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Abstract. Acoustic Side-Channel Attacks (ASCAs) extract sensitive in-
formation by using audio emitted from a computing devices and their
peripherals. Attacks targeting keyboards are popular and have been ex-
plored in the literature. However, similar attacks targeting other human-
interface peripherals, such as computer mice, are under-explored. To this
end, this paper considers security leakage via acoustic signals emanating
from normal mouse usage.
We first confirm feasibility of such attacks by showing a proof-of-concept
attack that classifies four mouse movements with 97% accuracy in a con-
trolled environment. We then evolve the attack towards discerning twelve
unique mouse movements using a smartphone to record the experiment.
Using Machine Learning (ML) techniques, the model is trained on an
experiment with six participants to be generalizable and discern among
twelve movements with 94% accuracy. In addition, we experiment with
an attack that detects a user action of closing a full-screen window on
a laptop. Achieving an accuracy of 91%, this experiment highlights ex-
ploiting audio leakage from computer mouse movements in a realistic
scenario.

Keywords: Cybersecurity · Human Interface Devices · Computer Mouse
· Acoustic Signals · Acoustic Side-channel · Input Devices · Audio Leak-
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1 Introduction

In general, Side-Channel Attacks (SCAs) exploit unintended leaks, such as pat-
terns of power consumption [14, 12], electromagnetic emissions [19], visual infor-
mation (e.g., from screen content or flickering), or audio (e.g., noise from speak-
ers, CPU or disk) from computers or their peripherals to extract sensitive infor-
mation. Of those, ASCAs typically focus on Human Interface Devices (HIDs) –
mechanical devices that produce sound when used by humans. A notable exam-
ple keyboard acoustic emanations. Characteristic clicking sounds of a keyboard,
generally considered innocuous, can be analyzed to infer user keystrokes. Such
attacks occur in the presence of an attacker-placed (or attacker-compromised)
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microphone near the target device. While considerable research has been con-
ducted on keyboard-based attacks [3], ASCAs on mouse movements remain
relatively unexplored.

Since computer mice are a very popular means of interaction with laptop
and desktop computers, this work seems to understand potential security vul-
nerabilities associated with ASCAs. Our objective is to evaluate the correlation
between acoustic signals and mouse movements thus assessing the feasibility of
mouse-based SCAs. We begin formulating three research questions:

RQ1. Can mouse sounds leak its motion path and/or activity?
RQ2. If so, with what accuracy?
RQ3. In which real-world scenarios do mouse-based ASCAs pose a security
risk?

This paper is organized as follows: Section 2 explores related work. Next, Section
3 details our research methodology for the experiments. Then, Section 4 describes
the core experiments, followed by Section 5, which discusses security implications
of the ASCA. Section 7 concludes the paper and outlines some directions for
future works.

2 Related Work

SCAs exploit unintended information leakage from computing devices or their
peripherals. For instance, a pattern power consumption of a USB-powered device
can be used to profile its activity [18]. SCA can even be used to infer the structure
of a neural network [4]. This section overviews ASCAs – the category of SCA
that subsumes our work.

Passive ASCAs operate by interpreting audio emanations. The present work
falls into this category since the equipment we use (microphone) captures audio
without any interactions with the target computer, its peripherals or the user.

Gupta et al. [11] use audio Time Difference of Arrival (TDoA) at two dif-
ferent points (using two microphones on the same device) to infer the location
of the sound source. Similar studies [22, 15] explore various methods to recover
keystrokes from acoustic emanations. Balagani et al. [2] present a novel ASCA on
ATM PIN entry, called the PinDrop attack. It involves two steps: (1) an acoustic
profile is created for each key on the target PIN pad, and (2) the attacker records
audio emitted by each pressed key during PIN entry and compares these record-
ings to the acoustic profiles to identify the keys pressed. The resulting classifier
is tested on a dataset comprising ten samples for all 26 English alphabet keys,
achieving 90.61% accuracy.

Cecconello et al. [3] present an attack on popular Voice-over-IP (VoIP) soft-
ware (Skype) that captures and transmits all acoustic emanations, including
keyboard sounds. This attack can lead to leakage of sensitive information, such
as passwords, that a victim user might type during a Skype call. Given some
knowledge of the victim’s typing style and the keyboard model, an attacker can
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achieve a top-5 accuracy of 91.7% in learning a random key pressed by the vic-
tim. We note that [3] is relevant to our work since the keyboard is typically used
in tandem with the mouse and our attack scenario is comparable to that in [3].

PoKeMon [9] is a new keystroke monitoring method for smartphones using
Mel-Frequency Cepstral Coefficient (MFCC) [21]. Nandakumar et al. [16] pro-
pose an innovative finger tracking technique by transforming a smartphone into
an active sonar system. The system transmits inaudible sounds in the 18–20
kilohertz (kHz) range and tracks the echoes of the finger with its microphones.
The system achieves 2-D finger tracking accuracy of 8 millimeters (mm) at 169
frames/sec with a smartphone prototype.

Cheng et al. [6] use device speakers to emit inaudible acoustic signals, which
are then reflected off the user’s fingers and recorded by the smartphone mi-
crophones. Similarly, Orthogonal Frequency-Division Multiplexing (OFDM) [8]
sounds emitted from device’s speakers, while the microphones on the same device
are then used to record the echos of these sounds. Also, [6] demonstrates that the
number of unlock patterns an attacker must try until a successful authentication
can be reduced by up to 70% using this ASCA.

The two results most relevant to our work are Synesthesia [10] and Behavicker
[5]. In the former, Genkin et al. examine how ASCAs can leak screen content via
audio emanations, discovering that LCD screens emit content-dependent audio
signals which can be captured by nearby microphones. Experiments conducted
using both built-in and webcam microphones reveal acoustic leakage from audio
recordings and video-conferencing, e.g., Google Hangouts. The authors deter-
mine that the power consumption of the monitor’s circuits changes depending
on the screen content, causing internal components to vibrate and emit sounds.
The authors iteratively simulate the acoustic leakage during hundreds of key
presses on the on-screen keyboard, which lead to a 100% accuracy rate in de-
tecting key presses. In their attempt at text extraction they achieve an accuracy
rate between 88% to 98% for most individual characters. When extracting words
from the screen, the correct word is identified in the top five most probable words
in 72% of the cases.

The goal of Behavicker (Chen et al. [5]) is to determine user activities from
keyboard and mouse clicking and scrolling events. Sounds produced by keyboard
typing or mouse clicking reveal information about users’ behavior. Actions, such
as browsing a news website or playing a video game, produce distinct keyboard
and mouse usage patterns, each with its own unique acoustic footprint. Be-
havicker identifies six basic interaction events with a 88.3% accuracy and dif-
ferentiates between seven computer-usage activities with a 82.7% accuracy. It
utilizes two functional modules: Acoustic-based Interaction Event Recognition
and Computer-Usage Recognition. The first uses signal processing and ML to
recognize interaction events, while the second employs hierarchical classifiers via
time-series analysis to distinguish between types of activities.

Research Gap: Our review of related work reveals an appreciable research gap
with respect to the analysis of audio leakage from mouse activities. However,
mouse usage remains widespread and, similar to keyboards, mice produce a
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litany of sounds. Therefore, security of mouse movements deserves and needs to
be studied. This is the key motivation for our work.

3 Methodology

Our work involves multiple phases based on research questions posed in Section 1.
The initial phase is an investigation of mouse-based acoustic leakage. The second
phase is the refinement of our predictive models. The third and final phase
validates these models in real-world scenarios by recording and analyzing audio
from mouse activity in more complex and realistic settings, such as an external
mouse used on a laptop.

We do not assume that all mouse activities reflect typical user behavior.
Moreover, since this research is exploratory, the datasets of samples consisted
of one participant. Since collecting these datasets take several days and do not
always provide fruitful results, we conducted initial tests with a single sample
size. Thus, while we initially ignored plausibility of mouse movements and sample
sizes, we considered this later on in experiments exploring real-world security
risks.

We emphasize that all experiments aim to infer the direction of the current
mouse movement. This does not yield pixel-level precision, partly because doing
so would require taking into account the resolution of the monitor, the model
and sensitivity of the mouse as well as many other environmental factors.

All ML models are trained on a Dell laptop with Intel(R) Core(TM) i7-
12700H 2.30 GHz, and NVIDIA GeForce RTX 3050, with 16GB of RAM.

3.1 Mouse and Mouse Pad

In this study, the ‘mouse pad’ is the mouse movement area, either an exterior
mouse pad or the flat surface near the laptop, upon which the latter rests. Ini-
tially we experimented with various mouse pads, discovering that, if audio signals
are “audible” by the microphone it yields the same experimental results. Simi-
larly, the experimental mouse is a HP X500 mouse, which is a typical commodity
office-style model. For the sake of consistency, the same mouse and mouse pad
are used for all experiments.

We use a coordinate system on the mouse pad to categorize mouse move-
ments. Directional movements are defined relative to specific points on the pad:
‘T’ for top, ‘B’ for bottom, ‘L’ for left, and ‘R’ for right. Also, ‘M’ represents the
middle along the y-axis, while ‘C’ indicates the center along the x-axis. There-
fore, a movement labelled ‘TL → BR’ means a diagonal trajectory from the
top-left to the bottom-right corner of the pad.

3.2 Audio Recording Methods

Each experiment uses different recording methods based on the objective. Key
parameters of audio recordings, such as sample rate, bit depth, channels, and
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file format, play a crucial role in recorded data. Sample rate, typically measured
in kHz, defines the number of samples captured per second, where higher rates
allow for a more accurate representation of the original sound [7]. Moreover,
according to [7], bit depth determines the resolution of the amplitude of each
audio sample. This influences the noise level of the recording. The number of
channels affects the spatial representation of the sound: mono contains only one
waveform, while stereo contains two.

Our experiments use the Waveform Audio File Format (WAV), due to being
uncompressed, thus ensuring high fidelity of recordings [7]. We record in mono
for experiments utilizing a single microphone since the sound comes from a
single source, switching to a stereo configuration in scenarios where a second
microphone is used. Bit depth selected for each experiment varies from 16 to 32
bits. Sample rate ranges from 44.1 kHz to 48 kHz in the smartphone range.

In most of our experiments, the microphone is directly connected to the
computer. To record with a second microphone, using a smartphone, we use an
Android application ‘AudioRec’ (available in the Google PlayStore5).

4 Acoustic Analysis of Mouse Movements

Recall that our goal is to find a correlation between audio signals and mouse
movements. While existing literature studied the inference of clicking and scrolling
events via acoustic signals, the potential for inferring mouse movements from
these emissions remains unexplored. This section addresses the central research
question:

Can the sounds generated by the movements of a computer mouse be
used to infer its trajectory?

We initially conduct experiments using a single microphone, focusing on identi-
fying and categorizing distinct movement patterns. Next, we integrate a second
microphone to further expand the potential of the attack while maintaining a
viable attack model.

4.1 Single Microphone Analysis

Audio Capture via Processing Software In the first phase, we assess
whether an acoustic leakage model could distinguish between four basic direc-
tional movements of a mouse: up, down, left, and right. Specifically, the exper-
iment is to determine the feasibility of detecting mouse movements along four
directions using acoustic signals. A microphone is positioned on the left side of
a right-handed mouse pad. The mouse is then moved repetitively along the ‘X’
and ‘Y’ axes. The movements are captured using experimental Java Processing
Sketch software designed to record these events. As seen in Figure 1, the start-
ing point (in green) triggers the beginning of the recording process, while the
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Fig. 1: Recording phase of Left to Right movement. The user has to move the
cursor from the green area to the red one.

red-colored end-point stops it. As a result, the Java Processing Sketch returns
acoustic representations of mouse movements in various directions.

We collected 6,000 samples for each direction, yielding a total of 24,000 sam-
ples. We note that acoustic signal data-frames, due to the characteristics of the
recording procedure, are not of a uniform size. Samples are pre-processed and
cleaned for a Convolutional Neural Network (CNN) [17] ML model. We process
the waveform of noises to obtain MFCCs using the Sliding Windows method
with a size of 36 milliseconds (ms), which lead to the best result. At this point,
we end up with two lists: (1) one of MFCCs and (2) the other – of encoded labels
from 0 to 3 corresponding to each direction. The list is split into training and
testing samples, with the testing dataset taking up 35% of the original dataset
size. The data are entered in a CNN model, compiled with the default Adam
optimizer and categorical cross-entropy as a loss function using ten epochs.

While this model may appear complex, the experiment shows no signs of
over-fitting [20], as confirmed by the loss functions in Figure 2. We also verified
lack over-fitting with a second validation dataset split before any computations.
After several checks, we deem the results of this experiment as reliable and
representative. This model demonstrates a high level of confidence, achieving a
98% classification accuracy rate, with F1-scores ranging between 97% and 99%
for each category. These performance metrics are reflected in Table 1.

This study highlights the viability of ASCA. While the current experiment
is limited due to simple and constrained movements, it still serves as a proof-of-
concept, motivating further research.

Continuous Audio Capture During Mouse Movements The following ex-
periment we remove the recording software of the previous experiment and use
continuous audio capture corresponding to a more realistic setup. This means
that the mouse moves on the desktop without predefined patterns and the audio

5 https://play.google.com/store/apps/details?id=com.audioRec&hl=en US&gl=US

https://play.google.com/store/apps/details?id=com.audioRec&hl=en_US&gl=US
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Class Precision Recall F1-Score Support

Up 0.97 0.97 0.97 2093
Left 0.99 0.99 0.99 2084
Down 0.99 0.99 0.99 2144
Right 0.97 0.97 0.97 2079

Accuracy 0.98 8400

Table 1: Classification Report for classifying four movement categories using
Processing Record script.
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Fig. 2: Accuracy and loss graph for classifying four movement categories using
Processing Record script.

is recorded simultaneously. In order to set a direction vector and a movement
angle corresponding to movements in an audio frame, we synchronized the back-
ground recording with the mouse movements.

The experiment consists of repeating mouse movements in cardinal direc-
tions. The mouse coordinates are then converted to direction vectors and associ-
ated with acoustic signal frames. The size of each acoustic signal chunk is formed
by 8,192 samples with a frame rate of 44.1 kHz, resulting in approximately 186
milliseconds. For classification, the angles are categorized into four (cardinal)
directions using the angle representation of the direction vector, meaning that
25% of the circle spatial dimension was associated to a single label. For instance,
with a clockwise circle with 0° at the top (north), the angles between -45° and
45° corresponded to the up (or north) direction category.

Computation of MFCCs and their normalization are the only pre-processing
steps required and are computed using the same methods as in the previous ex-
periment. Using ten epochs with the same CNN model, we observe a plateau of
the validation loss, which leads us to assume that the ML model stops improv-
ing. Based on the batch size of 32 data points and the “sum over batch size”
reduction method during loss calculation, we obtain a loss value of 0.8, which is
higher than the average loss for each data point. With this setting, we achieved
the overall accuracy of 74%. The classification report can be seen in Table 2,
along with the accuracy and loss function graph in Figure 3.

The accuracy is lower than that obtained with the previous experiment since
the recording setup has a greater degree of freedom. With 74% accuracy we can
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Class Precision Recall F1-Score Support

Up 0.69 0.74 0.72 755
Left 0.80 0.68 0.73 852
Down 0.77 0.79 0.78 698
Right 0.72 0.78 0.75 765

Accuracy 0.74 3070

Table 2: Classification Report for four area classification using background
recording.
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Fig. 3: Accuracy and loss graph for four area classification using background
recording.

state with confidence that movements in four directions leak enough audio infor-
mation to determine some user activities. Using a pipeline of a Standard Scaler
to normalize, Principal Component Analysis (PCA) and a Support Vector Ma-
chine (SVM), we obtain the accuracy of 83%. Consequently, this section answers
the leakage model research question: There is indeed an acoustic leakage model
for SCA, and it is possible to use audio to infer mouse movements.

Limitation of single microphone approach Previous experiments show
acoustic leakage that can be split into four categories, However, it does not
represent realistic mouse movements. Of course, the idea is to increase the level
of granularity in order to understand what angles are discernible with a single
microphone and the ML algorithm.

We now evaluate our model to distinguish between eight directions simulta-
neously, doubling the bins of the previous classifier (classes from 0 to 360° with
a step of 45°). The classification report shows that the model has an accuracy
of at most 15%. Despite employing the ML framework similar to prior success-
ful models, the algorithm’s performance with the eight different categories is
sub-optimal.

With different ML models and multiple datasets that cover various envi-
ronments, the results are still falling short: from Support Vector Regression
(SVR) to more complex CNNs. (These experiments are not described due to
space limitations.)
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No model could differentiate between eight movement angle categories. It
thus becomes clear that a singular microphone is a limiting factor in capturing
similar mouse movements. This prompts us to explore other methods.

Rather than classifying angles into bins, we attempt to apply a regression
learning algorithm to predict the angle continuously. The data points are recorded
using a similar approach adopted in Section 4.1, though using a circular pattern.
The software, shown in Figure 4, initiates the recording when the mouse reaches
the middle of the screen (i.e., a red square) and stops it when the green target
box is touched by the cursor. The green boxes are always placed on top of the
circumference depending on a certain angle with respect to the starting point,
i.e., the circle center.

(a) Move cursor towards red center
to start the recording.

(b) Move cursor towards green box
to stop the recording.

Fig. 4: Circular recording method.

The CNN model comprises convolutional layers and fully connected layers
to map to the target angle prediction. We use a L1 loss function, which simply
calculates the mean absolute difference, to approach the target angle as closely
as possible. The dataset is composed of ∼21,000 samples of audio MFCCs and
mouse movement angles. The results clearly show randomness in the angle pre-
dictions. Thus, we believe that predicting angles from 0 to 360 degrees is com-
plicated due to the circular nature of angle measurements. For instance, angles
close to 0 degrees and 360 degrees are nearly identical in orientation but are
numerically distant. This discontinuity, also known as “Angle Periodicity” [13],
can complicate regression models. To address the issue, we conduct a new ex-
periment where angles are represented using their cosine and sine values [13].
However, the average angle difference between the model output and the real
angle is 88.79◦, which is close to the random angle choice.

To rule out the possibility that the size of the dataset compromises the out-
come of the regression, we test data augmentation by adding white noise. How-
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ever, the model clearly shows signs of over-fitting on randomized augmented
data.

The series of regression experiments conducted using a single microphone
yield insights into the possibility of accurately predicting continuous mouse
movement angles. However, a single microphone is insufficient to regress the
angle of mouse movements.

4.2 Analyzing Proximity Through Sound Amplitude Variations

The methodology for analyzing acoustic signals requires a new approach. To this
end, we examine the amplitude of sound waves to infer the proximity of sound-
generating movements to a microphone. Sounds produced nearer the microphone
register with higher amplitudes than those originating at a greater distance. This
variance in amplitude could provide a metric for determining the relative distance
of the sound source along an axis.

The test involves a controlled series of bidirectional movements along the mi-
crophone’s directional orientation axis with ten samples. During this process, we
segment the audio recordings into two categories: from left to right to represent
the mouse trajectory away from the microphone and from right to left to denote
its approach towards the microphone. Next, we plot the audio amplitude over
time. To do so, we segment the sound into discrete windows and calculate the
amplitude, which are then be compared and plotted to visualize waveform dif-
ferences in time. Afterwards, we apply a linear regression analysis to amplitude
data points for a better graphical interpretation. This facilitates a general trend
which reveals whether there is a consistent increase or decrease in amplitude.
The slope of the regression line serves as the indicator of this relationship.

To highlight the outcomes, we incorporate three distinct auditory markers,
consisting of three circles done with the mouse at the start and at the end of
the recording. This modification aims to extend the time frame in which the
microphone captures the audio.

The experimental data in figures 5a and 5b illustrate the subtle, yet consis-
tent, trends in sound amplitude corresponding to the mouse movement near the
microphone. We obtain a negative slope angle value of −0.0000099◦ decrement
in amplitude when the mouse moves away from the microphone, and a positive
slope angle value of 0.0000068◦ in the opposite direction. Although minimal, the
differences are consistent across different tests. These outcomes demonstrate the
possibility to visually determine the direction of a mouse movement, validating
the hypothesis that a distinctive mouse movement along a single axis can be
accurately inferred.

4.3 Dual-Microphone Approach for Two-Dimensional Amplitude
Analysis

We now introduce a second microphone. This is achieved using two microphones
of a smartphone to provide a two-dimensional measurement plane, as shown in
Figure 6.
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(a) Waveform of the sound moving away from the microphone (descending amplitude).
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(b) Waveform of the sound moving towards the microphone (ascending amplitude).

Fig. 5: Audio waveforms for the mouse moving towards and away from the mi-
crophone.

The recording movement pattern involves traversing the length of the mouse
pad, moving from top to bottom and back, and then horizontally from a location
near the phone to the far edge and back. Figure 7 shows the resulting graph of
two out of four cardinal directions. Each graph shows a plot of the two micro-
phone amplitudes and the amplitude difference. Also, regression lines for the
microphone amplitudes are plotted to show general trends. As can be seen in
Figure 7a, representing moves up the mouse pad, a criss-cross effect is evident,
indicating one microphone “hearing” louder than the other one at certain times.
Furthermore, Figure 7b shows a negative slope trend in the regression line when
moving away from the microphone. Even though graphs are not included in Fig-
ure 7 for the sake of simplicity, we observed coherent behaviour while moving
the mouse towards or down with respect to the smartphone.

Since the experiment yield visual representations that clearly distinguish var-
ious directional movements, we extend it by attempting to distinguish among
ten movement patterns. We record and segment approximately 250 samples for
each directional shift using Audacity6. The ten categories are a combination of

6 https://www.audacityteam.org/

https://www.audacityteam.org/
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phone

TCTL TR

BC BRBL

MRML

Microphone 1

12x12 inches

Microphone 2

Mouse Pad

Fig. 6: Dual-Microphone experimental setup.

movements with specific start and ending points of the mouse pad, where each
point is defined by a vertical and horizontal location. These points are shown in
Figure 6.

Class Precision Recall F1-Score Support

BC→TC 0.91 0.94 0.92 52
BL→BR 1.00 1.00 1.00 50
BR→BL 1.00 0.96 0.98 50
BR→TR 1.00 0.97 0.99 39
ML→MR 0.83 0.88 0.85 49
MR→ML 0.88 0.86 0.87 49
TC→BC 0.98 0.98 0.98 52
TL→TR 0.98 1.00 0.99 49
TR→BR 0.97 0.92 0.95 39
TR→TL 1.00 1.00 1.00 49

Accuracy 0.95 478

Table 3: Classification report on ten movements with dual-microphone setup.

Using a Random Forest (RF) Classifier with 100 estimators, the model achieves
a high accuracy of 95.19%, indicating good performance across various movement
categories. The classification report in Table 3 provides further insights into the
model’s efficacy.

In summary, this experiment demonstrates the ability to infer ten distinct
two-dimensional movements, thus exposing the ability to understand the leakage
model of a mouse using a smartphone.
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(a) Amplitude difference and trend when moving vertically up the table.
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(b) Amplitude trend with a negative slope, indicating movement away from the phone.

Fig. 7: Graphs showing amplitude differences and trends based on the mouse’s
movement.

5 Real-world Implications and Security Risks

We now consider practical implications of our results. A typical attack environ-
ment could be a shared office (e.g., a cubicle farm), a cafeteria, or a library. A
simple smartphone represents the attack vector. Modern smartphones now fea-
ture dual microphones, mainly to reduce ambient noise during calls. The smart-
phone is a perfect attack vector since it can safely be placed near the victim. It
requires no interaction in the recording phase and can remain with its screen off
the entire time, so as not to arouse suspicion. With this scenario in mind, we now
describe experiments with six participants who volunteered to be recorded while
performing predefined mouse movements. Based on this, we examine real-world
implications of such attacks.

5.1 Experiment with Other Participants

The next phase involves extending the experiments to include a multiple partic-
ipants. This helps to determine the generalizability of the model and its appli-
cability to various environments. The new experiment involves six participants
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performing a series of mouse movements on a mouse pad. This setup is identical
to the one described in Section 4.3.

phone

TCTL TR

BC BRBL

MRML

Microphone 1

Mouse Pad

Microphone 2

Experiment 
Movements

Fig. 8: Mouse pad with mouse movements in the experiment.

Participants are instructed to perform distinct back-and-forth movements
along both axes within a 12-by-12 mouse pad placed on an office table. The
experiment details specific movement patterns, shown in Figure 8. Participants
are asked to repeat each back-and-forth movement for one to two minutes, re-
sulting in a total experiment time ranging from 6 to 12 minutes. To help with
the segmentation during the pre-processing phase, participants are also asked to
clap before and after recording each axis to delineate the start and end.

The six participants show variability in their mouse usage methods. For ex-
ample, some execute the movements rapidly, resulting in a higher frequency of
actions, while others move more slowly. In addition, the amount of pressure
applied to the mouse differs among participants, producing distinct acoustic
signatures. These speed, frequency, and pressure differences are integral to the
experiment’s design. They provide a diverse dataset that is ideal for testing the
generalizability of the ML model, since it reflects a more realistic range of user
behavior.

We specifically isolate the segments corresponding to mouse movements using
a thresholding technique to distinguish them from background noise, followed
by a manual verification process to ensure accuracy. The waveforms from both
channels are split into 50 discrete windows and then we calculate their amplitude.
Thus, we extract the same number of data points for each movement acoustic
signal regardless of different recording methods used by the participants.

Our analysis also involves calculating the difference in amplitudes between
the top and the bottom microphone recordings for each segment. Consequently,
we generate a “difference amplitude line” of 50 data points representing the dif-
ferential amplitude for each audio sample. These data points serving as learning
values are the ‘X’ values. The ‘Y’ values, or target labels, are assigned based
on the type of directional movement recorded. This structured dataset, with its
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distinct X and Y values, allows us to train and test the ML model to classify
the directional movements based on acoustic signatures.

This experimental setup is designed to record six types of back-and-forth
mouse movements, resulting in 12 distinct directional classes. In the course of
the experiments, a total of 5,507 samples are collected. The distribution of these
samples across the different classes is between 406 and 506 samples each, with a
mean of 456 samples per class.

As shown in Table 4, the classification report evaluates performance of the
ML model. The report indicates high accuracy in the model’s predictions, with
a low rate of false positives. The F1-scores, which combine precision and recall
into a single measure, consistently reflect high performance, predominantly in
the range of 0.93 to 1.00. This underscores the model’s balanced accuracy in
both precision and recall dimensions. The overall test accuracy of the model is
96%, indicating the model’s effectiveness in accurately classifying the directional
movements.

Direction Precision Recall F1-Score Support

BL→BR 0.98 0.99 0.98 81
BL→TL 0.91 0.98 0.95 97
BL→TR 0.96 0.90 0.93 91
BR→BL 0.99 0.93 0.96 82
BR→TL 0.94 0.99 0.96 91
BR→TR 1.00 0.99 0.99 89
TL→BL 0.92 0.97 0.94 96
TL→BR 0.98 0.93 0.96 92
TL→TR 0.99 1.00 1.00 101
TR→BL 0.93 0.95 0.94 91
TR→BR 0.98 0.93 0.95 90
TR→TL 0.99 0.99 0.99 101

Accuracy 0.96 1102

Table 4: Classification Report for a Random Forest Classifier with 100 estima-
tors.

5.2 Inferring Realistic Mouse Movements

To demonstrate the feasibility of such attacks and help in assessing their poten-
tial impact on real-world scenarios, we shift towards a more practical approach.
The next experiment aims to determine whether it is possible to detect when
a user clicks the ‘close’ button, typically found at the top right of a Windows
laptop screen. While closing a window may not directly reveal sensitive security
information, the ability to discern precise user interactions like button clicks
might have broader implications for user privacy.

The experiment is structured around two recording sessions of five minutes
with a single participant. It is performed on a traditional mouse setting using
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a Windows laptop and an entry level office mouse pad. In the first session, the
participants are instructed to move the cursor from random points on the screen
to the top-right corner and click the red ‘X’, a standard action for closing a win-
dow (positive class for the classification). The second session involves recording
mouse movements followed by clicks at various random points on the screen – a
pattern different from the first recording session (negative class).

We focus on a time window around click events in the analysis phase. This
approach allows us to compare acoustic characteristics of mouse movements and
clicking sounds associated with both positive and negative classes.

The recordings are first analyzed to determine the clicking events through
quantile thresholding methods. To do so, the waveforms are converted to a mono
channel to calculate the absolute value of the waveform. This threshold can be
modified based on the visual representation and manually adjusted.
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Fig. 9: Detected clicks out of mouse events.

With these clicking events, the goal is to find the two consecutive peaks
corresponding to the mouse press and release events during a mouse click. To do
so, we use a minimum and maximum distances between detected peaks to isolate
the events that seem to correspond to mouse-clicking events. These distances are
again estimated via empirical values, in this case, from 10 ms to 200 ms. Figure 9
shows the waveform with red vertical lines representing detected clicks.

As we iterate through each identified mouse click event, a specific time win-
dow surrounding each event is extracted to prepare the data for the ML pipeline.
Next, we apply an MFCC transformation to each window. These transformed
data points are fed into a ML pipeline utilizing a binary RF Classifier with 50
estimators.

The classification report shown in Table 5 reflects the performance of the
binary classification model. The model demonstrates a high level F1-score, with
class ‘General Click’ reaching 0.92 and class ‘Closing Click’ at 0.89. These scores
indicate a strong balance between precision and recall across both classes. The
overall accuracy of the model stands at 91% for the 136 samples tested, further
reinforcing the model’s effectiveness.

This experiment successfully demonstrates the ability to distinguish between
various mouse movements and their associated clicks. Using controlled record-
ings, we train a RF Classifier to recognize these specific activities.

The goal of the next phase is to extend this approach to more natural com-
puter usage scenarios. We record the authors’ typical computer activities, includ-
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Class Precision Recall F1-Score Support

General Click 0.89 0.96 0.92 77
Closing Click 0.94 0.85 0.89 59

Accuracy 0.91 136

Table 5: Classification Report for the Binary Classification Model.

ing working on a project in Overleaf, ending with the action of closing a window.
These recordings are then processed using the steps previously described. Next,
we apply the pre-trained RF Classifier to the isolated mouse click events and
infer the type and nature of mouse movements and clicks. This step marks a sig-
nificant advance in applying our model to real-world scenarios, thus bridging the
gap between controlled experimental conditions and everyday computer usage.
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(a) First experiment recording.
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(b) Second experiment recording.

Fig. 10: Comparison of waveform detection in two iterations of the experiment.

We experiment by dividing it into two iterations. In the first iteration, the red
‘X’ is clicked to close the window, together with other two additional clicks. How-
ever, due to the thresholding method employed, the final click is not detected, as
per Figure 10a. In the second iteration, the red ‘X’ to close the window is clicked
and followed with two hand claps. This means that the final detected mouse
click is the one of interest, as showin in Figure 10b. Looking at the waveforms,
we observe background audio that includes random clicks and typing, creating
a consistent hum of ambient noise.

In the first recording, among 15 clicks detected, the next-to-last sample is
accurately identified as corresponding to the ‘clicking red X’ event. Similarly,
in the second recording, out of 11 notable events, the model correctly infers the
last one as the ‘click red X’ event. These results demonstrate the trained model’s
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ability to accurately identify window-closing events, pointing at the feasibility
of employing such a method in an ASCA.

5.3 Security Risks of ASCAs based on Mouse Movement Inference

Ourfindings illustrate the feasibility of developing a generalizable model appli-
cable to various users and the capability to accurately identify specific mouse
movements in realistic settings. Looking ahead, these insights open the door
to potential future threats where ASCAs might be combined with keyboard
inference techniques, further reconstructing a victim’s computer activities. For
instance, one plausible scenario involves targeting users filling out sensitive on-
line forms, such as tax documents. In such cases, the model could be fine-tuned
to recognize distinctive patterns associated with clicking specific buttons or en-
tering information into text fields. The attack does not aim to recognize by
the number of pixels across which the user moved the moue and whether, at any
given time, the cursor is precisely over a specific button. However, pattern recog-
nition in mouse movements could lead to a comparable result. This highlights
the importance of further research into ASCAs.

6 Ethical Concerns

Our institutions do not require any formal IRB approval to perform the experi-
ments described above. Nonetheless, all experiments and corresponding evalua-
tions were performed in accordance with the guidelines of the Menlo report [1].
We preemptively informed all voluntary participants about intended usage of
their data. We obtained their informed consent before the recording process. We
anonymously recorded only audio samples produced by a mouse and explicitly
asked all participants to avoid speaking during recording sessions. We used audio
samples for research purposes only.

7 Conclusions

This paper explored mouse-based ASCAs. It analyzed whether audio emanations
from mouse movements reveal any sensitive information. The initial experiments
show that it is possible to differentiate among four basic mouse movements. We
then looked into granular measurements in order to predict the direction angles
of a moving mouse, which shows some predictive complexities.

Next, we switched to a stereo recording method using two microphones on a
smartphone, This allowed us to distinguish between ten two-dimensional move-
ments on a mouse pad.

We then considered potential real-world scenarios where mouse-based AS-
CAs pose a security risk. To this end, we trained a model – using six participants
– that predicts 12 distinct two-dimensional movements. This shows the ability
to generalize the model and attack multiple users in one recording environment.
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Furthermore, we experimented with detection of a specific user actions, such as
closing a Window, which demonstrated the efficacy of our approach in a realistic
experimental setup. Consequently, we showed that the acoustic leakage model
of mouse activity poses a real security risk.

Since this is only the first attempt to experiment with mouse-based ASCAs
we identify directions for future work. Applying regression algorithms to stereo
acoustic data would be interesting, since all regression tests so far are performed
using one microphone. Moreover, the experiment in Section 5.2 could be extended
by finding other situations where mouse movements reveal sensitive information.
Finally, mouse-based ASCAs can be conducted in tandem with keyboard-based
ones. The combination of the two might yield even more leakage.

References

[1] Michael Bailey et al. “The menlo report”. In: IEEE Security & Privacy
10.2 (2012), pp. 71–75.

[2] Kiran Balagani et al. “We can hear your PIN drop: An acoustic side-
channel attack on ATM PIN pads”. In: European Symposium on Research
in Computer Security. Springer. 2022, pp. 633–652.

[3] Stefano Cecconello et al. “Skype & type: Keyboard eavesdropping in voice-
over-IP”. In: ACM Transactions on Privacy and Security (TOPS) 22.4
(2019), pp. 1–34.
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