
On Vulnerability of Access Control Restrictions to Timing Attacks
in a Database Management System

Alexander Rasin
DePaul University
Chicago, IL, USA

arasin@cdm.depaul.edu

James Herbick
DePaul University
Chicago, IL, USA

jherbick@depaul.edu

Ben Lenard
DePaul University

Argonne National Laboratory
Chicago, IL, USA
blenard@anl.gov

Nick Scope
DePaul University
Chicago, IL, USA

nscope52884@gmail.com

James Wagner
University of New Orleans
New Orleans, LA, USA
jwagner4@uno.edu

Abstract

Side-channel attacks leverage implementation of algorithms to by-

pass security and leak restricted data. A timing attack observes dif-

ferences in runtime in response to varying inputs to learn restricted

information. Most prior work has focused on applying timing at-

tacks to cryptoanalysis algorithms; other approaches sought to

learn about database content by measuring the time of an operation

(e.g., index update or query caching). Our goal is to evaluate the

practical risks of leveraging a non-privileged user account to learn

about data hidden from the user account by access control.

As with other side-channel attacks, this attack exploits the in-

herent nature of how queries are executed in a database system.

Internally, the database engine processes the entire database table,

even if the user only has access to some of the rows. We present a

preliminary investigation of what a regular user can learn about

łhiddenž data by observing the execution time of their queries over

an indexed column in a table. We perform our experiments in a

cache-control environment (i.e., clearing database cache between

runs) to measure an upper bound for data leakage and privacy

risks. Our experiments show that, in a real system, it is difficult to

reliably learn about restricted data due to natural operating system

(OS) runtime fluctuations and OS-level caching. However, when

the access control mechanism itself is relatively costly, a user can

not only learn about hidden data but they may closely approximate

the number of rows hidden by the access control mechanism.

CCS Concepts

· Information systems → Database query processing; Data access

methods; · Security and privacy → Cryptography; Database

and storage security.

Keywords

Side-Channel Attack, Timing Attack, Data Privacy

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only. Request permissions
from owner/author(s).

SSDBM 2024, July 10ś12, 2024, Rennes, France

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1020-9/24/07
https://doi.org/10.1145/3676288.3676306

ACM Reference Format:

Alexander Rasin, James Herbick, Ben Lenard, Nick Scope, and JamesWagner.

2024. On Vulnerability of Access Control Restrictions to Timing Attacks

in a Database Management System. In 36th International Conference on

Scientific and Statistical Database Management (SSDBM 2024), July 10ś12,

2024, Rennes, France. ACM, New York, NY, USA, 4 pages. https://doi.org/

10.1145/3676288.3676306

1 Introduction

Database management systems (DBMS) serve as the main data

repository for most organizations because they support a full com-

plement of data management capabilities with a variety of security

mechanisms. These security capabilities include access control, dif-

ferent levels of encryption, data masking, and audit logs (e.g., to

monitor user access). Although DBMSes incorporate robust security

tools, they are also a common target of security attacks.

Much of the research related to side-channel attacks has been to

bypass and reverse engineer encryption [13]. More recently, timing

attacks that attempt to learn about the data directly have been

considered as well [10]. We believe that such attacks represent a

particular risk to overall security and, specifically, to compliance

in organizations. Compliance with data access rules is especially

important for organizations that are in heavily regulated industries

such as healthcare and financial industries. Although the timing

attack explored in this paper does not directly bypass security, it

can nevertheless expose sensitive data to users who were explicitly

prevented from seeing it. The main contribution of this paper is to

investigate the practical risks of privacy compromise that can be

perpetrated by local users without elevated privileges.

We investigate leveraging of a database user account without

elevated privileges to learn about data hidden behind access con-

trol. Although we make some simplifying assumptions such as the

existence of an underlying indexed column (e.g., Salary) and clear

database cache, this attack is simple to execute in practice. Intu-

itively, our timing attack seeks to detect the extra cost imposed by

filtering of access-restricted rows. The database engine performs

additional work to eliminate rows which match the user’s query

predicates but are excluded from results by access control because

the user does not have access to these rows. Although our results

so far show that the timing attack is the most reliable when the

access control mechanism itself is expensive (e.g., when it involves

SSDBM 2024, July 10ś12, 2024, Rennes, France Rasin et al.

lookup tables), this threat deserves further investigation because of

the inherent difficulty of defending against side-channel attacks.

2 Related Work

Randolph and Diehl [15] present a twenty-year summary of re-

search connecting power consumption and what it can tell about

cryptographic algorithm behavior. Such attacks may include observ-

ing power use to extrapolate the difference between keys being used

by cryptographic computations [13]; monitoring the heat signature

to exploit differences in thermal output to learn data used by cryp-

tographic algorithms [12]; measuring the time required for the exe-

cution of the cryptographic algorithm in order to reverse-engineer

keys, e.g., discovering private keys from OpenSSL by attacking a

web server on a LAN [7]. Other attacks include measurement of

electromagnetic emanations, optical output, and acoustics output.

In sum, any measurable output produced by the system that varies

depending on the data it is computing can potentially reveal secret

information if observed and measured.

In the context of a database management system, side-channel

attack can also achieve a more specialized discovery of data leaks.

For example, attacks against data anonymization mechanism by-

pass query anonymization that obfuscates source data in database

queries. Boenisch et al. [6] demonstrate a timing attack that dis-

covers underlying data despite a differential privacy framework

through a timing attack (measuring query cost and impact of excep-

tions caused by a query to learn about anonymized data). Futoran-

sky et al. [11] presented an attack technique that uses a timing attack

to reverse engineer the data in a B-Tree. By observing the cost of

INSERTs and UPDATEs, they could observe the runtime cost increased

caused by B-Tree splits and merges, thus learning about the data

contained within a B-Tree. Dar et al. performed a similar type of an

attack by timing repeated query execution [10]. However, their ap-

proach relies on measuring query execution times in nanoseconds,

learning about underlying data based on sub-millisecond runtime

differences. Although similar to our analysis, such attack is diffi-

cult to perform in practice (e.g., we found that differences of up to

3ms in runtime did not present a statistically significant difference

on a database server). Other timing attacks have sought to detect

runtime differences caused by cache hits and misses to learn what

data has been queried in the database [16].

3 Methodology

3.1 Assumptions and Threat Model

We consider timing attacks perpetuated by a non-malicious data-

base user with regular access to a database table. We do not assume

any privileges beyond the ability to execute a SQL query and to

time the execution of that query. For the purposes of the analysis

in Section 4, we considered query plans when choosing our queries.

However, the attacker could easily approximate that information

with additional server-specific analysis (e.g., by creating their own

controlled table on this or similar server and timing queries). We

further assume that the user is able to execute queries locally and

that network transfer does not factor into query execution cost.

3.2 Access control

GRANT capabilities (including SELECT, UPDATE, INSERT, or DELETE) is

the most common mechanism supported by relational databases.

Another typical approach for restricting a user’s access to underly-

ing tables is to deploy views. A database administrator would grant

access to a view instead of the underlying table so that data restric-

tions on the data can be imposed with the view’s WHERE clause [1].

Row Level Security (RLS) or Label Security has been available

in Oracle starting from Oracle 8i. RLS applies predicates to the

WHERE clause when a SQL statement is executed [2, 8]. RLS filters

on the basis of rows and cannot change the columns returned in

the result set. Similar to Oracle, Db2 Linux Unix Windows (LUW),

has label-based security, where a special label column is appended

to each table. Table access can be controlled by the policy matching

the condition to the label for any row [4, 9]. Postgres also offers an

RLS mechanism that applies a filtering WHERE clause to the queries

based on applicable policies [14].

Oracle Virtual Private Database (VPD) technology allows for

a policy (using PL/SQL) to be executed when fetching rows; the

policy determines what predicates are added to the WHERE clause

and can apply restrictions to the columns, so that the projection of

data being returned is restricted [2, 3]. Oracle has reinvented VPD

as Real Application Security (RAS) which builds upon VPD and

adds additional features and ease of use. Consider a multi-tenant

application, where many organizations share the same application

but a guarantee of complete isolation is required. A VPD policy

can be used to append organization’s identification number to the

WHERE clause to ensure that only that company’s data is displayed

for a particular query.

In sum, most access control approaches are ultimately applied

to the query through a WHERE clause. Although there is an endless

variety of mechanisms, in practice most come down to revising

the query, introducing access control WHERE-restrictions. For a more

controlled fine-grained restrictions tools such as Oracle Data Redac-

tion [5] could be used. In general, the database engine does not

have the ability to distinguish predicate restrictions introduced due

to access control and the original query predicates.

3.3 Cost of Access Control

In our evaluation, we consider both a simple access control pred-

icate (i.e., Department = 'Health') and simulate a more expensive

predicate (by introducing a 1ms overhead using pg_sleep).

Access control restriction implementation may be relatively

costly in practice. For example, consider a customer relationship

management system at JPMorgan Chase. A person in sales team for

Treasury services can only see their clients; however, if their client is

Ford, the condition does notmap to a simple WHERE Company = 'Ford'

because Ford has hundreds of sub-companies ranging from Ford

Canada, to Mopar to Avis and Mazda. Similarly, a condition such as

łmanager can see data of their employeesž may require multi-table

joins to materialize that relationship for access control.

A second category where access control may be costly is multi-

tenancy environment such as in super-computer setting. For ex-

ample, in order for the user to query the computer information

regarding their computing job, a number of checks is needed: 1) De-

termine the right project (group) that has the relevant job running

On Vulnerability of Access Control Restrictions to Timing Attacks in a Database Management System SSDBM 2024, July 10ś12, 2024, Rennes, France

on the system, 2) Identify which of the hundreds or thousands of

nodes has the job, 3) Differentiate between jobs sharing a node or

running exclusively on that node. Making these determinations

and translating them into access control requirements may require

a non-trivial amount of time.

3.4 Dataset

We used publicly available San Francisco municipal employee salary

data spanning the years 2011-2014, inclusive1. We further derived a

Department column based on the employee job titles and bucketed

data into different departments: e.g., Fire Department, Police De-

partment, Health Department (and a catch-all łOtherž deparment).

The full table included 148,654 records in total; the table comprised

3,106 pages on disk.

3.5 Database Initialization

We loaded data into a PostgreSQL 16.0 database in a Unix-based

environment. As salaries turned out to be correlated with their

physical offset, we created salary_data_shuffled which randomized

the data prior to loading. We created a user account which was

restricted to only seeing data from the łHealthž department. We

implemented a Row Level Security (RLS) policy for our user which

restricted access based on Department = 'Health'. Additionally, we

simulated an łexpensivež policy which used the same condition but

also introduced 1ms sleep delay to the access control check.

Both tables are indexed on the Id column (primary key) by default.

We created an additional index over the TotalPay column which

we use in our experiments. We ran some simple queries to validate

that the row-level restrictions were working correctly.

3.6 Metrics Capture

We activated the pg_stat_statements in the postgresql.conf config-

uration file, restarted the database server, and then implemented

pg_stat_statements as an extension in the PostgreSQL database. We

also turned on the ‘timing’ option for returning information at the

time of executing our SQL queries. We did so with the timing on

for SQL statements. In Python, we used the %timeit magic com-

mand and ran each SQL statement 30 times, to get a consistent

timing. Although the times were similar, we ultimately used the

times reported in database logs in our reported experiments.

4 Experiments

We compare the difference between query runtimes that access

different numbers of rows on disk based on the user predicate while

returning the same number of rows. As the queries return the same

number of rows, the only significant difference between the queries

is the number of rows that the query was forced to exclude from

the results due to access control. In order to capture that difference,

we consider queries that request ranges over the indexed column,

TotalPay. A range query over TotalPay will use an index to identify

all matching salaries. However, as our user is restricted to one

department (’Health’), some of these rows may be excluded due

to being in a different department. In order to exclude the rows,

DBMS engine must scan the salary_data_shuffled table because the

1https://www.kaggle.com/datasets/kaggle/sf-salaries

department column is not indexed. Our hypothesis is that when a

user executes queries against an indexed column, they can learn

about the presence of inaccessible data in requested ranges.

In our evaluation, we executed a set of 30 queries by the user

with access limited to ’Health’ department. All queries use the index

on the TotalPay column. Between each run of an individual query,

we ensure that the database cache has been cleared by restarting the

PostgreSQL server. Note that a regular user lacks the privilege to

restart the server. However, there are several strategies to prevent

caching from affecting our timing attack. Perhaps the simplest

approach is to rotate different query ranges in order to gather

information about the column(s) with sensitive data. We enabled

logging and capture query execution times in the PostgreSQL logs

and used ElasticSearch to retrieve query timing.

We first evaluated SELECT COUNT("TotalPay") AS CNT FROM

salary_data WHERE "TotalPay" BETWEEN XXX AND YYY across differ-

ent salary ranges shown in Table 1 for Query Q1. Ranges were

chosen to always return 5 rows to the user, even as the TotalPay

range matched more rows. For each execution range, we report

the number of rows falling within that salary range, the number of

rows that were restricted (i.e., excluded) by access control, and the

average runtime of 30 executions.

We compared the query execution times using the statistical

t-test for two means, unequal variances, and independent samples.

We use the first TotalPay range in Table 1 as the baseline, comparing

the runtimes to each subsequent row. We consider a critical value

of p=0.05 to determine statistical significance. Our null hypothesis

is that the two means being compared are equal. The alternative

hypothesis is that the query runtime mean being compared to the

baseline is not equal. Our results indicate a statistically significant

difference between the queries only for the $251, 000 − $275, 000

range. In other cases, even though the average runtime is slower,

the null hypothesis could not be rejected.

Our next query attempted to increase the cost of evaluation by

accessing the table twice. Specifically, we used a query that queried

the same range a second time using a subquery: SELECT COUNT(*) +

(SELECT COUNT("Id") FROM salary_data WHERE "TotalPay" BETWEEN

XXX AND YYY) AS DBL FROM salary_data WHERE "TotalPay" BETWEEN

XXX AND YYY. In Table 1 Query Q2, although the runtimes are slower

compared to the baseline, the null hypothesis could not be rejected

for any of the ranges.

Our third query evaluation uses the same query as Table 1 Query

Q1, but emulates a more costly access control mechanism by in-

troducing a 1ms sleep (using pg_sleep call) into the access control

rules. As shown in Table 1 Query Q1𝐻𝐴 , a high-cost access control

causes a drastic difference between query runtimes. We then used

the runtimes to fit a linear regression equation to the data:

𝑦 = 2.2707𝑥 + 24.81 (1)

where y represents query execution time in milliseconds, and x

represents the number of restricted rows. We used these results to

estimate the number of restricted rows based on arbitrarily chosen

ranges of salaries. We executed queries over the TotalPay ranges

shown in Table 2. As an example, plugging in an execution time

into our estimation regression equation 220.017 = 2.2707𝑥 + 24.81,

estimates the number of restricted rows to be 𝑥 = 86. The actual

number of restricted rows in this case was 79.

SSDBM 2024, July 10ś12, 2024, Rennes, France Rasin et al.

TotalPay Range Rows in range Restricted rows Returned rows Query Runtime (ms) p-value

225,700-225,900 7 2 5

Q1 16.098 -

Q2 14.636 -

Q1𝐻𝐴 28.178 -

152,500-152,780 84 79 5

Q1 17.548 0.361

Q2 17.802 0.0512

Q1𝐻𝐴 204.095 3.8737E-78

251,000-275,000 136 131 5

Q1 21.875 0.004

Q2 16.640 0.185

Q1𝐻𝐴 325.095 6.6642E-85

255,000-350,000 237 232 5

Q1 18.438 0.154

Q2 16.201 0.252

Q1𝐻𝐴 550.059 1.3786E-82

Table 1: Query results for Q1: SELECT * FROM salary_data WHERE "TotalPay" BETWEEN XXX AND YYY

Q2: SELECT COUNT(*) + (SELECT COUNT("Id") FROM salary_data ...) AS DBL FROM salary_data WHERE "TotalPay" BETWEEN XXX AND YYY

Q1𝐻𝐴: SELECT * FROM salary_data WHERE "TotalPay" BETWEEN XXX AND YYY using high-cost access control

TotalPay Range Restricted

rows

(Actual)

Restricted

rows

(Estimate)

Runtime

(ms)

255,000-255,300 0 -6 10.762

255,000-256,300 7 1 26.192

200,000-200,500 37 32 97.082

180,000-180,500 79 86 220.017

180,100-180,700 105 122 302.404

Table 2: Linear estimates of rows hidden by access control

using Eq. 1.

5 Conclusion

Our experiments show that side-channel timing attack can allow

a user to discover information about inaccessible data in the data-

base. Although our results show that simple (i.e., low-overhead)

access control predicate does not leak significant information, we

believe that the user can craft a more costly query (e.g., by aug-

menting the query with additional sub-queries) that will allow for

a more precise estimate of restricted data. Our experiments further

demonstrate that in cases where access control condition is com-

plex (and high-overhead), the information about underlying hidden

data is impossible to hide. In such scenario, a user could estimate

the number of rows being hidden and approximate the ranges and

distribution of indexed columns in a database table.

Our next goal is to quantify how such attack can be used to

discover data ranges within the column without knowing the un-

derlying data distribution and to consider the same attack against

different DBMSes. Finally, our goal is to help detect and counter

such attacks. Side-channel attacks are difficult to counter because

they are exploiting normal system behavior. However, we believe

that database administrators can protect the data by scanning for

query patterns associated with a side-channel timing attack.

Acknowledgments

This work was partially funded by US National Science Foundation

Grant IIP-2016548, Argonne National Laboratory, and Louisiana

Board of Regents Grant AWD-10000153. Argonne National Labo-

ratory’s work was supported by the U.S. Department of Energy,

Office of Science, under contract DE-AC02-06CH11357.

References
[1] 2003. https://docs.oracle.com/cd/B12037_01/network.101/b10773/accessre.htm
[2] 2017. Database 2 Day + Security Guide. https://docs.oracle.com/database/121/

TDPSG/GUID-72D524FF-5A86-495A-9D12-14CB13819D42.htm#TDPSG90066
[3] 2017. Database security guide. https://docs.oracle.com/en/database/

oracle/oracle-database/21/dbseg/using-oracle-vpd-to-control-data-
access.html#GUID-06022729-9210-4895-BF04-6177713C65A7

[4] 2023. https://www.ibm.com/docs/en/db2/11.5?topic=lbac-how-security-labels-
are-compared

[5] 2023. Advanced security guide. https://docs.oracle.com/en/database/
oracle/oracle-database/21/asoag/introduction-to-oracle-advanced-
security.html#GUID-F91E22D5-7B2D-4D67-BC96-4C738C54FFE1

[6] Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Chris-
tiane Kuhn, and Paul Francis. 2021. Side-channel attacks on query-based data
anonymization. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 1254ś1265.

[7] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.
Computer Networks 48, 5 (2005), 701ś716.

[8] Burleson Consulting. 2017. Row Level Security Tips. http://www.dba-
oracle.com/concepts/restricting_access.htm

[9] Ember Crooks. 2018. LBAC ś label based Access Control. https://datageek.blog/
en/2014/12/09/lbac-label-based-access-control/

[10] Chen Dar, Moshik Hershcovitch, and Adam Morrison. 2023. RLS Side Channels:
Investigating Leakage of Row-Level Security Protected Data Through Query
Execution Time. Proc. ACM Manag. (2023).

[11] Ariel Futoransky, Damián Saura, and Ariel Waissbein. 2007. The ND2DB Attack:
Database Content Extraction Using Timing Attacks on the Indexing Algorithms..
In WOOT.

[12] Peng Gu, Dylan Stow, Russell Barnes, Eren Kursun, and Yuan Xie. 2016. Thermal-
aware 3D design for side-channel information leakage. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD). IEEE, 520ś527.

[13] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Advances in CryptologyÐCRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15ś19, 1999 Proceedings 19.
Springer, 388ś397.

[14] PostgreSQL. 2023. Row Security Policies. www.postgresql.org/docs/current/ddl-
rowsecurity.html

[15] Mark Randolph and William Diehl. 2020. Power Side-Channel Attack Analysis:
A Review of 20 Years of Study for the Layman. 4, 2 (2020), 15. https://doi.org/
10.3390/cryptography4020015 Number: 2 Publisher: Multidisciplinary Digital
Publishing Institute.

[16] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. 2021. Data-
base Reconstruction from Noisy Volumes: A Cache {Side-Channel} Attack on
{SQLite}. In 30th USENIX Security Symposium (USENIX Security 21). 1019ś1035.

