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ABSTRACT
Generative arti�cial intelligence (GenAI) systems introduce new
possibilities for enhancing professionals’ work�ows, enabling novel
forms of human–AI co-creation. However, professionals often strug-
gle to learn to work with GenAI systems e�ectively. While research
has begun to explore the design of interfaces that support users in
learning to co-create with GenAI, we lack systematic approaches
to investigate the e�ectiveness of these supports. In this paper, we
present a systematic approach for studying how to support learn-
ing to co-create with GenAI systems, informed by methods and
concepts from the learning sciences. Through an experimental case
study, we demonstrate how our approach can be used to study and
compare the impacts of di�erent types of learning supports in the
context of text-to-image GenAI models. Re�ecting on these results,
we discuss directions for future work aimed at improving interfaces
for human–AI co-creation.
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1 INTRODUCTION
Generative AI systems are rapidly improving, enabling new forms
of human–AI “co-creation” [12]. Such systems have the potential to
enhance professionals’ creative practices, for example, by generat-
ing media artifacts like text, images, or video from user descriptions.
Various studies have shown that GenAI systems can enhance cre-
ative work, especially at early stages such as ideation or sketching
[22, 23].

However, research also shows that professionals struggle to work
with GenAI systems e�ectively—especially in more goal-directed
tasks where professionals aim to produce a speci�c outcome with
the help of GenAI. In recent years, the HCI community has docu-
mented various challenges that professionals face in working with
GenAI systems across a range of domains such as coding, illustra-
tion design, or engineering [17, 27, 29]. For example, in the context
of text prompt-based interactions, users often struggle to craft input
prompts in ways that will achieve desired outcomes, and they face
di�culties in interpreting and repairing erroneous outputs [49].

Given these challenges, research has begun to explore mecha-
nisms and interfaces to better support professionals in working
co-creatively with GenAI. For example, Zam�rescu-Pereira et al.
[49] propose interfaces that help users interactively explore AI
model capabilities and limitations by labeling and comparing LLM-
generated utterances in the context of a chatbot dialogue design sys-
tem. Following a di�erent approach, several works have proposed
support interfaces that automatically suggest prompt variations
that are meant to re�ect best practices for prompting [6, 41].

While such systems explore promising directions, recent work
has called for a more systematic approach to studying how to
support human–AI co-creation [39, 43]. We build on these calls,
drawing particular attention to the dearth of knowledge about how
to support people in learning how to work co-creatively. Given the
rapidly changing capabilities of GenAI systems, there is a need for
new support interfaces that help professionals adapt to emerging
modes of AI-augmented work.

In this paper, we take a �rst step to address this gap:We present
a methodological approach for studying how to support
learning to co-create with AI systems. Our approach is inspired
by prior evidence-based methods from the �eld of learning sciences

https://doi.org/10.1145/3613905.3650763
https://doi.org/10.1145/3613905.3650763
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3650763&domain=pdf&date_stamp=2024-05-11


CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Gmeiner, et al.

Figure 1: A process for studying and designing learning supports for human–AI co-creation. Top row: Learning science-inspired
design process. Bottom row: Process as applied in our experimental case study.

for systematically studying the impacts of particular learning inter-
ventions, with respect to particular learning goals [11, 14, 25]. While
these methods have been used to study and support learning in
well-de�ned, closed-ended tasks in domains such as geometry or
stoichiometry [15, 20], it is less clear how they can be adapted for
more open-ended, co-creative contexts.

In this work, we explore an adaptation of this approach to study
and design learning supports for working with GenAI systems. We
propose following a learning science inspired pipeline consisting
of the following steps: (1) identifying learning goals, (2) de-
veloping measures, (3) designing support mechanisms, and
(4) evaluating the resulting learning e�ects (see Figure 1 top).
Through an experimental case study with professional illustrators
who worked with a text-to-image di�usion GenAI model for the
�rst time, we demonstrate how this approach can be used to study
and compare the impacts of di�erent types of learning supports for
human–AI co-creation with GenAI. Re�ecting on these results, we
highlight directions for future work aimed at studying and design-
ing learning supports in the context of human–AI co-creation.

Overall, this paper makes two contributions: (1) we introduce
an evidence-based work�ow for studying and designing learning
supports for human–AI co-creation, and (2) we provide an end-to-
end demonstration of this work�ow through an experimental case
study.

2 TOWARD A RIGOROUS APPROACH FOR
STUDYING LEARNING TO CO-CREATE
WITH AI

Outside of human–AI (HAI) interaction research, the �eld of learn-
ing sciences has developed evidence-based methods for studying
the impacts of learning interventions with respect to speci�c goals
for human learning [11, 14, 25]. Core to these approaches is a "back-
ward" approach to instructional design. Rather than starting with
the design of the learning interventions themselves, researchers and
designers �rst identify a set of �ne-grained learning goals: speci�c
skills and knowledge that learners should be able to demonstrate
if a learning intervention is successful. Next, these approaches in-
volve identifying or developing respective measures: instruments
that can assess learning with respect to the identi�ed learning goals.

Learning interventions are then designed to align with these learn-
ing goals. Finally, the learning interventions’ e�ectiveness, with
respect to the learning goals, is evaluated through experimental
studies using the learning measures.

Following this approach, studies have shown that measuring
learning with respect to �ner-grained learning goals that can be
tied to speci�c observable abilities, rather than vague notions of
“understanding,” allows one to gain more informative insights for
evaluating and re�ning learning interventions [4, 42]. We believe a
similar methodological approach is a promising starting point for
rigorously studying how to support learning to co-create with AI
systems.

In this work, we explore to what extent this approach can be used
to study how to support learning to co-create with AI systems. We
propose a pipeline consisting of the following steps: (1) identifying
learning goals, (2) developing measures, (3) designing support mecha-
nisms, and (4) evaluating the resulting learning e�ects (see Figure 1
top). In the next section, we demonstrate this process through an
experimental case study.

3 AN INITIAL END-TO-END CASE STUDY
To explore the value of this approach in the context of HAI co-
creation, we set up and ran an initial experiment. Below, we describe
the process of designing the experimental study, following the four
steps outlined in the previous section.

3.1 Context: Supporting illustrators in learning
to co-create with text-to-image GenAI

Our goal was to study learning to co-create with GenAI in an open-
ended task domain. In this case study, we focused on illustration
design tasks given that these involve complex conceptualization and
communication skills [16]. Illustration design often balances goal-
directed and open-ended requirements, making it a rich domain for
studying human–AI co-creation.

Our study focused on supporting illustrators in learning to create
images for a children’s book using Stable Di�usion—a prompt-
based open-source text-to-image di�usion model [38]. Such GenAI
models take an input text prompt and try to return an image that
best matches the input description. To run our experiment, we
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Figure 2: Interface elements of the chat-based GenAI design tool developed for our study. (A) First, participants submit a text
prompt describing the desired image and (B) optionally, a negative text prompt describing concepts or elements that should be
excluded from the image. (C) Next, the generated image and the original prompt appear in the chat history view. (D) Depending
on the study condition, additional system-generated messages are displayed: (E) Prompt Suggestions o�er alternative prompt
variations by expanding the user’s prompt with subject and style modi�ers. (F) Guided Exploration suggests context-dependent
trial-and-error exploration strategies along with (G) related worked examples.

developed a React-based web application that integrates Stable
Di�usion into a simple chat-based interface (Figure 2).

Given our focus on illustration, we chose to study support mech-
anisms in the context of learning to co-create with text-to-image
GenAI. E�ectively working with current text prompt-based sys-
tems relies on a user’s prompt engineering abilities—the skill of
iteratively crafting e�ective input text prompts to achieve desired
model outcomes. Beyond today’smodels’ limitations, we expect that
prompt engineering in its current form will substantially change,
for example, due to models’ increasing capabilities in interpreting
user intents [48] or by enabling multi-modal input modalities, in-
cluding sketching [32]. Nonetheless, we anticipate that the need
will remain for users to learn and adapt their communication to
the capabilities of speci�c co-creative AI agents, particularly when
working in open-ended task domains. Thus, we use current text-to-
image GenAI systems as a context through which to explore our
broader approach.

3.2 Identifying Learning Goals
For the purpose of testing our approach, we selected two examples
of skills that we speculate to be relevant for e�ective human–AI
co-creation in prompt-based text-to-image AI models. However,
we stress that there are many other learning objectives that are
likely equally or more relevant to HAI co-creation, which should
be explored by future research. In the following, we describe our
process of identifying two goals for studying learning e�ects.

To select our two learning goals, we took inspiration from prior
research that aims to improve human–AI collaboration by leverag-
ing mechanisms known to support e�ective human-human collabo-
rations, such as group cognition, shared mental models and theory of
mind [1, 2, 8, 19, 24, 46, 47, 51]. While it remains an open question

to what extent principles from human-human collaboration apply
to human–AI teams, such constructs may provide useful starting
points for identifying valuable goals and measures for human–AI
co-creation. For example, in our study context, to work success-
fully with a given text-to-image AI model, a user must �rst learn
about the model’s limitations (for example, that achieving certain
complex image compositions is challenging for the model). Further-
more, after learning about existing model limitations, the user then
has to learn which prompting techniques can help to overcome
these limitations (for example, emphasizing certain keywords in the
prompt). This forms the foundation for our two selected learning
goals, described below.

3.2.1 Conceptual Skill. For the �rst goal, we selected knowledge
of a speci�c model’s limitations (classi�ed as a conceptual skill).
Past research on HAI collaboration in decision-making contexts
has shown that users’ ability to recognize model limitations can en-
hance the overall quality of decision-making. For example, Bansal
et al. [1] demonstrated that when humans rely on AI-generated
output for decision-making, their understanding of the AI’s error
boundary, i.e., the areas where the AI is accurate versus inaccurate,
helps them anticipate possible errors and decide when to override
the automated inference. In the context of human-human collabo-
ration, knowledge of a teammate’s capabilities and limitations is
known to enable adaptation and thereby support more e�ective
collaborative work [40].

3.2.2 Procedural Skill. For the second goal, we selected the ability
to overcome model limitations by employing model-speci�c
prompting techniques or strategies, which we classi�ed as a
procedural skill. This skill was informed by previous studies on
text prompt-based GenAI systems, which identi�ed that e�ective
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prompting requires speci�c techniques and strategies to overcome
model limitations. For example, following instruction-like template
structures, including speci�c keywords (prompt modi�ers) or re-
peating phrases to emphasize concepts, can drastically improve
model output [9, 28, 33]. Furthermore, previous studies indicate that
e�ective prompting techniques can be learned through hands-on
trial-and-error practice and that recreating images through prompt-
ing can serve as a proxy task to measure this skill [34, 45]. Through
the lens of human-human collaboration, a crucial skill for e�ective
collaboration is the ability to (partially) adapt one’s own behavior
to other group members’ abilities and limitations [7, 40]. Trans-
lated to the context of learning to co-create with prompt-based
text-to-image AI models, we speculate that this skill relates to a
user’s ability to adapt their prompting strategy according to the
models’ limitations to generate desired image outputs.

3.3 Developing Measures
We next developed measures to assess learning toward each of these
two learning goals. To assess the conceptual skill (the ability to
identify model limitations), we constructed a survey instrument
that asks users to estimate the likelihood that a text-to-image
model would generate a given image based on a shown input
prompt (see Appendix Figure 3). The instrument consists of a
prompt-image pair and several six-point Likert-like items. Each item
asks participants to estimate the likelihood of the shown prompt
resulting in an image that would match the depicted image in terms
of style, composition, and meaning.

Furthermore, in line with prior literature, we constructed di�er-
ent assessment items (prompt-image pairs) to di�erentiate between
near and far transfer assessment items to measure how well the
application of a learned skill generalizes across di�erent contexts.
In particular, “near transfer” assessment items were more similar to
those that participants would practice during the design task itself.
“Far transfer” assessment items were intended to test generalization
by introducing aspects participants would not encounter during
the design task.

To assess the procedural skill (the ability to overcome model lim-
itations), we constructed an interactive survey instrument that
asks participants to recreate a challenging image as closely as
possible by prompting (see Appendix Figure 4). The instrument
asks users to provide positive and negative prompts to recreate a
depicted target image. After submission, a new image is generated
from the provided prompts and shown next to the target image
for visual comparison. Then, users can re�ne their prompts and re-
generate images two more times. After generating the third image,
users select one image that best matches the target. This task design
was inspired by previous studies of text-to-image AI models that
used similar approaches to study prompting practices and model
steerability [34, 45].

3.4 Designing Support Interfaces
After de�ning goals and measures, we implemented two support
interfaces: Prompt Suggestions andGuided Exploration (Figure 2). We
designed these based on interactions proposed in prior literature for
supporting text prompt-based GenAI tasks. Although these support
interfaces from prior literature were designed to support GenAI

work�ows, and were not explicitly designed to support learning,
our aim was to understand the impacts these interactions might
have on human learning.

We designed the �rst support interface, Prompt Suggestions,
based on prior research prototypes [6] and commercial systems
such as DALL-E 3 [5] that support users in working with text
prompt-based GenAI systems by automatically suggesting prompt
variations. In our implementation, after a user submits a prompt, the
system automatically suggests an alternative prompt that follows
common prompting best practices by extending and editing the
user’s original prompt. To implement this mechanism, we utilized
an LLM pipeline similar to recent support systems such as [6] (see
Appendix Figure 5 for further implementation details).

The second support interface, Guided Exploration, was in-
spired by prior work that proposes to support users in working with
GenAI through a trial-and-error exploration of model capabilities,
such as systematically testing di�erent input-output combinations
[49]. In our implementation, the system frequently provides support
messages with suggestions for systematic trial and error strategies,
along with worked examples of successful prompt and image pairs.
We identi�ed these prompt image-pair examples by conducting
a literature review [9, 28, 33], screening online prompt support
resources [21, 26, 44], and running formative pilot sessions prior to
the actual case study experiment. The aim of the developed support
interface is to guide users in systematically testing out di�erent
prompting techniques to overcome speci�c model limitations. We
implemented this mechanism as a rule-based chatbot that would
provide context-aware support messages (see Appendix Figure 6
for further implementation details).

3.5 Evaluation Study: Procedure
To investigate the learning impacts of each support interface with
respect to our two speci�c learning goals, we conducted a remote
between-subject study with 90 illustrators (age in years M=34.3,
SD=11.7). We recruited participants via the online platform Proli�c
who had at least two years of professional illustration experience
(years M=10.5, SD=9.6) and little or no prior experience in working
with prompt-based generative AI tools (such as ChatGPT or DALL-
E). All participants were native or �uent in writing English and
were paid 20 USD per hour. The study underwent approval by
our university’s IRB (#2023_00000192). Each study session took 120
minutes and was split into four phases: (1) Onboarding, (2) Pre-test,
(3) Design Task, and (4) Post-test.

Onboarding: At the beginning of the session, participants were
presented with a prompt guide that described common prompting

Condition
Number of 
Participants

Professional  
Experience (years)

PROMPT SUGGESTIONS 30 M=9.1,  SD=7.2

GUIDED EXPLORATION 30 M=10.7, SD=9.1

BASELINE 30 M=11.6, SD=12.0

Table 1: Participant counts and professional experience, by
experimental condition.
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techniques, basic functionalities, and general limitations of the
Stable Di�usion model (see Appendix Figure 9 for further details).

Pre-test: In the 30-minute long pre-test, participants completed
several activities that tested their abilities to recreate images
through prompting and identify model limitations (the measures
for assessing conceptual and procedural skills described in section
3.3).

Design Task: After the pre-test, participants started with the
design task. First, they watched a short video explaining the design
tool’s interface functionality. Then, they were presented with a de-
sign brief that asked them to create two illustrations for a children’s
book using our generative AI web application. After that, partic-
ipants had 20 minutes to work on each illustration task, during
which they could generate as many images as desired. Participants
were randomly assigned to one of the three support conditions
that controlled the type of learning intervention they would be
supported with during the design task: (1) Prompt Suggestions, (2)
Guided Exploration, and (3) Baseline – no interactive support (see
Table 1 for details). After task completion, they submitted one �nal
image for each illustration task.

Post-test: Lastly, after the design task, participants completed a
30-minute post-test identical to the pre-test. To mitigate possible or-
der e�ects, we randomized the sequence of the individual activities
across all pre- and post-tests.

3.6 Analysis
To assess participants’ learning, we compared their individual
scores from the pre- and post-tests. To measure the impacts on
participants’ ability to identify model limitations, we compared the
pre- and post-test scores of the Likert-like item responses for the
style and composition likelihood estimations of the near and far
transfer tasks. To measure participants’ ability to overcome model
limitations, we compared whether a participant’s images from the
pre- or post-test were visually closer to the given target image (in
terms of style and composition). To assess the visual similarity of
each image with the target image, we computed the cosine similar-
ity between the image’s CLIP embeddings and the target image’s
text prompt [36]. To analyze learning e�ects for each skill and
transfer distance, we �tted linear models—estimated using ordinary
least squares (OLS)—to predict participants’ post-test scores with
the support mechanism conditioned on participants’ pre-test scores
(formula: post-score ~ mechanism * pre-score).

3.7 Highlighted Findings
Overall, our results show that designers who received support
through any of the two interactive interfaces performed slightly
better than those designers without interactive support (Table 2).
Among participants with lower prior ability (as measured by the
pre-test), Prompt Suggestions had a positive e�ect on their ability to
overcome model limitations in the image recreation task, compared
with the Baseline condition, but had no signi�cant e�ect on their
ability to explicitly identify these limitations (see Appendix Figure 7
for further details). Meanwhile, Guided Exploration had the opposite
e�ect. This intervention had a positive e�ect on participants’ ability
to identify model limitations (particularly in identifying style simi-
larity but not compositional similarity) compared with the Baseline

Conceptual Skill Procedural Skill

Condition
e ability to identify  

model limitations
e ability to recreate an  

image through prompting

PROMPT SUGGESTIONS No e ect Positive e ect *

GUIDED EXPLORATION Positive e ect * No e ect

BASELINE No e ect No e ect

*statistically signi cant 

Table 2: Overview of measured learning e�ects of conceptual
and procedural skills after receiving di�erent support mes-
sages (conditions). Participants in the Prompt Suggestions
condition improved in the procedural skill, while those in
theGuided Exploration condition improved in the conceptual
skill. Therewere no learning e�ects observed for participants
in the Baseline condition (see Appendix Figures 7 and 8 for
further details).

condition. However, Guided Exploration had no signi�cant e�ect
on participants’ ability to overcome these limitations (see Appendix
Figure 8 for further details).

4 DISCUSSION
In the previous sections, we proposed an evidence-based work�ow
for studying and designing learning supports for human–AI co-
creation, drawing upon established approaches from the �eld of
learning sciences. Through an experimental case study, we demon-
strated that this approach can yield insight into the learning im-
pacts of di�erent interventions with respect to speci�c learning
goals for human–AI co-creation. More broadly, we believe that the
demonstrated approach provides a valuable and practical method-
ological foundation for future research aimed at improving HAI
co-creation across task domains and AI models. Below, we re�ect
on our takeaways from this initial experiment and discuss possible
opportunities to re�ne and apply this methodological approach in
future research on HAI co-creation.

4.1 Re�ections on the Case Study
Overall, although the observed e�ects were small, the results of
our experiment indicate that both interactive support interfaces
can support learning to work with generative AI systems. However,
each support mechanism promotes human learning toward
di�erent skills. This points to the importance of designing learn-
ing supports for human–AI co-creation with particular learning
goals in mind, and running evaluations to ensure that the targeted
goals are truly supported.

Our Guided Exploration interface was intended to guide users
in systematically testing out di�erent ways to overcome a speci�c
model’s limitations. However, to do so, this interface often explicitly
highlighted the model limitations themselves. This may be why
this intervention improved participants’ ability to explicitly identify
such limitations, even though it did not improve their ability to over-
come them. By contrast, the Prompt Suggestions interface appears
to have been more e�ective in helping participants learn e�ective
prompting strategies by example. However, this intervention did
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not explicitly highlight and name speci�c model limitations, which
may be why participants in this condition improved in their ability
to overcome model limitations, but not to explicitly identify these
limitations.

4.2 Toward a Taxonomy of Learning Goals
for Human–AI Co-creation.

The learning goals we selected in the case study primarily served to
test and demonstrate our approach to measuring �ne-grained learn-
ing e�ects. While these goals for HAI co-creation via text-based
prompting were inspired by factors identi�ed in prior literature,
we could have chosen many other reasonable learning goals that
might exist. Here, we deliberately focused on these learning goals
for the purpose of an initial exploration via an end-to-end case
study. However, by building upon our process, future work should
continue to identify more �ne-grained learning goals for e�ectively
working with GenAI systems. This includes skills for working with
text-based prompt systems (as in our demonstration) but also for
other non-text input modalities and domains, such as 2D sketching
[50] or 3D geometries [30]. Comparing the results of di�erent stud-
ies would also allow identifying more generalizable HAI co-creation
skills across di�erent GenAI models and task domains. Ultimately,
the goal would be to create a taxonomy of learning goals for
human–AI co-creation. As a starting point, future work could
seek further inspiration from prior literature that has identi�ed
learning goals in open-ended tasks across various domains, such as
debugging in CS education, project-based learning in maker spaces,
or team learning within design teams [3, 35, 37].

4.3 Re�ning Measures and Analytics.
We constructed the measures in our case study to assess the extent
to which participants would master a speci�c prompt-related skill.
In the case of the conceptual skill (the ability to identify model limi-
tations from given prompt-image pairs), the assessment relied on a
likelihood estimation through Likert-like survey items, which di-
rectly re�ects users’ estimations. However, to assess the procedural
skill (the ability to recreate images through prompting), we relied
on measuring the visual similarity of the user-generated images
with the target image. While we carefully calibrated our similarity
comparison mechanisms based on comparable approaches found in
prior literature [31], this analysis does not reveal any insights into
speci�c prompting techniques and strategies employed in creating
the images. Therefore, future work should, in addition to assess-
ing the generated outcomes, also develop methods to analyze the
prompting strategies of users. For example, in the case of text-based
prompting, some prior work has started to utilize NLP methods to
better assess users’ prompting patterns and structures [13, 34].

4.4 Designing Support Mechanisms
Tailored to Learning Goals.

Our primary goal was to provide an end-to-end demonstration of
our method’s ability to generate insights about di�erent learning
interventions’ impacts with respect to speci�c, �ne-grained learn-
ing goals for human–AI co-creation. For the purpose of testing our
study approach, we chose to design and implement two support
interfaces that follow di�erent approaches for supporting working

with GenAI systems as proposed by recent HCI work. Since the
results show di�erent learning e�ects for both interfaces, we are
con�dent that the method generally allows us to detect nuanced
learning e�ects in the context of HAI co-creation tasks. In future
work, our work�ow can be used twofold: (1) To evaluate the ef-
fectiveness of existing support strategies and interfaces to inform
their improvement and (2) to design new support interventions
speci�cally tailored toward �ne-grain learning goals.

4.5 Exploring Continuous Evaluation
Mechanisms

The case study’s evaluation approach utilized pre- and post-tests to
gauge learning e�ects within an experimental study setting. This
approach allowed us to control the number of opportunities for par-
ticipants to demonstrate their knowledge and to directly compare
learning e�ects between support conditions. However, future work
should also explore approaches to continuously evaluate skills
inside the task itself to allow more opportunities for skill
demonstration. Such knowledge tracing-inspired mechanisms
[10] could eventually be directly integrated into a co-creative tool
itself as a way to interactively adjust and o�er support interventions
depending on a user’s skill level.

5 CONCLUSION
While emerging GenAI systems have the potential to augment pro-
fessional work and enable new forms of human–AI co-creation,
current systems pose many challenges for professional users to
adopt GenAI systems into their work�ows. Recent research has
started to suggest mechanisms to better support users in learning
to work with GenAI systems. However, we currently lack a sys-
tematic approach to evaluate the impact of support interventions
on humans’ learning to co-create with AI. In this paper, we pre-
sented an evidence-based work�ow for studying and designing
learning supports for human–AI co-creation by taking inspiration
from prior studies in the �eld of learning sciences. Furthermore,
we demonstrated that by following this approach, we were able to
gain insights into the impacts of di�erent support interventions on
�ne-grained learning goals within the context of working with text-
to-image GenAI models. While this paper represents a �rst attempt
to study the learning e�ects of support interfaces within text-to-
image GenAI tasks, we believe that the demonstrated approach
provides a valuable and practical methodological foundation for
future research aiming at improving human–AI co-creation across
task domains and AI models. We hope our work inspires future
research to build upon and collectively enhance support systems
for more e�ective and complementary human–AI co-creation.
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A APPENDIX

Figure 3: Example of the survey instrument to assess participants’ ability to identify GenAI model limitations (conceptual
skill). The instrument consists of a prompt-image pair (middle) and several six-point Likert-like items (bottom). Each item
asks participants to estimate the likelihood of the shown prompt resulting in an image that would match the depicted image
in terms of style, composition, andmeaning. In this example, the shown prompt is relatively simple and would probably not
generate an image that matches the goal image’s composition because it depicts di�erent characters with complex interactions,
which is challenging to achieve with this model.



Figure 4: Example of the interactive survey instrument to assess participants’ ability to recreate a given image through
prompting (procedural skill). The instrument asks users to provide positive and negative prompts to recreate a depicted target
image. Not shown in this �gure: After submission, a new image is generated from the provided prompts and shown next to
the target image for visual comparison. Then, users can re�ne their prompts and regenerate images two more times. After
generating the third image, users select one image that best matches the target.



Figure 5: Process diagram of LLM pipeline for generating Prompt Suggestions: (1) First, �ve di�erent prompt variations are
generated from the original user prompt using MagicPrompt-SD [18], a GPT-2-based large language model �ne-tuned on 80,000
stable di�usion prompts from the online community platform lexica.ai. This is done to generate domain context-speci�c
few-shot prompt examples for GPT-4 at a later stage. Then, subject and style modi�ers are generated separately (2a and 2b) by
prompting GPT-4. These prompts consist of static instructions along with the dynamically generated few shot examples and
the original user input prompt.



Figure 6: Examples ofmessages designed for the Guided Exploration support botmechanism. Eachmessage contains suggestions
for systematic trial and error exploration (upper part) and worked examples of successful prompts and image pairs (lower part)
following best practices identi�ed in prior literature.



Figure 7: Linear regression results for assessment items targeting participants’ ability to overcomemodel limitations (procedural
skill).



Figure 8: Linear regression results for assessment items targeting participants’ ability to identify model limitations (conceptual
skill).



Figure 9: The prompt guide that all participants received at the beginning of the study session before the pre-test.
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