 2— move is improving. On the other hand, if every move in § increases the cut weight by no more
than e then we can not directly guarantee that after poly(|S|,n,1/e€) steps the algorithm would certainly
terminate. From probabilistic perspective, in order to provide a smoothed upper bound on the running
time of 2-FLIP method, it suffices to show that it is exponentially small probability for every move in a
long enough sequence to incur only a o(1/poly(n)) improvement in our objective.

Indeed, in an idealized scenario where the improvements of different moves of a sequence were
disentangled, the event for a linear-length sequence to be at most e—improving would have exponen-
tially small probability. Unfortunately, going back to the 2-FLIP algorithm, there could be improving
steps that are strongly correlated (as an extreme situation there could be two flips with almost the same
improvement vector). Thus, as one may expect the probability exponential decay holds only for lin-
early independent imprv, s(-), introducing the necessity of analysis of the rank ({imprv, s(i)|i € §'}),
for some neatly chosen subset S’ of moves from the sequence S.

Corollary 2.1 ([22]). Let Xj,..., Xy be independent real random variables and let f; : R — [0,¢] for some
¢ > 0 denote the density of X; for each i € [m]. Additionally, let C be a collection of k not necessarily linearly
independent integer row vectors, namely C = {Vi, - - -, Vi}. Then it holds that for any interval I C R

Pr[Fc] = Pr < (plen(I))™aC)

NV xel

ic[k]

However, one standard issue, which typically occurs with the direct usage of improvement vectors
of sequence’s moves, is their dependence also on the initial configuration -y of inactive nodes that do not
appear in the sequence S. Their number may be much larger than the rank of the active nodes, and thus

10

considering all their possible initial values in a union-bound will overwhelm the probability (¢e)". For
these reasons, in the literature [22, 24, 25] more complex combinatorial structures have been proposed,
like pairs of (consecutive) moves of the same node. Interestingly, for the case of 2-FLIP, new challenges
have to be overcome due to the 2-move case. To alleviate these harnesses, we introduce the idea of
dependent cycles whose role will be revealed in the case that our sequence abounds with 2-moves.

2.5 Arcs and Cycles

Definition 2.2. An arc « in a move sequence S = (Sy, ..., Sy) is an ordered pair (i, j) with i < j € [] such that
S; = S; = {u} for some node u € V,, and for any i <k < j, S # {u}.

Let 1p € {il}V(S) be a configuration of active nodes in S, and let 7, 7,..., 7/ € {:I:l}V(S) be the
sequence of configurations induced by S, i.e., 7; is obtained from 7;_; by flipping nodes in S;. We make
the following observation:

Lemma 2.3. For any configuration o € {£1}" that is an extension of 1o, letting vo, v1,...,v¢ € {£1}" be
the sequence of configurations induced by S and letting wlu,i,j] := i(u) - imprv, (i) — y;(u) - imprv, s(j),
we have that

(Ti(u) - imprv (i) — Ti(u) - imprv, s(j))e for every entry e € E(S),

(wlu,i,jle)eckE, = .
otherwise.
for any arbitrary choice of u € V(S).
Motivated by Lemma 2.3, we define for an arc a = (i, j) of a node u,
IMprve, s (@) = (1) - IMprvy, 5(i) — 7j(u) - imprv, s(j) € Z5°). (5)

Let arcs(S) denote the set of all arcs in S. We will be interested in the rank of

Qarcs 1= {imprv,, s(@) : a € arcs(S)} (6)
It is easy to show that the rank does not depend on the choice of 75 so we will denote it by rankares(S).
Lemma 2.4. The rank of the set of vectors in (6) does not depend on the choice of 1.

Definition 2.5. A cycle C in a move sequence S = (Sy,...,Sy) is an ordered tuple C = (cy,...,ct) for some
t > 2 such that ¢y, - - - ¢ are distinct, and SC]. = {uj,uj1} forallj € [t = 1] and S, = {us, u1} for some nodes
uy, ..., ur € Vy. (Every SC/. is a 2-move. The same vertex may appear in multiple S, ; s).

Definition 2.6. Given a configuration Ty € {£1}VS), we say a cycle C = (cy,...,¢;) in S is dependent with
respect to T if there exists b € {£1}' such that

Forall j € [t — 1] we have that b; - ch(uj+1) +Dbji1- Tc]-+1(”j+1) = 0and b; - 17.,(u1) + by - 7., (u1) =0,

where T, 1, ..., Ty are configurations induced by S starting from 7.

11

e e T
We note that such a vector b, if it exists, it has the form b = b; - (1, e, (—1)k_1]—[,-6[2:k] T, (W) e, (i), - - -)
and hence it is unique if we further require by = 1. After elimination of the above equations, we see the
following equivalent criterion:

Remark 2.7 (Dependence Criterion). A cycle C is dependent < (—1)f = 1, (1)1, (1) - Hfzz T, ()T, ().

We will refer to the unique vector b € {+1}' as the cancellation vector of C. Notice that whether a cycle
Cin S is dependent or not actually does not depend on the choice of 1.

Lemma 2.8. Ifa cycle C of S is dependent with respect to some 1y € {£1}VS) using b as its cancellation vector,
then it is dependent with respect to every configuration t, € {£1}V(S) using the same b as its cancellation vector.

As a result, we can refer to cycles of S as dependent cycles without specifying a configuration 7o; the
same holds for cancellation vectors. Next we prove a lemma that is similar to Lemma 2.3 for arcs:

Lemma 2.9. Let C = (cy,...,ct) be a dependent cycle of S and let b be its cancellation vector. Then for any
configurations Ty € {£1}VS) and g € {&1}" such that vy is an extension of 1o, letting w[C] := Yen b) -
imprv., s(cj), we have that

(Z]-e[t] b; -imprv_ s(cj))e for every entry e € E(S),

(w[C]e)eeE,, = .
otherwise.

Given 19 € {#1}"®) and a dependent cycle C of S with b as its cancellation vector, we define

imprv,, s(C) :=) _ bj-imprvy, s(c;)- (7)
jelt]

Let cycles(S) denote the set of all dependent cycles in S. We will be interested in the rank of

Qoycles = {imprv, 5(C) : C € cycles(S)} 8)
Similarly we note that the rank does not depend on the choice of 7y so we denote it by rankgycies(S).
Lemma 2.10. The rank of the set of vectors in (8) does not depend on the choice of 1.

For the sake of readability we defer the proofs of initial configuration invariance for the rank of
improvement vectors of arcs and cycles to Appendix B. Having defined the sets of arcs(S) and cycles(S),
we conclude this section by showing that for a fixed parameter € > 0, a move sequence S and an initial
configuration 1y € {£1}V(S), if either rankarcs(S) or rankeycles(S) is high, then most likely (over X ~ X))
(70, S) is not e-improving for every yo € {£1}" that is an extension of 7.

Lemma 2.11. Let € > 0. With probability at least
1— (2/6/7(8) . 4)6) max (rankarcs(S), rankcycles(S))

over X ~ X, we have that (v, S) is not e-improving for every vo € {x1}" that is an extension of 1.

12

Proof. Let Eoves be the event of a given (g, S) being e-improving with respect to edge weights X, for
some fixed € > 0:
Emoves + {IMprv, 5(i) - X € (0,€], for all i € [(]}

where imprv, (i) correspond to the improvement vector of S; move(See (2),(3)). Now, notice that the
improvement vector of an arc (See (5)) or of a dependent cycle (See (7)) can be written as the {—1,0,1}
sum of all the improvement vectors of either 1 or 2-moves in S. Thus, we define the corresponding
event for cycles and arcs for a given sequence (7o, §) with respect to edge weights X:

Sam/cydcs : {imprvms(ﬁ) - X € [-len(S)e, len(S)e], forany B € arcs(S)/cycIes(S)}

So it is easy to see that Eygpes IMplies Eqescycres, OF equivalently Pr[Epppes] < min{Pr[Eqes], Pr [Ecyctes] }-
Thus, by leveraging Corollary 2.1 for vectors in Qarcs and Qcycles), We get that:

max (rankarcs(s)/ fankcycles(‘s))

Pr [(')/0, S) being an e-improving sequence] < (ZIen(S B 476)

This finishes the proof of the lemma. O

3 Main Lemma and the Proof of Theorem 1.2 and Theorem 1.1

We start with the definition of valid move sequences:

Definition 3.1. We say a move sequence S = (Si,...,Sy) is valid if it satisfies the following property: For
every i < j € [{], at least one node w ¢ S; appears an odd number of times in S, ..., S;.

Lemma 3.2. The move sequence generated by 2-FLIP (or by pure 2-FLIP), for any pivoting rule and any instance,
is valid .

Proof. Let S be a move sequence generated by 2-FLIP (or pure 2-FLIP). If there are two moves §;, S;,
i < j, such that no node appears an odd number of times in §j,...,S;, then the configurations before
S; and after S; are the same, contradicting the fact that all the moves increase the weight of the cut.
Therefore, the set O of nodes that appear an odd number of times in §;,...,S; is nonempty. Suppose
thati < jand O C §;. If O = §, then the set of nodes that appear an odd number of times in S41, ..., Sj
would be empty, a contradiction to the above property. Therefore, O # S;.

In the case of pure 2-FLIP, since all moves are 2-flips, O has even size, and hence O # @ and O # §;
imply the claim.

In the case of 2-FLIP, O # @, O # S; and O C S, imply that S; has size 2, say S; = {u,v} and
O = {u} or O = {v}. If O = {u} then the configuration <; differs from ;1 only in that node u is
flipped. Thus, at configuration vy;_1, flipping node u results in configuration -y; which has strictly greater
cut than the configuration <y; that results by flipping the pair {u, v}, contradicting our assumption about
2-FLIP. A similar argument holds if O = {v}. In either case we have a contradiction to O C §;. The
claim follows. O

Given a move sequence S, a window W of § is a substring of S, ie.,, W = (Sl-,...,S]') for some
i <j € [f] (soW itself is also a move sequence). Our main technical lemma below shows that every

13

long enough valid move sequence has a window W such that either rankacs(W) or rankeyces(W) is large
relative to len(W).

Lemma 3.3. Let S be a valid move sequence with len(S) > nlog' n. Then S has a window W such that

©)

max (rankarcs(W), rankcycles(w)) >0 (M) ‘

log''n

We prove Lemma 3.3 when S consists of 2-moves only in Section 4 and 5, and then generalize the
proof to work with general move sequences in Section 6. Assuming Lemma 3.3, we use it to establish
our main theorem, restated below:

Theorem 1.2. Let X = (X, : e € E,) be distributions of edge weights such that each X, is supported on [—-1,1]
and has its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,(1)
over the draw of edge weights X ~ X, any implementation of the 2-FLIP algorithm takes at most gbno(loglO " steps
to terminate.

Proof. Let € > 0 be specified as follows:

1
€= —————
(Pncl log!®n

for some large enough constant c; > 0 to be specified later. We write F to denote the following event
on the draw of edge weights X ~ &

Event F: For every move sequence W of length at most 1 log' n such that (letting 2 > 0 be
the constant hidden in (9))

o — -len(W). (10)

max (rankarcs(w)/ rar‘kcycles(vv)> > log™n

and every configuration v € {£1}", (70, W) is not e-improving with respect to X.

We break the proof of the theorem into two steps. First we show that F occurs with probability at least
1 —0,(1). Next we show that when F occurs, any implementation of 2-FLIP must terminate in at most
cpno(bgm ") many steps.

For the first step, we apply Lemma 2.11 on every move sequence W of length at most 11og'’ 1 that
satisfies (10) and every configuration 19 € {£1}Y™"). It then follows from a union bound that F occurs
with probability at least

2/ 20 nf[() Zlog10 n 10;1[0 "
1- ¥ w2 gont =1— ¥ (@7 age) ™ = 1-0,(),

Ze[nlog10 n] l€n log10 n]

* is an upper bound for the number of W of length ¢ and 2% is an upper bound for

where the factor n2
the number of configurations 1y since |V(W)| < 2/. The last equation follows by setting the constant c;
sufficiently large.

For the second step, we assume that the event F occurs, and let y,..., N € {£1}" be a sequence

of N configurations that is the result of the execution of some implementation of 2-FLIP under X. Let

14

S = (51,...,Sn) denote the move sequence induced by o, ..., Yn. So (70, S) is improving with respect
to edge weights X. By Lemma 3.2, S is a valid sequence.

We use the event F to bound the length of §. Because of F and that S is a valid move sequence,
it follows from Lemma 3.3 that the objective function gets improved by at least € for every nlog' n
consecutive moves in S. Given that the objective function lies between [—n?,1n?], we have

2 2
len(S) < nlog'n - % < ¢no(logw ", (11)

This finishes the proof of the theorem. O

Corollary 3.4. Under the same setting of Theorem 1.2, the same result holds for Pure 2-FLIP.

Proof. The only property of the sequence of moves used in the proof of Theorem 1.2 is that it is a valid
sequence, and this property holds for Pure 2-FLIP as well. O

Notice that by twining the constant c; in the exponent, we can control the tail-bound of the failure
probability. Thus, we can strengthen our proof to get the same bound for the expected number of steps
needed to terminate as in the standard smoothed analysis prototype :

Corollary 3.5. Under the same setting of Theorem 1.2, any implementation of the 2-FLIP algorithm (or Pure
2-FLIP) takes at most cpno(logw ") many steps to terminate on expectation.

Proof. We let F. denote the event F in the proof of Theorem 1.2 with a specified € > 0. Let ¢ =
1/ (4) - pcilog" ”), where c; > 0 is a constant to be fixed shortly. For any € < €y, we have that

Karcs(W), rankzycies(W _al
Pr[-F.] < Z n2t .02, (&Pe)max (ran (W), rankeyces()) < 2 120020 (E(pe ‘ 6_0) loglon—‘
relnlogh n] velnlog!’ n] €o
< T ey WL S < ()RR e
- 0 €0 - o .13 \eo ~ Cconep
te[nlog n]

l€ln log10 n]

where ¢; = 2+ 6/a (letting a > 0 be the constant hidden in (9)) and ¢; = 10%. From the proof of
. 2n310g10n
€

Theorem 1.2, conditionally to the event F. for any € < €, len(S) < L(e) := =——=—. Notice that for any
e(p) := €o/p, L(e(p)) = pL(ep). Thus, the probability that len(S) is larger than cL(e) for any p > 1 is

]<1/P

Pr[len(S) > pl(e)] < Pr[~Fo,] < 2

€/p
Note that L is always trivially bounded by the total number of configurations, 2". Therefore, we have
on |—L(€0)-| on on

E[len(S)] =) _Prflen(S) >s] <) Pr[L>s]+ Y Pr[L>s]<L(e)+) 6 Pr[L>s]
s=1 s=1 s=[L(eo)] s=[L(eo)]

2 s & L(eo)/s O(log™® n)
<L)+ Y. Pr[l>pis L) <L)+ Y. =2 =0(m)- Lie) = pn°s .
con
s=[L(eo)] s=[L(ey)]
This finishes the proof of Corollary 3.5. O

15

The same results hold for the Graph Partitioning problem and the SWAP neighborhood.

Theorem 1.1. Let X = (X, : e € Ey) be distributions of edge weights such that each X, is supported on [—1,1]
and has its density function bounded from above by a parameter ¢ > 0. Then with probability at least 1 — 0,(1)

O(log!® n)

over the draw of edge weights X ~ X, any implementation of SWAP takes at most ¢pn steps to terminate.

Proof. Every move sequence S generated by SWAP (for any pivoting rule, any weights, and any initial
balanced partition) is also a legal move sequence for Pure 2-FLIP on the same instance, except that
the sequence may be incomplete for Pure 2-FLIP, that is, the final partition may not be locally optimal
for Pure 2-FLIP, since there may be a 2-move (but not a swap) that improves the weight of the cut
(the resulting partition would not be balanced), and Pure 2-FLIP would continue and produce a longer
sequence. Hence, the number of steps of SWAP is upper bounded by the number of steps of Pure
2-FLIP, and thus it is at most (,bno(lOgm ") with probability 1 — 0,(1), as well as in expectation. O

4 Windows in a Valid Sequence of 2-Moves

We will start with the proof of Lemma 3.3 for the case when S consists of 2-moves only in Section 4 and
5, and generalize it to deal with general move sequences in Section 6.

We start with a combinatorial argument about sets and subsequences of [N], where N = poly(n) for
any polynomial at n. Let I be a subset of [N] with |I| > log' n. Intuitively, later in this section I will be
chosen to be the set I, representing the appearances of some frequently appeared active node u € V(S)
in a move sequence S. We will write order(i) to denote the order of i € I. In other words, the smallest
index in I has order 1 and the largest index in I has order |I|. To give an example if I = {2,5,9,11} then
order(2) = 1,order(5) = 2 and so on. Let § = 0.01. We start by quantifying how much large windows
centered around an index i € [should be to cover the majority of a set I. Afterwards, we present the
combinatorial lemmas about subset I.

Definition 4.1. Let I C [N]. We say an index i € I is £-good for some positive integer ¢ if
[i— [A+20)L"] :i+ [(1+20)L']] C[N], where L' = [(1+0)"]
and 1 satisfies

‘Iﬁ[i—L’:i—kL/]

>logn and ‘m [i — [+20)L"] :i+((1+25)L’m <log’n. (12)

If there exists no such constant £, we call the corresponding index bad.

L L
—~—— ——

[(1+26)L] [(1+26)L]

Figure 3: Two examples of windows whose intersection in I is between [log3 n, 1og7 n].

16

Remark 4.2. Some motivation behind the definition 4.1: When i € I is {-good (letting L = L'+ [(1+25)L'] +1
and L' = [(1+ 6)'~1]), it implies that all the [(1+ 25)L'] — L' > 20L' = Q(L)® windows W of length L, i.e.,
those start at i — [(1+20)L'],...,i — L', satisfy

icW, |[INW|>1log’n and |[INW]| < log n.

Remark 4.3. By definition 4.1, £ can get at most log, , s N = O(log n), for any N = poly(n).

Lemma 4.4. Suppose I is a subset of [N] with |I| > log® n. Then at least a (1 — O(1/ log n))-fraction of i € I is
i-good for some nonnegative integer ¢;.

Proof. We start by defining an ¢; for each i € I (except for the smallest [log” n] indices and the largest
[log” n] indices in I, which are negligible since |I| > log® 1) and then show that most i € I is £;-good.
Let I be the subset of I after removing the smallest [log’ #] indices and the largest [log” 1] indices in
I. Foreachi € I, let

e j € I' be the index in I’ of order order(i) — |log’ /2] +1,
e k € I’ be the index in I’ of order order(i) 4 |log” /2| — 1.
* A be the minimum distance between index i and indices j, k, A = min(i — j, k — i) and
* /; be the largest integer such that [(1 +25) - (1 + NHE1 <A -2
Using the fact that for any real positive number x, it holds that 0 < [(1+26) - [x]] — [(1 +26) - x] < 2,

we get that:

[(1+20)-[1+8)5 1] <A
[(1+20)-1+6)4] >A-2

For the rest of the proof, let L} = [(1 4 6)’~!]. It follows from the choice of ¢; that

ITNT[i— [(1428)L =i+ [+20)L] < 2(|log” n/2] —1)+1<log’n (13)
1IN~ [(1+68)- 1 +20)L]] i+ [(1+3)- (1+20)L]] > (|log” n/2] —1)+1—4 (14)

For (14), we use the observation that left-hand side is larger than |[IN[i — (A —2) : i+ (A —2)]|] >
|[IN[i —A:i+ A]| —4. Using (1+ 6)(1 +26) < 1+ 46 with § = 0.01, the second inequality implies

ITN[i—[(1+46)L) =i+ [(1+40)LI]]| > |log” n/2]| — 4. (15)
On the other hand, (13) implies that i € I’ is ¢;-good unless
|TN[i—Li:i+ L} <log’n. (16)

Assume now for a contradiction that the number of i € I’ that are bad is at least |I|/log n. Addition-

5Indeed, by definition L = L' 4+ 1+ [(1426)L'] < 2((1 +)L +1) < 2((1 + §)L' + 1) < 22+)L/, since L' > 1

17

ally, for any possible exponent £ € [log, , s N], let R, be the set of the indices i that are not ¢-good:

Ry:=Hie€ I's.tiisnot ¢ — good} & ¢* = argmax R
g g
Le[log, s N]

Then, it holds that

I|/logn
Re| > oL = 1)/ log?),
1+

where we use the facts that |I| > log®n and N = poly(1n). We define then L* = [(1 4 6)" 1] and for
each p € R+ we let

Bo=(IN[p—[(1+45)L*|,p— L YU (IN[p+L* p+ [(1+45)L"]]).
Note now that when an index i is not /-good, we have from (16) and (15) that
(INGi = [+ 4L i = L) U (IN[i+ L i+ [(1+40)L{]1)| > [log” n/2] — 4 — log’ n = O(log n).

Hence, we have that |B,| > Q(log” n) for every p € R and thus,

Y. |Bol > O (lo|g12|n> -Qlog” n) = Q(|I|log’ n).

pGR[*
On the other hand, we can prove the following claim:

Claim 4.5. For any i € I, the number of p € R such that i € B, is at most O(log® n).

It follows then from the claim that

i€ By} =0(og’n)= Y |By| <|I|-O(log’n),
pGRZ*

For any i € I, we get |{p € R

which leads to a contradiction. O

Proof of Claim 4.5. Fix any i € I. Let us assume then that p be a p € R such that i € B,. We prove that
the number of p € Ry with p >iand i € B, is at most O(log3 n); the case with p < i is symmetric. If no
such p exists then the claim is trivially true. Hence, let’s assume that such one exists with p > i. Given
that i € By, we have that i € [p — [(1 +4J)L*|,p — L*] and we also have

ITN[p—L*p+L*]| <log’n. (17)
On the other hand, every other p’ € R, that satisfies p’ > i and i € B, also has the property that
i €lp—](A+49)L*],p" — L*] and thus, p' € [i + L*,i+ [(1 + 46)|L*]. But combining this with i €
[0 — (1 +46)L*, p — L*] we have

o <i+[(14+40)L*] <p+[(1+45)L"] —L*

18

and
o >i+L*>p—[(1+45)L*] +L*

Sop €lp—[A+40)L*] +L*p+ [(1+40)L*] — L*] C [p — L*,p + L*] and by (17) the number of such
0 is no more than log> n. U

Now we return to work on our problem and an arbitrary move sequence S = (Sy,...,Sn). Let W be
a window (move sequence) of S. For each active node u € V(W), we write #y(u) to denote the number
of occurrences of u in W. The main result in this section is the following lemma:

Lemma 4.6. Let S be a move sequence of length N = nlog'®n that consists of 2-moves only. There exists a
positive integer L such that S has at least Q((N — L + 1)/ log n) many windows W = (Wy, ..., W) of length L
such that at least Q(L/log n) moves W; = {u, v} of W satisfy

10g3 n < #yu) < log7 n and #y(v) > log3 n (18)

Proof. For each node u € V(S) we write I, C [N] to denote the set of i € [N] with u € S;. We say the
i-th move S; = {u, v} is {-good for some positive integer ¢ if i is {1-good in I,, and i is ¢>-good in I, for
some positive integers /1, ¢, such that ¢ = max(¢1, £2).

Let S; = {u,v}. Then we consider the following cases:

1. Either |I,| or |I,| is smaller than log® #: Given that no more than 1 log® # moves can contain a
vertex that appears less than log® 1 times in the sequence, we have the number of such i is at most

nlog®n = o(N/log n);

2. L), | L] > log8 n but either u is not ¢1-good for any ¢; or v is not ¢,-good for any ¢»: By Lemma
4.4, the number of such i is at most (using Y, |I,| = 2N)

y oo
w:| I, | >log® n ogn og '

3. Otherwise, S; is £-good by setting ¢ = max(¢1, {2).

Thus, the number of i € [N] such that the S; is ¢-good for some / is at least (1 — 3/log n)N.
Given that / is at most O(log N) = O(logn), there exists a positive integer ¢ such that the number of
moves in S that are /-good is at least Q(N/logn). Let L' = [(1+)] and

L=L"+[(1+2§)L"] +1.

For any move S; = {u, v} that is /-good, it is easy to verify that there are ()(L) windows W of length L
that contain i and satisfy (18) (See Remark 4.2) .

Let’s pick a window W of S of size L uniformly at random; note that there are N — L 4+ 1 many such
windows in total. Let X be the random variable that denotes the number of moves in W that satisfy

19

(18). Given that the number of moves that are /-good is at least (N /log 1), we have

Elx] 20 <loI;n> ' % =0 (10271)"

Let a be the constant hidden above. Given that we always have X < L, we have

aL a
> >
br [X - 2logn} ~ 2logn (19)
since otherwise,
a a aL aL

< . — . .

ElX] = 2logn L+<1 210gn> 2logn < logn
a contradiction. The lemma then follows directly from (19). O

5 Finding Cycles

Let S = (Sy,...,Sn) be a valid move sequence of length N = nlog'” n that consists of 2-moves only. By
Lemma 4.6, S has a window W = (Wj,..., W) of length L such that the number of moves in W that
satisfy (18) is at least Q)(L/logn). We show in this section that such a W satisfies

rankeycles(W) = Q) <#0) . (20)
log™ n
This will finish the proof of Lemma 3.3 when S consists of 2-moves only.

To this end, let 79 € {£1}VW) be the configuration with 1(u) = —1 for all u € V(W) so that we can
work on vectors imprv, (i) and imprv, ,(C) for dependent cycles of W (at the same time, recall from
Lemma 2.10 that rankgycies(W) does not depend on the choice of 1y). Let 7, ..., 71 denote the sequence
of configurations induced by W.

Next, let us construct an auxiliary graph H = (V(W), E), where every move W; = {u,v} adds an
edge between u and v in E. Note that we allow parallel edges in H so |E| = L and #y(u) is exactly the
degree of u in H. There is also a natural one-to-one correspondence between cycles of W and cycles of
H. The following lemma shows the existence of a nice looking bipartite graph in H:

Lemma 5.1. There are two disjoint sets of nodes Vi, Vo C V(W) and a subset of edges E' C E such that
1. Every edge in E' has one node in Vy and the other node in V,;
2. [ViUVa| = O(L/log® n) and |E'| = Q(L/ log n);
3. #w(u) < log’ n for every node u € V.

Proof. Let V be the set of vertices v such that #y(v) > log® n. We start our proof with the size of V:

log®n < in# = i < = 2|E(H)| < 2L.
|[V]log”n < \V|rgé1‘r/1 wu) |V|r5161‘r/1degH(v) _U;/degH(v) |E(H)| <

20

We further partition V into V; and V}, such that V; contains those in V with #p(v) < log7n and Vj,
contains those with #yy(v) > log7 n. By Lemma 4.6 we can assume the number of edges incident to at
least one vertex in V; (that is edges in V; x V, UV, x V})) is at least ()(L/ log). Suppose we construct V;
and V; by randomly put each node in V; in V; or V; and put all nodes in Vj, in V5. Any edge in V, x V; or
Vy x V), is between V; and V, with 1/2 probability. Thus E[EdgesInCut(V3, V2)] = |E|/2 = Q(L/ logn).
Thus, by standard probabilistic argument, there exist at least one assignment of V, to V; and V, such
that at least half of the edges in V;, x V, UV, x V}, are included. Hence, we get a bipartite graph between
V1 and V, with at least Q)(L/log n) edges, and any node v in V; satisfies log® n < #,(v) < log” n. Notice
that since V = |V; U V| = [V, U V|, we get that |V; U V,| = O(L/log’ n). O

Recall the definition of dependent cycles of W (and their cancellation vectors) from Section 2. Since
we only care about the rank of vectors induced by dependent cycles, we give the following definition
which classify each edge of H into two types and then use it to give a sufficient condition for a cycle of
W to be dependent:

Definition 5.2. We say the i-th move W; = {u, v} of W is of the same sign if T;,(u) = ;(v), and is of different
signs if Ti(u) # T(v).

Lemma 5.3. Let C = (cy,...,ct) be a cycle of W and assume that t is even. If all of W,,, ..., W,, are of different
signs, then C is a dependent cycle; If all of W,, ..., W, are of the same sign, then C is a dependent cycle of W.

Proof. Recall the Dependence Criterion (Remark 2.7)

t
C is a dependent cycle of W < (—1)f = Te, (11) T, (u1) H Te, (i) T, (1)
i=2

If all of We,,..., W, are of different signs, then ch(u]-)rcj(ujﬂ) = T, (u1)7,(ur) = —1, and the above
expression equals to (—1)f = (=1).. If all of W, ..., W,, are of the same sign, then ch(Uj)ch(uj+1) =
T.,(11)7,(us) = 1, the above expression is also 1 = (—1), which holds since t is even. O

We assume in the rest of the proof that at least half of edges in E’ are of the same sign; the case when
at least half of E’ are of different signs can be handled similarly. Let E” be the subset of E’ that consists
of edges of the same sign, with |E”| > |E’|/2. In the following discussion, cycles in E” always refer
to cycles that do not use the same edge twice (parallel edges are counted as different edges, since they
correspond to different moves in the window W).

The aforementioned discussion leads to the following corollary which reduces the existence of de-
pendent cycle of W to a simple cycle in auxiliary graph H:

Corollary 5.4. Since every cycle in a bipartite graph has even length, every cycle in E” corresponds to a dependent
cycle of W. For convenience, given any cycle C of E" we will write imprv, (C) to denote the vector of its
corresponding dependent cycle of W.

We first deal with the case when E” contains many parallel edges:

Lemma 5.5. Let D be the subset of nodes in V; that have parallel edges in E”. Then rankgycies(W) > |D|/2.

21

Proof. We prove the lemma even if the sequence contains both 1-moves and 2-moves so that we can use
it also in the general case in the next section. We note first that if S; = {u, v}, S; = {u,v},i < j are two
moves that involve the same two nodes, then there is at least one node z # u, v that appears an odd
number of times between the two moves. This follows from the definition of a valid move sequence.

We will construct a set Q of at least |D|/2 2-cycles, where each 2-cycle consists of two parallel edges
in E”. We use the following procedure.

1. While there is a 2-cycle (u,v) with u € D, v € V,, such that some node z # u of V; moves an odd
number of times between the two {u, v} moves of the 2-cycle, pick any such 2-cycle (1, v) and add it to
our set Q, pick any such node z # u that moves an odd number of times between the two {u,v} moves,
and delete u and z from D (if z is in D).

2. Suppose now that there are no more 2-cycles as in step 1. While D is not empty, let u be any
remaining node in D, take any two incident parallel edges {u, v} in E”, add the corresponding 2-cycle
to Q, and delete u from D.

Firstly, notice that for every new entry at Q in the procedure, we delete at most 2 nodes from D.
Hence, this procedure will generate clearly a set Q of at least |D|/2 2-cycles. Let (i1, v1), (uz, v2), - . ., (tx, Uk)
be the sequence of 2-cycles selected, where the first d were selected in step 1, and the rest in step 2. The
nodes u; are distinct, while the nodes v; may not be distinct. For each i = 1,...,d, let z; be the node
in V; that appears an odd number of times between the two {u;,v;} moves that was selected by the
algorithm. Note that node z; # u; for all j > i, since z; was deleted from D when u; was selected. For
eachi=d+1,...,k, let z; be any node, other than u;, v;, that appears an odd number of times between
the two {u;,v;} moves. Then z; is not in V; because in step 2 there are no odd nodes in V;. For each
i=1,...,k we view the edge {u;,z;} of the complete graph as a witness for the 2-cycle (u;, v;).

Consider the matrix with columns corresponding to the selected 2-cycles (u;,v;), i = 1,...,k, and
rows corresponding to the witness edges {u;, z;}. The entry for the corresponding witness edge {u;, z;}

is nonzero. Indeed, by definition 2.6, imprv, w(C = (4, 0i)){u, 2,y = —b1(Te, (i) Te, (27)) — ba(Te, (1) T, (21))
Te, (21) = — Ty (21)
and by =1 & by = —1.,(v;)7,(v;) which yields imprv, w(C = (u;, vi)) ;2 =2 T, (2) # 0.

TCﬂl(Ui) = Tcm(ui)/ fOI' m e {1,2}

Consider the column for a 2-cycle (u;,v;) selected in step 1. The entry for any other witness edge
{uj,z;} with j <iis 0 because uj,z; # u;, v;. (The entries for witness edges {u;,z;} with j > i could be
nonzero.)

Consider the column for a 2-cycle (u;, v;) selected in step 2. The entry for any witness edge {u;, z;}
from step 1 (i.e. with j < d) is 0 because uj, z; # u;, v;. The entry for any witness edge {u]-,z]-} from step
2 (i.e. with j > d) is also 0 because (1) u; # u;,v;, (2) z; ¢ Vi hence zj # uj, and (3), even if z; = v;, all
nodes of V; ~hence also u; —occur an even number of times between the two {u;,v;} moves, therefore

22

the entry for {u;,v;} is 0.

,

imprVTg,W(Cl){xl,%} ;é 0 0 0

[step 1] X .

Ml—)d - * . . M[step 1] 0
. — 1—d
* * 'mprVTg,W(Cd){xd,yd} #0 =>M = [: MLStip 2}(‘|
1

[step 2] . .

MG = diagyc g 1)k (IMPVy, w(Ch iy,) 7# 0)

Thus, the matrix with columns corresponding to the selected 2-cycles (u;, v;) and rows corresponding to
their witness edges {u;,z;} is a lower triangular matrix with non-zero diagonal entries. It follows that
the columns are linearly independent. O

As a result, it suffices to deal with the case when |D| is o(L/ log8 n). Let E* denote the subset of
edges obtained from E” after deleting all nodes of D and their incident edges. The remaining bipartite
graph has no parallel edges. Then we have

|E*| > |E"| — |D| -log” n = Q(L/ log n).
We list all properties of the bipartite graph H* = (V; U V,, E*) we need as follows:
1. H* is a bipartite graph with no parallel edges;
2. [ViUV,| <O(L/ log3 n) and |E*| > Q)(L/logn); and
3. #w(u) < log’ n for every node u € V;.
4. Every edge e = {u,v} € E* corresponds to a move W; = {u, v} which is of the same sign.

Recall that E(W) denotes the set of edges in K;,, which have both nodes in V(W). These edges are
indices of imprv, (i) and imprv, s(C) for a given dependent cycle C of W. Our main lemma is the
following:

Lemma 5.6. Fix an arbitrary s € [0 : L/log'(n)]. Assume additionally that there exists a set of edges & =
Hx,m}, - - {xs,ys Y € E(W) such that x; € Vy for all i € [s]. Then there exists a cycle C in H* and an edge
{u,v} € EW) withu € Vi \ {x1,y1,...,%s,Ys} such that

(imprvTO,W(C)){u,v}#O and (imprv,, w(C)) , =0, foralli € [s]. 1)

{xiyi
Proof of (20) Assuming Lemma 5.6. Start with &_o = @, For integer s going from 0 to | L/log'’ 1], using
Lemma 5.6, find cycle Csy1 and an edge {u, v} satisfying (21), let &1 = & U {xs41,Ys+1} = {u, v} and
repeat the above process.

In the end, we get a set of cycles Cy,-- - ,Cy where k = |L/ log10 n]. And for any j € [k], we have

=0, foralliel[j—1].

(im,Oer,w(C]')) {xjyi} #0 and (imprvm’w(cj» {xiyi} B

23

Let M be the k x k square matrix where M;; = (imprvTO,W(Cj)) .

{xiyi}
impI'VTO,w(Cl){xl,yl} 70 0 . :
* imprVTo,W(CZ){Xz,yz} 70 0)
M = * imprVTU,w(C3){x3,y3} #0 0
. . i 0
* * * * imprVTo,W(Ck){xkryk} #0

As we can see, the matrix is lower triangular with non-zero diagonal entries, so it has full rank k. Note
that M is a submatrix of the matrix formed by taking imprv, ,(C;) as column vectors, therefore we
have rankgycles(W) > k> L/ log10 n. O

5.1 Proof of Lemma 5.6

Given a cycle C in H*, we say {u, v} € E(W) is a witness of C if

(imprvTO,W(C)){u’v} # 0.

So the goal of Lemma 5.6 is to find a cycle C of H* such that none of (u;,v;) € & are witnesses of C
and at the same time, C has a witness edge {u, v} with u being a new node in V; not seen in & before.
The proof consists of two steps. First we introduce a so-called split auxiliary graph G using H* and &,
by deleting certain nodes and creating extra copies of certain nodes in H*. We show in Lemma 5.7 that
certain simple cycles in G correspond to cycles in H* that don’t have any edge in & as witnesses. Next
we show in Lemma 5.9 how to find such a simple cycle in G that has a new witness (u,v) such that
u € Vi and does not appear in &;.

Let wit1(&;) be the set of u € V; that appear in & and let wity(&s) be the set of v € V, that appear
in &. For each v € wity(&;), we write wit(v) # @ to denote the set of nodes u € wit;(&;) such that
(u,v) € &, and let k, denote the number of moves in W that involve at least one node in wit;(v). We
have k, < |wit(0)] -log7 n since #w(u) < log7n for all u € V. Below, we give an example of such an
auxiliary graph:

We now define our split auxiliary (bipartite) graph G. We start with its set of nodes V] U V;:

1. Vll =V \Wit1(85); and
2. V] = Upey,C(0), where C(v) = {v0} if v ¢ wita(&) and C(v) = {0, 00, ..., 0k} if v € wita(Es).

So we deleted nodes wit;(&;) from V; and replaced each node v € wity(&s) by k, + 1 new nodes. Next
we define the edge set E(G) of G. Every move W; = {u, v} in W that corresponds to an edge (1, v) in H*
with u € V7 \ wit; (&) and v € V, will add an edge in G as follows:

1. If v ¢ wity(&s), then we add (1, v?) to G; and

2. Otherwise (v € wity(&;)), letting u; € [0 : k] be the number of moves before W; that contain at
least one node in wit1(v) (note that W; does not contain wit(v); actually W; cannot contain
wit1 (&), we add (u, o)) to G.

24

Let W= Wy, -+, Wig,--)
Let E—3 = {{u1,va}, {uz,va}, {us,va}}

#w(uy) =1

#wz) =3

Hw(us) = 4

wity(Es=3) = {va}
e . Witl(UA) = {ulr Uz, M3}
wity (Es=3) = {11, U2, u3} koo =(1+3+4) =8

Figure 4: An exemplifying case of an auxiliary graph H* and splitting graph G(H*, &;)

Therefore, every edge in G corresponds to a move in W which corresponds to an edge in H* that does
not contain a node in wit;(&;). It is clear that each simple cycle of G corresponds to a cycle of H, which in
turn corresponds to a dependent cycle of W (Since we assume w.l.o.g that all edges of auxiliary graph,
and its split one, correspond to moves of the same sign (See Corollary 5.4)). So imprv, (C) is well
defined for simple cycles C of G. Our motivation for constructing and working on G is because of the
following lemma:

Lemma 5.7. Let C be a simple cycle of G. Then none of the edges in &s is a witness of C.

Proof. Lete = {u,v} € & and u € wit1(&;). By the definition of G, u has no copy in G. So u does not
(
j
wj for w; € V{). If the cycle does not contain any vertex in C(v), then imprv, y(C), = 0. Now suppose

appear on the cycle. Let C be a cycle in G with nodes (w(lil),w(ZiZ),- o, wgit), wgi])) (we use w'” to denote

the cycle contains nodes in C(v), specifically, w;, = --- = w;, = v. Let the corresponding cycle C on W

be c1,- -+ ,c; where W, = {w;, w; 1} if i <t and W,, = {w;, w1}, and let b be the cancellation vector of
C. We can write down the value of the improvement vector on edge e.

imprv, w(C)e = Y (bj,—1imprvy, w(cj—1)e + bjimprvy, w(c;,)e)
k=1
==Y (b1, (@7, 1) + b T, ()T, 1)
k=1

(22)

By the construction of G, u doesn’t appear in any move between c; and c; 1 (otherwise, in G, the

edge corresponding to WCjk and edge corresponding to chk_l wouldn’t be connected to w;:"‘) with the
same i;.(For an illustative explanation, see Figure 5 & 6)) So chk-rl(”) = chk,l(u). By definition of

25

cancellation vector,

b]'kflTC ('U) + bjkTCjk (’U) =0.

Jk—1

So each term in (22) is 0, and imprv, 1(C), = 0.

Swity(Eas) Swity(Eas)

Figure 5: Following the example of Figure 7,
uff) and u(ﬁ) can not close cycle, since uz € Wy
and u3z € wit;(v4) and appears between Wy
and Wyp. Thus, 4 and #?; fail to make a cy-
cle due to the intervention of a node in usz €
wit1(v4).

Figure 6: Again by the example of Figure 7,
since “(1%) and ug) achieved to form a cy-
cle with moves Wy, = {u1p,v4} and Wig =
{u18,v4}, we know from our construction that
none of witj(va) appear in the sub-window

Wiz - Wyy.

O

To finish the proof, it suffices now to find a simple cycle C of G that has a witness (1, v) € E(W) with
one of its vertices u € V|. We start by checking that all conditions for H* still hold for G. It is clear that
G is a bipartite graph with no parallel edges. By the definition of wit;(v) for each v € wity(&;), we have
Loewity(g,) IWit1(v)] < 2s, also |wit1(&s)| < 2s. The number of nodes |V] U V;]| in G is at most

O(L/log’n) +

Y ke <OL/log’n)+ Y |witi(v)| -log” n = O(L/log’ n).

vewity(Es) vewity(Es)

where the last equality used that s < L/log'’ n. The number of edges in G is at least
Q(L/logn) — |wit1(&s)] - log7 n = Q(L/logn).

Let’s work on another preprocessing of G to simplify the proof. Note that the average degree of
nodes in G is at least () ((L /logn)/(L/ log3 n)) = Q(log2 n). The following simple lemma shows that
one can clean up G to get a bipartite graph G* such that every node has degree at least 100logn and
the number of edges in G* remains to be Q)(L/ logn):

Lemma 5.8. There is a bipartite graph G* = (V;" U V5, E(G¥)) with Vi C V|, V¥ C VJ and E(G*) C E(G)
such that every node in G* has degree at least 1001og n and |E(G*)| = Q(L/logn).

Proof. Keep deleting nodes in G with degree less than 100log # one by one (and its adjacent edges) until

26

no such nodes exist. The number of edges we delete during the whole process is no more than
(IV{] + |Va]) - 100log n < O(L/ log?® n).

So the remaining graph (which trivially has minimum degree at least 1001og) has at least Q)(L/ logn)
many edges. O

Let us list the properties of G* = (V| U V', E(G*)) we will use in the rest of the proof:

1. Vi C V] = Vi \wit1(&) and V; C VJ so each node in V5 is in C(v) for some v € V;.
2. The degree of any node is at least 100log ; and

3. For any u € V;" and v € V;, the number of neighbors of u in V; N C(v) is at most one.

4. E(G*) has no parallel edges, |E(G*)| > Q)(L/logn) and w.l.o.g. each edge in E(G*) correspond to

a move of same sign.
We prove the following lemma to finish the proof:

Lemma 5.9. Let u € V; and v # v € Vj such that (u,o0), (u, o'0) € E(G*) for some j and j', and the
corresponding moves W; = {u,v} and Wy = {u, v’} in W are not consecutive®. Then, the graph G* has a simple
cycle C such that C has a witness e = {u, w} € E(W) withw € V;.

Proof. We begin with a simple sufficient condition for a simple cycle of G* to satisfy the above condition.

First, let u € V; and v # ¢’ € V5 such that (u,07), (u, v'0)) € E(G*) for some j and j/, and the
corresponding moves W; = {u,v} and Wy = {u,v'} in W are not consecutive. Assume that i < i’
without loss of generality; then i +1 < i’. The following claim shows that there must be a node
w ¢ {u,v,0'} that moves an odd number times in W, q,..., Wy_q:

Claim 5.10. There is a node w ¢ {u,v,v'} that appears in an odd number of moves in Wiy1,..., Wy _1.

Proof. This follows from the fact that W is a valid move sequence. We distinguish two cases.

If o' appears an even number of times in Wi;1,..., Wy_1, then use the condition of validity on the
subsequence W;, ..., Wy _q: there is at least one node w ¢ W; = {u, v} that appears an odd number of
times in W;, ..., Wy_y. Since w ¢ W;, node w appears an odd number of times in Wi, 1, ..., Wy_;. Hence
w # v and thus w ¢ {u,v,v'} and the claim follows.

If ' appears an odd number of times in Wj,1,..., Wy_4, then v’ appears an even number of times
in W;,...,Wy. Use the condition of validity on the subsequence W;, ..., Wy: there is at least one node
w ¢ W; = {u,v} that appears an odd number of times in W;,...,Wy. Then w # ¢/, and since also
w ¢ W; = {u,v}, it follows that w appears an odd number of times in Wi, 1,..., Wy_1 and the claim
follows again. O

61t is worth mentioning, that V always includes at least two vertices which are copies from different initial nodes v, V.
Indeed, if G* was actually a star graph around V; = {v*}, then O(L/logn) = E(G*) = ©(V(G*)) = O(L/ log® 1), which leads
to a contradiction. Additionally, notice that o) and 00" correspond to different nodes in the initial graph, otherwise the initial
auxiliary graph H* would have parallel edges.

27

We remark that Claim 5.10 holds even when W is a mixture of 1-moves and 2-moves. This will be
important when we deal with the general case in Section 6.

We write w*(u, o0, v’ (f,)) € V(W) to denote such a node w promised in the above claim (if more than
one exist pick one arbitrarily). The next claim gives us a sufficient condition for a simple cycle C of G*
to satisfy the condition of the lemma:

Claim 5.11. Let

C= uw(h)u 0(2/2) ‘U v,((]k)ul

be a simple cycle of G* for some nonnegative integers ji,...,jx. Suppose for some i € [k] we have that w =
w*(u;, l(]’ 11), l(]’) € V(W) does not appear in C (where v(]’ V denotes vk") ifi=1,ie,wé¢{uy,..., u,v1,...,0},

then (u;, w) € E(W) must be a witness of C.

Proof. Let the corresponding cycle in W be (cy, - - -, cr), edge {ul,vy’)} corresponds to move ¢p;_1 and

edge (vl(]’), u;41) corresponds to cy; (When | = k, u;;1 denotes u;). Let b be its cancellation vector. Recall

2%
=) bz(imper,w(Cl))

(imprvm/w(C)){w,w} L o

Since w does not appear in C, (imprvrorw(cl)>{) # 0 only when u; € W, i.e.,, when [= 2i — 2 or
w,u;

I=2i—1(Gfi=1,itisl =2korl=1). So

(imprVTO,W(C)> - bZi—ZTCZ,’,z (ul‘)TCZifz (w) - bZl‘—ITCz,‘,1 (ui)TCZ,',l (w)

{wu;} -
By the definition of w*, w moved odd number of times between move cy;_, and cy;_1. So T, ,(w) =
—Tc,,_,(w). Also, by property 4 of G*, Corollary 5.4 and the definition of a dependent cycle, by; »7c,, ,(u;) +
bZZ’flTCz,;l(ul') = 0' SO

(imprvrolw(C)) {w;} = _2b2i72T(12,‘_2(ui)TCZj_z(w) 7é 0.

This finishes the proof of the claim. O

Finally we prove the existence of a simple cycle C of G* that satisfies the condition of the above claim.
To this end, we first review a simple argument which shows that any bipartite graph with 7 nodes and
minimum degree at least 100 log n must have a simple cycle. Later we modify it to our needs.

The argument goes by picking an arbitrary node in the graph as the root and growing a binary tree
of log n levels as follows:

1. In the first round we just add two distinct neighbors of the root in the graph as its children.

2. Then for each round, we grow the tree by one level by going through its current leaves one by
one to add two children for each leaf. For each leaf u of the current tree we just pick two of its
neighbors in the graph that do not appear in ancestors of u and add them as children of u. Such
neighbors always exist since the tree will have no more than log n levels and each node has
degree at least 100log n in the graph.

28

Given that there are only n nodes in the graph, there must be a node that appears more than once in the
tree at the end. Let’s consider the first moment when we grow a leaf by adding one child (labelled by
u) and u already appeared in the tree. Note that the two nodes labelled by u are not related in the tree
since we maintain the invariant that the label of a node does not appear in its ancestors. Combining
paths from these two nodes to the first node at which the two paths diverge, we get a simple cycle of
the graph.

We now adapt the above argument to prove the existence of a simple cycle C of G* that satisfies the
condition of Claim 5.11 by building a binary tree of 2logn levels as follows. We start with an arbitrary
node urpot € V{ as the root of the tree and expand the tree level by level, leaf by leaf, as follows:

1. Case 1: The leaf we would like to grow is labelled a node u € V. In this case we add two

children as follows. Let ulvgjl) ce e Up_q v,((j‘:ll)u be the path from the root (1#1) to u in the tree, where

ui, ..., ug_1,u € Vi and vgl),. .. ,vg":f) € V5. We pick two neighbors oW, o0 of u in G* with
distinct v,v" € V; as its children in the tree. We would like v and v’ to satisfy the following two
properties: (1) v and v do not lie in {vy, vy, - ,vx_1}, (2) v and ¢’ are different from

w* (u;, vgj i), U;(j’{)) foreveryi=1,...,k—1, where v;(]"{) denotes the other child of v; in the tree and
(3) the move corresponding to {u,v()} in W and the move corresponding to {u,v'0)} in W are
not consecutive moves. The existence of v0) and /(") that satisfy (1), (2) and (3) follows trivially
from the fact that every node (in particular, u here) has degree at least 100log 7 in G*. Indeed, to
satisfy (2) and (3), for each time we may reject at most 2 possible leafs. Given that the tree will
only grow for 2logn levels —the half of times with V" leafs and the rest half with V' —, we have
k <logn and there are at most 2k < 2logn edges of u that need to be avoided. Moreover, no two

edges from u go two the same C(v) for some v € V, (Because we don’t allow parallel edges).

2. Case 2: The leaf we would like to grow is labelled a node v € V. In this case we just add one
neighbor u € V;* of v\ as its only child. Let ulvgjl) e v,((jfal)ukv(j) be the path from the root to o).
We pick a neighbor u € V;* of v in G* that satisfies (1) u ¢ {uy,- -+ ,u} and (2) u is different
from w*(u;, vz(-ji), v;(ﬁ)) foreveryi=1,...,k—1and u is different from w*(uy, o, v’(j')), where v;
/(j

i

(;)
denotes the other child of u; and v) denotes the other child of uj in the tree. The existence of

such u follows from the same argument as Case 1.

Given that the tree has 2logn levels and there are only n nodes, there must be a node that appears
more than once in the tree at the end, and let’s consider the first moment when we grow a leaf by
adding a child and the same node already appeared in the tree. Similarly we trace the two paths and let
u € V| be the node where the two paths diverge; note that given the construction of the tree, this node
must be a node in V7', given that nodes in V) only have one child in the tree. On the one hand, the way
we construct the tree makes sure that combining the two paths leads to a simple cycle C of G*. On the
other hand, let o), v'(") € V; be the two children of u (which are next to u on the cycle). Then it is easy
to verify that w*(u, o0, '/")) does not appear on the cycle we just found.

This ends the proof of the lemma. O

29

U1 = Uroot

Figure 7: Example of Finding-Cycle Process.

6 General Case

We prove Lemma 3.3 for the general case. Let S = (&51,...,Sn) be a valid move sequence of length
N = nlog'n that consists of both 1-moves and 2-moves. We will consider two cases and deal with
them separately: (1) the number of 1-moves in S is at least N/ log5 n; and (2) the number of 1-moves is
at most N/ log’ .

6.1 Casel

We consider the case when there are at least N/ log® n many 1-moves. In this case we show that there
is a window W of S such that rankaics(W) is large. The arguments used in this case are similar to those
used in [27, 24, 13]. Given a window W of S, we write V(W) to denote the set of nodes u € V(W) such
that at least two 1-moves in W are {u}.

Lemma 6.1. There is a window W of S such that

vwy = (200
log” n

Proof. Any 1-move that is not the first 1-move of the vertex generates a new arc of S, so the total number
of arcs is at least |arcs(S)| > N/ log® n — n. Define the length of an arc a (i, j), len(a), to be j — i. Partition
all arcs based on their length, for any integer i that 0 < i < |log, N|, define

arcs;(S) := {lx :w € arcs(S), len(w) € [2/, 2i+1)}.

Since Z}ioogz N] |arcs;(S)| > N/log’ n — n, there exists i* such that

N/logSn—n> N

arcs;«(S)| > .
laresi-(S)] 2 log;, N+1 = 10log°n

Let W/ be a window of length 27" 2 starting at a uniformly random position in {—2""+2+1,--. N},
and W, = W/ N [N]. For any arc a € arcs;«(S), there are len(W/) — len(x) possible starting points for W,

30

to contain «. So .
len(W!) — len(a) . 2 +1

Pr [a € arcs(W,)] > N2 2_1 = Ny

From linearity of expectation, and 2" *2 < 4N,

2" +1 - 21" +1 - len(W,)
N +27+2 = 5010g°n ~ 100log®n

E[|arcs;-(W,)|] > |arcs;«(S)| -

We can pick W so that |arcs;«(W)| > len(W)/100 log6 n. By definition of an arc, any vertex in one of
the arcs in arcs;: (W) must be in V2(W). On the other hand, any arc a € arcs;<(W) has length at least
2" > len(W)/4. So any vertex can have at most 4 arcs in arcs;-(W). We have

len(W)

Vo(W) > # vertices in arcs;-(W) > |arcs;-(W)[/4 > ————
400log’ n

This finishes the proof of the lemma. O

Proof. Let uy,up,-- -, uy be the vertices in V2(W), and «; = (s, ¢;) be the arc of u; formed by its first and
second 1-move. Since sequence W is a valid move sequence, there exists a vertex v; # u; that moved
odd number of times between s; and ¢;, i.e., Tsj,1(vj) = —Te].,1(v]-). Pick an arbitrary such v; for each j.
Take a subset U of V>(W) by the following process:

o V Vz(W)
s U+ O
e Forjfrom1tok if u; € V,V < V\{uj,v;}, U<+ UU{u;}.

In each step we delete at most two element from V and add one element to U, so [U| > |V2(W)|/2. Let
U = {uj,,ui,---,u;, }, ordered by the sequence they are added. By the process, for any uj; € U, and

any j' > j, vi, # Ui
Recall

IMprva, w (@) v) = =T, -1(03) + T, —1(v;) = 27, —1(v;)) # 0.

And for any j' > j, u;; # ui, vi, # uj, 50 IMPIVy w (@i,), o) = 0. Consider the matrix formed by taking
7 l]/ I/
the j—th column to be imprvTO,W((xil.). The row indexed by (ui]., vi].) would be of the form

(k, k000, %, 2TEI']_—1(’UZ']-) 7£ 0/0/ Tt /0)'

j — 1 unknown numbers

This means the matrix has a lower triangular square submatrix of size at least m > |Vo(W)|/2. So we

6.2 Case?2

Let S be a valid move sequence of length N with no more than N/log®n many 1-moves. Let W be a
window of S. We write #y(u) to denote the number of moves (including both 1-moves and 2-moves)

31

that u appears in W, and write #2,(u) to denote the number of 2-moves that u appears in W.
We start by showing a lemma similar to Lemma 4.6 in Section 4.

Lemma 6.3. Let S be a valid move sequence of length N = nlog' n with no more than N/log> n many 1-
moves. Then there exists a window W of S such that at least Q(len(W)/ log n) many moves of W are 2-moves
W; = {u, v} that satisfy

log®n < #2,(u) < #w(u) <2log’n and #,(v) > log®n (23)

Proof. We would like to apply Lemma 4.6 (which works on move sequences that consist of 2-moves
only). To this end, we let S’ be the move sequence obtained from S by removing all its 1-moves. Let
N’ :=len(S’) > (1 —1/1og’ n)N. Applying Lemma 4.6 on &', there must exist a positive integer L and
among the N’ — L 4+ 1 windows W’ of S’ of length L, at least Q)(1/log n)-fraction of them satisfy that
Q(L/logn) many 2-moves {u, v} in it satisfy

log’>n < #,,(u) <log’n and #,(v) > log’ n. (24)

Let’s denote these windows of S’ by Wy, ..., W! for some s = Q((N’ — L 4+ 1)/ log n). For each W/ we let
Sk, (or Sy,) to denote the move in S that corresponds to the first (or last, respectively) move in W/, and
let W; denote the window (Sy, ..., S,) of S.

If L > N’/2, we can just take W to be W;. We note that the number of 2-moves in W; that satisfy
(24) is at least Q(L/ logn) = Q(len(Wy)/log n) given that L > N’/2. On the other hand, the number of
u € V(W) that appears in at least log” n 1-moves of W is at most (N/ log5 n)/log’ n = O(N/ 1og12 n).
Thus, the number of 2-moves {u,v} in W; that satisfy (24) but not #p, (u) < 210g7 n is at most

noo D) = (L)
log’ n O(loglzn)_o fogn /)

So we assume below that L < N’ /2.

We claim that W; can satisfy the condition of the lemma if len(W;) < (1+1/ log2 n)L. To see this is
the case, we note that the number of nodes u € W; that appears in at least log” # many 1-moves is at
most (L/log”n)/log’ n = O(L/log’ n). Thus, the number of 2-moves {u,v} in W; that satisfy (24) but

not #py. (u) < 210g7 n is at most
log’n-0 Lg :0< L)
10g n logn

So it suffices to show that len(W;) < (1+1/ log2 n) - len(W/) for some window W;. Assume this is not
the case. Then the total number of 1-moves in Wy, ..., W; is at least

12 _Zlen(W{)ZQ((N’—L-l—l)L) :Q< NL)

log™n i log’ n log®n

using L < N’ /2. However, each 1-move can only appear in no more than L many windows of length L.

"Note that S’ has length not exactly N but (1 —1/ log5 n)N but the statement of Lemma 4.6 still holds.

32

Given that there are only N/log® n many 1-moves, the same number can be upper bounded by

N
log” n

L,

a contradiction. This finishes the proof of the lemma. O

So we now have a valid move sequence W of length L, as a window of the original valid sequence
S, such that the number of 2-moves in W that satisfy (23) is at least Q)(L/logn). The rest of the proof
follows the same arguments used in Section 5. We give a sketch below.

First we define the same auxiliary graph H = (V(W), E) such that there is a one-to-one correspon-
dence between E and 2-moves in W. Note that the degree of a node u in H is the same as #%,v(u).

We then show that there are disjoint sets of nodes V;, Vo C V(W) and a subset of edges E’ C E that
satisfy conditions similar to those of Lemma 5.1:

Lemma 6.4. There are two disjoint sets of nodes V1, Vo C V(W) and a subset of edges E' C E such that
1. Every edge in E' has one node in Vy and the other node in Vy;
2. [ViUVy| = O(L/log® n) and |E'| = Q(L/ log n);
3. #w(u) < 2log” n for every node u € Vj.

The proof is exactly the same as that of Lemma 5.1, except that we define V to be the set of nodex v
with #%,v(v) > log3 n and Vj, to be the set of nodes v with #y(v) > 2 log7 n.

Next we focus on E”, which contains all edges in E’ of the same sign (or edges in E’ of different
signs, whichever contains more edges). Similarly every cycle in E” corresponds to a dependent cycle of
W. The case when E” contains many parallel edges can be handled exactly the same way as in Lemma
5.5. So we may delete all parallel edges from E”, and finish the proof using Lemma 5.6.

The proof of Lemma 5.6 for the general case is very similar, with the following changes:

1. In the definition of k, for each v € wity(&;), we need it to be the number of moves (including both
1-moves and 2-moves) in W that involve at least one node in wit;(v). This can still be bounded
from above by |wit;(0)| - 2log” n since we have #y (1) < log’ n for all u € V; as promised in
Lemma 6.4 above.

2. As we commented earlier, Claim 5.10 works even when W consists of both 1-moves and 2-moves.

This finishes the proof of Lemma 3.3 for the general case.

33

7 Binary Max-CSP and Function Optimization Problems

We recall the definition of binary maximum constraint satisfaction problems, and more generally func-
tion optimization problems.

Definition 7.1. An instance of Binary Max-CSP (Constraint Satisfaction Problem), or MAX 2-CSP, consists of
aset V.= {xy,...,x,} of variables that can take values over {0,1} and a set C = {cy,...,cm} of constraints
with given respective weights wy, ..., wy,, where each constraint is a predicate on a pair of variables. The MAX
2-CSP problem is: given an instance, find an assignment that maximizes the sum of the weights of the satisfied
constraints.

Several problems can be viewed as special cases of Binary Max-CSP where the predicates of the
constraints are restricted to belong to a fixed family P of predicates; this restricted version is denoted
Max-CSP(P). For example, the Max Cut problem in graphs is equivalent to Max-CSP(P) where P
contains only the “not-equal” predicate (x # y, where x, y are the two variables). The Max Directed Cut
problem, where the input graph is directed and we seek a partition of the nodes into two parts Ny, N>
that maximizes the total weight of the edges directed from N; to Nj, corresponds to the case that P
contains only the < predicate (i.e. x < y). MAX 2SAT corresponds to the case that P consists of all 4
possible clauses on two variables.

A generalization of MAX 2-CSP is the class of Binary function optimization problems (BFOP) where
instead of constraints (predicates) we have functions on two arguments that take values in {0,1,...,d}
instead of {0,1}, where d is a fixed constant (or even is polynomially bounded). For convenience and
consistency with the notation of configurations in the Max Cut problem, we will use in the following
{=1,1} as the domain of the variables instead of {0,1}. That is, the problem is: Given a set V =
{x1,...,x,} of variables with domain D = {—1,1}, aset F = {fi,..., fu} of functions, where each f;
is a function of a pair (x;, x;,) of variables, and given respective weights wj, ..., w,,, find an assignment
T:V — D to the variables that maximizes) ;" w; - f;j(t(x;,), T(x;,)).

Even though a function in BFOP (or a constraint in Max-2CSP) has two arguments, its value may
depend on only one of them, i.e. it may be essentially a unary function (or constraint). More generally, it
may be that the two arguments of the function can be decoupled and the function can be separated into
two unary functions. We say that a binary function f(x,y) is separable if there are unary functions fi, f>
such that f(x,y) = fi(x) + f2(y) for all values of x,y; otherwise f is nonseparable. For binary domains
there is a simple criterion for separability: a function f(x,y) is separable if and only if f(—1,—-1) +
f(1,1) = f(-1,1) + f(1,—1) [25]. If in a given BFOP instance some binary functions are separable, then
we can decompose them into the equivalent unary functions. Thus, we may assume, without loss of
generality, that a given BFOP instance has unary and binary functions, where all the binary functions
are nonseparable. We say that an instance is complete, if every pair of variables appear as the arguments
of a (nonseparable) binary function in the instance.

The 2-FLIP local search algorithm can be applied to a MAX 2-CSP or BFOP problem to compute a
locally optimal assignment that cannot be improved by flipping the value of any one or two variables.
We will show that the smoothed complexity of 2-FLIP for any complete MAX 2-CSP or BFOP instance
is (at most) quasipolynomial.

Theorem 1.3. Let I be an arbitrary complete instance of a MAX 2-CSP (or BFOP) problem with n variables

34

and m constraints (functions) with independent random weights in [—1, 1] with density at most ¢ > 0. Then,
with probability at least 1 — 0,(1) over the draw of the weights, any implementation of 2-FLIP takes at most
O(log' n)

men steps to terminate.

Proof. Consider a (complete) instance I of a BFOP problem with n variables and m functions, and a
sequence S of moves of 2-FLIP starting from an initial configuration. The proof follows the same
structure as the proof for Max Cut. The only thing that changes is the improvement vector in each step,
which depends on the specific functions of the instance: the vector has one coordinate for each function
fi in the instance and the entry is equal to the change in the value of the function resulting from the
move. Arcs and cycles of S are defined in the same way as in Max Cut, and the improvement vectors
of arcs and cycles are defined in an analogous way from the improvement vectors of the moves.

The heart of the proof for Max Cut is Lemma 3.3 which showed that there is a window }V and a set
of arcs or a set of cycles of YW whose improvement vectors have rank Q('f”%”) We will show that the
lemma holds for any BFOP problem.

We associate with the BFOP instance I the graph G where the nodes correspond to the variables of I
and the edges correspond to the binary functions of I; since I is a complete instance, the graph G is the
complete graph, possibly with multiple edges connecting the same pair of nodes (if there are multiple
functions with the same pair of arguments). We will identify the variables of I with the nodes of G and
the functions of I with the edges of G.

In the general case of the Max Cut problem, in Case 1 where there is a large number of 1-moves,
we identified a window W and a large set A’ of arcs in the window whose set of improvement vectors
are linearly independent. The argument relied only on the zero-nonzero structure of the improvement
vectors: it showed that the matrix M formed by these vectors and a set of rows corresponding to a
certain set E’ of witness edges is a lower triangular matrix with nonzero diagonal. Take a set F’ of
functions of I that contains for each edge {u,v} € E’ a function f;(1, v) with this pair as arguments (it
exists because the instance I is complete), and form the matrix M’ with the set F’ as rows and the set A’
of arcs as columns. We will show that the matrix M’ has the same zero-nonzero structure as M, thus it
also has full rank.

Consider an arc of the move sequence S corresponding to two moves S; = {u}, §; = {u}, i < j,
and a function fx of I. If u is not one of the arguments of the function, then the corresponding entry
of the improvement vector of the arc is obviously 0. If u is one of the argument, i.e. the k-th function
is fx(u,v) (similarly if it is fy(v, u)), then the corresponding entry of the improvement vector of the arc
is 7i()fi(vi(u), 7i(©) — frll=ri(w), vi@)] — vj@)fi (W), 7j(©)) = fi(=7jw), 7j(@)]. If v moves an even
number of times between §; and S, then ;(v) = 7j(v) and it follows that the entry is 0, both in the case
that ;(u) = 7;(u) and in the case that y;(#) = —7;(u). On the other hand, if v moves an odd number
of times between S; and §j, then (v) = —7;(v) and it follows that the k-th entry of the improvement
vector is i (u)[fe(vi(u), 7i(©)) = fi(=7i(w), vi(N] — vj @) fi(yj(@), =7i(©)) = fr(=7j(W), =7i(©))]. Letting
vi(u) = a,7(v) = b, the entry is a[fy(a, b) + fi(—a, —b) — fr(—a,b) — fi(a, —b)] (both when 7;(u) = ;(u)
and when ;(u) = —7;j(u)); this quantity is nonzero because fi is nonseparable. Thus, the entry for
fi(u,v) of the improvement vector of the arc is nonzero exactly when the entry of the arc in the Max
Cut problem for the edge (u,v) is nonzero. It follows that the matrix M’ has the same zero-nonzero
structure as M, thus it also has full rank.

In Case 2 of the Max Cut problem, where the number of 2-moves is very large, there were two

35

subcases. In the first subcase, where there are many parallel edges in the graph that we associated with
the window of the move sequence, we found a large set of 2-cycles whose improvement vectors were
linearly independent. In the other case, where there are "few" parallel edges, we constructed a large set
of cycles (of length O(logn)), again with linearly independent improvement vectors. In both cases, the
proof of linear independence relied again only on the zero-nonzero structure of the vectors, and not on
the precise value of the entries. We will argue that in both cases, the corresponding vectors of these
cycles in the BFOP instance I have the same zero-nonzero structure.

In the first subcase we found many 2-cycles (u1,v1), ..., (4, vk), and corresponding "witness" edges
(u1,21), .., (uk, z) such that the matrix M with rows corresponding to the witness edges and columns
corresponding to the 2-cycles in the Max Cut problem is lower triangular with nonzero diagonal. The
nodes u; are distinct (the v; and the z; may not be distinct) and z; # u;, v; for all i. For each witness pair
(ui, z;) pick a function f,, of instance I with this pair of variables as arguments, in either order, say wlog
the function is f;,(u;,z;). Consider the matrix M’ with rows corresponding to the functions f;,(u;,z;)
and columns corresponding to the 2-cycles (u;, v;). Note that the entry M(j, i) is nonzero if one of the
nodes u;,z; is in {u;,v;} and the other node appears an odd number of times between the two moves
{ui,v;}, and it is 0 otherwise, i.e. if {u;,z;} N {u;,v;} = @, or if one of uj, z; is in {u;,v;} and the other
node appears an even number of times between the two moves {u;, v;}. Importantly it cannot be that
{uj,zj} = {uj, v;} because u; # u;, v;. Examining the value M/'(j, i) in the same way as in the case of arcs
above, we observe that if M(j,i) = 0 then also M'(j,i) = 0, and if M(j,i) # 0 then also M'(j, i) # 0. Thus,
M’ has the same zero-nonzero structure as M and hence it has also full rank.

In the second subcase of Case 2, we found many cycles Cy, ... Cy and corresponding witness edges
{u;,v;} such that for every i, (1) C; does not contain any u; for j < i, nor v;, (2) C; has exactly two edges
incident to u; and node v; appears an odd number of times between the two moves corresponding
to these two edges, (3) if C; contains v; for some j < i (the cycle C; may go more than once through
vj), then u; does not appear between any pair of moves that correspond to consecutive edges of the
cycle C; incident to v;. We used these properties in Max Cut to show that the matrix M whose rows
correspond to the witness edges and the columns correspond to the cycles C; is lower triangular with
nonzero diagonal. As before, for each witness pair (u;,v;) pick a function f,, of instance I with this
pair of variables as arguments, and let M’ be the matrix with these functions as rows and the cycles C;
as columns. We can use the above properties to show that the matrix M’ is also lower triangular with
nonzero diagonal. Property (2) and the fact that v; ¢ C; (from property (1)) imply that M'(i,i) # 0 for
all i. Properties (1) and (3) can be used to show that M'(j,i) = 0 for all j < i. Therefore, M’ has full rank.

Once we have Lemma 3.3 for the BFOP instance I, the rest of the proof is the same as for Max Cut.
The only difference is that, if the maximum value of a function in I is d (a constant, or even polynomial
in 1), then the maximum absolute value of the objective function is md instead of n? that it was in Max
Cut. O

36

8 Conclusions

We analyzed the smoothed complexity of the SWAP algorithm for Graph Partitioning and the 2-FLIP
algorithm for Max Cut and showed that with high probability the algorithms terminate in quasi-
polynomial time for any pivoting rule. The same result holds more generally for the class of maximum
binary constraint satisfaction problems (like Max-2SAT, Max Directed Cut, and others). We have not
made any attempt currently to optimize the exponent of logn in the bound, but we believe that with a
more careful analysis the true exponent will be low. There are several interesting open questions raised
by this work. We list some of them below.

1. Can our bounds be improved to polynomial? In the case of the 1-FLIP algorithm in the full
perturbation model (i.e. when all edges of K, are perturbed) a polynomial bound was proved in [23].
Can a similar result be shown for 2-FLIP and SWAP?

2. Can our results be extended to the structured smoothed model, i.e., when we are given a graph
G and only the edges of G are perturbed? In the case of 1-FLIP we know that this holds [22, 25], but
2-FLIP is much more challenging.

3. We saw in this paper how to analyze local search when one move flips simultaneously two nodes.
This is a qualitative step up from the case of single flips, that creates a number of obstacles which had
to be addressed. This involved the introduction of nontrivial new techniques in the analysis of the
sequence of moves, going from sets to graphs. Dealing with local search that flips 3 or more nodes
will require extending the methods further to deal with hypergraphs. We hope that our techniques will
form the basis for handling local search algorithms that flip multiple nodes in one move, e.g. k-FLIP for
higher k, and even more ambitiously powerful methods like Kernighan-Lin that perform a deep search
in each iteration and flip/swap an unbounded number of nodes.

4. Can our results be extended to Max k-Cut or k-Graph Partitioning where the graph is partitioned
into k > 2 parts? In the case of 1-FLIP for Max k-Cut quasi-polynomial bounds were shown in [24].

5. Can similar results be shown for Max-CSP with constraints of higher arities, for example Max
3SAT? No bounds are known even for 1-FLIP. In fact, analyzing 1-FLIP for Max 3SAT seems to present
challenges that have similarities with those encountered in the analysis of 2-FLIP for Max 2SAT and
Max Cut, so it is possible that the techniques developed in this paper will be useful also in addressing
this problem.

37

A Missing Proofs from Section 2

Lemma A.1. For any configuration vy € {£1}" that is an extension of 1y, letting o, v1,...,ve € {£1}" be
the sequence of configurations induced by S and letting wlu,i,j] := vi(u) - imprv,, s(i) — vj(u) - imprv, s(j),
we have that

(w[u/ i/ j]E)L’GE” =

(Ti(u) - imprvy (i) — Tj(u) - imprvy, s(j))e for every entry e € E(S),
otherwise.

for any arbitrary choice of u € V(S).

Proof. Note that 7;(u) = 7;(u), Tj(u) = 7j(u), and by definition, imprv, s(i) = imprv, s()* is the projec-
tion of imprv, (i) on E(S).

Thus, for any edge e € E(S), w, is the same as (t;(u) - imprv, (i) — 7;(u) - imprv, s(j))e. For any edge
e ¢ E(S), if e = {v1,v2} doesn’t contain u, the improvement vectors are 0 on e and correspondingly
wlu,i,jle = 0. For the last case, let us assume ¢ = {u, v} where v is inactive. We have that

imprv, s(ie = vi-1(0)yi-1(u) = —7i-1(0)vi(u) & imprv, (e = —vj-1(0)y;(u).

Since v is not active, 7;(v) = yo(v) for any i € [¢]. So, we get that

(i(u) -imprvy, s() — () - IMprvy, s(N)e = —7i-1(0) + 7j-1(0) = 0.
This finishes the proof of the lemma. O

Lemma A.2. Let C = (cy,...,ct) be a dependent cycle of S and let b be its cancellation vector. Then for any
configurations Ty € {£1}V) and g € {&1}" such that vy is an extension of 1o, letting w[C] := Y e b) -
imprv., s(cj), we have that
1,1 bi - imprv Ci or every entry e € E(S),
(w[C]C)EEEn = {(Z]E[t] J p TO/S(]))6 f]/]/ ()
0

otherwise.

Proof. Again recall that 7;(u) = 7i(u), Tj(u) = vj(u), and by definition, imprv, s(i) = imprv, (i)* is the
projection of imprv,, (i) on E(S).

Thus, for edge e € E(S), w[C]. is the same as) e[y b; - iImprvy s(cj)e. For edge e ¢ E(S), if e doesn’t
contain u; for any i € [f], the improvement vectors are 0 on e and correspondingly w[C]. = 0. For the
last case, let us assume e = (u,v) where v is inactive. Then we have (where index 0 corresponds to t)

Y. bj-imprv., s(cp)e=), (biflimprvyo,s(cifl)e + biimprvyo,s(ci)e>

jelt] i€[tliu;=u

= Y (= bive 1076, () = bive 1 (0)ye, (1))

i€[tl:ui=u

38

Since v is inactive, 7y, ,~1(v) = 7¢,-1(v) = 70(v). Each term above is equal to

—70(0)(bi—17Ye,_, (i) + bive,(ui)) = 0.

This finishes the proof of the lemma. O

B Rank Invariance of Improving vectors over Initial Configuration

In this section we prove that the rank of the improvement vectors for the set of 1-move(S), 2-move(S),
arcs(S) and cycles(S) is independent of the initial configuration <y of the vertices.

Proof of Lemmas 2.4, 2.8 & 2.10. We start by recalling the following useful facts:

Fact B.1. Let o, v, € {£1}" be two arbitrary initial configurations. Then, it holds that

70(0)70(0) = 7i(v)vi(v) for anyi € [£],

where 7y;, Y} is obtained from «y;_1,7y:_; by flipping nodes in S;, for a move sequence S = (S, ..., Sp).

Fact B.2. Let A be a (k1 x ky) real-valued matrix A and B, C are full-rank (ky x k1) and (ko x ky) squared matrices
correspondingly. Then, it holds that rank(A) = rank(A ") and rank(A) = rank(BAC).

Let M1 move(Y0, S), Mo-move(v0, S) be the matrices whose columns are the improvement vectors of 1-
move for a given initial configuration 7y and let M1_50e(70, S), M2-move(70, S) be the submatrices of
M move(T0, S), Momove(T0, S) including only the rows which correspond to E(S).

Schematically, we have that for the 1-move case:

(imprVTO,S(Sk = {u})e:{u,v} = Tr1(U)T—1(v)
Ml—move(TO/ 8) = :

(imprVTO,S(Sk = {u})e:{z,w} =0

- : = |E(S)|,|1-move(S)|

and for the 2-move case:

(imprVTO,S(Sk’ = {u/ v})e:{u,v} =0
(imprVTO,S(Sk’ = {Ll, U})e:{u,z} = Tk/,1(M)Tk/,1(Z)
Mz,movg(To, 8) = | (imprVTO,S(Sk’ = {u/ v})e:{v,w} = Tk’—l(U)Tk’—l(w)

(imprVTO,S(Sk’ = {u, v})e:{z,w} =0

- : = |E(S)|,|2-move(S)|

39

Notice that we can derive M 1*7110'06(’['0/1 S)/ MZ—move(Téz S) by mU1ﬁP1Ying M 1*11100@(’-['01 S)/ MZ—move (T(), S)
from left by the squared diagonal |E,| x |E,| matrix D[1, 7}] such that

D10, Tl (e,0)=((1,0),(1,0)) = To(t)To(u)To(0)7(v) and D[y, Tgl(e,ery = O for e # €.
Indeed, we have that for an entry (e, k) representing an edge e = (1, v) and the k-th y-move

To(1) (1) 10 (V) T (V) Te () Tk (©) if My ove(T0, S))e e = Ti (1) T (V)

(Dlw, T(S]M]/tfmove(TO/ S))e,k = .
0 if M]/I*H’IOUZ(TOI S))e,k =0

Fact B1) GG T@)T0) () h(©) i Mipmove(T0, S)ej = () e(0)
0 if MH—mo‘()g(TO, S))g’k =0

Since T;(v)? equals 1 for any v € V,, for every i € [{], we get that

T]:(u)TJQ(U) if M;t—move(TO/ S))e,k = Tk(”)Tk(v)

Dl1, M -move(T0, S =
([TO TO] M (TO))e,k {O if My—move(TOI S))e,k =0

} = (My-move(T(;' S))e,k

for any u € {1,2}. Since D[1, 7)] is a full-rank matrix, leveraging Fact B.2, the above argument proves
that rank(M,o0e(T0, S)) is independent of the initial configuration.

More interestingly, in order to prove Lemma 2.4, it suffices to prove that the rank of the column
matrix with the improvement vectors of arcs is independent of the initial configuration. In fact, let

Mares(s)(T0, S)) = |imprvy s(ag) -+ imprvy s(ax) -« iMprvy s(&jarcs(s)|)

By definition, we have that for any « € arcs(S):
IMPIV., (@) = Ti(u) - Imprvy, s(i) — T(u) - imprvy, () € Z5,

or equivalently Marcs(s)(T0,S)) = Mimowe(T0,S)) - T (10, S), where T (1, S) is a sparse (|1-move(S)| x
|arcs(S)|) rectangular matrix such that
(k1)
_ i) o .
T (10, S)e—th moven—(ij) = {(N qw) ke {ij} , where u is the corresponding node of arc a.

otherwise

Schematically, we have that matrix 7 (7, §) includes the (t;(node(a)), —Tj(node(a)))a=(i j)carcs(s) Pairs ex-
panded to {0, 4-1}m0ve(S) |

0 T(node(ar = (i,) 0 co —ri(node(ar = (i,))) 0
T(w,8) = 0 : : 0

: : 0 : :

0 0 Tt (nOde(‘xarcs(S)) = (i,/jl))) 0 T Ti’(nOdE(aarcs(S)) = (il/]I))) 0

40

0

Again, notice that we can derive 7 (7)) by multiplying 7 (19) from right by the squared diagonal
larcs(S)| x |arcs(S)| matrix D’ such that

D'[70, T)(wm)=(Gi),(i,j)) = To(u)To(1) where u is the node of « and D'[1g, Tp)(w,a) = 0 for & # o’

Indeed, we have that for an entry (k, «) representing an arc & = (i, j) and the k-th 1-move

W) T T) = T T TW) = 7w i (T = 1)
(T@)D' T, Ghia = { 10 TTW) = G TG0 = ~Tw) i (T = ~7510) p = (T(T@)ka
0 if (7(10))a = 0

where first equality leverages Fact B.1 and the second one uses the fact 7;(v)? equals 1 for any v € V,
for every i € [¢]. To sum-up, it holds that

MarCS(S)(T(I)/ 8S)) = Ml—move(T(;/ 8S)) - T(T(;/ S) = (D[TOI Té]Ml—move(TO/ S)))) (T(TO/ S)D/[TOI Té])
= D[10, 1] (M1move(T0, S))) - T (10, S))D'[10, T9] = DI0, To1Mares(s)(To, S) D' [0, 0]

Given that D'[19, 7y] and D[1, 1y] are full-rank matrices, leveraging Fact B.2, we can prove that the
above argument proves that rank(M gcs(s)(To, §)) is independent of the initial configuration.

Now, in order to prove Lemma 2.8, we recall the definition of a dependent cycle C of size ¢, namely
let C = (c1 = {uq, uz},c2 = {uz, uz} ..., ct = {uy, u1}) in a move sequence S. For an initial configuration
T € {£1}VS), we say that cycle is dependent with respect to 1 if there exists b € {1} such that

Tl(ul) 0 T te 0 Tf(lxll) bl 0
Ti(up) T(up) .. e .. 0 b,
0 mus) w3z --- - 0 :
— || =) b=0,
0 :
| O 0 0 0 T1(uy) Te(uy)] by 0

Again, notice that we can derive A(t)) by multiplying A(7) from left by the squared diagonal |C| x |C|
matrix D" such that

D" [0, Tl uy = To(w)19(w) for k = k" and D"[10, Tl .y = 0 for k # k.
Indeed, we have that for an entry (k, ¢;) representing a 2-move ¢; = {U; mod t, Yi+1 mod +; and the u-th

node of the cycle C:

To(u) T (i) Ti(ug) = T(u) T/ () Ti(ug) = /() if (A(0))ke, = Ti(“k)} — (AT)ie

(D//[TO/ T(;]A(TO))k,c,- = {0 if (A(TO))k,c,- =0

41

Since D"'[1, T¢] is full-rank matrix, we get that (A(1)) = (A(7})). Therefore if there exists a non-zero
vector b such that A(1g) - b = 0 then A(7)) - b = 0 as well, completing the proof for Lemma 2.8.
For the last case of Lemma 2.10, we start by the following observations:

1. If A(w) - b = 0, then for any b’ = Ab, it also holds that A(1p) - b’ = 0 for any non-zero A constant.
2. If A(19) - b = 0 and b, = 0 for some k € [f], then b is the zero vector, b = 0.

3. More precisely, the vector that belong to the (right) null space of A(1), i.e., all the vectors b such
that A(t) - b = 0, are of the following form:

)
Tcz(uZ)’

T
) (_1)k71Hie[2:k]ch-_1(ui)) (_1)t1Hi€[22t]TCi—1(ui)>

M) -b=0&b=b1-{1, -
w 1 (i e (i) [Tiez:n Te; (1)

Tlicrom Te;_q (i) .

4. The term Tepnt () 1S independent of the initial configuration.

Items (1)-(3) are simple linear algebras derivation. Item (4) holds since

[Ticimn T (i) Tlicpoag Tey (1) 8 [Micpn T, T, (i) Tliepr T, (1)
[Ticong Te, (1) [Ticig Te: (i) [Ticpoa T, (i) te, (u:) [Ticpoag T, (1)

=1 from Fact B.1

Hence, if b is a cancelling vector with by = 1, then from items (1),(2),(3),(4) we have that b is unique for
every cycle C and independent initial configuration .

More interestingly, in order to prove Lemma 2.10, it suffices to prove that the rank of the column
matrix with the improvement vectors of cycles is independent of the initial configuration. In fact, let

Meydles(s)(T0,S)) = [imprvy ¢(C1) -+ imprvy o(Cr) -+ imprvy o(Cioycies(s)|)

By definition, we have that for any C & cycles(S):

imprv,, s(C = (c1,--+ ,cr)) =)_ bj(C) -imprv, s(c)).
jelt]

or equivalently Moycios(s)(70,S) = Mamoe(to, S)) - B(S) where T(1,8) is a sparse (|2-move(S)| x

|cycles(S)|) rectangular matrix such that

b)(C) ¢, €C

, where u is the corresponding node of arc a.
0 otherwise

B('S)p—th 2—move,C — {

Schematically, we have that matrix B(S) includes the (b(C))ceccycles(s) Vectors expanded to {0, 41} 2 move(S)

42

0 bi(Cy) 0 b(C) 0 b C) O 0

b1(C 0 N (e : 0 by i(C 0

B(S) = 1(C) 0 ' (C2) . 1c|(C2) 0
b1(Cleyctes(s)) bp"(Cloyctess)) 0 - o 0 " b1C)| (Cleycles(s)) 0

Having noticed the above ones, it is easy to see that rank(M arcs(s)(T0, S)) is independent of the initial
configuration, since

Marcs(S)(Téz 8) = MZ—move(TO// 8) - B(S) = (D[TO/ Té] - MZ—move(TO/ 8))6(8)
= D[, 1] - (Ma-mowe(10, S)B(S)) = D[10, T9] - Mares(s)(To,).

Thus, by Fact B.2 we get that rank(M ares(s)(To, S)) = rank(Mares(s)(1y, S)), concluding also the proof of
Lemma 2.10.]

43

References

[1] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385-463, 2004.

[2] René Beier and Berthold Vocking. Random knapsack in expected polynomial time. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 232-241, 2003.

[3] Matthias Englert, Heiko Roglin, and Berthold Vocking. Smoothed analysis of the 2-opt algorithm
for the general tsp. ACM Transactions on Algorithms (TALG), 13(1):1-15, 2016.

[4] Heiko Roglin and Berthold Vocking. Smoothed analysis of integer programming. Mathematical
programming, 110(1):21-56, 2007.

[5] Daniel Dadush and Sophie Huiberts. A friendly smoothed analysis of the simplex method. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 390-403,
2018.

[6] Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan. Smoothed anal-
ysis of tensor decompositions. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 594-603, 2014.

[7] Brendan Farrell and Roman Vershynin. Smoothed analysis of symmetric random matrices with
continuous distributions. Proceedings of the American Mathematical Society, 144(5):2257-2261, 2016.

[8] Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm for linear pro-
gramming. 2002.

[9] David Arthur, Bodo Manthey, and Heiko Roéglin. Smoothed analysis of the k-means method. Journal
of the ACM (JACM), 58(5):1-31, 2011.

[10] David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the icp algorithm,
with an application to the k-means method. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS'06), pages 153-164. IEEE, 2006.

[11] Vidyashankar Sivakumar, Steven Wu, and Arindam Banerjee. Structured linear contextual bandits:
A sharp and geometric smoothed analysis. In International Conference on Machine Learning, pages
9026-9035. PMLR, 2020.

[12] Shant Boodaghians, Joshua Brakensiek, Samuel B Hopkins, and Aviad Rubinstein. Smoothed com-
plexity of 2-player nash equilibria. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 271-282. IEEE, 2020.

[13] Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta. Smoothed efficient algorithms and reduc-
tions for network coordination games. In Thomas Vidick, editor, 11th Innovations in Theoretical

44

Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of
LIPIcs, pages 73:1-73:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020.

[14] René Beier, Heiko Roglin, Clemens Rosner, and Berthold Vocking. The smoothed number of pareto-
optimal solutions in bicriteria integer optimization. Mathematical Programming, pages 1-37, 2022.

[15] Lirong Xia. The smoothed possibility of social choice. Advances in Neural Information Processing
Systems, 33:11044-11055, 2020.

[16] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. Optimization by
simulated annealing: An experimental evaluation; part i, graph partitioning. Oper. Res., 37(6):865—
892, 1989.

[17] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete graph problems. Theor.
Comput. Sci., pages 237-267, 1976.

[18] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech.]., 49(2):291-307, 1970.

[19] David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37(1):79-100, 1988.

[20] Alejandro A Schéffer and Mihalis Yannakakis. Simple local search problems that are hard to solve.
SIAM journal on Computing, 20(1):56-87, 1991.

[21] Robert Elsdasser and Tobias Tscheuschner. Settling the complexity of local max-cut (almost) com-
pletely. In International Colloquium on Automata, Languages, and Programming, pages 171-182.
Springer, 2011.

[22] Michael Etscheid and Heiko Roglin. Smoothed analysis of local search for the maximum-cut prob-
lem. ACM Trans. Algorithms, 13(2):25:1-25:12, March 2017.

[23] Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed polynomial
time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
429-437. ACM, 2017.

[24] Ali Bibak, Charles Carlson, and Karthekeyan Chandrasekaran. Improving the smoothed complex-
ity of flip for max cut problems. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 897-916. SIAM, 2019.

[25] Xi Chen, Chenghao Guo, Emmanouil V. Vlatakis-Gkaragkounis, Mihalis Yannakakis, and Xinzhi
Zhang. Smoothed complexity of local max-cut and binary max-csp. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 1052-1065, New York,
NY, USA, 2020. Association for Computing Machinery.

45

[26] Charles M. Fiduccia and Robert M. Mattheyses. A linear-time heuristic for improving network
y p g
partitions. In Proceedings of the 19th Design Automation Conference, pages 175-181. ACM/IEEE, 1982.

[27] Heiko Roglin. The complexity of Nash equilibria, local optima, and Pareto optimal solutions. PhD thesis,
Aachen, Techn. Hochsch., Diss., 2008, 2008.

46

