
1

Multi-Agent Bandit Learning through

Heterogeneous Action Erasure Channels
Osama A. Hanna†*, Merve Karakas†*, Lin F. Yang†, and Christina Fragouli†

†University of California, Los Angeles

Email:{ohanna, mervekarakas, linyang, christina.fragouli}@ucla.edu

Abstract

Multi-Armed Bandit (MAB) systems are witnessing an upswing in applications within multi-agent

distributed environments, leading to the advancement of collaborative MAB algorithms. In such settings,

communication between agents executing actions and the primary learner making decisions can hinder

the learning process. A prevalent challenge in distributed learning is action erasure, often induced by

communication delays and/or channel noise. This results in agents possibly not receiving the intended

action from the learner, subsequently leading to misguided feedback. In this paper, we introduce novel

algorithms that enable learners to interact concurrently with distributed agents across heterogeneous ac-

tion erasure channels with different action erasure probabilities. We illustrate that, in contrast to existing

bandit algorithms, which experience linear regret, our algorithms assure sub-linear regret guarantees. Our

proposed solutions are founded on a meticulously crafted repetition protocol and scheduling of learning

across heterogeneous channels. To our knowledge, these are the first algorithms capable of effectively

learning through heterogeneous action erasure channels. We substantiate the superior performance of our

algorithm through numerical experiments, emphasizing their practical significance in addressing issues

related to communication constraints and delays in multi-agent environments.

I. INTRODUCTION

Multi-armed bandits, a well-established and effective online learning model, are increasingly

finding applications in multi-agent distributed environments. One notable use-case involves lever-

aging a central learner, with actions (arms) communicated to remote agents to collect rewards, as

* indicates equal contribution. This work is partially supported by NSF grants #2007714 and #2221871, by Army Research

Laboratory grant under Cooperative Agreement W911NF-17-2-0196, and by Amazon Faculty Award.

ar
X

iv
:2

31
2.

14
25

9v
2

 [c
s.L

G
]

29
 A

pr
 2

02
4

2

discussed in [1], [2], [3]. However, a noteworthy gap in the existing literature pertains to scenarios

where the communicated actions may be lost due to communication channel issues such as delays

or noise interference. This challenge becomes even more pronounced when various agents possess

communication channels with varying capabilities, and these channels do not provide feedback

regarding the receipt of actions. Throughout this paper, we will refer to “feedback” to denote

receipt acknowledgments from the channel, distinguishing this from the rewards, which represent

feedback on the learned actions.

This challenge has not been well explored in the literature, as most works assume that agents

will acknowledge whether an action request has been received or not. Yet the assumption of

feedback availability can have high cost or simply not be possible. For instance, distributed

recommendation systems may send content (action requests) over wireless channels that are

notoriously subject to delays due to varying channel conditions and lost packets [4] ; even wired

networks are subject to significant delay variability due to factors such as network topology,

queuing delay and prioritization within cloud databases [5], [6], [4] . Meanwhile, even if the

content is delivered and displayed to the agents (e.g., an app recommending to follow a route,

visit a restaurant, etc.), we cannot be sure when exactly a human user sees it, if at all.

Another motivating case is when the agents are devices with very limited communication

capabilities. One such application is fleets of medical micro-robots (which today can be even

of nanometre-scale) that propel themselves through biological media, such as the veins and

the gastrointestinal tract [7], [8], [9] . Multi-agent MAB algorithms can facilitate personalizing

the robot’s actions to different patients, for instance, to release tailored amounts of substances

or to attack specific particles. The rewards (capturing action outcomes) are usually observed

through external medical equipment, such as ultrasound or other imaging; however, conveying

what action to play to the robots, can be communication challenging. A third case is that of

military operations, where a central commander may want to communicate actions to agents

(such as small robots), who do not wish to communicate back so as not to reveal their position

in a hostile territory, yet their actions may have impact observable through satellite imaging or

sensors.

In this work, we dispense with the need for feedback. We ask, what performance can we

achieve if the learner action requests are delivered according to a known probabilistic model,

but we have no additional information on whether each specific request is delivered or not. In

particular, we assume operation over T rounds, where at each round a central learner sends

3

commands (which action to play) to M agents through erasure channels with erasure probability

✏i, i = 1 . . .M , where these probabilities can be arbitrarily different across channels. This

induces a Geometric distribution on the reception time of each action request, different for each

agent1. The agents send no feedback (thus the learner does not know which action request the

agents are following); the agents play at each round the last action command they received. The

learner observes the reward for the (uknown) action played through an error-free channel - which

can lead to erroneous action-reward associations. Indeed, energy and space limitations of micro-

robots, security constraints in military applications, or simply the structure of the communication

protocol can prevent transmitting feedback back to the learner; and agents are required to perform

an action at each time, since even no action (for instance staying still) is also an action, see

Table I for a small example.

Our objective is to design multi-agent MAB schemes that minimize the impact of action

erasures on the regret, while also leveraging the multi-agent setting to expedite the learning

process. Our main contributions are as follows:

• We propose BatchSP2 , a Successive Arm Elimination based repetition algorithm with a

crafted scheduling part for multi-agent MAB setup with erasures, and prove sub-linear regret

guarantees on the proposed algorithm.

• We provide numerical comparisons with a number of baseline algorithms, show the superi-

ority of our algorithm to the benchmarks and that simply applying existing MAB algorithms

in a manner oblivious to action erasures can lead to linear regret.

a) Related Work.: Various MAB algorithms achieving optimal or near-optimal regret bounds

under different assumptions have been proposed over the years [10]. Previous studies designed

optimal algorithms for the simple MAB setting through providing gap dependent regret of

Õ(
P

a:�a>0
1
�a

) and worst-case regret of O(
p
KT log T) [11], [12], [13] . However, these algo-

rithms are not resilient to action erasures and they are not optimized for multi-agent settings.

Building upon MAB algorithms, there has been a considerable amount of recent work on multi-

agent MABs in various settings [14], [15], [16], [17]. However, these works predominantly

consider connected agents with some form of communication between neighbors or improve the

regret bounds through feedback mechanisms, primarily involving collision sensing for agents

1We note that our schemes extend to more general such probability distributions; see Section III-A for a detailed discussion.

4

[18], [19]. Consequently, they fail to effectively handle action erasures, particularly when con-

nections between agents and feedback mechanism are missing.

Taking a step back, our work fits within the framework of heterogeneous distributed agents

supporting central learning. The heterogeneity in our setup comes from the diversity in the

communication channels (different erasure probabilities). Although as we discuss next several

works have considered heterogeneous setups, communication channel diversity and how it can

affect MAB learning is we believe a natural setup that has not been widely explored.

Multi-armed bandits with delayed feedback has been studied in recent years under different

settings due to its practical applications. For the stochastic setting, [20] shows that bounded

unknown i.i.d. delays cause an additive increase in the regret, i.e., O(
p
KT log T + KE [D])

where the first term is the regret of stochastic MAB problem with no delays at round T , K is

the number of actions, and E [D] is the expected delay. Following the work in [20], [21] proposes

a queue-based MAB algorithm to handle delays. Later, [22] achieves the same additive increase

in regret as in [20] under delayed aggregated anonymous feedback. [23] studies Bernoulli bandits

with known delay distribution where some feedback could also be censored, i.e., do not reach

the learner. Relevant to these works, [24] proposes an algorithm for the best arm identification

problem in stochastic MABs with partial and delayed feedback where the aim is to minimize the

number of samples for identifying the best action. They extend their methods to the parallel MAB

setting, i.e., multiple actions are pulled at each time; however, they provide no lower bounds on

the sample complexity of their problem setting. While these works incorporate delays into the

stochastic MAB model, delays are associated with action pulls whereas, in our setup, delays are

associated with agents and are independent on the pulled action for the same agent.

A recent work considers the single agent action erasure channel [25] and they provide a generic

repetition scheme that works on top of any MAB algorithm and gets regret at most O(1/
p
1� ✏)

away, and a specific algorithm that gets O(
p
KT +K/

p
1� ✏) regret that is near optimal; our

model accepts their work as a special case; however, extending their methods to our case is

highly non-trivial, as the main challenge being the variability between erasure probabilities of

each channel, that induces a need for careful scheduling across agents.

b) Paper Organization: In Section II, we introduce the notation and system model; we

explain the proposed algorithm in Section III; analyze it in Section IV and provide upper bounds;

evaluate and compare with possible baselines in Section V; and conclude in Section VI.

5

II. PROBLEM FORMULATION

A. Multi-armed Bandits

We consider a stochastic multi-armed bandit problem in which a learner plays an action at 2 A

at each round t from the set of possible actions A and receives a reward rt associated with the

played action. This interaction is repeated over a horizon T , i.e., t 2 {1, 2, ..., T} and the learner

aims to maximize the cumulative reward at the end of T rounds. The set of possible actions A

are the same throughout the horizon and have K elements, i.e., |A| = K. The decision of the

learner on which action to play may depend on the history Ht = {a1, r1, a2, r2, ..., at�1, rt�1}.

Additionally, in a stochastic setting, the reward for each action a is generated from an unknown

reward distribution with an unknown mean µa. In our analysis, we assume that the rewards

are in the interval [0, 1]; however, our results directly extend to sub-Gaussian distributions. The

objective of the learner is minimize the regret over a time horizon T defined as

RT = T max
a2A

µa � E
"

TX

t=1

rt

#

TABLE I: Example of a MA-MAB Learning Over Action Erasure Channels.

At each time t the learner sends action requests to each agent; an agent that

does not receive the request, simply continues to play the last received action.

t=1 t=2 t=3 t=4 t=5 ...

Learner {a(m)
1 }Mm=1 {a(m)

2 }Mm=1 {a(m)
3 }Mm=1 {a(m)

4 }Mm=1 {a(m)
5 }Mm=1 · · ·

Erasure (✏1 = 0.1) X · · ·

Agent 1 (ã(1)
t) a(1)

1 a(1)
2 a(1)

3 a(1)
3 a(1)

5 · · ·

...
...

...
...

...
...

...

Erasure (✏M = 0.9) X X X X · · ·

Agent M (ã(M)
t) ã(M)

0 ã(M)
0 a(M)

3 a(M)
3 a(M)

3 · · ·

X denotes the erasure of the action for the given round and agent.

B. Multi-Agent Multi-Armed Bandits with Action Erasures

Consider a central learner connected to M distributed agents, indexed by [M], over heteroge-

neous erasure channels. The learner faces a stochastic K-armed bandit problem, i.e., |A| = K.

At each round t during a time horizon T , the learner selects an action a
(m)
t 2 A for each

6

agent m 2 [M] to play. That is, M actions are played per round (unlike the traditional setting

described above). When an action is chosen for agent m, it is communicated through an i.i.d.

action erasure channel characterized by erasure probability ✏m, and may or may not be received.

That is, independently from other rounds and agents, each agent m receives a(m)
t with probability

1 � ✏m and does not receive an action with probability ✏m. The learner does not know which

action requests get erased, but has knowledge of upper bounds on the erasure probabilities. The

agents, on the other hand, perceive their own erasures but they do not have a feedback mechanism

to inform the learner, i.e., there is no uplink between the agents and the learner. Furthermore, as

motivated from applications discussed in Section I, we assume that the agents cannot (or do not

wish to) run the algorithm themselves and continues to play the same action (last successfully

received action), denoted as ã
(m)
t 2 A to play in the case of an erasure. ã(m)

0 2 A denotes the

action performed by the agent m if the action in first round is erased, it is chosen uniformly at

random. An example of multi-agent multi-armed bandit learning with action erasures is provided

in Table I.

Observation. Although we focus on channels with erasures, our model can also apply over

action delays: an agent receives an action not at the timeslot sent, but at a later time, based on a

(known) delay probability distribution, and only changes the action she plays once she receives

a new action. Our algorithms naturally extend and apply to this setting as well.

Design Objective. Our objective is to formulate a distributed learning policy composed of

two key elements: a decision strategy that directs the selection of actions a
(m)
t for each agent m

at each time t, and a coping mechanism for the possible mismatch between the selected actions

and received rewards due to erasures. The performance metric we want to optimize is the total

cumulative regret incurred by the policy over time T and over all M agents:

RT =
MX

m=1

T max

a2A
µa � E

"
TX

t=1

r
(m)
t

#!

We note that the cumulative regret in a perfect communication setting (no action erasures)

is lower bounded by ⌦(
p
KMT). This bound corresponds to the optimal regret order in a

centralized K-armed bandit setup, where a total of MT reward observations are centrally

accessible for learning.

7

III. PROPOSED ALGORITHM

In this section, we introduce Batched Scheduled Persistent Pulls (BatchSP2), a Successive

Arm Elimination (SAE) based multi-agent multi-armed bandit algorithm with a crafted schedul-

ing part. The pseudocode can be found in Algorithm 1.

For the problem we consider, misinformation (associating rewards with the wrong action) can

create shifts in the action means. For instance, in the erasures example in Table I, at time t = 3

the learner observes the reward of the action agent M plays, but does not know whether this

reward is associated with action ã
(M)
0 , a(M)

1 , a
(M)
2 , or a

(M)
3 . Intuitively, to minimize this shift, it

is meaningful to study an algorithm where the same action pulls are repeated several times; in

the example in Table I, if we had selected a
(M)
1 = a

(M)
2 = a

(M)
3 = a, then, we could correctly

associate reward at time t = 3 with action a. Moreover, the fact that we need to play in parallel

across M agents, implies that we need to use a batched algorithm. Accordingly, we base our

proposed algorithm on SAE [26] , described next, with modifications that enable robustness to

misinformation.

SAE is a batched algorithm, i.e., it divides the horizon into batches of exponentially increasing

length and eliminates actions based on a shrinking confidence region defined by the number of

pulls [26] . In each batch i, all remaining actions, included in a set Ai, are pulled 4i times, and

after all pulls of the batch are completed, actions are retained if:

Ai+1 {a 2 Ai|max
ā2Ai

µ̂
(i)
ā � µ̂

(i)
a  4

p
log (KT)/2 · 4i}

where µ̂
(i)
a indicates the empirical mean of the reward of action a in batch i.

Note that applying SAE directly in our setup does not perform well, due to two issues that

need attention: (1) it may eliminate the best arm in early batches due to wrong feedback resulting

in linear regret, (2) allocate an unnecessary amount of resource to bad channels. We have to

modify SAE to address these two issues, as otherwise, as Examples 1 and 2 later in this section

illustrate, we may accrue large regret.

Addressing the first issue is straightforward: the learner simply repeats each action2 until

the probability the correct action has been successfully received by the agent is sufficiently

high. Only after this point the learner starts associating rewards with actions, thus minimizing

the probability of misinformation. More specifically, if the learner decides to receive p number

2A similar scheme was proposed in [25] for the case of a single agent system.

8

of rewards for an action a through agent m, the learner first asks the agent m to repeat the

action ↵m = d4 log T/ log (1/✏m)e � 1 additional times to ensure a success probability of at

least 1 � 1/poly(T). A total of ↵m + p rewards are generated in the environment, but only

the last p are taken into account by the learner to update the mean estimate of action a. This

ensures with high probability that the rewards considered (effective rewards) are generated from

the distribution associated with the selected action. We note however that all ↵m + p rewards

generated are counted in our regret, and thus, large ↵m values can affect the regret values we

get, as we will also see in Section IV.

Addressing the second issue, scheduling how action pulls are allocated across agents, is

significantly more challenging. One issue is that, we need to wait for all pulls of batch i to finish

(agents that finish their tasks earlier will simply play random actions, potentially accumulating

regret) before starting the next batch. Thus, the total regret we will accrue at batch i, is mainly

determined3 by T
(i), the time at which all 4i pulls of the actions in Ai are completed; and T

(i)

highly depends on the schedule, as simple examples can illustrate.

The following examples illustrate that two (natural to consider) scheduling algorithms (one

playing all 4i pulls of an action at only one agent, and the other splitting the pulls of each action

across all agents) can lead to larger than needed T
(i) and thus suboptimal regret.

Example 1 Assume that we order the agents so that ↵1  ↵2  . . .↵M (where ↵m is

the number of repetitions in each channel to ensure high probability action delivery). One

intuitive schedule could be, to assign bK(i)
/Mc actions to each agent and place the remain-

ing K̂ = K � bK
(i)
/McM actions to the first (fastest) K̂ agents, where K

(i) is the num-

ber of active actions in batch i, i.e., |Ai| = K
(i) . This scheduling has end time T

(i) =

max
⇣
b
K(i)

M c(↵M + 4i), (bK
(i)

M c+ 1)(↵K̂ + 4i)
⌘

- and although for some ↵i values it can perform

well, it also fails in many scenarios. For instance, if ✏m = 0 8m 2 [M], the end time becomes

4iK(i) whereas the optimal end time is d4iK(i)
/Me (which is smaller by a factor of M).

Example 2 Another straightforward approach is to first complete 4i pulls for one action by

distributing the pulls across all agents, and then move onto the next. That is, for each action,

the learner sends it to all agents, and waits until 4i effective pulls (i.e., not counting repetitions)

are received back. Note that even if an agent m needs to play one pull, we still need to wait

3Recall that all actions in the set Ai are expected to have mean values within a bounded distance from the optimal; thus the

suboptimal actions in Ai are expected to accumulate similar regret.

9

first for ↵m rounds before collecting this effective reward. This scheduling has an end time

T
(i) = K

(i) min
M̃2[M]

(
PM̃

m=1 ↵m+4i

M̃
), where K

(i) = |Ai|. This can be suboptimal, e.g., if ↵m =

↵ 8m 2 [M], then the end time of this scheduling is T
(i) = K

(i)
↵ +K

(i)
d
4i

M e, whereas an end

time of dK(i)

M e(↵ + 4i) can be achieved using the scheduling explained in Example 1.

Algorithm 1 BatchSP2 (K, M , ↵)

1: Input: number of actions K, number of agents M , repetitions ↵ 2 ZM
+

2: Initialize batch index i = 1, set of active actions A1 = [K]

3: for batch i do

4: S, T (i) = Schedule(Ai,↵, i) (see Algorithm 2)

5: for t in [T (i)] do

6: send action Smt to agent m 8m 2 [M]

7: receive reward rmt 8m 2 [M]

8: Update means of the actions

µ
(i)
a =

X

m2M(i)
a

e
(i)
amX

t=b
(i)
am

rmt/4
i
8a 2 Ai

9: (M(i)
a : set of agents that pulls action a in batch i, b(i)am and e

(i)
am: start and end time of the

effective pulls, respectively, of a in agent m in batch i, b(i)am, e
(i)
am 2 [T (i)])

10: Update active action set: Ai+1 {a 2 Ai|max
j2Ai

µ
(i)
j � µ

(i)
a  4

p
log (KMT)/2 · 4i}

11: i i+ 1

Our scheduling goal is, given ↵1  ↵2  . . .  ↵M , to find a schedule that minimizes T
(i).

As the previous examples illustrate, neither distributing actions across all agents, nor restricting

each action to be played in one agent, is optimal. One natural approach is to express the schedule

through an Integer Linear Program (provided in appendix A). The associated LP relaxation, as

also discussed in the appendix, essentially associates a cost am
4i with each action pull at agent

m, and solves a cost-minimization resource allocation problem. The resulting LP solution gives

us a lower bound ⌧ on T
(i), where:

⌧ := 4iK(i)
/

MX

m=1

1/(
↵m

4i
+ 1). (1)

10

Unfortunately, the LP solution cannot always be easily translated to an integral solution (where

each agent m actually plays am pulls even if she needs to collect reward for an action only

once) while avoiding suboptimal regrets (as compared to the ILP solution).

Instead, we develop a scheduling algorithm that is polynomial time, and carefully balances

how to split the 4i pulls of each action across agents, so as to decrease the number of required

repetitions ↵i, while still taking advantage as needed from the fact that we have multiple agents.

The pseudocode can be found in Algorithm 2.

The algorithm works in two stages: We first round the LP solution to an integer solution,

which can schedule at least (K �M)+ actions. In this stage, each action is assigned to at most

one agent. In the second stage, we schedule the remaining unscheduled actions by splitting each

action among multiple agents. In particular, we assign to the first stage (where we do not split

action pulls) a duration ⌧ as in (1): since the LP relaxation manages to allocate the 4i pulls for

all actions before ⌧ , keeping all pulls of an action together before that time can only decrease

the total number of repetitions required by each allocated action. We prove in Section IV that

at least (K �M)+4 actions will be successfully allocated at this stage, leaving K̂ remaining

actions. In the second stage, we partition the pulls of the remaining K̂ actions into smaller parts

of size max (1, bM/2K̂c) and use the first bM/2c agents to do the scheduling. Utilizing only the

first bM/2c agents allows to find an end time on the scheduling in terms of c
PM

m=1 ↵m where

c > 0 is some constant instead of a term that depends on K or M , as will become apparent in

Section IV.

A. Connecting to Channels with Delays

We note that our algorithm BatchSP2 (and its analysis, in the next section), directly applies

to channels with delays, where an action sent by the learner to an agent m is received after t

rounds with some probability p
(m)
t . Indeed, although we used erasure channels for our narrative

in this paper, and motivated use of repetitions over such channels, the only fact that BatchSP2

essentially hinges on is that, agent m will receive a sent action with probability at least 1
T

after ↵m rounds, where ↵m is known. It implies that any known (or estimated) delay/probability

of successful reception can be used with our algorithms. In our case ↵m was dictated from

the repetition protocol, in other setups it could be dictated from delivery delay or delivery

4x+ = max (x, 0) 8x 2 R

11

Algorithm 2 Schedule (A, ↵, i)

1: Input: set of actions A with |A| = K, repetitions ↵ 2 ZM
+ , batch index i

2: Initialize k = 0, T
(i) = ⌧ (see Eq. 1)

3: Shuffle the set A randomly

4: for agent m 2 [M] do

5: Initialize tend = 0, p = ↵m + 4i

6: while tend + p  T
(i)

do

7: Assign next action to agent

8: k k + 1

9: tend tend + p

10: for K̂ = K � k unassigned actions do

11: Divide pulls into max (1, bM/2K̂c) equal parts

12: Assign each part to first bM/2c agents one by one

13: Imitate assignments of first bM/2c agents for remaining M�bM/2c agents (with their own

repetitions)

14: Update T
(i), the end time of the batch, to agent finishing last in first bM/2c agents

15: Fill remaining slots of the agents randomly

16: Output: S 2 RM⇥T (i) the schedule of actions to agents, T (i) end time

uncertainty. Datasets and models in literature, e.g., [27] or [28], can provide empirical values

for delay/probability in such setups.

IV. REGRET ANALYSIS

This section provides our theoretical analysis: we first calculate an upper bound on the end

time of each batch in Lemma 1, then use this to derive an upper bound on the expected regret

that depends on suboptimality gaps on Theorem 1, and provide a gap-independent regret upper

bound on Theorem 2.

Lemma 1: If the scheduling algorithm outlined in Algorithm 2 is run for batch i, then the

end time T
(i) of the batch can be bounded as

T
(i)
 K4i⌧ + 6

MX

m=1

↵m

M
+ 2

K4i

M

!

12

where ⌧ = 1
MP

m=1
1/(↵m/4i+1)

, ↵m = d4 log T
log (1/✏m)e � 1, K is the number of actions, and M is the

number of agents.

Proof Sketch of Lemma 1. The upper bound on the scheduling end time, hence, total number of

pulled actions in a batch, is obtained in two steps. First, because ↵m+4i rounds are sufficient to

schedule 4i effective pulls for a single arm at agent m, we prove that Algorithm 2 schedules at

least (K �M)+ agents in time K4i⌧ . This implies that at step 10 of Algorithm 2, the number

of remaining arms to be scheduled is bounded by M . As the algorithm schedules these arms

among the best M/2 agents, each agent will be assigned a constant number of arms. The final

end time is bounded by noticing that from the averaging principle, the delay of all agents in the

best half is bounded by the average delay
P

m ↵m/M .

The complete proof is provided in Appendix B-A.

Theorem 1: Consider a distributed multi-armed bandit setting with K actions and M agents

connected through heterogeneous erasure channels with erasure probabilities {✏i}Mi=1. If BatchSP2

is run with horizon T , then the expected regret is,

E[RT]  c

X

a:�a>0

⇣ log (KMT)

�a
+

M log (MT)
MP

m=1
1/(↵m + log (KMT)

�a
)

⌘
+

MX

m=1

↵m log (MT) + log (MT)

!

where ↵m = d4 log T/ log (1/✏m)e � 1 is the number of repetitions at agent m, �a is the

suboptimality gap for action a, and c > 0 a constant.

Proof Sketch of Theorem 1. The regret bound is achieved by decomposing the regret of each

batch as E[R(i)
T] =

P
a Tia�a and bounding the expected number of times E[Tia] that arm a is

pulled in batch i. To that end, we condition on a good event entailing that for each agent m and

each consecutive ↵m+x pulls from action a, the last x rewards are samples from the distribution

of action a. This provides a concentration of the empirical means used in Algorithm 1 with high

probability. As a result, we get an upper bound on the number of batches a suboptimal arm can

survive. Having this, to bound Tia, it only remains to bound the number of times an active action

is pulled in batch i, which is highly sensitive to the scheduling of action pulls. This is proved

by utilizing the upper bound on the number of pulls in Lemma 1 and leveraging the symmetry

imposed by the randomization in Algorithm 2 to show that each action has an equal contribution

in the total number of pulls. The final regret bound is obtained by showing that the good event

has high probability.

13

Bounding the excess regret from the rewards not used by the algorithm is a challenging part

of the regret analysis. If the schedule is designed naively, these rewards may come from the

action with the largest gap in the batch. However, as we show in the proof of Theorem 1, the

randomization and shuffling performed in Algorithm 2 make the contributions of the different

arms in the excess regret uniform in expectation.

The complete proof is provided in Appendix B-B.

The three components of the regret bound in Theorem 1 originate from distinct aspects of

the algorithm. The initial term,
P

a:�a>0 log (KMT)/�a, is inevitable, representing the order

optimal regret achievable under perfect channels (no delay, no erasure). The second and third

terms are due to the repetition and scheduling of actions (Algorithm 2). It is noteworthy that, the

second term matches the regret of an optimal scheduling algorithm (see App. A). Additionally,

under perfect channels, this term simplifies to the a lower bound on the regret up to logarithmic

factors. The third term,
PM

m=1 ↵m log (MT), emerges at the outset of the learning process,

reflecting that each agent m will repeat the first pulled (suboptimal) action for ↵m iterations on

average.

The regret bound in Theorem 1 is nearly constant for constant gaps and erasure probabilities.

However, for small gaps, the regret bound can be large. It is important to note that this will not

be the actual regret suffered when the gaps are small, as for small �, the regret is bounded by

TM�. The following theorem provides an instance-dependent regret bound that works for all

values of the suboptimality gaps.

Theorem 2: Consider the distributed multi-armed bandit setting with K actions and M agents

connected through heterogeneous erasure channels {✏i}
M
i=1. If BatchSP2 is run for horizon T ,

then the expected regret is

RT  c

M

s
KT log (MT)

PM
m=1 1/(↵m�? + log (KMT))

+
MX

m=1

↵m log (KMT)

!

where �? is the value satisfying

�? =
c
0
K log (MT)

T

MP
m=1

1/(↵m + log (KMT)
�?

)

,

which can be efficiently approximated using the bisection method, ↵m = d4 log T/ log (1/✏m)e�1

number of repetitions and c, c
0
> 0 constants.

Proof Sketch of Theorem 2. The regret bound is proved by bounding the regret bound for arms

with small gap (less than �?, which will be determined later) by TM�? and using the bound in

14

Theorem 1 for the remaining arms with large gap (greater than �?). The value of �? is chosen

to minimize the bound by balancing the regret resulting from arms with small gaps and the

regret from arms with large gaps.

The complete proof is provided in Appendix B-C.

It is worth noting that for ↵m = 0 8m (no erasures), the regret bound in Theorem 2 reduces

to Õ(
p
KTM), nearly matching the lower bound on the regret for the model considered in

[10] . More importantly, our bound shows that if ↵m = Õ(1/�max) 8m, where �max is the

maximum gap, then the regret bound is still Õ(
p
KTM), hence, we (nearly) suffer no extra

regret beyond the no erasure case.

For the single agent case M = 1, the regret bound in Theorem 2 reduces to Õ(
p
KT +K↵)

which is shown to be nearly optimal in [25] .

V. EXPERIMENTS

Fig. 1: Comparison Results For Different Numbers Of Agents. From Left To Right, The Plots

Show Cumulative Regret As A Function Of Rounds t For (a) 4 Agents, (b) 20 Agents, and (c)

40 Agents, Respectively.

In this section, we empirically evaluate the regret performance of our proposed algorithm,

BatchSP2, and compare against the following methods:

• MA-SAE: This is an extension of SAE [26] to multi-agent setting. It utilizes the agents

without repeating any actions and considers all the rewards generated in the environment.

• MA-LSAE-V: This is an extension of SAE to multi-agent setting, that restricts all pulls of

an action to be played at the same agent, as described in Example 1 in Section III.

15

• MA-LSAE-H: This is another extension of SAE to multi-agent setting, that distributes the

pulls of an action across all agents, as described in Example 2 in Section III.

• MA-UCB: This is an extension of Upper Confidence Bound (UCB) [12], [13] algorithm to

multi-agent setting. UCB is an optimal algorithm for a simple MAB setting. Compared to

SAE, it makes the decision on which action to pull at each round instead of at each batch.

We have explored a number of experimental setups (in terms of number of actions, channel

quality, horizons, etc)5; we here show results for two experiments that we believe are represen-

tative:

• Experiment 1, shown in Figure 1, uses K = 10 actions, with Gaussian reward distributions

that have variance 1 and means [0.8, 1, 0, · · · , 0]. The time horizon is T = 5⇥104 and the regret

in each plot is averaged over 100 experiments with arms shuffled. The channels have erasure

probabilities 0.2, 0.7, 0.9, and 0.99, and there is an equal number of M/4 channels for each

erasure probability.

• Experiment 2, shown in Figure 2, has all parameters the same as Experiment 1, with the

difference that we have now channels with similar erasure probabilities of 0.9, 0.93, 0.95, and

0.99 (as before, there is an equal number of channels for each erasure probability).

From Figure 1, it can be seen that extensions of UCB and SAE may result in linear regret

under action erasures even when the suboptimality gap is large (0.2 for the instance used in this

experiment). Comparing Figure 1 (a) to (c) for MA-LSAE-V, we can observe how waiting for

a bad channel to finish pulling actions slows down the learning: when the number of agents

with erasure probability 0.2 increases from left to right, MA-LSAE-V starts assigning actions to

agents with small number of repetitions, and cumulative regret gets smaller. This supports the

splitting idea behind our algorithm.

From Figure 2, it can be seen that while trends of algorithms are similar to Figure 1 (b) in terms

of learning (linear versus logarithmic cumulative regret); when the channel quality gets worse,

the gap between MA-LSAE-H and our algorithm widens. This indicates that while repetitions

ensure learning with high probability, if we assign action pulls to agents without considering

how many additional repetitions are evoked, it can significantly slow down the learning process.

In some cases, it might even result in UCB or SAE to having lower regret for an extended period

of time, despite their linear regret behavior.

5The code to our experiments is available here.

https://github.com/mervekarakas/mamab_erasures/

16

Fig. 2: Same Scenario As In Figure 1 (b) With Worse Channel Quality.

VI. CONCLUSION

In this work, we consider the case of a learner connected to multiple distributed agents

through heterogeneous channels, that are subject to action erasures without action feedback

(the same setup can also capture delays and uncertainty on action reception). If rewards can be

externally observed, we may have misinformation, a mismatch between the action the learner

requests and the agent plays. Because of this, traditional algorithms can easily fail; instead, we

introduce BatchSP2, an efficient algorithm that uses repetition to achieve robustness over erasures

and careful allocation of action pulls to agents to minimize regret. We provide a theoretical

regret analysis of BatchSP2, which allows to recover as special cases existing bounds, as well

as numerical evaluations that show Batch2SP can achieve superior performance over baseline

schemes.

Acknowledgements: We thank the anonymous reviewers and the meta-reviewer for their in-

sightful suggestions and comments. This work is supported in part by NSF grants #2007714 and

#2221871, by Army Research Laboratory grant under Cooperative Agreement W911NF-17-2-

0196, and by the Amazon Faculty Award.

17

APPENDIX A

LINEAR PROGRAM FORMULATION

We first formulate a (nonlinear integer) program that minimizes the end time to schedule

action pulls in batch i with K actions across M agents as follows:

min
X2RM⇥K

max
m2[M]

KX

k=1

(↵m1[Xmk > 0] +Xmk)

s.t.
MX

m=1

Xmk = 4i 8k 2 [K]

Xmk 2 {0, 1, 2, · · · , 4i} 8m 2 [M], 8k 2 [K],

(2a)

(2b)

(2c)

where X 2 RM⇥K captures the variables of the program, with Xmk indicating the number of

effective pulls of action k performed by agent m. The objective function (2a) is to minimize the

latest end time among agents. Constraint (2b) ensures that the total number of effective pulls

for each action is 4i; and constraint (2c) forces effective pulls assigned to each agent per action

to be an integral value in [0, 4i]. It is easy to see that the progam in (2) is equivalent to the

following integer linear program (ILP):

min
X,W2RM⇥K

t2R

t

s.t.
KX

k=1

(↵mWmk +Xmk)  t, 8m 2 [M]

Xmk  4iWmk 8m 2 [M], 8k 2 [K]

MX

m=1

Xmk = 4i 8k 2 [K]

Xmk 2 {0, 1, 2, · · · , 4i} 8m 2 [M], 8k 2 [K]

Wmk 2 {0, 1} 8m 2 [M], 8k 2 [K],

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

where the variable t 2 R replaces the max in objective equation 2a and the variable W 2 RM⇥K

replaces the indicator function. Notice that for any feasible solution X , if Xmk > 0, Wmk = 1.

The relaxed version of the ILP in (3) can be written as

18

min
X,W2RM⇥K

t2R

t

s.t.
KX

k=1

(↵mWmk +Xmk)  t, 8m 2 [M]

Xmk  4iWmk 8m 2 [M], 8k 2 [K]

MX

m=1

Xmk = 4i 8k 2 [K]

0  Xmk  4i 8m 2 [M], 8k 2 [K]

0  Wmk  1 8m 2 [M], 8k 2 [K],

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

Notice that the minimum value Wmk can take is Xmk/4i due to (4c); hence, by replacing

Wmk with its minimum value, we get the following linear program which gives a lower bound

on the ILP (3):

min
X2RM⇥K

t2R

t

s.t.
KX

k=1

Xmk

⇣
↵m

4i
+ 1
⌘
 t 8m 2 [M]

MX

m=1

Xmk = 4i 8k 2 [K]

0  Xmk 8m 2 [M], 8k 2 [K],

(5a)

(5b)

(5c)

(5d)

In the linear program (5), Xmk is the variable that indicates how many effective pulls are assigned

to agent m for action k. (5c) forces each action to be pulled 4i effective times; however, instead

of an integer number of pulls, each agent is allowed to perform nonnegative fractional pulls.

Furthermore, (5b) indicates that for each agent m, one effective pull has a cost of ↵m
4i + 1.

Claim 1: The optimal objective value of (5) satisfies, t? =
PK

k=1 X
?
mk(↵m/4i + 1) 8m 2M ,

where (t?,X?) is the optimal solution of 5.

Proof of Claim 1. First, we observe that at least one of the inequalities in (5b) holds with equality,

otherwise the value of t? can be decreased leading to a better objective. Define the set of indices

Ei := {m 2 [M] :
PK

k=1 X
?
mk(↵m/4i + 1) = t

?
}.

19

Now, assume Claim 1 is not correct. And let ms be such that
KX

k=1

X
?
msk(↵ms/4

i + 1) < t
?
.

Then 8m 2 Ei 9{�mk}
K
k=1 � 0 :

P
k �mk > 0 small enough such that

X
0
mk =

8
>>>><

>>>>:

X
?
mk � �mk, m 2 Ei, 8k 2 [K]

X
?
mk +

PK
k=1 �mk, ms = m

X
?
mk otherwise

t
0 = max

m
{

KX

k=1

X
0

mk(↵m/4
i + 1)} < t

?

forms a feasible solution in (5) with a smaller objective value t
0
< t

?; hence, (t?,X?) cannot

be optimal. Then at the optimal solution (t?,X?), t? =
PK

k=1 X
?
mk(↵m/4i + 1) 8m 2M .

Using Claim 1 and the constraint (5c);

4iK =
MX

m=1

KX

k=1

X
?
mk =

MX

m=1

t
?

(↵m/4i + 1)
= t

?
MX

m=1

1

(↵m/4i + 1)

) t
? =

4iK
PM

m=1 1/(↵m/4i + 1)
(6)

which justifies equation 1.

a) Observation: Note that the solution of the relaxed LP (5) can be directly used for

scheduling of actions by adding max (2↵M�1,↵m) to the end time t
?. Since the relaxation in

general does not give a feasible solution for the ILP, we add max (2↵M�1,↵M) to the end time

of the relaxed ILP to guarantee a feasible solution for the ILP. As the additional time slots

accumulate regret across all agents, this can result in ⌦(M↵M) additional regret which can be

large for large M . Our algorithm improves the M factor in M↵M .

APPENDIX B

MISSING PROOFS

A. Proof of Lemma 1

In this section, we present the detailed proof of Lemma 1.

20

TABLE II: Notation

4i : Number of effective pulls in batch i for each active action

A : Set of actions, |A| = K

Ai : Set of active actions in batch i, |Ai| = K(i)

↵m : = d4 log T/ log (1/✏m)e � 1, number of repetitions for agent m

�a : = maxa02A µa0 � µa, suboptimality gap for action a

G : The event that at least one instruction among the times t, t+ 1, · · · , t+ ↵m � 1 will not be

erased for all agents m and all times t

G0
i : =

⇢
|µ(j)

a � µa|  2
q

log (KMT)
2·4j 8a 2 Aj , j 2 [i� 1]

�
, the event that empirical means of

active actions in batch j (8a 2 Aj) is in confidence region for all batches until batch i

M : Number of agents

µa : Reward mean of action a

µ(i)
a : The empirical mean calculated for action a at batch i (as defined in step 8 in Algorithm 1)

N (i)
1 : = M

MP
m=1

1/(↵m+4i)

, a term that appears in regret

N (i)
2 : = 12 · 4i, a term that appears in regret

RT : Regret of K arm bandit over M channels with horizon T

R(i)
T : Regret of batch i for K arm bandit over M channels with horizon T

T (i) : Length of the scheduling outputted by Algorithm 2 for batch i

Ti : The total number of instructions played by all agents due to instructions sent in batch i

Tia : Number of times action a is played by agents due to an instruction sent in batch i

K̂ : Number of actions unassigned in the first part of the scheduling (as described in Algorithm 2 line 10)

Lemma 1: If the scheduling algorithm outlined in Algorithm 2 is run for batch i, then the end

time T
(i) of the batch can be bounded as

T
(i)
 K4i⌧ + 6

MX

m=1

↵m

M
+ 2

K4i

M

!

where ⌧ = 1
MP

m=1
1/(↵m/4i+1)

, ↵m = d4 log T
log (1/✏m)e � 1, K is the number of actions, and M is the

number of agents.

We prove the upper bound on the end time in two steps.

Step A. First, we claim that the algorithm uses the first 4iK⌧ rounds to schedule all 4i pulls of

at least (K �M)+ actions:

Each agent m takes ↵m +4i to complete all pulls of an action; hence, it can play all pulls of at

least �
4iK⌧

↵m + 4i

⌫

21

actions. Hence, the total number of actions scheduled across all channels during the first 4iK⌧

rounds is
MX

m=1

�
4iK⌧

↵m + 4i

⌫
�

MX

m=1

✓
4iK⌧

↵m + 4i
� 1

◆
= K⌧

MX

m=1

1

↵m/4i + 1
�M = K �M.

A lower bound of (K �M)+ follows by the non-negativity of the number of scheduled pulls.

Step B. The second step is to show that the remaining number of actions K̂  K�(K�M)+ =

min (K,M) can be scheduled using an additional time of

6

 PM
m=1 ↵m

M
+ 2

4iK

M

!
.

Recall that Algorithm 2 divides the 4i pulls of each of the remaining actions into max (1, b M
2K̂
c)

equal parts and assign each part to an agent. Hence, each part will have number of pulls

4i

max (1, bM/2K̂c)

(a)

 min (4i,
4K̂

M
4i) (7)

and there will be at most M such parts. The first bM/2c agents can be used for scheduling

these parts in a way such that each agent is assigned at most three parts. It follows that each

agent m needs at most 3↵m + 3min (4i, 4K̂M 4i) time to perform the scheduled pulls. Thus the

total number of rounds required to schedule the remaining pulls can be bounded by

3 max
m2{1,··· ,bM/2c}

↵m + 3min (4i,
4K̂

M
4i)

(i)
= 3↵bM/2c + 3min (4i,

4K̂

M
4i)

(ii)

 6

PM
m=1 ↵m

M
+ 3min (4i,

4K̂

M
4i) (8)

where (i), (ii) follow from the fact that ↵m’s are ordered, i.e., ↵1  ↵2  · · ·  ↵M . Combining

this with the result from Step A, we get that the end time needed to send all actions in batch i.

B. Proof of Theorem 1

Theorem 1 Consider a distributed multi-armed bandit setting with K actions and M agents con-

nected through heterogeneous erasure channels with erasure probabilities {✏i}
M
i=1. If BatchSP2

is run with horizon T , then the expected regret is,

E[RT]  c

X

a:�a>0

⇣ log (KMT)

�a
+

M log (MT)
MP

m=1
1/(↵m + log (KMT)

�a
)

⌘
+

MX

m=1

↵m log (MT) + log (MT)

!

where ↵m = d4 log T/ log (1/✏m)e � 1 is the number of repetitions at agent m, �a is the

suboptimality gap for action a, and c > 0 a constant.

22

The regret bound is reached by bounding the number of batches a suboptimal arm can survive

as a function of the suboptimality gap, conditioned on a good event that we specify later. This

gives a bound on the maximum sub-optimality gap at each batch which in turn gives a bound

on the regret using the bound on the batch length given in Lemma 1.

Let G be the event that for all agents m and for all times t, at least one instruction among

the times t, t + 1, · · · , t + ↵m � 1 will not be erased. Hence, the event G means that for any

agent m, we cannot have ↵m or more consecutive erasures. This implies that, conditioned on

G, when an action a is sent ↵m + 4i consecutive times by the learner to agent m, each of the

last 4i pulls will generate a reward from the distribution of action a. We call these last 4i pulls,

the effective pulls. The probability of the compliment of G can be bounded as

P[Gc]
(i)



MX

m=1

TX

t=1

✏m
↵m

(ii)



MX

m=1

TX

t=1

1

T 4

(iii)


1

MT
, (9)

where (i) follows by the union bound over all agents m and times t, (ii) uses ↵m = d 4 log T
log (1/✏m)e�1

, and (iii) follows from M  T .

Define an event G0
i as

G
0
i =

(
|µ

(j)
a � µa|  2

r
log (KMT)

2 · 4j
8a 2 Aj, j 2 [i� 1]

)
,

where µ
(j)
a is the empirical mean calculated for action a at batch j, as defined in step 8 in

Algorithm 1. By Hoeffding’s inequality and the fact that rewards lie in [0, 1] almost surely, we

have that P[G0
i|G] � 1 � 0.25/(MT). Consequently, events G and G

0
i happening together have

a probability

P[G0
i \G] � (1� 0.25/(MT))2 � 1� 2/(MT). (10)

We first bound the number of batches, a suboptimal arm can survive as a function of the

suboptimality gap. Conditioned on G \ G
0
i+1 and the elimination criterion in Algorithm 1, a

sub-optimal action a can survive getting eliminated in batch i only if 4
q

log (KMT)
2·4i � �a/2.

This implies that a can be in Ai+1 only when

i 

⇠
log4

✓
32 log (KMT)

�2
a

◆⇡
, (11)

i.e., whenever the batch number i is greater than the bound provided in equation 11, a 62 Ai.

Using the result of Lemma 1, we know the number of sent instructions in each batch i is

upper bounded as

MT
(i)
 K

(i)
M · 4i⌧ + 6

MX

m=1

↵m + 12K(i)4i, (12)

23

where K
(i) = |Ai| is the number of actions at the start of batch i and T

(i) is the length of batch

i. Conditioned on the event G (we cannot have ↵m consecutive erasures for any agent m), the

last action played by agent m in batch i will be played at most ↵m times in batch i+1 (due to

potential erasures). This implies that the total number of instructions, Ti, played by all agents

due to instructions sent in batch i, can be bounded as

Ti 

MX

m=1

(T (i) + ↵m)  K
(i)
M · 4i⌧ + 7

MX

m=1

↵m + 12K(i)4i. (13)

We utilize the following proposition, restated and proved at the end of section B-B, to bound

the expected number of times a certain action is played due to an instruction sent in batch i.

Proposition 1: Conditioned on (G \G
0
i,Ai), the expected number of times arm a is played

due to an instruction sent in batch i is the same for all a 2 Ai. In particular, E[Tia|G\G
0
i,Ai] =

E[Tia0 |G \G
0
i,Ai], 8a, a

0
2 Ai.

Conditioning on Ai in the previous proposition and in the following abbreviates conditioning

on the event that the random set of surving actions in batch i takes the value Ai.

Then, we have that

E[Tia|G \G
0
i,Ai] =

E[Ti|G \G
0
i,Ai]

K(i)
 M · 4i⌧ + 7

PM
m=1 ↵m

K(i)
+ 12 · 4i 8a 2 Ai. (14)

Let R(i)
T be the regret of batch i. The regret of the algorithm can be bounded as

E[RT] =
log (MT)X

i=1

E[R(i)
T] 

log (MT)X

i=1

⇣
E[R(i)

T |G \G
0
i] +MT (1� P[G \G

0
i])
⌘

(a)



log (MT)X

i=1

(E[E[R(i)
T |G \G

0
i,Ai]] + 1)

=
log (MT)X

i=1

E[
X

a

E[Tia|G \G
0
i,Ai]�a] + log (MT)

(b)



log (MT)X

i=1

E[
X

a

(N (i)
1 +N

(i)
2)E[1[a 2 Ai]|G \G

0
i]�a]

+ E[
X

a

7
MX

m=1

↵m

K(i)
E[1[a 2 Ai]|G \G

0
i,Ai]�a]

!
+ log (MT)



log (MT)X

i=1

X

a

(N (i)
1 +N

(i)
2)E[1[a 2 Ai]|G \G

0
i]�a + E[7

MX

m=1

↵m] + log (MT)

24



log (MT)X

i=1

X

a

(N (i)
1 +N

(i)
2)E[1[a 2 Ai]|G \G

0
i]�a + c

00 log (MT)
MX

m=1

↵m + log (MT),

(15)

where (a) follows from law of total expectation and equation 10, (b) follows from equation 14

and we use N
(i)
1 = M

MP
m=1

1/(↵m+4i)
and N

(i)
2 = 12 · 4i for these quantities that do not depend on

Ai. We will bound each term in equation 15 separately to get the final regret bound.

We start by bounding the effect of the first term in equation 15, N (i)
1 = M

MP
m=1

1/(↵m+4i)
, on the

final regret bound. We have that
log (MT)X

i=1

X

a

N
(i)
1 E[1[a 2 Ai]|G \G

0
i]�a =

X

a

log (MT)X

i=1

�a
ME[1[a 2 Ai]|G \G

0
i]

MP
m=1

1/(↵m + 4i)

(a)

 c

X

a:�a>0

M log (MT)
MP

m=1
1/(↵m + log (KMT)

�a
)

(16)

where c is a universal constant, and (a) follows from equation 11 and the bound being an

increasing function of i.

The effect of the second term in equation 15, N (i)
2 = 12 · 4i,

X

a

log (MT)X

i=1

N
(i)
2 E[1[a 2 Ai]|G \G

0
i]�a = 12

X

a

⇠
log4

✓
32 log (KMT)

�2
a

◆⇡

X

i=1

4i�a

(a)

 c
0
X

a:�a>0

log (KMT)

�a
, (17)

where (a) follows from equation 11, and c
0 is a universal constant. The final result follows by

summing the bounds in equation 16 and equation 17.

Proposition 1: Conditioned on (G \ G
0
i,Ai), the expected number of times arm a is played

due to an instruction sent in batch i is the same for all a 2 Ai. In particular, E[Tia|G\G
0
i,Ai] =

E[Tia0 |G \G
0
i,Ai], 8a, a

0
2 Ai.

Proof. Recall that Tia is the number of times an agent plays arm a due to an instruction sent

in batch i. We represent the schedule by the set S = {{Smt}
M
m=1}

T (i)

t=1 , where Smt is the action

the learner sends to agent m at time t. Let S(a$ a
0) represents the schedule where actions a, a0

are exchanged in the schedule S, i.e., S(a $ a
0)mt = a whenever Smt = a

0, S(a $ a
0)mt = a

0

whenever Smt = a, otherwise S(a $ a
0)mt = Smt. We notice that conditioned on the schedule

25

S in batch i, whether an action is played in slot t due to an instruction sent in batch i is only

a function of the erasures in batches i, i+ 1, ... Hence, we have that

E[Tia|G \G
0
i,Ai] =

X

S2S

P[S|G \G
0
i,Ai]E[Tia|G \G

0
i,Ai, S] =

X

S2S

P[S|Ai]E[Tia|G,S]

(a)
=
X

S2S

1

|S|E[Tia|G,S] =
X

S2S

1

|S|E[Tia0 |G,S(a$ a
0)] =

X

S2S

1

|S|E[Tia0 |G,S]

= E[Tia0 |G \G
0
i,Ai], (18)

where S is the set of all (non-zero probability) possible schedules for batch i, and (a) follows

since the randomization in Algorithm 2 makes all the schedules in S equally probable.

C. Proof of Theorem 2

Theorem 2 Consider the distributed multi-armed bandit setting with K actions and M agents

connected through heterogeneous erasure channels {✏i}
M
i=1. If BatchSP2 is run for horizon T ,

then the expected regret is

RT  c

M

s
KT log (MT)

PM
m=1 1/(↵m�? + log (KMT))

+
MX

m=1

↵m log (KMT)

!

where �? is the value satisfying

�? =
c
0
K log (MT)

T

MP
m=1

1/(↵m + log (KMT)
�?

)

,

which can be efficiently approximated using the bisection method, ↵m = d4 log T/ log (1/✏m)e�1

number of repetitions and c, c
0
> 0 constants.

Proof of Theorem 2. From equation 15, the expected regret can be bounded as

E[RT] 
log (MT)X

i=1

X

a

E[Tia|G \G
0
i]�a + log (MT)

 MT�+
log (MT)X

i=1

X

a:�a>�

E[Tia|G \G
0
i]�a + log (MT)

(a)

 MT�+
log (MT)X

i=1

X

a:�a>�

(N (i)
1 +N

(i)
2)1[a 2 Ai]�a + c

000 log (MT)
MX

m=1

↵m + log (MT)

(b)

 MT�+ c

X

a:�a>�

0

BB@
M log (MT)

MP
m=1

1/(↵m + log (KMT)
�a

)

+
log (KMT)

�a

1

CCA+ f(M,T,↵)

26

(c)

 MT�+ c

X

a:�a>�

2M log (MT)
MP

m=1
1/(↵m + log (KMT)

�a
)

+ f(M,T,↵)

(d)
= MT�+

c
0
KM log (MT)

MP
m=1

1/(↵m + log (KMT)
�)

+ f(M,T,↵)

 2max

8
>><

>>:
TM�,

c
0
KM log (MT)

MP
m=1

1/(↵m + log (KMT)
�)

9
>>=

>>;
+ f(M,T,↵) 8� > 0 (19)

where f(M,T,↵) = c
000 log (MT)

PM
m=1 ↵m + log (MT) and c, c

0
, c

000
> 0 some constants. (a)

follows from equation 14 where N
(i)
1 = M/(

PM
m=1 1/(↵m + 4i)) and N

(i)
2 = 12 · 4i. (b) follows

from directly substituting equation 16 and equation 17 for the terms; and (c) follows from the

fact that the first term is an increasing function of ↵m’s; therefore,

M log (MT)
MP

m=1
1/(↵m + log (KMT)

�a
)

�
M log (MT)
MP

m=1
1/ log (KMT)

�a

�
log (KMT)

�a
8{↵m}

M
m=1 � 0.

(d) follows from the term inside the summation being a decreasing function of �a.

We choose � to be the value that minimizes the bound. Hence the optimal value �? satisfies:

TM�? =
c
0
KM log (MT)

MP
m=1

1/(↵m + log (KMT)
�?

)

(20)

Substituting equation 20 to the bound in equation 19, we get that

E[RT]  2M

vuuut
c0KT log (MT)

MP
m=1

1/(↵m�? + log (KMT))

+ c
000 log (MT)

MX

m=1

↵m + log (MT). (21)

REFERENCES

[1] O. A. Hanna, L. Yang, and C. Fragouli, “Solving multi-arm bandit using a few bits of communication,” in International

Conference on Artificial Intelligence and Statistics. PMLR, 2022, pp. 11 215–11 236.

[2] O. Hanna, L. Yang, and C. Fragouli, “Learning from distributed users in contextual linear bandits without sharing the

context,” Advances in Neural Information Processing Systems, vol. 35, pp. 11 049–11 062, 2022.

[3] O. A. Hanna, L. F. Yang, and C. Fragouli, “Compression for multi-arm bandits,” IEEE Journal on Selected Areas in

Information Theory, 2023.

[4] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 6th ed. Pearson, 2012.

[5] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “Vip: A framework for joint dynamic forwarding and caching in

named data networks,” in Proceedings of the 1st ACM Conference on Information-Centric Networking, 2014, pp. 117–126.

27

[6] M. Dehghan, W. Chu, P. Nain, D. Towsley, and Z.-L. Zhang, “Sharing cache resources among content providers: A

utility-based approach,” IEEE/ACM Transactions on Networking, vol. 27, no. 2, pp. 477–490, 2019.

[7] Y. Liu, Z. Zou, O. S. Pak, and A. C. H. Tsang, “Learning to cooperate for low-reynolds-number swimming: a model

problem for gait coordination,” Scientific Reports, vol. 13, 2023.

[8] Z. Zou, Y. Liu, Y. N. Young, and et al., “Gait switching and targeted navigation of microswimmers via deep reinforcement

learning,” Communications Physics, vol. 5, p. 158, 2022.

[9] I. Amir, I. Attias, T. Koren, Y. Mansour, and R. Livni, “Prediction with corrupted expert advice,” Advances in Neural

Information Processing Systems, vol. 33, pp. 14 315–14 325, 2020.

[10] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge University Press, 2020.

[11] W. R. Thompson, “On the likelihood that one unknown probability exceeds another in view of the evidence of two samples,”

Biometrika, vol. 25, pp. 285–294, 1933.

[12] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multiarmed bandit problem,” SIAM Journal

on Computing, vol. 32, no. 1, pp. 48–77, 2002.

[13] T. L. Lai, “Adaptive treatment allocation and the multi-armed bandit problem,” Annals of Statistics, vol. 15, pp. 1091–1114,

1987.

[14] S. Shahrampour, A. Rakhlin, and A. Jadbabaie, “Multi-armed bandits in multi-agent networks,” in 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2786–2790.

[15] A. Dubey et al., “Cooperative multi-agent bandits with heavy tails,” in International conference on machine learning.

PMLR, 2020, pp. 2730–2739.

[16] M. Agarwal, V. Aggarwal, and K. Azizzadenesheli, “Multi-agent multi-armed bandits with limited communication,” J.

Mach. Learn. Res., vol. 23, no. 1, jan 2022.

[17] M. Xu and D. Klabjan, “Decentralized randomly distributed multi-agent multi-armed bandit with heterogeneous rewards,”

in Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[18] P.-A. Wang, A. Proutiere, K. Ariu, Y. Jedra, and A. Russo, “Optimal algorithms for multiplayer multi-armed bandits,”

in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, ser. Proceedings of

Machine Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108. PMLR, 26–28 Aug 2020, pp. 4120–4129.

[19] C. Shi, W. Xiong, C. Shen, and J. Yang, “Heterogeneous multi-player multi-armed bandits: Closing the gap and

generalization,” Advances in neural information processing systems, vol. 34, pp. 22 392–22 404, 2021.

[20] P. Joulani, A. Gyorgy, and C. Szepesvari, “Online learning under delayed feedback,” in Proceedings of the 30th International

Conference on Machine Learning, ser. Proceedings of Machine Learning Research, S. Dasgupta and D. McAllester, Eds.,

vol. 28. Atlanta, Georgia, USA: PMLR, 6 2013, pp. 1453–1461.

[21] T. Mandel, Y.-E. Liu, E. Brunskill, and Z. Popović, “The queue method: Handling delay, heuristics, prior data, and

evaluation in bandits,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2 2015.

[22] C. Pike-Burke, S. Agrawal, C. Szepesvari, and S. Grunewalder, “Bandits with delayed, aggregated anonymous feedback,”

in International Conference on Machine Learning. PMLR, 2018, pp. 4105–4113.

[23] C. Vernade, O. Cappé, and V. Perchet, “Stochastic bandit models for delayed conversions,” arXiv preprint arXiv:1706.09186,

2017.

[24] A. Grover, T. Markov, P. Attia, N. Jin, N. Perkins, B. Cheong, M. Chen, Z. Yang, S. Harris, W. Chueh, and S. Ermon,

“Best arm identification in multi-armed bandits with delayed feedback,” in Proceedings of the Twenty-First International

Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, A. Storkey and F. Perez-

Cruz, Eds., vol. 84. PMLR, 4 2018, pp. 833–842.

28

[25] O. A. Hanna, M. Karakas, L. F. Yang, and C. Fragouli, “Multi-arm bandits over action erasure channels,” in 2023 IEEE

International Symposium on Information Theory (ISIT). IEEE, 2023, pp. 1312–1317.

[26] P. Auer and R. Ortner, “Ucb revisited: Improved regret bounds for the stochastic multi-armed bandit problem,” Periodica

Mathematica Hungarica, vol. 61, no. 1-2, pp. 55–65, 2010.

[27] E. Sagatov, S. Mayhoub, A. Sukhov, and D. Chernysh, “Dataset of one-way delay in local and global networks,” 2020.

[Online]. Available: https://dx.doi.org/10.21227/0dmg-3r29

[28] H. Dahmouni, A. Girard, and B. Sansò, “An analytical model for jitter in ip networks,” annals of telecommunications-annales

des télécommunications, vol. 67, pp. 81–90, 2012.

https://dx.doi.org/10.21227/0dmg-3r29

	INTRODUCTION
	PROBLEM FORMULATION
	Multi-armed Bandits
	Multi-Agent Multi-Armed Bandits with Action Erasures

	PROPOSED ALGORITHM
	Connecting to Channels with Delays

	REGRET ANALYSIS
	EXPERIMENTS
	CONCLUSION
	Appendix A: LINEAR PROGRAM FORMULATION
	Appendix B: MISSING PROOFS
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	References

