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Abstract—Bandit problems have been widely used in
wireless communication systems which involve generalized
reward models and may suffer high computational com-
plexity. Despite the success of applying stochastic gradient
descent (SGD) in stochastic bandits to reduce computational
complexity, several limitations persist in state-of-the-art.
Specifically, current papers only consider linear models
which is not practical in wireless communication. Their
algorithms are only guaranteed by the expected regret
bound, which may not be effective when many actions are
sub-optimal. Additionally, existing SGD-based approaches
raise bias in the estimation due to a greedy action selection
strategy, deviating from the conventional SGD approach
that uniformly samples. To address these limitations, we
propose an online SGD-based algorithm with a high
probability regret bound guarantee, which can apply to
stochastic bandits with general parametric reward functions.
We develop an action-elimination strategy to gradually
eliminate sub-optimal actions and uniformly at random
select the action from the current action subset. This strategy
guarantees an unbiased estimation of model parameters.
Theoretically, we prove that our proposed algorithm can
achieve the regret of O(d

p
n log(n/�)) with probability at

least 1 � �, where n is the number of time steps and d

is the dimension of model parameters, matching existing
near-optimal regret bounds in UCB-type algorithms. We
further conduct experiments to demonstrate the advantage
of our algorithm.

I. INTRODUCTION

Online stochastic bandits represent a class of sequential
decision-making problems where an agent makes actions
and receives uncertain rewards. The applications in
wireless communication range from client scheduling
[1] to channel selection [2], [3], [4]. The goal of the
agent is to maximize the cumulative rewards over n

time steps by strategically selecting actions based on
streaming data. A line of literature has developed effective
algorithms for online stochastic bandits. Compared with
the common methods, such as the upper confidence
bound (UCB) bandit algorithm [5], [6] and online mirror
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descent (OMD) [7], [8], the SGD-based methods [9], [10],
[11] can effectively reduce computational complexity by
avoiding the matrix inverse operations when estimating
the model parameter. However, several limitations persist
in the current SGD-based methods for online stochastic
bandits.

Firstly, existing online algorithms predominantly focus
on linear models, while the general parametric model
is unexplored. Secondly, prior SGD-based approaches
only focused on expected regret bounds and did not
tackle high probability bounds, leaving uncertainties
about their algorithms in achieving desirable regret
bounds when involving too many sub-optimal actions.
Thirdly, current SGD-based approaches introduce bias in
their estimators. This bias arises from a greedy action
selection strategy at each time step, deviating from the
conventional SGD approach that uniformly samples from
all available data points. The presence of bias implies a
larger divergence between the estimation and the ground
truth, potentially compromising result robustness. In other
words, different datasets may yield significantly different
estimation results.

To address the above limitations, we consider SGD-
based stochastic bandit problems with a general paramet-
ric model, emphasizing performance guarantees that hold
high probability, an aspect lacking in current literature
due to the considerable technical effort and modifications
required to establish such guarantees. Specifically, the
general parametric models usually involve complex
optimization problems. It is vital to make reasonable
but not strict assumptions about the model to guarantee
feasible solutions. Furthermore, the statistical analysis
associated with general parametric models requires pre-
cisely establishing corresponding i.i.d. random variables,
necessitating the utilization of random matrix theory
thorough analysis.

The contributions can be summarized as follows:
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1) General framework. Our proposed method applies
to stochastic bandits with a general parametric
reward functions.

2) High probability bound. The proposed algorithm
endows with a high probability regret-bound guar-
antee.

3) Unbiased Action-elimination strategy. We design
a strategy to gradually eliminate sufficiently sub-
optimal actions. The proposed algorithm uniformly
at random selects the action from the current
action subset. This strategy guarantees an unbiased
estimation of model parameters, yielding a robust
and desirable upper regret bound.

A. Related Work

Online algorithms that use streaming data to update
the models, rather than waiting for a complete set of
data, reduce the need for extensive storage on previously
seen data. This idea has been recently applied to the
online stochastic bandits problem. Even though papers
such as [12], [13], [14] proposed online-mirror-descent-
based methods [7], these methods involve matrix inverse
operations, which still brings computational complexity
of O(nd2) when the dimension of the feature vector is
large.

A notable line of literature ([15]) extensively explores
the high-probability expected estimator error of SGD,
forming the basis for regret analyses in SGD-based bandit
problems ([10], [11]). However, these investigations are
confined to the linear setting, lacking generalizability.
This paper seeks to fill this gap by undertaking a com-
prehensive examination of SGD-based algorithms within
a broader bandit problem framework, delving into both
theoretical and empirical dimensions. The comparison
between our result and state-of-the-art is illustrated in
Table I. The first four papers lack consideration for
high probability bounds. In contrast to [5], our bound
demonstrates an improvement by a multiplicative factor
of approximately

p
log(n). Notably, our method not only

attains a near-optimal bound akin to [6] but also enjoys
low computational complexity.

II. PRELIMINARIES

Let D ⇢ Rd be a compact set of decisions the envi-
ronment decides. At each time t, the learning algorithm
determines a subset At ✓ D and the agent selects an
action xt 2 At, after which the agent observes a reward
yt.

We denote Ht as the history (A1, x1, y1, . . . ,

At�1, xt�1, yt�1,At) of observations available to the
agent when choosing an action xt. After choosing the

action xt, the agent receives a reward yt that is a function
with respect to a certain parameter ✓? 2 Rd, i.e., for all
xt 2 D, yt = r(✓?, xt) + ✏t where ✏t denotes the noise.
Generally, the vector ✓? is unknown, though fixed.

We begin with two standard assumptions for most
bandit problems [16]. The first assumption sets the range
of the reward function.

Assumption 1 (Reward function). Define a function r :
Rd

⇥ D ! R. The reward function for bandit problem

is represented as r(✓?, x) for all x 2 D and a certain

parameter ✓? 2 Rd
where k✓?k2  S for S > 0.

Our second assumption ensures that observation noise
is light-tailed. A wide range of noise, e.g., Gaussian and
sub-Gaussian noise, is covered by this assumption.

Assumption 2 (Noise assumption). For all t 2 [n], ✏t =
yt � r(✓?, x) conditioned on Ht is �-sub-Gaussian, i.e.,

E[exp(�✏t)]  exp
�
�
2
�
2
/2
�

almost surely for all �.

We let x⇤
2 argmaxx2D r(✓?, x) denote the optimal

action. The n period cumulative regret is Reg(n) =P
n

t=1 [r(✓?, x
⇤)� r(✓?, xt)] where {xt : t 2 [n]} denote

the actions.

III. ALGORITHM

We present our proposed algorithm in this section. To
begin with, we need to estimate the model parameter in
the bandit problem. The efficient estimation is intractable
for a general function r(✓, x) unless we consider the ban-
dit problem under some reasonable and mild assumptions.
These assumptions ensure that stochastic gradient descent
can efficiently and effectively apply to model parameter
estimation. Before presenting assumptions, we start with
the representation of the loss function in estimation.

Suppose that decisions x1, . . . xn 2 D have been made,
corresponding rewards are y1, . . . , yn 2 R. The loss
function at i-th step is defined as `i(r(✓, xi), yi), 8 ✓ 2

Rd
, i 2 [n], which depends on data pair (xi, yi) and

the reward function r(✓, xi). To guarantee efficient and
effective parameter estimation, we consider the problem
of minimizing a smooth and convex function by stochastic
gradient descent. Specifically, we make the following
assumptions on the loss function `i(r(✓, xi), yi). We
abuse the notation `i(✓) to represent `i(r(✓, xi), yi) in
the following.

Assumption 3 (Loss function). We assume that the

loss function `i(✓) (III) with i 2 [n] satisfies, for some

Lipschitz constants L,LG, LH > 0, convexity constant

µ > 0 and any points ✓, ✓
0
2 Rd
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TABLE I
COMPARISON OF OUR MAIN RESULT AND STATE-OF-THE-ART.

Paper Model Algorithm Regret Computational
complexity

[8] Linear OMD-based O(d
p

n log(n)) O(nd2)

[10] Linear SGD-TS O(d
p

n log(n)) O(nd)

[11] Linear SGD-based O(d
p

n log(n log(n))) O(nd)
[9] Linear SGD-based O(d log4 n ·

p
n) O(nd)

[5] Linear UCB
O

✓
d log(n)

p
n

+

r
dn log

⇣
n

�

⌘◆ O(nd2)

[6] General parametric UCB O(d
p

n log(n/�)) O(n2
d
2)

Theorem 1 General parametric SGD-based O(d
p

nlog(n/�)) O(nd)

• Convexity and smoothness:

`i(✓
0)� `i (✓)� hr`i (✓) , ✓

0
� ✓i �

µ

2
k✓

0
� ✓k

2
2 ,

kr`i (✓
0)�r`i(✓)k2  LG k✓

0
� ✓k2 ,

|r(✓0, xi)� r(✓, xi)|  L k✓
0
� ✓k2 .

In other words, `i(✓) is LG-smooth with respect to

✓, and r(✓, xi) is L-smooth with respect to ✓.

• Hessian-Smoothness:

��r2
`i (✓0)�r

2
`i(✓)

��
2



LH k✓
0
� ✓k2, which is equivalent to

��r`i (✓
0)�r`i(✓)�r

2
`i(✓) (✓

0
� ✓)

��
2


LH

2
k✓

0
� ✓k

2
2 . (1)

• Bounded gradient: For the model parameter ✓? in

Assumption 1, we have E[kr`i(✓?)k2]  µ k✓?k2.

Assumption 3 can be easily satisfied by a wide range
of loss functions under various scenarios. An example of
stochastic linear bandit problems that satisfies Assumption
3 is presented in Example 1 in Section IV.

Based on Assumption 3, we update the estimator of the
model parameter via the mini-batch averaged SGD [15].
Additionally, we design an action-elimination strategy to
gradually eliminate sufficiently sub-optimal actions in the
learning process and maintain near-optimal actions. At
each round of mini-batch averaged SGD, we uniformly
and randomly select the action from the current action
subset to guarantee the corresponding feature vectors are
i.i.d. The details on designing proper action subsets are
presented in Section IV, which is our main argument to
guarantee near-optimal regret bound.

According to the above discussions, the algorithm is
presented as follows. An estimate ✓̂ to the ground-truth

vector ✓? can be constructed by

✓̂ := arg
✓

min L(✓), where L(✓) :=
1

n

nX

i=1

`i(✓) (2)

where `i(✓) is the loss function. We apply the mini-
batch SGD to estimate the model parameter. Initialized
at ✓0, the t-th iteration is computed by the mini-batch
SGD with step size ⌘t. We define B as the mini-batch
size and step sizes ⌘t will be discussed in our proposed
algorithm. In each round t, the agent randomly selects
an action xt 2 At. The proposed SGD for general bandit
is illustrated in Algorithm 1.

Our algorithm (Algorithm 1) is an exploration-
exploitation modification of mini-batch averaged SGD,
where the action-elimination strategy realizes the
exploration-exploitation balancing. At a high level, each
round consists of one inner loop over all mini-batch
sizes B. Before initiating the inner loop, an action
subset (referenced in line 4) is established. In line 4,
the objective is to filter out actions from At�1 whose
rewards deviate significantly from the maximum action
reward within At�1 by solving the optimization problem
(3). The remaining actions are then defined as At. In
the case of a nonconvex reward function, the problem
(3) becomes intractable in general. However, when the
reward function adheres to suitable statistical models (e.g.,
low-rank matrix), straightforward first-order methods are
assured to discover a local minimum with a minimal
number of iterations. This approach can still achieve low
computational and sample complexities.

After getting an action set At, the inner loop (line
5-9) uniformly and randomly selects an action from the
action set At to guarantee the i.i.d. property of the action
xi and the reward yi. It ensures the unbiased estimation
of stochastic gradient. Subsequently, the inner loop (line
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Algorithm 1 SGD-based Algorithm for General Stochas-
tic Bandits
Require: Neighborhood radius �t, 8 t 2 {1, 2, · · · , T},

number of outer iteration rounds T , mini-batch size
B, step-size ⌘t = ⌘0t

�↵ where ↵ 2 (0, 1).
1: Initialize ✓0 2 Rd such that k✓0k2  S, ✓̄0 = 0 2 Rd,

A0 = D, �0 = S.
2: for t = 1 to T do
3: Initial gt = 0 2 Rd.
4: Update action set as

At :={x 2 At�1| max
a2At�1

r(✓̄t�1, a)

� r(✓̄t�1, x)  2L�t�1}, (3)

where L is defined in Assumption 3.
5: for i = (t� 1)B + 1 to tB do
6: Uniformly at random select an action xi 2 At.
7: Observe the reward yi.
8: Update gt = gt +

1
B
r`i(✓t�1).

9: end for
10: Update ✓t = ✓t�1 � ⌘tgt.
11: Compute ✓̄t = t

�1(✓t + (t� 1)✓̄t�1)
12: end for
13: Output: ✓̄T

5-9) updates the stochastic gradient gt that is used to
form the iterate, i.e., ✓t. The analysis of our proposed
algorithm is provided in the next section.

IV. MAIN THEORY

In this section, we present our main result, Theorem
1, which provides the sample complexity guarantee
for Algorithm 1 in general bandit problem under mild
assumptions.

We begin with notations used in the main theorem. Let

 �,↵ =

Z 1

1
exp

✓
��

Z
z

1
x
�↵

dx

◆
dz  C�,↵, (4)

where C�,↵ > 0, � > 0, and 0 < ↵  1. We define
�⇤ = maxt �max(r2

`t(✓?)) t 2 [T ] in the following. In
Theorem 1, let � > 0 denote the standard deviation of
noise for the gradient caused by the noise {✏t} under
Assumption 2.

Theorem 1. Under Assumptions 1, 2, and 3, we set

�t = C
00
�,↵

s
16dL2

H

tµ3
log

✓
t

�

◆
, t 2 [T ], (5)

↵ = 1/2, the mini-batch size B = µ�
2
d/L

2
H

, and the

initial step-size ⌘0  1/�⇤, Algorithm 1 achieves the

following regret with probability at least 1� �,

Reg(n) 
2µ�2

SLd

L2
H

+ 32 · �C 00
�,↵

dL

r
n

µ2
log

⇣
n

�

⌘
,

(6)

where n = TB and C
00
�,↵

⇣ C�,↵ with C�,↵ derived

from (4) with � = µ⌘0/2 and ↵ = 1/2.

The first term of the regret bound (6) comprises a
constant determined by the parameters. Specifically, a
more concentrated tail distribution, reflected by a smaller
�
2, results in a diminished upper regret bound. If the

slope (first-order derivative) and the curvature (second-
order derivative) of the loss function don’t change too
rapidly across its domain, reflected by a smaller L and a
larger LH , the upper regret bound will be reduced. The
dominant factor in the regret bound (6) is the second part.
If the loss function’s curvature changes more gradually
(rapidly) across its domain, reflected by a larger µ, this
leads to a reduced upper bound on regret. Thus, there
is a trade-off between the first and second terms of the
regret bound (6).

Example 1 (Linear Bandits). Consider linear bandits

where the function r(✓, x) = ✓
>
x is 2-smooth with

respect to ✓ 2 Rd
for a fixed x 2 D since r✓r(✓, x) = x.

The loss function of estimating ✓ can be given by

`i(✓) =
1

2n

�
✓
>
xi � yi

�2
+

µ

2
k✓k

2
2 (7)

for i 2 [n] and µ > 0. Let µ = 1, Algorithm 1 solves

linear bandits and achieves the following regret with

probability at least 1� �,

Reg(n) 
4�2

Sd

L2
H

+ 64 · �C 00
�,↵

d

r
n log

⇣
n

�

⌘
,

where n = TB and C
00
�,↵

⇣ C�,↵ with C�,↵ defined in

(4), which is comparable to the result for linear bandit

in [5] O(d
p

n log(n/�)).

V. PROOF SKETCH

In this section, we provide an overview of the key
mechanisms behind the regret bound in Theorem 1. Our
analysis is composed of the following three steps.

Step 1: Neighborhood construction. We define the
neighborhood of the averaged iterate ✓̄t at round t as
follows.

Bt :=
�
⌫ :

��⌫ � ✓̄t

��
2
 �t

 
. (8)
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Based on �t (5) in Bt (8), ✓? stays in Bt, 8t with high
probability, which ensures that the averaged iterate ✓̄t

converges to the ground truth ✓?. The value of �t =
Õ(1/

p
t) (5) plays a important role in regret analysis. The

primary purpose of our neighborhood B is to contract and
converge towards the ground truth parameter ✓?, aiming
to identify the true parameter rather than quantifying
uncertainty about the mean reward of each arm.

Step 2: Action-elimination. We further show that
8t 2 N, the set At (3) contains the optimal action x

⇤

with high probability. It guarantees that our proposed
algorithm chooses near-optimal action and eliminates
actions that are sufficiently suboptimal as time goes by.
At each t round of Algorithm 1, the regret of action
xi 2 At is bounded by �t�1, which contributes to bound
regret in the following step.

Step 3: Regret bound. Combining the above two
steps, we bound the total regret by the sum of the regrets
concerning each selected action. At each t round of
Algorithm 1, an action is selected from the action set At

that is updated at the beginning of the inner loop. Herein,
we bound the regret of action xi 2 At with 4L�t�1.

VI. SIMULATION RESULTS

In this section, we provide the experimental results
with industry-standard synthetic datasets for both linear
and logistic bandit.

• Linear bandit: We set the number of rounds T =
1000 and conduct simulations on the parameter:
K = 30 (K is the number of action) and d = 2. We
build linear bandit models, where the feature vectors
{xi} and the true model parameter ✓? are drawn i.i.d.
from Gaussian distribution N (0, Id) and normalize
to kxik2 = 1, k✓?k2 = 1. The loss function for a
linear bandit is the form of (7) with the regularization
parameter µ.

• Logistic bandit: We set the number of rounds T =
10000 and conduct simulations on the parameter:
K = 40 and d = 2. We draw {xi} and the true
model parameter ✓? iid from uniform distribution in
the interval of [� 1p

d
,

1p
d
]. We build a logistic model

on the dataset and draw random rewards yt from a
Bernoulli distribution with mean 1/(1+exp(x>

i
✓
⇤)).

The loss function for logistics is the form of

`i(✓) =
1

2n

⇣�
1 + exp(✓>xi)

��1
� yi

⌘2
+

µ

2
k✓k

2
2

(9)

for i 2 [n] and µ, which satisfies Assumption 3.
To ensure a fair comparison, we evaluate SGD-Ridge

(for linear bandit) and SGD-Proposed (for logistic bandit)

Linear bandit Logistic bandit

Fig. 1. The cumulative regret vs. time-step of different algorithms.

Fig. 2. The cumulative regret vs. computational time of different
algorithms.

alongside established methods including ✏-greedy [16],
[17], GLOC [18], SGD-LDP [11], SGD-TS [10], and
UCB [19], with their codes available publicly. We
standardize noise levels, considering both privacy noise
[11] and reward noise.

Parameter tuning is conducted uniformly across all
algorithms. For GLOC and UCB-GLM, we explore
exploration rates in 0.01, 0.1, 1, 5, 10. The exploration
probability of ✏-greedy is set as cp

t
at the t-th iteration,

with c selected from 0.01, 0.1, 1, 5, 10. For SGD-based
algorithms, we set mini-batch size B = 16d/�, with �

tuned in 0.01, 0.1, 1, 5, 10. The parameter �t (5) is set
as

q
4d log( t

10�3 )/t. Step size ⌘t is ⌘0/
p
t, where ⌘0

is chosen from 0.01, 0.05, 0.1, 0.5, 1, 5, 10. Regulariza-
tion parameter µ for each algorithm is searched from
0.01, 0.05, 0.1, 0.15.

We perform experiments 30 times and plot the mean
and standard deviation of their regrets, which are illus-
trated in Fig 1 and Fig 2. It shows that our proposed
algorithms outperform state-of-the-art approaches. The
beneficial performance is due to a good balance between
exploitation and exploration via an action-elimination
strategy and efficient estimation via the mini-batch SGD
method. Moreover, random selection during each mini-
batch guarantees an unbiased gradient, which outperforms
greedy selection used by Han et al. [11].

To further illustrate the computational efficiency of the
proposed algorithm, we set K = 1000 and d = 100 for
linear bandits and keep other settings mentioned above.
Fig 1 presents timing curves that measure the cumulative
regret vs. the computational time each algorithm takes. All
the algorithms are required to solve similar optimization
problems as (3) which aims to find the proper arm
to pull. The advantage of our proposed algorithm on
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Linear bandit:
K = 10, d = 2

Linear bandit:
K = 30, d = 2

Logistic bandit:
K = 20, d = 2

Logistic bandit:
K = 40, d = 2

Fig. 3. (a) and (b) illustrate the cumulative regret of different
algorithms for linear bandit concerning timestep. (c) and (d) illustrate
the cumulative regret of different algorithms for logistic bandit for
timestep.

computational time mostly comes from the efficiency of
estimating parameters via SGD.

We further provide simulated experiments in industry-
standard synthetic datasets for both linear and logistic
bandit. We plot the mean and standard deviation of their
regrets, which are illustrated in Fig 3. Our proposed
algorithms outperform state-of-the-art approaches and
maintain advantages with larger K in both linear and
logistic bandits. The beneficial performance is due to a
good balance between exploitation and exploration via an
action-elimination strategy. Moreover, random selection
during each mini-batch guarantees an unbiased gradient,
which outperforms greedy selection used by Han et al.
[11].

VII. CONCLUSION

In this paper, we present the SGD-based algorithm for
generalized stochastic bandits, focusing on regret-bound
guarantees that hold with high probability. In addition
to theoretical validation, we conducted experiments to
showcase the practical effectiveness of our proposed al-
gorithm. The results highlight the improved performance
and versatility of our approach in handling stochastic
bandits with general parametric reward functions. By
addressing the identified limitations of current works,
our algorithm presents a promising advancement in the
application of SGD to stochastic bandit problems, paving
the way for more robust and efficient solutions in real-
world scenarios. In addition to the stochastic bandit
problems addressed in this paper, it is interesting to
investigate more complex and general reward models,
such as neural networks in the future.
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