On Vulnerability of Access Control Restrictions to Timing Attacks
in a Database Management System

Alexander Rasin James Herbick Ben Lenard
DePaul University DePaul University DePaul University
Chicago, IL, USA Chicago, IL, USA Argonne National Laboratory
arasin@cdm.depaul.edu jherbick@depaul.edu Chicago, IL, USA

Nick Scope
DePaul University
Chicago, IL, USA
nscope52884@gmail.com

Abstract

Side-channel attacks leverage implementation of algorithms to by-
pass security and leak restricted data. A timing attack observes dif-
ferences in runtime in response to varying inputs to learn restricted
information. Most prior work has focused on applying timing at-
tacks to cryptoanalysis algorithms; other approaches sought to
learn about database content by measuring the time of an operation
(e.g., index update or query caching). Our goal is to evaluate the
practical risks of leveraging a non-privileged user account to learn
about data hidden from the user account by access control.

As with other side-channel attacks, this attack exploits the in-
herent nature of how queries are executed in a database system.
Internally, the database engine processes the entire database table,
even if the user only has access to some of the rows. We present a
preliminary investigation of what a regular user can learn about
“hidden” data by observing the execution time of their queries over
an indexed column in a table. We perform our experiments in a
cache-control environment (i.e., clearing database cache between
runs) to measure an upper bound for data leakage and privacy
risks. Our experiments show that, in a real system, it is difficult to
reliably learn about restricted data due to natural operating system
(OS) runtime fluctuations and OS-level caching. However, when
the access control mechanism itself is relatively costly, a user can
not only learn about hidden data but they may closely approximate
the number of rows hidden by the access control mechanism.

CCS Concepts

« Information systems — Database query processing; Data access
methods; « Security and privacy — Cryptography; Database
and storage security.

Keywords
Side-Channel Attack, Timing Attack, Data Privacy

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only. Request permissions
from owner/author(s).

SSDBM 2024, July 10-12, 2024, Rennes, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1020-9/24/07

https://doi.org/10.1145/3676288.3676306

blenard@anl.gov

James Wagner
University of New Orleans
New Orleans, LA, USA
jwagner4@uno.edu

ACM Reference Format:

Alexander Rasin, James Herbick, Ben Lenard, Nick Scope, and James Wagner.
2024. On Vulnerability of Access Control Restrictions to Timing Attacks
in a Database Management System. In 36th International Conference on
Scientific and Statistical Database Management (SSDBM 2024), July 10-12,
2024, Rennes, France. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3676288.3676306

1 Introduction

Database management systems (DBMS) serve as the main data
repository for most organizations because they support a full com-
plement of data management capabilities with a variety of security
mechanisms. These security capabilities include access control, dif-
ferent levels of encryption, data masking, and audit logs (e.g., to
monitor user access). Although DBMSes incorporate robust security
tools, they are also a common target of security attacks.

Much of the research related to side-channel attacks has been to
bypass and reverse engineer encryption [13]. More recently, timing
attacks that attempt to learn about the data directly have been
considered as well [10]. We believe that such attacks represent a
particular risk to overall security and, specifically, to compliance
in organizations. Compliance with data access rules is especially
important for organizations that are in heavily regulated industries
such as healthcare and financial industries. Although the timing
attack explored in this paper does not directly bypass security, it
can nevertheless expose sensitive data to users who were explicitly
prevented from seeing it. The main contribution of this paper is to
investigate the practical risks of privacy compromise that can be
perpetrated by local users without elevated privileges.

We investigate leveraging of a database user account without
elevated privileges to learn about data hidden behind access con-
trol. Although we make some simplifying assumptions such as the
existence of an underlying indexed column (e.g., Salary) and clear
database cache, this attack is simple to execute in practice. Intu-
itively, our timing attack seeks to detect the extra cost imposed by
filtering of access-restricted rows. The database engine performs
additional work to eliminate rows which match the user’s query
predicates but are excluded from results by access control because
the user does not have access to these rows. Although our results
so far show that the timing attack is the most reliable when the
access control mechanism itself is expensive (e.g., when it involves



SSDBM 2024, July 10-12, 2024, Rennes, France

lookup tables), this threat deserves further investigation because of
the inherent difficulty of defending against side-channel attacks.

2 Related Work

Randolph and Diehl [15] present a twenty-year summary of re-
search connecting power consumption and what it can tell about
cryptographic algorithm behavior. Such attacks may include observ-
ing power use to extrapolate the difference between keys being used
by cryptographic computations [13]; monitoring the heat signature
to exploit differences in thermal output to learn data used by cryp-
tographic algorithms [12]; measuring the time required for the exe-
cution of the cryptographic algorithm in order to reverse-engineer
keys, e.g., discovering private keys from OpenSSL by attacking a
web server on a LAN [7]. Other attacks include measurement of
electromagnetic emanations, optical output, and acoustics output.
In sum, any measurable output produced by the system that varies
depending on the data it is computing can potentially reveal secret
information if observed and measured.

In the context of a database management system, side-channel
attack can also achieve a more specialized discovery of data leaks.
For example, attacks against data anonymization mechanism by-
pass query anonymization that obfuscates source data in database
queries. Boenisch et al. [6] demonstrate a timing attack that dis-
covers underlying data despite a differential privacy framework
through a timing attack (measuring query cost and impact of excep-
tions caused by a query to learn about anonymized data). Futoran-
sky etal. [11] presented an attack technique that uses a timing attack
to reverse engineer the data in a B-Tree. By observing the cost of
INSERTs and UPDATES, they could observe the runtime cost increased
caused by B-Tree splits and merges, thus learning about the data
contained within a B-Tree. Dar et al. performed a similar type of an
attack by timing repeated query execution [10]. However, their ap-
proach relies on measuring query execution times in nanoseconds,
learning about underlying data based on sub-millisecond runtime
differences. Although similar to our analysis, such attack is diffi-
cult to perform in practice (e.g., we found that differences of up to
3ms in runtime did not present a statistically significant difference
on a database server). Other timing attacks have sought to detect
runtime differences caused by cache hits and misses to learn what
data has been queried in the database [16].

3 Methodology
3.1 Assumptions and Threat Model

We consider timing attacks perpetuated by a non-malicious data-
base user with regular access to a database table. We do not assume
any privileges beyond the ability to execute a SQL query and to
time the execution of that query. For the purposes of the analysis
in Section 4, we considered query plans when choosing our queries.
However, the attacker could easily approximate that information
with additional server-specific analysis (e.g., by creating their own
controlled table on this or similar server and timing queries). We
further assume that the user is able to execute queries locally and
that network transfer does not factor into query execution cost.

Rasin et al.

3.2 Access control

GRANT capabilities (including SELECT, UPDATE, INSERT, or DELETE) is
the most common mechanism supported by relational databases.
Another typical approach for restricting a user’s access to underly-
ing tables is to deploy views. A database administrator would grant
access to a view instead of the underlying table so that data restric-
tions on the data can be imposed with the view’s WHERE clause [1].

Row Level Security (RLS) or Label Security has been available
in Oracle starting from Oracle 8i. RLS applies predicates to the
WHERE clause when a SQL statement is executed [2, 8]. RLS filters
on the basis of rows and cannot change the columns returned in
the result set. Similar to Oracle, Db2 Linux Unix Windows (LUW),
has label-based security, where a special label column is appended
to each table. Table access can be controlled by the policy matching
the condition to the label for any row [4, 9]. Postgres also offers an
RLS mechanism that applies a filtering WHERE clause to the queries
based on applicable policies [14].

Oracle Virtual Private Database (VPD) technology allows for
a policy (using PL/SQL) to be executed when fetching rows; the
policy determines what predicates are added to the WHERE clause
and can apply restrictions to the columns, so that the projection of
data being returned is restricted [2, 3]. Oracle has reinvented VPD
as Real Application Security (RAS) which builds upon VPD and
adds additional features and ease of use. Consider a multi-tenant
application, where many organizations share the same application
but a guarantee of complete isolation is required. A VPD policy
can be used to append organization’s identification number to the
WHERE clause to ensure that only that company’s data is displayed
for a particular query.

In sum, most access control approaches are ultimately applied
to the query through a WHERE clause. Although there is an endless
variety of mechanisms, in practice most come down to revising
the query, introducing access control WHERE-restrictions. For a more
controlled fine-grained restrictions tools such as Oracle Data Redac-
tion [5] could be used. In general, the database engine does not
have the ability to distinguish predicate restrictions introduced due
to access control and the original query predicates.

3.3 Cost of Access Control

In our evaluation, we consider both a simple access control pred-
icate (i.e., Department = 'Health') and simulate a more expensive
predicate (by introducing a 1ms overhead using pg_sleep).

Access control restriction implementation may be relatively
costly in practice. For example, consider a customer relationship
management system at JPMorgan Chase. A person in sales team for
Treasury services can only see their clients; however, if their client is
Ford, the condition does not map to a simple WHERE Company = 'Ford’
because Ford has hundreds of sub-companies ranging from Ford
Canada, to Mopar to Avis and Mazda. Similarly, a condition such as
“manager can see data of their employees” may require multi-table
joins to materialize that relationship for access control.

A second category where access control may be costly is multi-
tenancy environment such as in super-computer setting. For ex-
ample, in order for the user to query the computer information
regarding their computing job, a number of checks is needed: 1) De-
termine the right project (group) that has the relevant job running



On Vulnerability of Access Control Restrictions to Timing Attacks in a Database Management System

on the system, 2) Identify which of the hundreds or thousands of
nodes has the job, 3) Differentiate between jobs sharing a node or
running exclusively on that node. Making these determinations
and translating them into access control requirements may require
a non-trivial amount of time.

3.4 Dataset

We used publicly available San Francisco municipal employee salary
data spanning the years 2011-2014, inclusive!. We further derived a
Department column based on the employee job titles and bucketed
data into different departments: e.g., Fire Department, Police De-
partment, Health Department (and a catch-all “Other” deparment).
The full table included 148,654 records in total; the table comprised
3,106 pages on disk.

3.5 Database Initialization

We loaded data into a PostgreSQL 16.0 database in a Unix-based
environment. As salaries turned out to be correlated with their
physical offset, we created salary_data_shuffled which randomized
the data prior to loading. We created a user account which was
restricted to only seeing data from the “Health” department. We
implemented a Row Level Security (RLS) policy for our user which
restricted access based on Department = 'Health'. Additionally, we
simulated an “expensive” policy which used the same condition but
also introduced 1ms sleep delay to the access control check.

Both tables are indexed on the Id column (primary key) by default.
We created an additional index over the TotalPay column which
we use in our experiments. We ran some simple queries to validate
that the row-level restrictions were working correctly.

3.6 Metrics Capture

We activated the pg_stat_statements in the postgresql.conf config-
uration file, restarted the database server, and then implemented
pg_stat_statements as an extension in the PostgreSQL database. We
also turned on the ‘timing’ option for returning information at the
time of executing our SQL queries. We did so with the timing on
for SQL statements. In Python, we used the %timeit magic com-
mand and ran each SQL statement 30 times, to get a consistent
timing. Although the times were similar, we ultimately used the
times reported in database logs in our reported experiments.

4 Experiments

We compare the difference between query runtimes that access
different numbers of rows on disk based on the user predicate while
returning the same number of rows. As the queries return the same
number of rows, the only significant difference between the queries
is the number of rows that the query was forced to exclude from
the results due to access control. In order to capture that difference,
we consider queries that request ranges over the indexed column,
TotalPay. A range query over TotalPay will use an index to identify
all matching salaries. However, as our user is restricted to one
department ("Health’), some of these rows may be excluded due
to being in a different department. In order to exclude the rows,
DBMS engine must scan the salary_data_shuffled table because the

Thttps://www.kaggle.com/datasets/kaggle/sf-salaries

SSDBM 2024, July 10-12, 2024, Rennes, France

department column is not indexed. Our hypothesis is that when a
user executes queries against an indexed column, they can learn
about the presence of inaccessible data in requested ranges.

In our evaluation, we executed a set of 30 queries by the user
with access limited to "Health’ department. All queries use the index
on the TotalPay column. Between each run of an individual query,
we ensure that the database cache has been cleared by restarting the
PostgreSQL server. Note that a regular user lacks the privilege to
restart the server. However, there are several strategies to prevent
caching from affecting our timing attack. Perhaps the simplest
approach is to rotate different query ranges in order to gather
information about the column(s) with sensitive data. We enabled
logging and capture query execution times in the PostgreSQL logs
and used ElasticSearch to retrieve query timing.

We first evaluated SELECT COUNT("TotalPay") AS CNT FROM
salary_data WHERE "TotalPay" BETWEEN XXX AND YYY across differ-
ent salary ranges shown in Table 1 for Query Q1. Ranges were
chosen to always return 5 rows to the user, even as the TotalPay
range matched more rows. For each execution range, we report
the number of rows falling within that salary range, the number of
rows that were restricted (i.e., excluded) by access control, and the
average runtime of 30 executions.

We compared the query execution times using the statistical
t-test for two means, unequal variances, and independent samples.
We use the first TotalPay range in Table 1 as the baseline, comparing
the runtimes to each subsequent row. We consider a critical value
of p=0.05 to determine statistical significance. Our null hypothesis
is that the two means being compared are equal. The alternative
hypothesis is that the query runtime mean being compared to the
baseline is not equal. Our results indicate a statistically significant
difference between the queries only for the $251,000 — $275, 000
range. In other cases, even though the average runtime is slower,
the null hypothesis could not be rejected.

Our next query attempted to increase the cost of evaluation by
accessing the table twice. Specifically, we used a query that queried
the same range a second time using a subquery: SELECT COUNT(x) +
(SELECT COUNT("Id") FROM salary_data WHERE "TotalPay" BETWEEN
XXX AND YYY) AS DBL FROM salary_data WHERE "TotalPay" BETWEEN
XXX AND YYY.In Table 1 Query Q2, although the runtimes are slower
compared to the baseline, the null hypothesis could not be rejected
for any of the ranges.

Our third query evaluation uses the same query as Table 1 Query
Q1, but emulates a more costly access control mechanism by in-
troducing a 1ms sleep (using pg_sleep call) into the access control
rules. As shown in Table 1 Query Q1 4, a high-cost access control
causes a drastic difference between query runtimes. We then used
the runtimes to fit a linear regression equation to the data:

y = 2.2707x + 24.81 (1)

where y represents query execution time in milliseconds, and x
represents the number of restricted rows. We used these results to
estimate the number of restricted rows based on arbitrarily chosen
ranges of salaries. We executed queries over the TotalPay ranges
shown in Table 2. As an example, plugging in an execution time
into our estimation regression equation 220.017 = 2.2707x + 24.81,
estimates the number of restricted rows to be x = 86. The actual
number of restricted rows in this case was 79.



SSDBM 2024, July 10-12, 2024, Rennes, France

Rasin et al.

TotalPay Range | Rows in range | Restricted rows | Returned rows | Query | Runtime (ms) | p-value
01 16.098 R
225,700-225,900 7 2 5 Q2 14.636 -
Qlyga 28.178 -
Q1 17.548 0.361
152,500-152,780 84 79 5 Q2 17.802 0.0512
Qlya 204.095 3.8737E-78
Q1 21.875 0.004
251,000-275,000 136 131 5 Q2 16.640 0.185
Olpa 325.095 6.6642E-85
Q1 18.438 0.154
255,000-350,000 237 232 5 Q2 16.201 0.252
Qlyga 550.059 1.3786E-82

Table 1: Query results for Q1: SELECT * FROM salary_data WHERE "TotalPay" BETWEEN XXX AND YYY
Q2: SELECT COUNT(*) + (SELECT COUNT("Id") FROM salary_data ...) AS DBL FROM salary_data WHERE "TotalPay" BETWEEN XXX AND YYY
Q1p4: SELECT * FROM salary_data WHERE "TotalPay" BETWEEN XXX AND YYY using high-cost access control

TotalPay Range Restricted | Restricted | Runtime
rows rows (ms)
(Actual) | (Estimate)
255,000-255,300 0 -6 10.762
255,000-256,300 7 1 26.192
200,000-200,500 37 32 97.082
180,000-180,500 79 86 220.017
180,100-180,700 105 122 302.404

Table 2: Linear estimates of rows hidden by access control
using Eq. 1.

5 Conclusion

Our experiments show that side-channel timing attack can allow
a user to discover information about inaccessible data in the data-
base. Although our results show that simple (i.e., low-overhead)
access control predicate does not leak significant information, we
believe that the user can craft a more costly query (e.g., by aug-
menting the query with additional sub-queries) that will allow for
a more precise estimate of restricted data. Our experiments further
demonstrate that in cases where access control condition is com-
plex (and high-overhead), the information about underlying hidden
data is impossible to hide. In such scenario, a user could estimate
the number of rows being hidden and approximate the ranges and
distribution of indexed columns in a database table.

Our next goal is to quantify how such attack can be used to
discover data ranges within the column without knowing the un-
derlying data distribution and to consider the same attack against
different DBMSes. Finally, our goal is to help detect and counter
such attacks. Side-channel attacks are difficult to counter because
they are exploiting normal system behavior. However, we believe
that database administrators can protect the data by scanning for
query patterns associated with a side-channel timing attack.

Acknowledgments

This work was partially funded by US National Science Foundation
Grant ITP-2016548, Argonne National Laboratory, and Louisiana

Board of Regents Grant AWD-10000153. Argonne National Labo-
ratory’s work was supported by the U.S. Department of Energy,
Office of Science, under contract DE-AC02-06CH11357.

References

[1] 2003. https://docs.oracle.com/cd/B12037_01/network.101/b10773/accessre.htm
[2] 2017. Database 2 Day + Security Guide. https://docs.oracle.com/database/121/
TDPSG/GUID-72D524FF-5A86-495A-9D12-14CB13819D42.htm#TDPSG90066
[3] 2017. Database security guide. https://docs.oracle.com/en/database/
oracle/oracle-database/21/dbseg/using- oracle-vpd-to-control-data-
access.html#GUID-06022729-9210-4895-BF04-6177713C65A7
[4] 2023. https://www.ibm.com/docs/en/db2/11.5?topic=lbac-how-security-labels-
are-compared
[5] 2023. Advanced security guide. https://docs.oracle.com/en/database/
oracle/oracle-database/21/asoag/introduction-to-oracle-advanced-
security.html#GUID-F91E22D5- 7B2D-4D67-BC96-4C738C54FFE1
[6] Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Chris-
tiane Kuhn, and Paul Francis. 2021. Side-channel attacks on query-based data
anonymization. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 1254-1265.
[7] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.
Computer Networks 48, 5 (2005), 701-716.
[8] Burleson Consulting. 2017. Row Level Security Tips.
oracle.com/concepts/restricting_access.htm
[9] Ember Crooks. 2018. LBAC - label based Access Control. https://datageek.blog/
en/2014/12/09/lbac-label-based-access-control/
[10] Chen Dar, Moshik Hershcovitch, and Adam Morrison. 2023. RLS Side Channels:
Investigating Leakage of Row-Level Security Protected Data Through Query
Execution Time. Proc. ACM Manag. (2023).
Ariel Futoransky, Damian Saura, and Ariel Waissbein. 2007. The ND2DB Attack:
Database Content Extraction Using Timing Attacks on the Indexing Algorithms..
In WOOT.
Peng Gu, Dylan Stow, Russell Barnes, Eren Kursun, and Yuan Xie. 2016. Thermal-
aware 3D design for side-channel information leakage. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD). IEEE, 520-527.
Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15-19, 1999 Proceedings 19.
Springer, 388-397.
PostgreSQL. 2023. Row Security Policies. www.postgresql.org/docs/current/ddl-
rowsecurity.html
Mark Randolph and William Diehl. 2020. Power Side-Channel Attack Analysis:
A Review of 20 Years of Study for the Layman. 4, 2 (2020), 15. https://doi.org/
10.3390/cryptography4020015 Number: 2 Publisher: Multidisciplinary Digital
Publishing Institute.
Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. 2021. Data-
base Reconstruction from Noisy Volumes: A Cache {Side-Channel} Attack on
{SQLite}. In 30th USENIX Security Symposium (USENIX Security 21). 1019-1035.

http://www.dba-

—
jan

[12

[13

[14

=
&

[16



