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Take two distinct points in the plane, u and v. Let’s introduce Cartesian coordinates so that
the plane becomes R2 and u = (0,0), v = (1,0). Let S = {u,v}.

Is it possible to color the plane with finitely many colors so that no subset S
′

of the plane
congruent to S is monochromatic (i.e., the two points in S

′
bear different colors, for all such S

′
)?

If so, what is the smallest number of colors necessary to accomplish this feat?
As readers of Geombinatorics well know, the answer to the first question is yes, and the

answer to the second, denoted χ(R2), is not known exactly, but it is one of 5, 6, 7 [Gre18]. Now
we ask: what is the smallest number of colors needed to color R2 so that no translate of S in R2

is monochromatic? The answer is 2. There are uncountably many such colorings of R2 with red
and blue, but here is one, an easily described “strip” coloring: color (x,y) ∈R2 red if ⌊x⌋ is even
and blue if ⌊x⌋ is odd.

Another question: is it possible to color the plane with finitely many colors so that no set
similar to S is monochromatic? Clearly not, because every 2-subset of R2 is similar to S. What
about coloring R2 so no set

S
′
= {(a,b),(a+ c,b) : a,b,c ∈ R,c ̸= 0},

a translate of a nonzero scalar times S, is monochromatic? Again the answer is no, because in
any such coloring, any two points on a horizontal line would have to be colored differently.

For any set F ⊆ R2 with |F | > 2 we can ask questions analogous to those above with S re-
placed by F . We are far from the first to consider such questions. For instance, in [Erd+75] it is
noted that if F is the set of 3 vertices of an equilateral triangle then the plane can be 2-colored
with a strip coloring so that no set congruent to F is monochromatic, and it is conjectured that
such 3-subsets of R2 are the only ones such that R2 can be 2-colored so as to forbid monochro-
matic sets congruent to the given set. In [Ben+13] it is shown that for many F ⊆R2, with |F |= 3,
R2 can be 4-colored so as to forbid monochromatic sets congruent to F , and for “fat triangles” –
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three point sets such that the triangle determined by them is “close” to being equilateral, only 3
colors are required.

We use the following theorem proven by Van der Waerden in order to prove a few results
about forbidding monochromatic translates of multiples of three point sets when coloring the
plane.

Theorem 1. (Van der Waerden, 1927 [Wae27]). Given k,m∈Z+, there exists some N(k,m)∈Z+

such that if the points {x ∈ Z : 1 ≤ x ≤ N(k,m)} are colored with k colors, there must be a
monochromatic arithmetic progression of length m.

Theorem 2. Let T ⊆ R2 be a set of three points. Then the plane R2 cannot be colored with a
finite number of colors so that monochromatic triples that are translates of multiples of T are
forbidden.

Proof. We assume for a contradiction that we can color R2 with a finite number of colors so that
monochromatic triples that are translates of multiples of T are forbidden, and fix such a coloring.
Let k denote the number of colors used in the coloring, noting that we clearly must have k > 1.

We first consider the case where the three points are not collinear. We only consider triples
where one point is (0,0), the second point is (1,0), and the third point is in the first quadrant
with x-coordinate between 0 and 1 since we can move and rotate the coordinate axes and then
scale T so that we have this form for any T . Let (∆x,∆y) denote the third vertex, where 0≤∆x ≤ 1
and ∆y > 0.

We recursively define a function f :Z+ →Z+, using the N from Van der Waerden’s theorem,
by

• f (1) = 3k

• f (x) = N(k,2 · f (x−1)).

Let y1 = 0. By Van der Waerden’s theorem, coloring the points

{(x,y1) ∈ Z2 : 0 ≤ x ≤ f (k+2)}

with k colors guarantees that there is a monochromatic arithmetic progression of length f (k+1).
Call this color C1, and let s1 denote the difference between consecutive elements of the arithmetic
progression. Define

X1 = {x ∈ Z : (x,y1) is in the arithmetic progression of color C1},

noting that |X1|= f (k+1).
Now for 1< n≤ k+1, continue the sequence of y-coordinates for which there exist monochro-

matic arithmetic progressions {yi}, the sequence of colors of the arithmetic progressions {Ci},



the sequence of differences between consecutive elements of the arithmetic progressions {si},
and the sequence of sets comprising the arithmetic progressions {Xi} as follows.

Let yn = yn−1 + sn−1 ·∆y. We have that |Xn−1|= f (k+2− (n−1) by how we defined X1 and
continue to define the Xi. Thus by Van der Waerden’s theorem, coloring the points

{(x,yn) ∈ R2 : x−∆x ∈ Xn−1}

with k colors guarantees that there is a monochromatic arithmetic progression (in the set of points
to be considered) of length 2 · f (k+2−n). Take the f (k+2−n) points of this arithmetic pro-
gression with the smallest x-coordinates as our next arithmetic progression. Note that since the
x-coordinates of the points form an arithmetic progression, this is still an arithmetic progression
in R2. Call the color of the arithmetic progression Cn (which is not yet known to be distinct from
any of the Ci), and let sn denote the difference between consecutive elements of the arithmetic
progression, noting that sn−1 divides sn. Define

Xn = {x ∈ Xn−1 +∆x : (x,yn) is in the arithmetic progression of color Cn},

noting that |Xn|= f (k+2−n).
By this point we have defined the sequences of length k+ 1 {yi}, {Ci}, {si}, and {Xi}. Let

yk+2 = yk+1 + sk+1.
We prove that all of the Ci are distinct by proving that for all n such that 1 ≤ n ≤ k+ 1, no

points {
(x+ c∆xsn,yn + c∆ysn) : x ∈ Xn,c ∈ Z+,yn + c∆ysn ≤ yk+2

}
can be a color Ci, 1 ≤ i ≤ n, by strong induction.

We prove the claim for n, assuming that no points{
(x+ c∆xsn−1,yn−1 + c∆ysn−1) : x ∈ Xn−1,c ∈ Z+,yn−1 + c∆ysn−1 ≤ yk+2

}
can be a color Ci, 1 ≤ i ≤ n−1.

Since the arithmetic progression that the points in Xn come from has f (k+2−n) points with
sn as the distance between any two consecutive points, and since there are f (k+2−n) points that
continue this arithmetic progression to the right, we have that any point (x,yn) ∈ Xn is distance
csn to the left of another point of the same color on y = yn for 1 ≤ c ≤ f (k+ 2− n). Thus we
have that no point in

{(x+ c∆xsn,yn + c∆ysn) : x ∈ Xn,1 ≤ c ≤ f (k+2−n)}

can be color Cn since otherwise this would create a monochromatic triple of color Cn that is a
translate of a multiple of T . The largest value of yn + c∆ysn that is allowed by this is

yn +∆ysn · f (k+2−n) = ∆y ·
n−1

∑
i=1

si +∆ysn · f (k+2−n).



We show that this value is greater than or equal to yk+2.
Since the number of points in one of the arithmetic progressions is at least one less than the

number of points in the next arithmetic progression times the distance between the points in this
next arithmetic progression (relative to points in the first arithmetic progression being one unit
apart), we have that for any 1 ≤ i ≤ k,

f (k+2− i)≥ si+1

si
· ( f (k+2− (i+1))−1).

Therefore

f (k+2−n)≥ sn+1

sn
· ( f (k+2− (n+1))−1)

=
sn+1

sn
· f (k+2− (n+1))− sn+1

sn

≥ f (1) ·
k

∏
i=n

si+1

si
−

k

∑
i=n

i

∏
j=n

s j+1

s j

= f (1) · sk+1

sn
−

k

∑
i=n

si+1

sn

≥ 3k · sk+1

sn
− k · sk+1

sn

≥ 2k · sk+1

sn
.

This means that

∆y ·
n−1

∑
i=1

si +∆ysn · f (k+2−n)≥ ∆y ·
n−1

∑
i=1

si +∆ysn ·2k · sk+1

sn

= ∆y ·
n−1

∑
i=1

si +∆y ·2k · sk+1

≥ ∆y ·
n−1

∑
i=1

si +∆y ·
k+1

∑
i=n

si

= ∆y ·
k+1

∑
i=1

si

= yk+2.

Therefore we have that no point in{
(x+ c∆xsn,yn + c∆ysn) : x ∈ Xn,c ∈ Z+,yn + c∆ysn ≤ yk+2

}
can be color Cn.



We now consider the colors Ci, 1 ≤ i ≤ n−1 if there are any i in that range (so when n ̸= 1).
Since we know that sn−1 divides sn and both are positive integers, we may fix l ∈ Z+ such that
sn = lsn−1. Then for any c ∈ Z+ we have that

yn + c∆ysn = (yn−1 + sn−1 ·∆y)+ c∆y(lsn−1) = yn−1 +(1+ cl)∆ysn−1

so since Xn ⊆ Xn−1 +∆x and 1+ cl > 1, we have that{
(x+ c∆xsn,yn + c∆ysn) : x ∈ Xn,c ∈ Z+,yn + c∆ysn ≤ yk+2

}
⊆{

(x+ c∆xsn,yn−1 + c∆ysn−1) : x ∈ Xn−1,c ∈ Z+,yn−1 + c∆ysn−1 ≤ yk+2
}

and so no points {
(x+ c∆xsn,yn + c∆ysn) : x ∈ Xn,c ∈ Z+,yn + c∆ysn ≤ yk+2

}
can be a color Ci, 1 ≤ i ≤ n, by our inductive hypothesis together with the fact that have already
considered the color Cn. This proves our induction and so each of the Ci, 1 ≤ i ≤ k + 1, are
distinct colors.

This is a contradiction since we only have k distinct colors that are used in our coloring, so
we conclude that such a coloring cannot exist. Since the number of colors and the coloring were
arbitrary, this proves that R2 cannot be colored with a finite number of colors so that translates
of multiples of T are forbidden.

We now consider the case where the three points of T are collinear. This reduces to showing
that we cannot color the line R with a finite number of colors such that translates of multiples of
some triple T

′
are not monochromatic. Without loss of generality we may assume that the first

point is 0, the second is 1, and we call the third point p > 0.
If p is rational, then we can fix some a,b ∈ Z+ such that p = a

b . Then by Van der Waerden’s
theorem we may fix a monochromatic arithmetic progression within the integer points of length
a+b. Call the distance between consecutive elements of this arithmetic progression d. The first
point in this arithmetic progression is a distance of db from the b-th point, which is a distance
of da from the final point. Thus we have a translate of db times T

′
that is monochromatic, a

contradiction.
Now if p is irrational, we recursively define a function f : Z+ → Z+, using the N from Van

der Waerden’s theorem, by

• f (1) = 3k

• f (x) = N(k,1+ f (x−1)).

By Van der Warden’s theorem, coloring the points Z+ with k colors guarantees that there is
a monochromatic arithmetic progression of length 1+ f (k+ 1). Call this color C1, and let s1



denote the difference between consecutive elements of the arithmetic progression. Define

X1 =
{

j ∈ Z+ : j is in the arithmetic progression of color C1,

excluding the single rightmost point} ⊆ R,

noting that |X1|= f (k+1). Let b1 denote the smallest element of the arithmetic progression.
Now for 1 < n ≤ k+1, continue the sequence of colors of the arithmetic progressions {Ci},

the sequence of differences between consecutive elements of the arithmetic progressions {si},
and the sequence of sets comprising the arithmetic progressions {Xi} as follows.

We have that |Xn−1|= f (k+2− (n−1) by how we defined X1 and continue to define the Xi.
Thus by Van der Warden’s theorem, coloring the points

{x ∈ R : x− (1+ p)sn−1 ∈ Xn−1}

with k colors guarantees that there is a monochromatic arithmetic progression (in the set of
points to be considered) of length 1+ f (k+2−n). Call the color of the arithmetic progression
Cn (which is not yet known to be distinct from any of the Ci) and let sn denote the difference
between consecutive elements of the arithmetic progression, noting that sn−1 divides sn. Define

Xn = {x ∈ Xn−1 + sn−1(1+ p) : x is in the arithmetic progression of color Cn,

excluding the rightmost point} ,

noting that |Xn|= f (k+2−n). Let bn denote the smallest element of the arithmetic progression.
By this point we have defined the sequences of length k+ 1 {Ci}, {si}, {Xi}, and {bi}. We

note that all the Xi are disjoint since each point in Xi is the sum of an integer and ∑
i−1
j=1 s j times

the irrational p.
We prove that all of the Ci are distinct by proving that for all n such that 1 ≤ n ≤ k, no points

Wn =

{
bn + j(p+1)sn + csn : 1 ≤ j ≤

k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}

can be a color Ci, 1 ≤ i ≤ n, by strong induction. This will be sufficient because Xn+1 ⊆Wn for
1 ≤ n ≤ k (consider j = 1).

We prove the claim for n, assuming that no points{
bn−1 + j(p+1)sn−1 + csn−1 : 1 ≤ j ≤

k

∑
i=n−1

si

sn−1
,0 ≤ c < f (k+2− (n−1))− j

}

can be a color Ci, 1 ≤ i ≤ n−1.
Since Xn is an arithmetic progression with f (k+2−n) points with sn as the distance between

any two consecutive points, we have that, for j ∈ Z+, any point x ∈ Xn excepting the rightmost j



points is distance j · sn to the left of another point of the same color. Thus we have that no point
in {

bn + j(p+1)sn + csn : 1 ≤ j ≤
k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}
can be color Cn since otherwise this would create a monochromatic triple of color Cn that is scaled
to have the distance between the first two points be j · sn and is translated onto the arithmetic
progression.

We now consider the colors Ci, 1 ≤ i ≤ n−1 if there are any i in that range (so when n ̸= 1).
Since we know that sn−1 divides sn and both are positive integers, we may fix l ∈ Z+ such that
sn = lsn−1.

Since the smallest point of Xn plus sn f (k+ 2− n) gives the largest point of the arithmetic
progression that contains Xn (so Xn with one more point), and since this largest point must be
(p+1)sn−1 more than a point of Xn−1, the largest that bn can be is when the point from Xn−1 that
it is (p+1)sn−1 larger than is the largest point of Xn−1, so

bn ≤ bn−1 + sn−1 f (k+2− (n−1))− sn f (k+2−n).

The smallest that bn can be is (p+ 1)sn−1 greater than bn−1, so there is some d ∈ N with
0 ≤ d ≤ f (k+2− (n−1))−1− l f (k+2−n) such that bn = bn−1 +(p+1)sn−1 +dsn−1.

Thus{
bn + j(p+1)sn + csn : 1 ≤ j ≤

k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}

=

{
bn−1 +(p+1)sn−1 +dsn−1 + jl(p+1)sn−1 + clsn−1 : 1 ≤ j ≤

k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}

=

{
bn−1 +( jl +1)(p+1)sn−1 +(cl +d)sn−1 : 1 ≤ j ≤

k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}
.

Considering the bounds on ( jl+1) and (cl+d) in order to rewrite this as a subset of the set
we made the inductive hypothesis about,

0 ≤ cl +d < l f (k+2−n)− jl + f (k+2− (n−1))−1− l f (k+2−n)

= f (k+2− (n−1))− ( jl +1).

Since the largest value of jl +1 allowed is

1+ l
k

∑
i=n

si

sn
= 1+

k

∑
i=n

si

sn−1
=

k

∑
i=n−1

si

sn−1
,



we have that{
bn + j(p+1)sn + csn : 1 ≤ j ≤

k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}

⊆

{
bn−1 + j(p+1)sn−1 + csn−1 : 1 ≤ j ≤

k

∑
i=n−1

si

sn−1
,0 ≤ c < f (k+2− (n−1))− j

}

and so no points{
bn + j(p+1)sn + csn : 1 ≤ j ≤

k

∑
i=n

si

sn
,0 ≤ c < f (k+2−n)− j

}

can be a color Ci, 1 ≤ i ≤ n, by our inductive hypothesis together with the fact that have already
considered the color Cn. This proves our induction and so each of the Ci, 1 ≤ i ≤ k + 1, are
distinct colors.

This is a contradiction since we only have k distinct colors that are used in our coloring, so
we conclude that such a coloring cannot exist. Since the number of colors and the coloring were
arbitrary, this proves that R2 cannot be colored with a finite number of colors so that translates
of multiples of T are forbidden.

Therefore the theorem is true whether the points are collinear or not.

Upon inspecting the points that are used in the previous proof, we see that, even with possibly
needing to re-coordinatize the plane, if the original triple T was on integer points then if we scale
every point in the proof by some constant factor (so that we initially assume that the second point
of T is just on the x-axis rather than at (1,0) so that the third point is on an integer point in the
original axes, which has no effect on the validity of the proof), they will all be on integer points.
In the case where the three points are collinear, we simply need to find an arithmetic progression
of length equal to the distance between the two extreme points, which is easily done by Van der
Waerden’s theorem. Thus we arrive at the following result.

Corollary 1. Let T ⊆ Z2 be a set of three points. Then the plane Z2 cannot be colored with a
finite number of colors so that monochromatic triples that are translates of multiples of T are
forbidden.
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