KESIC: Kerberos Extensions for Smart, IoT and
CPS Devices

Renascence Tarafder Prapty
University of California Irvine
rprapty @uci.edu

Abstract—Secure and efficient multi-user access mechanisms
are increasingly important for the growing number of Internet
of Things (IoT) devices being used today.

Kerberos is a well-known and time-tried security authentica-
tion and access control system for distributed systems wherein
many users securely access various distributed services. Tra-
ditionally, these services are software applications or devices,
such as printers. However, Kerberos is not directly suitable for
IoT devices due to its relatively heavy-weight protocols and the
resource-constrained nature of the devices.

This paper presents KESIC, a system that enables efficient and
secure multi-user access for IoT devices. KESIC aims to facilitate
mutual authentication of IoT devices and users via Kerberos
without modifying the latter’s protocols. To facilitate that, KESIC
includes a special Kerberized service, called IoT Server, that
manages access to IoT devices. KESIC presents two protocols for
secure and comprehensive multi-user access system for two types
of IoT devices: general and severely power constrained. In terms
of performance, KESIC consumes ~ 47 times less memory, and
incurs ~ 135 times lower run-time overhead than Kerberos.

I. INTRODUCTION

Internet-of-Things (IoT) and Cyber-Physical Systems (CPS)
encompass embedded devices with sensors, actuators, control
units, and network connectivity. They are widely adopted in
both private and public spaces. By 2030, the number of IoT
devices is projected to surpass 29 billion [1].

Except for personal devices, such as wearables, most IoT
devices benefit from multi-user access. For instance, multiple
family members can manage a smart home system comprised
of smart TVs, voice assistants, and smart appliances. Similarly,
in a shared office setting, many employees operate IoT devices,
(e.g., smart projectors, meeting room schedulers, and inter-
active whiteboards). Maintenance crews or engineers often
monitor IoT devices used for automation and process control
in industrial settings, such as factories or warehouses. Multiple
users being able to control devices provides convenience and
facilitates coordination.

On another note, IoT devices usually have limited or no
security features due to their resource constraint nature. This
makes them vulnerable to different attacks, e.g., Mirai Bot-
net [2], Triton [3]. Therefore, it is crucial for users to be able
to ensure the integrity of an IoT device before using it

With respect to multi-user support, one intuitive idea is to
require each user to individually register with each device
and establish a security context, e.g., by sharing a unique
symmetric key. However, this requires linear amount of storage
on the device, which is impractical due to resource constraints.

Sashidhar Jakkamsetti
Bosch Research
sashidhar.jakkamsetti@us.bosch.com

Gene Tsudik
University of California Irvine
gts@ics.uci.edu

To this end, some prior work introduced the notion of
communication proxies [4]. Such proxies run a lightweight
protocol between themselves and devices, acting as interme-
diaries when devices communicate with users/clients. One
drawback is the presence of an additional intermediate hop for
every user request. Another prior effort [5] proposed extending
Kerberos to IoT devices, which involves significant changes
to the Kerberos protocols. Specifically, additional message
exchanges are needed between the device and modified Ker-
beros servers to authenticate service tickets, thus significantly
impacting device runtime performance and availability. Fur-
thermore, aforementioned approaches do not inform the user
about software integrity of IoT devices, i.e., users do not learn
whether a given device is healthy or compromised.

Motivated by aforementioned issues, this work revisits using
Kerberos for IoT devices to enable multi-user support. We
present KESIC: Kerberos Extensions for Smart, IoT and CPS
Devices — a design that requires no changes to Kerberos and
includes attestation of the device’s software state as a built-in
service. We prefer Kerberos to other multi-user authentication
schemes (e.g. OAuth, or OpenlD) because it is specifically
designed for accessing both hardware and software resources
within a network. The original concept of Kerberos closely
aligns with the idea of a network of IoT devices, such as a
smart home/office or an factory, making it an efficient and
easily adaptable protocol for IoT devices.

Configuring and using devices directly as Kerberos appli-
cation services is impractical due to the lack of required
hardware features: many (especially lower-end) IoT devices do
not have real-time and/or secure clocks necessary for verifying
Kerberos tickets, or sufficient memory to host the entire
Kerberos library. More generally, storage, memory, runtime,
and network overhead incurred by Kerberos is also significant
for targeted devices (see Section VI-D).

Thus, instead of modifying Kerberos, KESIC uses an IoT
Server (ISV) as a Kerberos service, that manages access to all
constituent IoT devices, while relying on Kerberos for user
authentication. After initial Kerberos login, a user requests
a service ticket for ISV from the Kerberos Ticket Granting
Service (TGS). Next, the user asks ISV to grant specific (IoT)
tickets to access the desired IoT device. As part of this process,
the user can request an attestation report for the IoT device
in order to verify the latter’s software integrity before actually
using it.

KESIC partitions IoT devices into two groups: general and

power constrained (see Section III-A2). This grouping is based
on the power consumption, hardware resources, and activity
time of the devices.

KESIC considers three types of communications in the
proposed ecosystem: user <+ ISV, ISV < IoT device, and
user <> IoT device. KESIC includes a protocol for each
device category, covering all three interactions, resulting in
two protocols. KESIC does not require real-time clocks on
devices: at each boot/wake-up time, devices obtain current
time from ISV. Afterward, devices equipped with a timer
use it to emulate a local clock. For devices that are more
power constrained and have no timers, we use a nonce-based
approach.

Also, in terms of cryptography, KESIC exclusively uses
keyed hash (HMAC) operations in all of its protocols, instead
of encryption and decryption operations, which can be slower
and incur higher storage and run-time memory footprints.
Based on our proof-of-concept implementation, KESIC incurs
47 times lower memory overhead and 135 times lower run-
time overhead than Kerberos.

Expected contributions of this work are:

o Design of two lightweight and secure protocols for multi-

user access to IoT devices.

o Open-source implementation of KESIC [6] which in-
cludes: (i) a prototype ISV integrated with Kerberos
as an application service, (ii) two prototypes for IoT
devices based on ARM Cortex-M33 that uses TrustZone-
M for implementing an attestation RoT, and (iii) a client
application that uses ISV to obtain IoT tickets, and then
requests access to IoT devices.

II. BACKGROUND

This section overviews Kerberos and Root-of-Trust con-
cepts. It can be skipped with no loss of continuity.

A. Kerberos

Kerberos is an authentication, authorization, and access
control (AAA) system for distributed systems that origi-
nated at MIT Project Athina in mid-1980s. It allows users
to authenticate themselves once via username/password (via
Single Sign-On aka SSO or login) for all services that they
are allowed to use. Once a user logs in, no further human
interaction is required for the duration of the login session.
All other protocols used to access services are transparent to
the (human) user. There are three types of entities in Kerberos:

Client or Principal (C): This is usually represented by a
software component called kinit which resides in the user’s
workstation. It manages Kerberos tickets for users.

Service Provider or Application Server (V): This soft-
ware manages resources or services, e.g., graphic software or
printer, and grants access to them by handling Kerberos service
tickets.

Key Distribution Center (KDC): The central third party
trusted by both clients and application servers. KDC maintains
a database to store all user passwords and long-term keys
for application servers. It also facilitates mutual authentication

. Authentication | |Ticket Granting| [Application
Client
Server Server Server
Client ID, TGS ID,
Timestamp |
TGT,
TGS Shared Key
TGT, Server ID, Authenticator | vgrifies
TGT
Service Ticket, Service Shared Key
Service Ticket, Authenticator Verifies
>|Service
Authenticat Ticket
Verifies uthenticator
authenticator

Fig. 1: Kerberos Steps.

among clients and servers. KDC can also implement granular
access control. It has two main components:

« Authentication Server (AS) authenticates clients and

issues Ticket Granting Tickets (TGT).

« Ticket Granting Server (TGS) verifies TGTs and issues

service ticket (Ty/) to access V.
The database in KDC contains a long-term key for TGS, which
is also available to AS.

Figure 1 shows an overview of Kerberos functionality.

At the beginning of the Kerberos authentication process, C
is authenticated by AS and provided a TGT for the next steps.
After receiving TGT, C can call TGS using the TGT. The
purpose of this call to TGS is to request Kerberos tickets for
different services. Afterward, when a user requires a service, C
calls the application server V with the corresponding Kerberos
ticket. We do not provide the full details of the verification
processes for tickets and authenticators in different steps due
to space constraints. If interested, the details of the protocol
are widely available in various textbooks such as [7].

B. Root-of-Trust (RoT)

In KESIC, a RoT on an IoT device is needed for secure
storage and secure computation. We need to ensure that shared
long-term secret keys are not revealed and other authentication
related metadata (such as current timestamp obtained from
ISV) are not modified by potentially present malware. During
attestation, we also need to securely compute HMAC of spec-
ified memory region without interference from any possibly
present malware.

KESIC can be applied to three types of devices:

« Devices equipped with verified, secure, hybrid (SW/HW)
RoTs, such as SANCUS [8], PISTIS [9], VRASED [10],
[11], or RATA [12].

o Off-the-shelf devices with hardware RoTs, such as ARM
TrustZone[13], Intel SGX [14], or AMD SEV [15].

o Legacy devices without any hardware RoT. In this case,
there are two options: (i) rely on verified RoTs [16]
based on trustworthy microkernels [17], or (ii) however
aspirational this might be, consider the OS to be trusted.

It is to be noted that having hybrid or hardware RoT is not
a prerequisite for using KESIC in IoT devices. Even though
our proof of concept implementation uses TrustZone-M as
RoT, KESIC is equally applicable to IoT devices where OS
is trusted.
Remote Attestation (RA) is a security service that allows
a trusted client (aka, verifier or Vrf) to measure software
integrity on a remote device (aka, prover or Prv). RA is a
challenge-response protocol, usually realized as follows:
o Vrf sends an RA request with a challenge (Chal) to Prv.
« Prv receives the request, computes an authenticated in-
tegrity check over its program memory region and Chal,
and returns the result to Vrf.
o Vrf checks the result and determines whether Prv is
compromised.
The integrity check is computed via either a Message Au-
thentication Code (e.g., HMAC) or a digital signature (e.g.,
ECDSA) over Prv program memory. The former requires a
long-term symmetric key shared between Prv and Vrf. For
the latter, Prv must have a private key that corresponds to a
public key known to Vrf. Both approaches require secure key
storage on Prv.

III. DESIGN OVERVIEW

As mentioned earlier, Kerberos in its regular incarnation is
unsuitable for low-end IoT devices for several reasons: (1)
most [oT devices do not have real-time clocks and cannot
verify timestamps on tickets, (2) storage and memory of IoT
devices are limited and can not accommodate the Kerberos
library (see Section VI-D for details), (3) since Kerberos
tickets are encrypted, an expired ticket can not be detected
until it is decrypted, which is time and resource-consuming,
especially, for mission-critical devices. In fact, this could be
abused as a means of DoS attacks.

Therefore, we opt to extend Kerberos — without modifying
it — to support low-end IoT devices. Additionally, since IoT
devices are increasingly subject to malware attacks, we want
to provide attestation of device software to assure the user that
the device is not compromised prior to its use.

A. System Model

Figure 2 overviews KESIC system model. As described
before in Section II-A, Client (C) is a software component
running in the human user’s device (i.e. workstation or cell-
phone). We use the terms user and client interchangeably to
refer to the same entity.

1) IoT Server (ISV): We introduce a special Kerberos
application service called IoT Server — ISV. After initial log-
in, C obtains a regular Kerberos ticket for ISV from TGS.
ISV is responsible for granting users access to IoT devices
and managing authenticated communication between users and
IoT devices. ISV has two main components:

Ticket Manager (TM) is responsible for authenticating
users (clients) and issuing IoT tickets to access devices. Before
granting an IoT ticket to a user, TM uses access control
policies set up by the device owner to ensure that the user

Kerberos
(AS, TGS)

1

loT Server, ISV
Ticket Policies Sync.
Manager Manager

loT Device, Dev

Client

K

—

[Attestation TCB]

Fig. 2: System Model.

is permitted to access that device. While important, access
control policies are out of the scope of this paper and are not
discussed further. KESIC uses HMACs instead of encryption to
generate tickets and authenticators. TM shares two long-term
secret keys with each IoT device: one to generate [oT tickets
for that device, and the other — to generate the corresponding
session key.

Synchronization Manager (SM) is responsible for time
synchronization between an [oT device and ISV, which deter-
mines the validity (i.e., freshness) of 10T tickets. SM maintains
a distinct long-term key with each IoT device in order to
secure the synchronization process. Synchronization details
vary depending on the type of the device; this is discussed
in Section IV. The Synchronization phase is crucial since the
device cannot enter the service phase without successfully
completing it.

Indeed, ISV represents a single point of failure: if it is down,
devices become non-operational. This risk can be mitigated by
deploying multiple ISV instances.

2) Device Types: KESIC supports two types of IoT devices:

General Devices (Devy) are always awake; they have
a direct power source or a long-lasting battery. They can
receive requests over the network at any time. Examples of
such devices are Blink Security Camera [18], Google Nest
Thermostat [19], and Lumiman Smart Bulb [20].

Power Constrained Devices (Devy.) spend most of their
time in a low-power sleep state due to stringent energy
constraints. Periodically, they wake up, perform brief tasks,
and return to sleep. Examples of such devices are: ThermoPro
TP357 Digital Hygrometer Indoor Thermometer [21], Netatmo
Weather Station [22], and Nordic nRF9160 system-in-package
(SiP) [23].

Both Devy and Dewv,. devices are assumed to be equipped
with either a hardware RoT or a trusted OS (in case of legacy
devices). For the sake of simplicity, from now on, we refer to
both of them as RoT.

3) Protocol Overview: KESIC has three run-time phases:

In Ticket Issuing Phase, C obtains a service ticket (T75v)
for ISV after AS & TGS log-in. Next, C obtains IoT tickets

TABLE I: Notation Summary.

Notation Description

1D, Identity of entity x

AD. Identity of the Client Interface
Devg General Device

Devpe Power Constrained Device
TSz sy Timestamp sent from x to y

Ly, Timestamp when the ticket will expire

Reqz—y Request from x to y

Resgz sy Response from x to y

Kaesy Long-term key between x and y
kzsy Session key between x and y

Te Ticket for entity x

Az sy Authenticator sent from x to y

Agthest Authenticator sent from ISV to Devp. and vice versa
as part of attestation request/response

Reqflltst‘gi Deupe Attestation Request from ISV to Devpe

Res%‘éf}iiﬁlsv Attestation Response from ISV to Devp.

CoDevpC Counter maintained by ISV for Devp, used to issue
tickets

Cosync Synchronized counter between ISV and Devg/Devpe,

stores the number of synchronization requests

from ISV. IoT tickets issued for Devy, and Dev,. have
different formats.

In Synchronization Phase, which happens upon each boot,
a device communicates with ISV to obtain the latter’s current
timestamp, which serves as the synchronization value for the
current session. After that, a device uses a local timer (Devy)
or a counter array (Devy.) to emulate a clock.

In Service Phase, an IoT device accepts IoT tickets and
service requests from clients. Dev, uses the synchronized
local clock and Dewy,. uses its synchronized local counter
array to determine ticket validity.

Section IV presents protocols covering each phase for both
device classes.

B. Adversary model

KESIC comprises multiple clients, application services, and
IoT devices. It also includes trusted third parties: Authenti-
cation Server (AS), Ticket Granting Server (TGS), and IoT
Server (ISV). We assume an adversary .Adv that can remotely
attack an IoT device and compromise its software. However,
Adv cannot attack any software and data inside the device
RoT. Furthermore, .Adv can compromise clients with the intent
of:

« Impersonate Clients in order to circumvent access policy

regarding a service/IoT device.

« Eavesdrop on other clients’ message exchanges to obtain

confidential information, such as passwords and keys.

« Tamper with other clients’ message exchanges to gain

unauthorized access.

« Replay other clients’ message exchanges to gain unau-

thorized access.
We do not consider denial-of-service (DoS) attacks whereby
Adv floods the device with fake requests (tickets). Techniques
such as [24], [25], [26] can mitigate these attacks. We also do
not consider physical attacks whereby .Adv physically tampers
with devices via inducing hardware faults or modifying code in

loT Server | loT Device

loT ID, Authenticator

Client
Time

Synchronization
(After reset)

Timestamp, Authenticator

Starts a timer

TGT, loT ID, Authenticator

Service Verifies TGT

(At runtime)

loT Ticket, loT Shared Key

loT Ticket, Service Request*, Authenticator e
Verifies

loT Ticket

loT ID, Service Response

*Service Request can be anything including attestation request

Fig. 3: Devgy Protocol Overview.

RoT. We refer to [27], [28] for an overview of countermeasures
against such attacks. Finally, we also do not consider side-
channel attacks, similar to the Kerberos threat model.

IV. KESIC PROTOCOLS

Recall that ISV is treated as any other application server.
The steps to obtain a ticket for ISV are the same as obtaining
a Kerberos ticket. Hence, we focus on the steps starting from
ISV issuing a ticket to a client for IoT device access.

ISV maintains a database with each device’s ID, device
type, long-term secret key(s), access control policy, and current
synchronization value (in case of Dev).).

Protocol notation is summarized in Table I. One term
that needs further clarification is Cogypc: it is the counter
synchronized between ISV and the device, which keeps track
of the number of synchronization requests sent by the device
so far. It is used by ISV to authenticate the device during
the synchronization phase. Therefore, the device needs to
store C'ogyn. in non-volatile (persistent) memory. To simplify
protocol description, we use K’ to denote all long-term secret
keys. However, in reality, three distinct long-term keys are
shared between ISV and each device. One key is used for
ticket generation and verification, another — for session key
generation, and the third — for synchronization.

A. General Device Protocol

Figure 3 provides an overview of KESIC protocol for Devg,
while detailed description is presented in Figure 4.

Time Synchronization Phase: Time Synchronization Phase
of Protocol 1 approximates wall-clock time by using a timer.
After reboot, Dev, obtains the current timestamp from ISV,
stores it as its start_time, and starts a timer.

Upon receiving a synchronization request Regpev,—15v,
ISV verifies it. In step 3, ISV verifies Cogyn. by checking
that it either equals local Cogyn. for Dev, or exceeds it
by 1. Cogync is included in the authenticator Apey, »15v
in order to prevent replayed synchronization requests. Ideally,
received C'ogyrn. should be greater than the local version by
1. However, it might be equal to the local version due to
lost response and subsequent re-transmission. ISV also verifies
authenticator Apey,7sv. If both Cogyne and Apey,—s15v
are valid, then Dev, is considered authenticated and ISV
replies with a synchronization response — Resrsy — Dev, -

Protocol 1: General Device Protocol
Time Synchronization Phase (Devg <+ ISV)
1) After booting up Dewvy increases persistent sync counter Cosync
value by 1 and computes authenticator A Devy—ISV':

HMAC(K1sveDevy, [[Dpev, ||Cosyne]) o

2) Then Dev builds Rqueugﬁlsv and sends it to ISV:
Reqpev,—+15v = IDpevy ||Cosyncl|Apev, 15V

3) ISV verities Cosync. It also verifies Apeq,—15v using Equa-
tion 1. Upon successful verification, ISV updates local Cosync
with received Cosyne.

4) Then ISV computes authenticator AISVﬁDEUq:

HMAC(KISVHDevgv [IDISVHcosync||TSISV~>Devy])
(@)

5) Finally ISV builds Res;sv — pev, and sends it to Devg:
IDISVHcosync‘|TSISV~>DEUQT|AISV~>Dcvg

6) Devg verifies Arsyv_s pev,, using Equation 2. Then it updates
start_time with received T° S’l ISV —Dev, and starts a timer.

Ticket Issuing Phase (C <> ISV)

1) C performs the steps of Kerberos protocol to obtain Kerberos
service ticket, Trgy and shared key ko, 75y for ISV.

2) Computes Ac_1sv
E(kcorsv, [IDc||AD:||TSc1sv])

3) Builds ticket request Reqc— 15y and sends it to ISV:
Reqc—15v = IDpev,||T1svI|Ac—1sv

4) ISV decrypts Trsyv by using Krsy «,7Gs and verifies it. Then
ISV issues IoT ticket TDeug and session key kCHDevg using
different long term keys:

HMAC(KDengISV7[IDCHADCHLﬁHIDDeng 3)
5) Finally ISV builds response Resrsy —sc and sends it to C:

E(kce15v, [IDpevy ||k e Devy I TS15v |1 L6|| TDew,)

6) C decrypts Resysy ¢ with ko 15y, retrieves and caches
kCHDevgs TDEU .
Service Phase (C < ﬁevg)
1) C computes authenticator ACHDEUQ:

AC*}Devg = HMAC(kCHDe'ug s [TSC’*)De'ugD 4)
2) Then C builds Reqcﬁpevg and sends it to Devg:
Serv—reqHIDC'HADCHLG‘|TDevy |‘TSC~>Devy |‘AC~>Devg

3) Devy checks plaintext T'Sc_;, pew B and Le values, generates
koo Dev o locally and verifies Tpeq, B using Equation 3, verifies
ACaDevg using Equation 4.

4) Finally Devy performs the requested service and sends back
either plaintext service_response (non-sensitive information) or
service_response encrypted with ko, Dev, (sensitive informa-
tion).

5) C receives service_response and decrypts with koo, Deug if
necessary.

Fig. 4: Dewvg Protocol

After receiving Res;sv s pev,, Devy authenticates ISV in
step 6 by verifying Arsv s pew,. Since Cogype grows mono-
tonically, it also acts as a nonce in computing A;gy Devy-
This prevents replays of old synchronization responses. If ver-
ification succeeds, Dev, stores T'Srsy —, Dev, 88 its start_time.
After synchronization of start_time, local time is set to:
start_time plus current timer value. If Dev,’s timer drifts
drastically, the calculated timestamp would not be reliable. In
such cases, it is recommended that this protocol is executed
not only at boot time but also at regular (long-term) intervals.

Ticket Issuing Phase: A user wishing to request a service
from Dev, must obtain an IoT ticket from ISV following

the steps described in the Service phase of Protocol 1. This
protocol includes ticket lifetime Lg in [oT tickets to maintain
ticket validity periods. This enables ISV to grant tickets to
multiple clients for the same time period. Also, each ticket can
be used multiple times before its expiration time. IoT ticket
for Dev, is generated by computing an HMAC over (I D¢,
AD¢, Lg, IDpey,) with a long-term key. The corresponding
session key is generated by computing HMAC over the same
values with a different long-term key. The IoT ticket generation
process is different from that in Kerberos. The latter is secured
using encryption, while IoT tickets are secured via HMAC.

Service Phase: This part of the protocol is used by users to
request a service from a Dev,. Since IoT tickets are multi-use,
replay attacks pose a problem. To mitigate them, in step 1 of
the Service Phase, C calculates an authenticator Ac_, Dev, by
computing HMAC over its current timestamp 7'Sc -, pev, With
a session key koo Dev,- Then, C includes both TSc_ Dev, and
AC%Devg in its service request, Regc; pev,. Together with
TScpev,» Ac—Dev, mitigates replays.

Upon receiving Reqc—pev,» Devy computes the local

timestamp by adding the current timer value to start_time.
Then, in step 3, Dev, checks if the difference between
plaintext T'Sc—,peys, and the local timestamp is within a
predefined short range. If not, it discards the request and
sends back an “Invalid Request” response. Dev, also checks
if plaintext ticket lifetime Lg is later than the current local
time. If not, it discards the request and sends back a “Ticket
Expired” response. Next, Dev, verifies Ac_,Devg. Finally,
Dev,, verifies the integrity of the IoT ticket by computing
an HMAC over plaintext (/D¢g, AD,., Lg, IDDeUg) with
its long-term key and comparing it with the corresponding
value in the received ticket. This integrity check prevents the
adversary from modifying the expiration time with the purpose
of extending the ticket lifetime.
Attestation as a Service: Along with standard IoT device
functionalities, Dev, makes its own attestation available as
a service. Any user with a valid IoT ticket can act as a
verifier and request Dev, to attest itself. Upon receiving an
attestation request and validating the IoT ticket, RoT inside
Dewv, calculates an HMAC over the program memory using
the session key koo Dev,- Devy sends back the computed
attestation result (HMAC) to the user. Acting as a verifier,
the user knows the expected HMAC value for the benign
(expected) software state of Dev, and thus can verify the
response to determine Dev,’s current software state.

B. Protocol for Power Constrained Devices

Figure 5 provides an overview of KESIC protocol for Devy,,
while detailed description is presented in Figure 6.

Counter Synchronization Phase: ISV maintains a separate
synchronization value for each Dev,., and this value is
reinitialized with the current timestamp from the local clock
of ISV every time Dev,,. performs synchronization.

When Devy,. boots up, it follows the steps outlined in
Counter Synchronization Phase of Protocol 2 to obtain the

| Client loT Server loT Device

10T ID, Authenticator
Challenge, Authenticator Calculates
Counter attestation result
Synchronization Attestation Result
(After sleep) » .
Verifies Attestation Result| . nter Authenticator
initiates
counter array
TGT, loT ID, Authenticator
Service loT Ticket, loT Shared Key|
(At runtime)

loT Ticket*, Service Request, Counter Verifies whether the

ticket is unused

10T ID, Service Response

*loT Ticket is one-time use only

Fig. 5: Dewy,. Protocol Overview.

synchronization value from ISV. ISV also requests an attesta-
tion report from Dewv,. during this process. Only if that report
is valid, i.e., if Deuv,, is healthy, ISV grants tickets to clients
to access Devy,. This eliminates the need to expose attestation
as a service for Deuv,,, given that Dev,, is low in runtime and
power budget.

Ticket Issuing Phase: This part of Protocol 2 describes how
clients obtain IoT Tickets from ISV, prior to to requesting
service from Dev,.. These tickets are single-use only. The
rationale is that synchronizing and running a timer in Devp,
for a short period of activity is expensive and offers low utility.
As a result, tickets can not include a timestamp to indicate
their validity period. Instead, ISV maintains a separate counter
initialized with the synchronization value for each Deu,,..
Recall that the synchronization value is the timestamp sent
to Devy,. during Counter Synchronization Phase. Each time
ISV receives a ticket request from a client, it increases the
counter value by 1 and uses the counter value as the nonce in
the ticket, ensuring the ticket is fresh and unique for a single
use.

Service Phase: In this phase, clients use Protocol 2 to
request service from Dewv,.. However, nonce-based Deuv,.
tickets are prone to race conditions. For example, suppose
that Client-A and Client-B both obtain IoT tickets from ISV.
However, Client-A obtains its ticket before Client-B, resulting
in the former’s ticket having a lower-numbered nonce than the
ticket of the latter. (Recall that we treat nonces as monotonic
counters.) If Client-B presents its ticket to the device first,
Deuwy, updates its local counter value with the nonce of Client-
B’s ticket. In that case, Client-A becomes unable to use its
ticket since the nonce in Client-A’s ticket is lower than the
current counter value of Devy,..

To avoid such anomalies, Dev,. maintains a counter buffer
of size n, where n is the maximum number of clients that can
obtain tickets for Dewv,,. during each of its liveness (awake)
period. In step 2 of the Service Phase of Protocol 2, when
Deuv,,. receives a ticket, it checks whether its nonce is within
the counter buffer and is still unused. If this check fails, Dev,,
discards the request and returns an “’Invalid Counter” response.

Protocol 2: Power constrained Device Protocol
Counter Synchronization Phase (Devpe <> ISV)
1) Upon Devpe waking up, Devpe and ISV perform the same steps
as steps 1 to 3 from the Time Synchronization Phase of Protocol
1 to build and verify Regpey,,.—15v respectively.
2) Then ISV generates a random number as challenge and computes
authenticator AFEEst Devpe’

HMAC(Kpeuvy,«15v;[IDrsv||challenge]) (5)

3) ISV builds attestation request, Req?&ie? Devpe and sends it to
. ttest
Devpe: IDysv ||challenge| |A‘}S€,§_>prc
4) Devp. verifies AEESE Dew,. Using Equation 5 and generates
Attestation Key, k Devpe>ISV:

kpevpeer1sv = HMAC(Kpeu, 15V, [challenge]) (6)
5) Devp, calculates HMAC of memory region and sends it to ISV:
Attstpmac = HMAC(kpevpe s 15V, [Memoryl) — (7)

6) Upon receiving Attstpmac, ISV generates kDevchISV using
Equation 6 and verifies Attstpqc using Equation 7. It also
assigns current timestamp value TSISVADQ%C to C’oDevpC.

7) Then ISV and Devypc perform the same steps as steps 4 to 6
from the Time Synchronization Phase of Protocol 1 to build and
verify Resrsy — Devpe respectively.

8) Deuvpc initializes local counter array using TSISV*)DE’UPC-

Ticket Issuing Phase (C<>ISV)

1) C performs the steps of Kerberos protocol to obtain Kerberos
service ticket T7gy and shared key k¢, 75y for ISV. Then C
and ISV perform the same steps as steps 2 to 4 from the Ticket
Issuing phase of Protocol 1 to build and verify Reqc—1sv
respectively.

2) Then ISV issues IoT ticket TDMPC and generates session key
kc«-»Devpc using different long term keys:

HMAC(KDeUPCHISV7 [IDc| |ADC||CODevpc | IIDDevpcD
®
3) Finally ISV builds Resrsy ¢ and sends it to C:

E(kc15v, [ID15v||kCes Devye I TS15V 5C||CoDew, ||
TDevpc])

4) C decrypts Resrsy ¢ Wwith ko, 15y, retrieves and caches

kCHDevpc 5 T‘De'upC .
Service Phase (C<+>Devpc)

1) C builds RequDevpc and sends it to Devpc:
service_request||[IDc||ADc||Copeuv,. | TDevy,

2) Devpc checks Plaintext Co Devpe value,. generates ko o Devpe
lqcally, and verifies TDevpc using Equation .8.

3) Finally Devp. performs the requested service and sends back
either plaintext service_response (non-sensitive information) or
service_response encrypted with k:cu_,p‘.wpC (sensitive informa-
tion).

4) C receives service_response and decrypts with koo, Devpe if
necessary.

Fig. 6: Devp, Protocol.

This prevents race conditions for single-use Dewv,,. tickets
while keeping them non-blocking, meaning that ISV does not
reserve a specific time period for a client’s Dev,, ticket, and
does not reject tickets for other clients during that period.

V. IMPLEMENTATION DETAILS

This section describes the prototype implementation of
ISV, Devy, Devy,, and client application. All source code
is available at [6].

A. IoT Server

We implemented ISV in Python. It has two main compo-
nents:

Ticket Manager (TM) is implemented as a web application
using Flask library. It is hosted in Apache Web Server and
configured for Kerberos Authentication. A client needs to
obtain a valid ticket from TGS to call TM. TM follows a
static policy to grant IoT tickets: it maintains a list of allowed
users. A granted IoT ticket for a given device is valid for all
available functionalities of that device.

Synchronization Manager (SM) is implemented in Python.
Two always-listening UDP server sockets are used for com-
munication with devices. The first is responsible for accept-
ing synchronization requests from devices, while the second
accepts attestation reports from Dev,,. as part of the synchro-
nization process. Communication between SM and devices
is protected by the long-term secret key, Kpey,«1sv Of
Kpev,.«s15v, shared between ISV and each device.

SM runs as a separate thread from TM. ISV is hosted on a
Linux laptop with Intel(R) Core(TM) i7-8550U CPU running
at 1.80GHz, with 8GB RAM.

B. Devy and Devp,

An NXP LPCXpresso55569 development board with
TrustZone-M emulates an IoT device. The board is based on
ARM Cortex-M33 MCU. It runs at 150 MHz with 640KB
flash and 320KB SRAM. Wifi 10 click board is used — along
with LPCXpresso55569 board — for WiFi connectivity. Dev,
and Deuv,,. are emulated separately. The former is a smart
bulb where clients control the following features: (1) turning
on LED, (2) turning off LED, and (3) performing attestation.
The latter is also a smart bulb, however, clients can only turn
on and turn off LED. It does not support attestation.

The program running on the emulated device is divided into
two parts:

Non-Secure Part: processes user commands. It is also
responsible for the synchronization process with ISV. Net-
work communication and actuation (turning on/off LED) are
handled by this part. All communication is over UDP.

Secure Part: works as an RoT. It stores secret keys and
synchronization value, as well as timer/counter value. It is
responsible for all cryptographic operations, i.e., HMACs, and
uses the Mbed-TLS library.

These two parts are compiled into separate .axf (binary)
files and also flashed to the board separately. Moreover, they
are executed using separate RAM.

C. Client Application

A sample client application is written in Python. It obtains
IoT tickets from ISV and requests service from Dev, and
Deuwy,.. Before the client application calls TM to request an
IoT ticket, the client (user) must obtain a Kerberos ticket for
ISV. This is done by configuring a Kerberos client on the
client machine and calling kinit. Then, the client application
automatically includes the Kerberos ticket in the request
header when it calls TM.

D. Remote Attestation Process

Both Devy; and Devp. can perform remote attestation.
Deuwy,. performs attestation during the synchronization phase
with ISV acting as the verifier. In case of Dev,, a user (acting
as a verifier) can ask Dev, to perform attestation during the
service phase. In both cases, the attestation process is the same.

The RoT in the secure part of the device computes
a hash of the entire non-secure program flash mem-
ory using mbedtls_sha256. Then, the appropriate key is
used to compute an HMAC over this hash value using
MBEDTLS_MD_SHA256. Note that, for Devg, this attestation
key is the service session key, koo Devgs shared with client
(C). For Dewy, it is a temporary attestation key, kpey,.«+15v
computed during the synchronization process.

The computed HMAC is sent to the verifier. The correct
(expected) reference hash for a given device is assumed to
correspond to the latest legitimate software version that the
verifier expects the device to run. Since the verifier is assumed
to know both the attestation key and the expected reference
hash, it computes its own expected HMAC and compares it
with that received from the device, which allows to determine
whether the device is malware-free.

VI. EVALUATION

This section presents performance analyses of KESIC. As
part of performance analysis, we evaluate KESIC in terms
of storage, memory, run time, and network overhead. Since
ISV and client applications are expected to run on powerful
devices, overheads of these components are minimal and not
discussed here due to space constraints. Thus, we focus on the
overhead of IoT devices.

A. Storage & Memory Overhead

We assess storage and memory KESIC overhead for Dev,
and Deuv,, prototype implementations. Figure 7 shows the de-
tails about storage and memory overhead. We measure storage
overhead in terms of the .axf file size. Memory overhead is
measured by the increase in RAM usage. As evident from
Figure 7, storage and memory overheads are very low for
both device types. KESIC causes only a 60KB increase overall
((considering both secure and non-secure parts) for Dev, over
.axf file sizes of 3604 KB. For Dewv,,, this increase is even
lower: 56KB. Storage overhead is 1.66% for Dev, and 1.55%
for Devp.. Furthermore, overall memory overhead is ~0.3%
for both Dev, and Devy.. This low overhead is due to the
simple and lightweight implementation in KESIC.

B. Runtime Overhead

Devy and Devy,. incur different runtime overheads in
synchronization and service phases. We measure overhead in
terms of cycles to complete each phase. Using the operational
frequency of the board, we also compute elapsed time. Note
that we measure the mean of each performance value over
10 iterations. Runtime overheads of Dev, and Devy,. are
presented in Table II.

Storage Memory

Overhead (59.79) Overhead (55.89) Overhead (0.26) Overhead (0.27)

@
o

3500

~
o

3000

N
a
o
°
o
=]

a
=]

2000

Base (3604.37) Base (3604.37) Base (82) Base (82)

axf File Size (KB)
'y
=]

RAM Usage (KB)

1500

w
=l

1000

N
=

500

=
=

Dev, Storage Dev, Storage Devy Memory Devpc Memory

Fig. 7: Storage & Memory Overhead for Devg & Devp.

TABLE II: Runtime Overheads for Devg and Devp,.

Phase Device Type Kilocycles | Time @ 150MHz (ms)
Synchronization Devy 6624.7180 44.1648
Devpe | 16823.0482 112.1537

Service Devy 1267.3084 8.4487
Devpe 541.5319 3.6102

The synchronization time is minimal at 44.1648 ms on
average for Dev,. Recall that it only occurs at boot time. On
the other hand, the average synchronization time for Devp,
is 112.1537 ms. This is because the synchronization phase of
Deuvp,. involves multiple communication rounds and remote
attestation. Thus, it incurs higher runtime overhead than Dev,.
However, it ensures that the device is healthy and frees the
users from having to perform remote attestations separately.

During the service phase, KESIC verifies IoT tickets, which
incurs runtime overhead that varies based on the service
request scenario. All Values included in a ticket are checked
one by one, and the ticket is rejected if any verification fails.
The verification process in Dev, takes 8.4487 ms (on average)
for a valid ticket. The ticket verification process is even faster
for Devy,. Validating a ticket takes only 3.6102 ms.

C. Network Overhead

We now consider network overhead on IoT devices caused
by KESIC in synchronization and service phases. We consider
sizes of all requests and responses exchanged by IoT devices.
Network overhead is summarized in Table III.

Synchronization request and response sizes are 104 and
136 bytes, i.e., 240 bytes total. Dev,. exchanges two addi-
tional messages with ISV: attestation request (104 bytes) and
response (72 bytes), resulting in 416 bytes total. Similarly,

TABLE III: Network Overheads for Devg and Devp,.

Phase Device Type | Overhead (B)

o Devy 240
Synchronization Devpe 716
Service Devy 208

! Devpe 112

TABLE IV: KESIC vs Kerberos Overheads.

Overhead Devy Devpe | Kerberos [29], [30], [31]
Storage (KB) 59.788 55.888 221.032
Memory (B) 256 272 12000
Runtime (ms) | 8.4 ms (@150 MHz) | 3.6 ms (@150 MHz) 7.8ms (@2.2 GHz)
Network (B) 208 112 846

network overhead during the service phase comes from service
requests. It is 208 bytes for Dev, and 112 bytes for Devy,..

D. Comparison with Kerberos

We compare the overhead of KESIC with that of Kerberos.
However, as mentioned earlier in Section III, Kerberos can not
be directly implemented on IoT devices. Therefore, we can
not directly compare their respective overheads and instead
compare KESIC with standard Kerberos for its usual setting.
Table IV shows the results.

As the table shows, storage, memory, runtime, and network
overheads of KESIC are significantly lower than those of
Kerberos. Dev, incurs 3.69x lower storage, 46.87x lower
memory, 135.41x lower runtime, and 4.07x lower network
overhead. Meanwhile, Dev,,. exhibits 3.95x lower storage,
44.12x lower memory, 316.88x lower runtime, and 7.55x
lower network overhead.

VII. RELATED WORK

Kerberos-Based Authentication Schemes for IoT Devices:
Several efforts attempted to address the multi-user access
problem for IoT devices by adopting Kerberos. There are two
main directions in prior work:

The first aims to decrease the computation and communi-
cation cost of Kerberos for IoT devices [5], [32], [33], [34],
[35], [36]. [S] uses a nonce-based service ticket to grant access.
However, the device can not verify the ticket locally and must
communicate with KDC to do so. [33] reduces the number of
messages exchanged and the cost of constructing a ticket. [34]
uses table representation to reduce code size, memory copies,
and heap allocations. None of these results, except [S], applies
to IoT devices without real-time clocks.

The second direction focuses on addressing certain use-
cases, such as machine-to-machine communication (commu-
nication among loT devices) or using a central controller
to manage all IoT devices [37], [36], [38], [39]. Such use-
cases are different from what KESIC targets: allowing multiple
users direct and secure access to IoT devices. [37] introduces
a smart central controller to implement Kerberos for smart-
home systems and maintains authentication and authorization
at the controller level. [36] involves a low-cost Machine-to-
Machine (M2M) protocol for IoT devices to communicate
with machines. [39] uses an inter-server protocol: it establishes
communication between two servers and uses an improved key
agreement, as compared to Kerberos.

Other Authentication Schemes for IoT Devices: Several
authentication methods for IoT devices have been proposed
e.g. [40], [41], [42], [43], [44], [45], based on a variety
of features such as biometrics, physical unclonable func-
tions, channel characteristics, one-time passwords (OTPs),

blockchain etc. [40] develops a deep learning based user
authentication scheme that utilizes WiFi signals to capture
unique human physiological and behavioral characteristics
inherited from their daily activities. [42] presents a two-factor
authentication protocol for IoT-enabled healthcare ecosystems
using biometrics and post-quantum cryptography. [43] pro-
poses a lightweight and secure multi-factor device authenti-
cation protocol for IoT devices using configurable PUFs and
channel-based parameters. [44] introduces a multi-device user
authentication mechanism for IoT devices using OTPs and
a novel device usage detection mechanism. [45] proposes a
system that authenticates user access to IoT devices using
blockchain-enabled fog nodes. The nodes connect to Ethereum
smart contracts, which issue access tokens without requiring
an intermediary or trusted third party.

VIII. CONCLUSION

This paper constructed KESIC, a secure multi-user access
mechanism for a range of IoT devices. KESIC contends with
hardware resource constraints of IoT devices and significant
overhead associated with Kerberos. It involves a new com-
ponent — an IoT Server (ISV) — a special Kerberos service
responsible for managing access to IoT devices. We imple-
mented an open-source prototype [6] of KESIC, which in-
cludes ISV, two devices based on ARM Cortex-M33 equipped
with TrustZone-M, and a client application. Its evaluation
shows that a general device takes only 8.45ms to verify a
ticket, while a power-constrained device takes only 3.61ms.
Acknowledgements: We thank ICCCN’24 reviewers for con-
structive feedback. This work was supported in part by funding
from NSF Award SATC-1956393, NSA Awards H98230-20-
1-0345 and H98230-22-1-0308, as well as a subcontract from
Peraton Labs.

REFERENCES

[1] statista. “number of internet of things (iot) connected devices worldwide
from 2019 to 2021, with forecasts from 2022 to 2030”. https://www.
statista.com/statistics/1183457/iot-connected-devices-worldwide/, 2022.

[2] Wired Magazine. The botnet that broke the inter-
net isn’t going away. https://www.wired.com/2016/12/
botnet-broke-internet-isnt- going-away/, 2016.

[3] Pinto et al. Triton: The first ics cyber attack on safety instrument
systems. In Black Hat USA, 2018.

[4] Kansal et al. Building a sensor network of mobile phones. In IPSN,
pages 547-548. ACM, 2007.

[5] Astorga et al. Security for heterogeneous and ubiquitous environments
consisting of resource-limited devices: An approach to authorization
using kerberos. In ICST, 2009.

[6] Kesic source code. https://github.com/sprout-uci/KESIC, 2023.

[71 S. William. Cryptography and Network Security - Principles and
Practice, 7th Edition. Pearson Education India.

[8] Noorman et al. Sancus: Low-cost trustworthy extensible networked
devices with a zero-software trusted computing base. In USENIX
Security Symposium, 2013.

[9] Grisafi et al. PISTIS: Trusted computing architecture for low-end

embedded systems. In USENIX Security, 2022.

Nunes et al. VRASED: A verified hardware/software co-design for

remote attestation. In USENIX Security, 2019.

Nunes et al. Towards remotely verifiable software integrity in resource-

constrained iot devices. IEEE Communications Magazine, 2024.

Nunes et al. On the toctou problem in remote attestation. CCS, 2021.

Arm Ltd. Arm TrustZone. https://www.arm.com/products/

security-on-arm/trustzone, 2018.

[10]
(1]

[12]
[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]
(23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

Intel. Intel Software Guard Extensions (Intel SGX). https://software.
intel.com/en-us/sgx.

AMD. Amd secure encrypted virtualization (amd sev). https://developer.
amd.com/sev/.
Nunes et al.
ICCAD, 2023.
Gerwin et al.
SIGOPS, 2009.

Blink mini security camera.
B07X4BCRHB ?tag=meastus-20.
Google nest thermostat. https://store.google.com/us/product/nest_
thermostat?hl=en-US.

Lumiman smart bulb. https://www.amazon.com/
Lights-Multi- Colored- Google- Assistant-Required/dp/BO7DLSNNDS/.
Thermopro thermometer. https://www.amazon.com/
ThermoPro-Bluetooth-Hygrometer- Thermometer- Greenhouse/dp/
BOSLKCLFR6?th=1.

Netatmo weather station -weatherproof. https://www.amazon.com/
Netatmo- Weather- Station- Weatherproof/dp/BO09SMGWAS/.

nrf9160 low power sip with integrated lte-m/nb-iot modem and gnss.
https://www.nordicsemi.com/products/nrf9160.

Muraleedharan et al. Jamming attack detection and countermeasures
in wireless sensor network using ant system. In Wireless Sensing and
Processing, volume 6248, pages 118-129. SPIE, 2006.

Wu et al. Low-rate dos attacks, detection, defense, and challenges: A
survey. IEEE access, 8:43920-43943, 2020.

Mamdouh et al. Securing the internet of things and wireless sensor
networks via machine learning: A survey. In /CCA. IEEE, 2018.
Srivaths et al. Tamper resistance mechanisms for secure embedded
systems. In VLSI Design, 2004.

Obermaier et al. The past, present, and future of physical security en-
closures: From battery-backed monitoring to puf-based inherent security
and beyond. Journal of Hardware and Systems Security, 2018.

Mit kerberos repository. https://github.com/krb5/krb5.

Moralis et al. Performance comparison of web services security:
Kerberos token profile against x. 509 token profile. In ICNS, 2007.
Configuring kerberos token size using the maxtokensize parameter. https:
/Iwoshub.com/kerberos-token- size-and-issues-of-its- growth/.

Thomas Hardjono. Kerberos for internet-of-things. IETF89, 2014.
AlJanah et al. A multifactor multilevel and interaction based (m2i)
authentication framework for internet of things (iot) applications. /[EEE
Access, 10:47965-47996, 2022.

Kazunori Miyazawa. Design and implementation of kerberos version 5
for embedded devices. In 2010 8th IEEE International Conference on
Industrial Informatics, pages 449-453. 1EEE, 2010.

Mohsin B Tamboli and Dayanand Dambawade. Secure and efficient
coap based authentication and access control for internet of things (iot).
In RTEICT. 1EEE, 2016.

Esfahani et al. A lightweight authentication mechanism for m2m
communications in industrial iot environment. [EEE Internet of Things
Journal, 2017.

Gaikwad et al. 3-level secure kerberos authentication for smart home
systems using iot. In 2015 Ist International Conference on Next
Generation Computing Technologies (NGCT). IEEE, 2015.

Hokeun Kim. Securing the internet of things via locally centralized,
globally distributed authentication and authorization. University of
California, Berkeley, 2017.

Thirumoorthy et al. Improved key agreement based kerberos protocol
for m-health security. 2022.

Shi et al. Smart user authentication through actuation of daily activities
leveraging wifi-enabled iot. In MOBIHOC, pages 1-10, 2017.

Dhillon et al. A lightweight biometrics based remote user authentication
scheme for iot services. Journal of Information Security and Applica-
tions, 34:255-270, 2017.

Saggaf et al. Lightweight two-factor-based user authentication protocol
for iot-enabled healthcare ecosystem in quantum computing. Arabian
Journal for Science and Engineering, 48(2):2347-2357, 2023.
Mohammed Mujib Alshahrani. Secure multifactor remote access user
authentication framework for iot networks. Computers, Materials &
Continua, 2021.

Eman et al. A multi-device user authentication mechanism for internet
of things. IET Networks, 2023.

Almadhoun et al. A user authentication scheme of iot devices using
blockchain-enabled fog nodes. In AICCSA. IEEE, 2018.

PARseL: Towards a verified root-of-trust over sel4. In
seLL4: Formal verification of an OS kernel. In ACM

https://www.amazon.com/dp/

