
Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Justin Baker∗ 1 Qingsong Wang∗ 1 Cory Hauck 2 Bao Wang 1

Abstract

Implicit graph neural networks (IGNNs) – that

solve a fixed-point equilibrium equation using Pi-

card iteration for representation learning – have

shown remarkable performance in learning long-

range dependencies (LRD) in the underlying

graphs. However, IGNNs suffer from several

issues, including 1) their expressivity is limited

by their parameterizations for the well-posedness

guarantee, 2) IGNNs are unstable in learning

LRD, and 3) IGNNs become computationally in-

efficient when learning LRD. In this paper, we

provide a new well-posedness characterization

for IGNNs leveraging monotone operator the-

ory, resulting in a much more expressive param-

eterization than the existing one. We also pro-

pose an orthogonal parameterization for IGNN

based on Cayley transform to stabilize learn-

ing LRD. Furthermore, we leverage Anderson-

accelerated operator splitting schemes to effi-

ciently solve for the fixed point of the equilib-

rium equation of IGNN with monotone or or-

thogonal parameterization. We verify the com-

putational efficiency and accuracy of the new

models over existing IGNNs on various graph

learning tasks at both graph and node levels.

Code is available at https://github.com/

Utah-Math-Data-Science/MIGNN

1. Introduction

Implicit graph neural networks (IGNNs) – that solve a fixed-

point equilibrium equation using Picard iteration for graph

representation learning – can learn long-range dependen-

cies (LRD) in the underlying graphs, showing remarkable

performance for various tasks [49; 24; 39; 43; 15]. Let

G = (V,E) represent a graph, where V is the set of nodes,

*Equal contribution 1Department of Mathematics and Scien-
tific Computing and Imaging Insitute, University of Utah. 2Oak
Ridge National Laboratory. Correspondence to: Bao Wang <wang-
baonj@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

and E ⊆ V × V is the set of edges. The connectivity of G
can be represented by the adjacency matrix A ∈ R

n×n with

Aij = 1 if there is an edge connecting nodes i, j ∈ V ; oth-

erwise Aij = 0. Let X ∈ R
d×n be the initial node features

whose i-th column xi ∈ R
d is the initial feature of the i-th

node. IGNN [24] learns the node representation by finding

the fixed point, denoted as Z∗, of the Picard iteration below

Z
(k+1) = σ

(

WZ
(k)

G+ gB(X)
)

, for k = 0, 1, · · · , (1)

where σ is the nonlinearity (e.g. ReLU), gB is a func-

tion parameterized by B (e.g. gB(X) = BXG), ma-

trices W and B ∈ R
d×d are learnable weights, and

G is a graph-related matrix. In IGNN, G is chosen as

Â := D̂−1/2(I +A)D̂−1/2 with I being the identity ma-

trix and D̂ is the degree matrix with D̂ii = 1 +
∑n

j=1 Aij .

The prediction of IGNN is given by fΘ(Z
∗), a function pa-

rameterized by Θ. IGNNs have several merits: 1) The depth

of IGNN is adaptive to particular data and tasks rather than

fixed. 2) Training IGNNs requires constant memory inde-

pendent of their depth – leveraging implicit differentiation

[46; 1; 35; 12]. 3) IGNNs have better potential to capture

LRD of the underlying graph compared to existing GNNs,

including GCN [55], GAT [52], SSE [16], and SGC [59].

Moreover, the bias term used by IGNN helps to overcome

the over-smoothing issue of deep GNNs, which has also

been studied in [51]. Nevertheless, we notice that IGNN has

limited expressivity for graph learning and is unstable and

inefficient in learning LRD, and we provide details about

these issues below.

Well-posedness of IGNN limits its expressivity. IGNN

constrains the weight matrix W using a tractable projected

gradient descent method to ensure the well-posedness of

Picard iteration [24], constraining the magnitude of W ’s

eigenvalues to be less than one; see Sec. 2 for details. This

limits the selection of W and thereby limits the expressivity

of IGNNs.

IGNN is unstable and inefficient in learning LRD. To

understand when IGNN can learn LRD, we run IGNN using

the settings in [24] to classify directed chains – a synthetic

dataset designed to test the effectiveness of GNNs in learn-

ing LRD [24] and we discuss details of this dataset and task

in Sec. 5.1. Fig. 1 plots epoch vs. accuracy of IGNN for

the chain classification. Here, each epoch means iterating

Equation (1) until convergence and then updating W and B.

1

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

[33]. Linearized DEQs are studied in [30]. Jacobian regu-

larization has been used to stabilize the training of DEQs

[7]. Anderson-accelerated DEQs with learned acceleration-

related hyperparameters are also proposed [8].

Implicit GNNs. Several efforts devoted to advancing

IGNNs are based on fixed-point networks: EIGNN removes

the nonlinearity in each intermediate iteration and derives a

closed form of the infinite iterations [39], convergent graph

solver (CGS) is an IGNN model with convergence guaran-

tees by constructing the input-dependent linear contracting

iterative maps [43], GIND leverages implicit nonlinear dif-

fusion to access infinite hops of neighbors [15].

Orthogonal parameterization for deep learning. The

Picard iteration Equation (1) is related to the hidden state

updates of RNNs [46; 18; 1; 34; 41]. Learning LRD is

challenging for RNNs due to exploding and vanishing gra-

dient during backpropagation through time [56; 10; 44;

41; 54; 42]. Enforcing orthogonal parameterization for

RNNs is an effective approach to overcome exploding and

vanishing gradients, benefiting RNNs for learning LRD

[3; 58; 29; 53; 40; 25].

1.3. Notation

We denote scalars by lower- or upper-case letters and vec-

tors/matrices with lower- or upper-case boldface letters. For

a vector a, we use ∥a∥ and ∥a∥∞ to denote its ℓ2 and ℓ∞
norms, respectively. We use I to denote the identity matrix

whose dimension can be inferred from the context. For a

matrix A, we denote its transpose by A⊤, its inverse by

A−1, its Frobenius, induced ℓ2, and induced ℓ∞ norms by

∥A∥F , ∥A∥, and ∥A∥∞, respectively, and its i-th largest

eigenvalue in magnitude by λi(W). Given matrices A

and B, we denote their Kronecker/entry-wise product as

A ⊗ B/A ⊙ B, and denote A ≻ B (A ⪰ B) if A − B

is positive definite (semi-positive definite). We denote the

vectorized A in column-major order as vec(A).

2. Well-posedness of MIGNN

We characterize the well-posedness of MIGNN leveraging

monotone operator theory; see Appendix B for a brief re-

view. Using the Kronecker product3 and vectorization of

a matrix, we can rewrite Equation (1) into the following

equivalent vectorized form

vec(Z(k+1)) = σ
(

G
⊤ ⊗W vec(Z(k)) + vec(gB(X))

)

. (2)

Gu et al. propose the well-posedness condition of IGNN as

λ1(|G⊤ ⊗ W |) < 1, guaranteeing that the unique fixed

point of Equation (2) can be found by Picard iteration.

Let G = Â introduced before, then all eigenvalues of

G are in [−1, 1] with λ1(G) = 1. Therefore, the well-

posedness of IGNN is equivalent to requiring λ1(|W |) < 1
as λ1(|G⊤ ⊗ W |) = λ1(G)λ1(|W |) = λ1(|W |). Then,

3See Appendix D for a review of some properties about the
Kronecker product.

IGNN parameterizes W by relaxing the well-posedness

condition λ1(|W |) < 1 to ∥W ∥∞ < 1, which constrains

the magnitudes of eigenvalues of W to be less than 1.

To allow a wider range of W and enhance the expressivity,

we utilize the monotone operator theory. Following the

discussion in [57], assuming σ to be a proximal operator4 of

a convex closed proper function f , finding the fixed point of

Equation (2) is equivalent to solving the monotone inclusion

problem: find 0 ∈ (F + G)(vec(Z)) with F and G being

two set-valued functions, given below

F(vec(Z)) = (I −G
⊤ ⊗W)vec(Z)− vec(gB(X))

G = ∂f,
(3)

where ∂f denotes the subgradient f . While it may seem that

the above discussion is placing a strong restriction on σ, we

want to note that most activation functions commonly used

in machine learning satisfy this requirement. For example,

when σ is ReLU, then σ = proxαf for ∀α > 0 with f being

the indicator of the positive octant, i.e. f(x) = I{x ≥ 0}.

The above monotone inclusion problem admits a unique

solution if the operator F is strongly monotone, i.e. I −
G⊤ ⊗W ⪰ mI or

1

2

(

G⊤ ⊗W +G⊗W⊤) ⪯ (1−m)I.

Therefore, we obtain the following well-posedness condi-

tion for MIGNN:

Proposition 2.1 (Well-posedness condition for MIGNN).

Let the nonlinearity σ be ReLU and K = 1
2 (G

⊤ ⊗ W +
G ⊗W⊤). Then the MIGNN model Equation (2) is well-

posed as long as K ⪯ (1−m)I for some m > 0. As K is

symmetric, K ⪯ (1−m)I is equivalent to requiring that

each eigenvalue of K is no more than 1−m.

We prove Proposition 2.1 in the appendix; similarly, the

proofs of all the other theoretical results are provided in the

appendix. The well-posedness condition in Proposition 2.1

allows for more flexible parameterizations than [24] by

enabling the real part of eigenvalues of W to be in the

interval (−∞, 1) and the imaginary part to be arbitrary.

3. Parameterizations of MIGNN

This section presents the monotone and orthogonal param-

eterizations of W for MIGNN in Equation (2); the two

parameterizations can enhance IGNN’s expressivity and

stabilize learning LRD, respectively.

3.1. Monotone parameterization

Proposition 2.1 informs us to design a more expressive pa-

rameterization of W for MIGNN than that used for IGNN.

Proposition 3.1 (Monotone parameterization). Let G =
(V,E) be a graph and let G be L/2 with L := D−1/2(D−

4The proximal operator of a function f is defined as
proxα

f (x) ≡ argminz

{

1
2
∥x− z∥2 + αf(z)

}

for α > 0.

3

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

A)D−1/2 being the (symmetric) normalized Laplacian,

where A is the adjacency matrix and D is the degree matrix

with Dii =
∑n

j=1 Aij . Then the following MIGNN model:

Z(k+1) = σ
(

WZ(k)G+ gB(X)
)

is well-posed when W is parameterized as follows:

W = (1−m)I −CC
⊤ + F − F

⊤, (4)

where C,F ∈ R
d×d are arbitrary matrices, and m > 0.

Remark 3.2. In monotone parameterization, we set G to

be L/2, whose eigenvalues are in [0, 1]. In contrast, the

eigenvalues of Â used in IGNN, see Sec. 1, are in [−1, 1].
Next, we parameterize W as in Equation (4), whose eigen-

values have real part in (−∞, 1−m]. Thus, 1
2 (G

⊤ ⊗W +
G⊗W⊤) ⪯ (1−m)I , guaranteeing the well-posedness

of MIGNN. Moreover, W = (1−m)I−CC⊤+F −F⊤

describes all possible W that satisfy W ⪯ (1−m)I .

3.2. Orthogonal parameterization

As discussed in Sec. 1, IGNN learns LRD when λ1(|W |)
approaches 1 in magnitude. This is often not the case

when starting from Gaussian random initialization – making

IGNN unstable for learning LRD. Inspired by the unitary

RNN [3], we propose to use the orthogonal parameteriza-

tion [25; 38; 37] with a learnable scaling factor to stabilize

MIGNN in learning LRD. In particular, we parameterize

W by the following scaled Cayley map:

W = φ(γ)(I − S)(I + S)−1, (5)

where ϕ(·) is the sigmoid function and γ ∈ R is a learnable

parameter ensuring ϕ(γ) ∈ (0, 1). S = C − C⊤ is a

skew-symmetric matrix with C ∈ R
d×d being an arbitrary

parameterized matrix. It is evident that MIGNN with the

parameterization in Equation (5) is well-posed with G being

Â defined in Sec. 1. Also, all eigenvalues of (I − S)(I +
S)−1 have magnitude 1; see a derivation in Appendix E.3.

To effectively learn LRD, MIGNN only requires the scalar

ϕ(γ) to converge to 1.

4. Implementation of MIGNN

Notice that Picard iteration does not converge when mono-

tone parameterization is applied and converges slowly

when orthogonal parameterization is used if ϕ(γ) → 1.

Thus, we leverage the operator splitting schemes to find

the fixed point of MIGNN with monotone or orthogonal

parameterization. There are three widely used operator

splitting schemes, forward-backward, Peaceman-Rachford,

and Douglas-Rachford splitting [48], which will be con-

sidered in this paper. Operator splitting schemes often

converge faster than Picard iteration and guarantee con-

vergence even when Picard iteration fails [48]. In particu-

lar, for small graphs and tasks where learning LRD is not

crucial, we use Anderson-accelerated forward-backward

splitting (FB) to implement MIGNN with monotone pa-

rameterization. For tasks that require learning LRD, we

employ Anderson-accelerated Peaceman-Rachford splitting

(PR)5, with Neumann series approximation, to implement

MIGNN with orthogonal parameterization. We provide the

rationale for these choices in Secs. 4.1.1 and 4.1.2. We

structure this section as follows: In Sec. 4.1, we present FB

(Sec. 4.1.1)/PR (Sec. 4.1.2) for finding the fixed point of

MIGNNs using monotone/orthogonal parameterization. In

Sec. 4.2, we present algorithms for updating the parameters

of MIGNN.

4.1. Forward propagation for finding the fixed point

4.1.1. FORWARD-BACKWARD SPLITTING

We can find the fixed point of MIGNN in Equation (2) via

FB using the following iterative scheme:

Z
(k+1) := FFB

α (Z(k))

:= proxα
f

(

Z
(k) − α ·

(

Z
(k) −WZ

(k)
G− gB(X)

))

,
(6)

where constant α > 0. We provide a detailed implementa-

tion of FB in Appendix F.1. The Lipschitz constant of the FB

iteration is LFB :=
√

1− 2αm+ α2∥I −G⊤ ⊗W ∥2,

see Sec. 5 in [48]. Therefore, FB converges to the fixed

point if α < 2m/∥I −G⊤ ⊗W ∥2. By choosing a proper

α, FB can converge in the regime that Picard iteration does

not. However, when the monotone parameterization is used

∥W ∥ can be arbitrarily large. Thus α needs to be small

to guarantee the convergence of FB, in which case the Lip-

schitz constant is close to 1, and the convergence of FB

will be significantly slowed. FB is appealing for learning

with small graphs and tasks where learning LRD is not

crucial. In this case, we use monotone parameterization

to improve the expressivity of the model, and we denote

MIGNN with monotone parameterization using FB as

MIGNN-Mon. For large graphs and tasks that require learn-

ing LRD, FB suffers from slow convergence. Next, we will

present PR, which is better for learning large-scale graphs

and LRD. Furthermore, we argue that PR is unsuitable for

implementing MIGNN with monotone parameterization.

4.1.2. PEACEMAN-RACHFORD SPLITTING

PR used in [57] is guaranteed to converge for a much broader

choice of α and requires fewer iterations than FB. However,

each iteration of PR requires inverting large matrices, which

is computationally much more expensive and less scalable

than FB. More precisely, PR finds the solution Z∗ of the

MIGNN by letting Z∗ = proxαf (U
∗) where U∗ ∈ R

d×n

is obtained from the fixed-point iteration vec(U (k+1)) =
FPR
α (vec(U (k))) := CFCG(vec(U (k))) with CF and CG

being the Cayley operators (see Appendix B for details) of

F and G, respectively. Let u(k) be the shorthand notation

5We denote Anderson-accelerated FB and PR as FB and PR.

4

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

of vec(U (k)). Then we can formulate PR as follows:

u
(k+1) := FPR

α (u(k)) = 2V
(

2 proxα
f (u

(k))− u
(k)+

α vec(gB(X))
)

− 2 proxα
f (u

(k)) + u
(k),

(7)

where V := (I+α(I−G⊤⊗W))−1 and u(0) is the zero

vector. With the parameterizations discussed in Sec. 3, the

linear operator F in Equation (3) is strongly monotone and

L-Lipschitz where L = ∥I − G⊤ ⊗ W ∥. Therefore, its

Cayley operator CF and hence FPR
α is contractive with the

optimal choice of α being 1/L; see Section 6 in [48]. In

particular, it is suggested to choose α = 1/(1+ϕ(γ)) when

using orthogonal parameterization W = ϕ(γ)(I − S)(1 +
S)−1. The pseudocode for the detailed implementation of

PR in Equation (7) can be found in Appendix F.1.

Remark 4.1. Douglas-Rachford splitting (DR) is another

option for finding the fixed point of the equilibrium equation,

which is often faster than PR. However, in our case PR is

contractive, making it faster than DR for the same α.

PR also benefits MIGNNs in learning LRD when an or-
thogonal parameterization is used. To see this, we have the

following Neumann series expansion of V (u(k)):

V (u(k)) = (I + α(I −G
⊤ ⊗W))−1(u(k))

=
1

1 + α

(

I −
G⊤ ⊗W

1 + 1/α

)−1

(u(k))

=
1

1 + α

∞
∑

i=0

vec
(

W iU (k)Gi
)

(1 + 1/α)i

(8)

where the last equality follows from (A⊗B)k = Ak⊗Bk,

and (A ⊗ B)vec(C) = vec(BCA⊤) for ∀A,B and C

that satisfy dimensional consistency. Equation (8) indi-

cates that each node can access information from its ∞-hop

neighbors in a single PR iteration for MIGNN with orthog-

onal parameterization. This cannot be said of monotone

parameterization with large ∥W ∥, as the Neumann series

expansion in the last equality of Equation (8) no longer ap-

plies. Evaluating 1
1+α

(

I−G⊤⊗W
1+1/α

)−1
(u(k)) can be carried

out by using Bartels–Stewart algorithm [9], which converts

computing V into diagonalizing the matrix G⊤ and W ,

respectively. From Equation (8), we have

V (vec(U (k)))

=
1

1 + α
vec

(

QW

[

H ⊙
(

Q
−1
W U

(k)
QG⊤

)]

Q
⊤

G⊤

) (9)

where QG⊤ΛG⊤Q⊤
G⊤ and QWΛWQ−1

W are the eigen-

decomposition of G⊤ and of W , respectively, and

H ∈ R
d×n whose (i, j)-th entry is Hij = 1/

(

1 −
1

1+1/α (ΛW)ii(ΛG⊤)jj
)

. We provide a proof of Equa-

tion (9) in Appendix E.4. According to Equation (9), one

only needs to calculate the eigen-decomposition of G once

prior to training and the eigen-decomposition of W once

per epoch. The above matrix inversion procedure echos

the idea of EIGNN [39]. MIGNN has multiple layers, with

each fixed point iteration representing one layer. In contrast,

EIGNN is reduced to a one-layer model; see Appendix A.2

for details on EIGNN.

Although PR can capture LRD in a single iteration, comput-

ing V in Equation (7) requires computationally prohibitive

matrix inversion. To overcome this computational issue,

we use Neumann series expansion to approximate the ma-

trix inversion when orthogonal parameterization is used

for MIGNN. Notice that the Neumann series approximation

does not work for MIGNN using monotone parameterization

since we can no longer use the Neumann series approxima-

tion. Therefore, MIGNN with monotone parameterization

using PR splitting is not scalable to learning large graphs.

Neumann series approximation. In the orthogonal param-

eterization of W we have ∥G⊤⊗W
1+1/α ∥ < 1, ensuring efficient

approximation of V in Equation (7) using only a few terms

of its Neumann series expansion. The K-th order Neumann

series expansion of V (vec(U (k))) is given by

NK(vec(U (k))) :=
1

1 + α

K
∑

i=0

vec
(

W iU (k)Gi
)

(1 + 1/α)i
. (10)

According to Equation (7), the K-th order Neumann series

approximated PR iteration function, denoted as F̃PR,K
α , can

be written as follows:

u
(k+1) := F̃PR,K

α (u(k)) = 2NK

(

2 proxα
f (u

(k))− u
(k)

+ α vec(gB(X))
)

− 2 proxα
f (u

(k)) + u
(k).

(11)

Each node can access information from its K-hop neighbors

using the K-th order Neumann series approximated PR

iteration, which is more efficient than the existing IGNN.

Also, such a treatment can significantly accelerate forward

propagation. We can intuitively understand this as follows:

Each iteration of MIGNN, with K-th order Neumann series

approximated PR iteration, aggregates information from

K-hop neighbors, enabling the use of much fewer iterations

than that of IGNN, which aggregates one hop per iteration.

MIGNN can use a much smaller λ1(|W |) than IGNN to

reach the same number of hops, meaning MIGNN converges

much faster than IGNN.

Regarding the computational complexity: In each epoch, the

parameter K in the K-th order Neumann series affects the

training time complexity linearly as O(KMd|EP |), where

|EP | denotes the number of non-zero entries in the graph-

related matrix G, M denotes the maximal number of it-

erations, and d is the feature dimension which is much

smaller than the number of nodes. We denote the model as

MIGNN-NK when W is parameterized with orthogonal

parameterization, and the fixed point is obtained using

K-th order Neumann series approximated PR iteration.

5

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Acknowledgements

This material is based on research sponsored by NSF grants

DMS-1952339, DMS-2152762, and DMS-2208361, DOE

grant DE-SC0021142 and DE-SC0023490. Moreover, this

material is based, in part, upon work supported by the

U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, as part of their

Applied Mathematics Research Program. The work was

performed at the Oak Ridge National Laboratory, which

is managed by UT-Battelle, LLC under Contract No. De-

AC05-00OR22725. The United States Government retains

and the publisher, by accepting the article for publication,

acknowledges that the United States Government retains a

non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce the published form of this manuscript,

or allow others to do so, for the United States Govern-

ment purposes. The Department of Energy will provide

public access to these results of federally sponsored re-

search in accordance with the DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan).

References

[1] Almeida, L. B. A learning rule for asynchronous

perceptrons with feedback in a combinatorial environ-

ment. In Artificial neural networks: concept learning,

pp. 102–111, 1990.

[2] Anderson, D. G. Iterative procedures for nonlinear

integral equations. Journal of the ACM (JACM), 12(4):

547–560, 1965.

[3] Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolu-

tion recurrent neural networks. In International Con-

ference on Machine Learning, pp. 1120–1128, 2016.

[4] Atwood, J. and Towsley, D. Diffusion-convolutional

neural networks. In Advances in Neural Information

Processing Systems, volume 29, 2016.

[5] Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium

models. Advances in Neural Information Processing

Systems, 32, 2019.

[6] Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep

equilibrium models. In Proceedings of the 34th Inter-

national Conference on Neural Information Process-

ing Systems, 2020.

[7] Bai, S., Koltun, V., and Kolter, J. Z. Stabilizing equi-

librium models by Jacobian regularization. In Interna-

tional Conference on Machine Learning, pp. 554–565.

PMLR, 2021.

[8] Bai, S., Koltun, V., and Kolter, J. Z. Neural deep

equilibrium solvers. In International Conference on

Learning Representations, 2022.

[9] Bartels, R. H. and Stewart, G. W. Solution of the

matrix equation ax+ xb= c [f4]. Communications of

the ACM, 15(9):820–826, 1972.

[10] Bengio, Y., Simard, P., and Frasconi, P. Learning long-

term dependencies with gradient descent is difficult.

IEEE Transactions on Neural Networks, 5(2):157–166,

1994.

[11] Biewald, L. Experiment tracking with weights and

biases, 2020. Software available from wandb.com.

[12] Blondel, M., Berthet, Q., Cuturi, M., Frostig, R.,

Hoyer, S., Llinares-López, F., Pedregosa, F., and Vert,

J.-P. Efficient and modular implicit differentiation.

arXiv preprint arXiv:2105.15183, 2021.

[13] Bolte, J., Le, T., Pauwels, E., and Silveti-Falls, T. Non-

smooth implicit differentiation for machine-learning

and optimization. Advances in neural information

processing systems, 34:13537–13549, 2021.

[14] Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y.

Simple and deep graph convolutional networks. In

International Conference on Machine Learning, pp.

1725–1735. PMLR, 2020.

[15] Chen, Q., Wang, Y., Wang, Y., Yang, J., and Lin, Z.

Optimization-induced graph implicit nonlinear diffu-

sion. In International Conference on Machine Learn-

ing, pp. 3648–3661. PMLR, 2022.

[16] Dai, H., Kozareva, Z., Dai, B., Smola, A., and Song,

L. Learning steady-states of iterative algorithms over

graphs. In International conference on machine learn-

ing, pp. 1106–1114. PMLR, 2018.

[17] El Ghaoui, L., Gu, F., Travacca, B., Askari, A., and

Tsai, A. Implicit deep learning. SIAM Journal on

Mathematics of Data Science, 3(3):930–958, 2021.

[18] Elman, J. L. Finding structure in time. Cognitive

Science, 14(2):179–211, 1990.

[19] Gallicchio, C. and Micheli, A. Fast and deep graph

neural networks. In Proceedings of the AAAI con-

ference on artificial intelligence, volume 34 (04), pp.

3898–3905, 2020.

[20] Gasteiger, J., Bojchevski, A., and Günnemann, S. Pre-

dict then propagate: Graph neural networks meet per-

sonalized pagerank. In International Conference on

Learning Representations, 2018.

[21] Gasteiger, J., Bojchevski, A., and Günnemann, S.

Combining neural networks with personalized pager-

ank for classification on graphs. In International Con-

ference on Learning Representations, 2019.

9

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

[22] Gasteiger, J., Weißenberger, S., and Günnemann, S.

Diffusion improves graph learning. In Advances in

Neural Information Processing Systems, volume 32,

2019.

[23] Gilbert, J. C. Automatic differentiation and iterative

processes. Optimization methods and software, 1(1):

13–21, 1992.

[24] Gu, F., Chang, H., Zhu, W., Sojoudi, S., and El Ghaoui,

L. Implicit graph neural networks. In Proceedings of

the 34th International Conference on Neural Informa-

tion Processing Systems, 2020.

[25] Helfrich, K., Willmott, D., and Ye, Q. Orthogonal re-

current neural networks with scaled cayley transform.

In International Conference on Machine Learning, pp.

1969–1978. PMLR, 2018.

[26] Hochreiter, S. and Schmidhuber, J. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997.

[27] Horn, R. A. and Johnson, C. R. Topics in matrix anal-

ysis, 1991. Cambridge University Presss, Cambridge,

37:39, 1991.

[28] Jafarpour, S., Davydov, A., Proskurnikov, A., and

Bullo, F. Robust Implicit Networks via Non-Euclidean

Contractions. In Advances in Neural Information Pro-

cessing Systems, volume 34, pp. 9857–9868, 2021.

[29] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo,

S., LeCun, Y., Tegmark, M., and Soljačić, M. Tun-

able efficient unitary neural networks (eunn) and their

application to rnns. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70,

pp. 1733–1741. JMLR. org, 2017.

[30] Kawaguchi, K. On the theory of implicit deep learning:

Global convergence with implicit layers. In Interna-

tional Conference on Learning Representations, 2021.

[31] Kincaid, D. and Cheney, W. Numerical analysis,

brooks. Cole Publishing Company, 20:10–13, 1991.

[32] Kipf, T. N. and Welling, M. Semi-supervised classifi-

cation with graph convolutional networks. In Proceed-

ings of the 5th International Conference on Learning

Representations, 2017.

[33] Kolter, J. Z. and Manek, G. Learning stable deep

dynamics models. In Advances in Neural Information

Processing Systems, volume 32, 2019.

[34] Kolter, J. Z., Duvenaud, D., and Johnson, M. Deep im-

plicit layers - neural ODEs, deep equilibrium models,

and beyond, 2020.

[35] Krantz, S. G. and Parks, H. R. The implicit function

theorem: history, theory, and applications. Springer

Science & Business Media, 2002.

[36] Leskovec, J., Adamic, L. A., and Huberman, B. A.

The dynamics of viral marketing. ACM Transactions

on the Web (TWEB), 1(1):5–es, 2007.

[37] Lezcano Casado, M. Trivializations for gradient-based

optimization on manifolds. Advances in Neural Infor-

mation Processing Systems, 32, 2019.

[38] Lezcano-Casado, M. and Martınez-Rubio, D. Cheap

orthogonal constraints in neural networks: A simple

parametrization of the orthogonal and unitary group.

In International Conference on Machine Learning, pp.

3794–3803. PMLR, 2019.

[39] Liu, J. and et al. Efficient graph neural networks. In

Advances in Neural Information Processing Systems,

2021.

[40] Mhammedi, Z., Hellicar, A., Rahman, A., and Bai-

ley, J. Efficient orthogonal parametrisation of recur-

rent neural networks using householder reflections. In

Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pp. 2401–2409. JMLR.

org, 2017.

[41] Nguyen, T., Baraniuk, R., Bertozzi, A., Osher, S., and

Wang, B. MomentumRNN: Integrating momentum

into recurrent neural networks. Advances in Neural

Information Processing Systems, 33:1924–1936, 2020.

[42] Nguyen, T. M., Baraniuk, R., Kirby, R., Osher, S., and

Wang, B. Momentum transformer: Closing the perfor-

mance gap between self-attention and its linearization.

In Mathematical and Scientific Machine Learning, pp.

189–204. PMLR, 2022.

[43] Park, J., Choo, J., and Park, J. Convergent graph

solvers. In International Conference on Learning Rep-

resentations, 2022.

[44] Pascanu, R., Mikolov, T., and Bengio, Y. On the

difficulty of training recurrent neural networks. In

International Conference on Machine Learning, pp.

1310–1318, 2013.

[45] Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.

Geom-GCN: Geometric graph convolutional networks.

In International Conference on Learning Representa-

tions, 2020.

[46] Pineda, F. Generalization of back propagation to re-

current and higher order neural networks. In Neural

information processing systems, 1987.

10

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

[47] Robinson, S. M. An implicit-function theorem for a

class of nonsmooth functions. Mathematics of opera-

tions research, 16(2):292–309, 1991.

[48] Ryu, E. K. and Boyd, S. Primer on monotone operator

methods. Appl. Comput. Math, 15(1):3–43, 2016.

[49] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,

and Monfardini, G. The graph neural network model.

IEEE transactions on neural networks, 20(1):61–80,

2008.

[50] Shervashidze, N., Vishwanathan, S., Petri, T.,

Mehlhorn, K., and Borgwardt, K. Efficient graphlet

kernels for large graph comparison. In Artificial intel-

ligence and statistics, pp. 488–495. PMLR, 2009.

[51] Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T.,

Bertozzi, A., Osher, S., and Wang, B. GRAND++:

Graph neural diffusion with a source term. In Interna-

tional Conference on Learning Representations, 2022.

[52] Velickovic, P., Cucurull, G., Casanova, A., Romero,

A., Lio, P., and Bengio, Y. Graph attention networks.

In International Conference on Learning Representa-

tions, 2018.

[53] Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C.

On orthogonality and learning recurrent networks with

long term dependencies. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume

70, pp. 3570–3578. JMLR. org, 2017.

[54] Wang, B., Xia, H., Nguyen, T., and Osher, S. How

does momentum benefit deep neural networks archi-

tecture design? a few case studies. Research in the

Mathematical Sciences, 9(3):57, 2022.

[55] Welling, M. and Kipf, T. N. Semi-supervised clas-

sification with graph convolutional networks. In In-

ternational Conference on Learning Representations,

2016.

[56] Werbos, P. J. Generalization of backpropagation with

application to a recurrent gas market model. Neural

networks, 1(4):339–356, 1988.

[57] Winston, E. and Kolter, J. Z. Monotone operator equi-

librium networks. In Advances in neural informa-

tion processing systems, volume 33, pp. 10718–10728,

2020.

[58] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., and

Atlas, L. Full-capacity unitary recurrent neural net-

works. In Advances in Neural Information Processing

Systems, pp. 4880–4888, 2016.

[59] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and

Weinberger, K. Simplifying graph convolutional net-

works. In International conference on machine learn-

ing, pp. 6861–6871. PMLR, 2019.

[60] Xia, H., Suliafu, V., Ji, H., Nguyen, T., Bertozzi, A.,

Osher, S., and Wang, B. Heavy ball neural ordinary

differential equations. Advances in Neural Information

Processing Systems, 34:18646–18659, 2021.

[61] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How

powerful are graph neural networks? In International

Conference on Learning Representations, 2019.

[62] Yanardag, P. and Vishwanathan, S. Deep graph ker-

nels. In Proceedings of the 21th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and

Data Mining, pp. 1365–1374, 2015.

[63] Yang, J. and Leskovec, J. Defining and evaluating

network communities based on ground-truth. In Pro-

ceedings of the ACM SIGKDD Workshop on Mining

Data Semantics, pp. 1–8, 2012.

[64] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An

end-to-end deep learning architecture for graph clas-

sification. In Proceedings of the AAAI conference on

artificial intelligence, volume 32 (1), 2018.

11

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Supplementary materials for

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

A. A Brief Review of IGNN and Related Models

A.1. IGNN: Forward and backward propagation

IGNN employs a projected gradient descent method in the training phase to ensure their proposed well-posedness condition

is satisfied. In forward propagation, IGNN finds the equilibrium through the Picard iteration. During backward propagation,

IGNN uses the implicit function theorem at the equilibrium to compute the gradient. The computationally expensive

terms related to ∂ℓ
∂vec(Z∗)

(

I − J
(

G⊤ ⊗W
))−1

, see Section 4.2 for notations, is also computed implicitly through Picard

iteration.

A.2. EIGNN, CGS, and GIND

EIGNN. Efficient infinite-depth graph neural networks (EIGNN) is an implicit graph neural network model proposed by

Liu et al. [39] whose counterpart in explicit GNN is simple graph convolution (SGC) [59]. The main update step in EIGNN

is given by

Z(k+1) = γg(F)Z(k)G+X (13)

where Z(·) denotes the hidden feature, G is the normalized augmented adjacency matrix Â (see Section 1), X is the input

feature, g(F) is the weight matrix which is parameterized to guarantee convergence, and γ is a constant scalar in (0, 1).
Note that, there is no nonlinearity in the fixed-point Equation (13) and this allows EIGNN to find the equilibrium by the

following closed formula:

lim
k→∞

vec
(

Z(k+1)
)

= (I − γ(G⊤ ⊗ g(F)))−1 vec(X). (14)

For computation efficiency consideration, the matrix inverse operation is reduced to eigen-decomposition of G⊤ and g(F)
where the eigenvalue decomposition G⊤ is pre-calculated before training.

CGS. Convergent graph solver (CGS) is an implicit graph neural network proposed by Park et al. [43] where the fixed

point equation in use can be described as follows:

Z(k+1) = γZ(k)Gθ + gB(X) (15)

where Z(·) is the hidden feature, γ is the contraction factor, Gθ ∈ R
n×n is the graph-related matrix that is learnable and

gB(X) is the input-dependent bias term. Similar to the EIGNN case, the linearity in Equation (15) allows the fixed point to

be found by a closed formula.

GIND. The optimization-induced graph implicit nonlinear diffusion (GIND) is an implicit graph neural network proposed

by Chen et al. [15]. GIND involves a fixed point iteration equation of the following form:

Z(k+1) = −W⊤σ(W (Z(k) + gB(X))G)G⊤, (16)

where Z(·) is the hidden feature, W is the weight matrix, gB(X) is some input-dependent bias term, and G is a normaliza-

tion of the adjacency matrix A. The precise definition of G is given as G := D̂−1/2A/
√
2 where D̂ is the degree matrix

of the augmented adjacency matrix A + I given as D̂ii := 1 +
∑

j Aij . The weight matrix W is parameterized so that

∥W ∥∥G∥ < 1. Similar to IGNN, the Picard iteration is employed to find the fixed point. The authors have claimed that

the new fixed-point equation (Equation (16)) represents a nonlinear diffusion process with anisotropic properties while

IGNN only represents a linear isotropic diffusion. However, we observe that GIND is closely related to the following simple

variant of IGNN where the main change is to

Z(k+1) = σ
(

W (−W⊤)Z(k)G⊤G+W gB(X)G
)

(17)

where the notations are the same as in Equation (16). In fact, once ∥W ∥∥G∥ < 1 and assume σ is a non-expansive activation

function (for example, tanh, ReLU, ELU), then Equation (17) is contractive and hence its fixed point exists. Let Z∗ be the

12

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

fixed-point of Equation (17), then we claim that Z̃ = −W⊤Z∗G⊤ is the fixed point of Equation (16) with the same W ,

G, and gB(X) used in both Equation (17) and Equation (16). This can be seen from the following direct calculation:

Z̃ = −W⊤Z∗G⊤

= −W⊤σ
(

W (−W⊤)Z∗G⊤G+W gB(X)G
)

G⊤

= −W⊤σ
(

WZ̃G+W gB(X)G
)

G⊤

= −W⊤σ
(

W (Z̃ + gB(X))G
)

G⊤.

B. A Brief Review of Monotone Operator Theory

B.1. Operators

In this section, we briefly review the definition and basic theory of monotone operators; more details can be found in [48].

We say T is a (set-valued) operator if T maps a point in R
d to a subset of Rd. and we denote this as T : Rd ⇒ R

d. We

define the graph of an operator as follows:

Gra T = {(x,u)|u ∈ T (x)}.

Mathematically, an operator and its graph are equivalent. In other words, we can view T : Rd ⇒ R
d as a point-to-set

mapping and as a subset of Rd × R
d.

Many notions for functions can be extended to operators. For example, the domain and range of an operator T are defined as

dom T = {x | T (x) ̸= ∅}, range T = {y | y = T (x),x ∈ R
d}.

If T and S are two operators, we define their composition as

T ◦ S(x) = T S(x) = T (S(x)),

and their sum as

(T + S)(x) = T (x) + S(x).
Alternatively, we can define the operator composition and sum using their graphs,

T S =
{

(x, z) | ∃ y (x,y) ∈ S, (y, z) ∈ T
}

,

T + S =
{

(x,y + z) | (x,y) ∈ T , (x, z) ∈ S
}

.

The identity (I) and zero (0) operators are defined as follows

I = {(x,x) | x ∈ R
d}, 0 = {(x,0) | x ∈ R

d}.

We say an operator T is L-Lipschitz (L > 0) if

∥T (x)− T (y)∥ ≤ L∥x− y∥, ∀x,y ∈ dom T ,

i.e.

∥u− v∥ ≤ L∥x− y∥, ∀(x,u), (y,v) ∈ T .

The inverse operator of T is defined as

T −1 = {(y,x) | (x,y) ∈ T }.

When 0 ∈ T (x), we say that x is a zero of T . We write the zero set of an operator T as

Zer T = {x | 0 ∈ T (x)} = T −1(0).

13

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

B.2. Monotone operators

An operator T on R
d is said to be monotone if

⟨u− v,x− y⟩ ≥ 0, ∀(x,u), (y,v) ∈ T ,

where ⟨·, ·⟩ denotes the inner product between two vectors. Equivalently, we can express monotonicity as

⟨T (x)− T (y),x− y⟩ ≥ 0, ∀x,y ∈ R
d.

Furthermore, we say the operator T is maximal monotone if there is no other monotone operator S s.t. Gra T ⊂ Gra S
properly. In other words, if the monotone operator T is not maximal, then there exists (x,u) /∈ T s.t. T ∪ {(x,u)} is still

monotone. A continuous monotone function F : Rd → R
d is maximal monotone.

An operator T : Rd ⇒ R
d is B-strongly monotone or B-coercive if B > 0 and

⟨u− v,x− y⟩ ≥ B∥x− y∥2, ∀(x,u), (y,v) ∈ T .

We say T is strongly monotone if it is B-strongly monotone for some unspecified constant B ∈ (0,∞). In particular, a

linear operator F(x) = Gx+ h for G ∈ R
d×d and h ∈ R

d is maximal monotone if and only if G+G⊤ ⪰ 0 (0 stands

for the matrix whose entries are all zero) and B-strongly monotone if 1
2 (G+G⊤) ⪰ BI . Similarly, a subdifferentiable

operator ∂f is maximal monotone if and only if f is a convex closed proper (CCP) function.

An operator T is β-cocoercive or β-inverse strongly monotone if β > 0 and

⟨u− v,x− y⟩ ≥ β∥u− v∥2, ∀(x,u), (y,v) ∈ T .

We say T is cocoercive if it is β-cocoercive for some unspecified constant β ∈ (0,∞). In particular, if the linear operator

F(x) = Gx+ h is B-strongly monotone and L-Lipschitz, then F is B
L2 -cocoercive.

C. A Brief Review of Operator Splitting Schemes

In this section, we provide a brief review of a few celebrated operator-splitting schemes for solving fixed-point equilibrium

equations.

C.1. Resolvent and Cayley operators

The resolvent and Cayley operators of an operator T is defined, respectively, as follows

RT = (I + αT)−1,

and

CT = 2RT − I,
where α > 0 is a constant. The resolvent and Cayley operators are both non-expansive, i.e. they both have Lipschitz

constant L ≤ 1 for any maximal monotone operator T , and the resolvent operator RT is contractive (i.e. L < 1) for strongly

monotone T , the Cayley operator CT is contractive for strongly monotone and Lipschitz T .

There are two well-known properties associated with the resolvent operators:

• First, when F(x) = Gx+ h is a linear operator, then

RF (x) =
(

I + αG
)−1

(x− αh).

• Second, when F = ∂f for some CCP function f , then the resolvent is given by the following proximal operator

RF (x) = proxαf (x) := argmin
z

{1

2
∥x− z∥2 + αf(z)

}

.

14

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

C.2. Operator splitting schemes

Operator splitting schemes refer to methods to find a zero in a sum of operators (assumed here to be maximal monotone), i.e.

find x s.t.

0 ∈ (F + G)(x).
We present a few popular operator splitting schemes for solving the above monotone inclusion problem.

• Forward-backward splitting (FB): Consider the monotone inclusion problem

findx∈Rd 0 ∈ (F + G)(x),

where F and G are maximal monotone and F is single-valued. Then for any α > 0, we have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + αG)(x)− (I − αF)(x)

⇔ (I + αG)(x) ∋ (I − αF)(x)

⇔ x = RG(I − αF)(x).

Therefore, x is a solution if and only if it is a fixed point of RG(I − αF). Moreover, assume F is β-cocoercive, then

the Picard iteration using forward-backward splitting can be written as

x(k+1) = RG(x
(k) − αFx(k)),

which converges if α ∈ (0, 2β) and Zer(F + G) ̸= ∅.

• Peaceman-Rachford splitting (PR): Consider the following monotone inclusion problem

findx∈Rd 0 ∈ (F + G)(x),

where F and G are maximal monotone. For any α > 0, we have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + αF)(x)− (I − αG)(x)
⇔ 0 ∈ (I + αF)(x)− CG(I + αG)(x)
⇔ 0 ∈ (I + αF)(x)− CG(z), z ∈ (I + αG)(x)
⇔ CG(z) ∈ (I + αF)RG(z), x = RG(z)

⇔ RFCG(z) = RG(z), x = RG(z)

⇔ CFCG(z) = z, x = RG(z).

Therefore, x is a solution if and only if there is a solution of the fixed-point equilibrium equation z = CFCG(z) and

x = RG(z), which is called Peaceman-Rachford splitting.

• Douglas-Rachford splitting (DR): Sometimes the operator CFCG is merely nonexpansive, the Picard iteration with PR

given below

z(k+1) = CFCG(z(k))

is not guaranteed to converge. To guarantee convergence, we note that for any ∀α > 0, we have

0 ∈ (F + G)(x) ⇔
(1

2
I +

1

2
CFCG

)

(z) = z, x = JG(z).

And the above splitting is called Douglas-Rachford splitting. The Picard iteration with DR can be written as follows:

x(k+1/2) = RG(z
(k))

x(k+1) = RF (2x
(k+1/2) − z(k))

z(k+1) = z(k) + x(k+1) − x(k+1/2)

which converges for any α > 0 if Zer(F + G) ̸= ∅.

15

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

D. Some Properties of Kronecker product

In this section, we collect some Kronecker product results that are used in this paper.

Definition D.1. Let A ∈ R
p×q, B ∈ R

r×s be two matrices. Their Kronecker product A ⊗ B ∈ R
pr×qs is defined as

follows:

A⊗B =







A11B . . . A1qB
...

...

Ap1B . . . ApqB







The following identities about Kronecker product hold:

• (A⊗B)⊤ = A⊤ ⊗B⊤ ∀A ∈ R
p×q, B ∈ R

r×s

• ∥A⊗B∥ = ∥A∥∥B∥ ∀A ∈ R
p×q, B ∈ R

r×s

• ∥A⊗B∥∞ = ∥A∥∞∥B∥∞ ∀A ∈ R
p×q, B ∈ R

r×s

• (A⊗B)vec(C) = vec(BCA⊤) ∀A ∈ R
s,r,B ∈ R

p×q,C ∈ R
q×r

• (A⊗B)⊗C = A⊗ (B ⊗C) ∀A ∈ R
m,n,B ∈ R

p×q,C ∈ R
r×s

• A⊗ (B +C) = A⊗B +A⊗C ∀A ∈ R
p×q,B,C ∈ R

r×s

• (A+B)⊗C = A⊗C +B ⊗C ∀A,B ∈ R
p×q,C ∈ R

r×s

• (A⊗B)(C ⊗D) = AC ⊗BD ∀A ∈ R
p×q,B ∈ R

r×s,C ∈ R
q×k,D ∈ R

s×l

Proposition D.2 (Theorem 4.2.12 in [27]). Let A ∈ R
n×n and B ∈ R

m×m. If we denote the eigenvalue sets of A

and B as Λ(A) = {λ1(A), . . . , λn(A)} and Λ(B) = {λ1(B), . . . , λm(B)}, then the eigenvalue set of A ⊗ B is

Λ(A⊗B) = {λi(A) · λj(B), i = 1, . . . , n, j = 1, . . . ,m}.

E. Technical Proofs

E.1. Lipschitz constant vs. Largest magnitude of eigenvalue

Let f(Z) = WZG + B be a linear map. With slightly abuse of notation, we still denote the vectorized version

of f as f which reads f(vec(Z)) = (G⊤ ⊗ W)vec(Z) + vec(B) (See Appendix D for properties of the Kronecker

product). The Lipschitz constant Lip∞(f) of the linear map f with respect to the ℓ∞ vector norm is exactly the ∞-norm

∥G⊗W ∥∞ = ∥G⊤∥∞∥W ∥∞. Recall the following general result about the matrix norm and the largest magnitude of

eigenvalue.

Theorem E.1 (Theorem 4 in Section 4.6 in [31]). The largest magnitude of eigenvalue λ1(A) of a matrix A satisfies

λ1(A) = inf
∥·∥M

∥A∥M

in which the infimum is taken over all subordinate matrix norms ∥ · ∥M including 2-norm and ∞-norm.

Meanwhile, note that one has ∥W ∥∞ = ∥ |W | ∥∞ by definition. Hence one has Lip∞(f) = ∥G⊤∥∞∥W ∥∞ ≥
λ1(G

⊤)λ1(|W |). Note that, when G is the normalized adjacency matrix of undirected graph Â, we have λ1(G
⊤) =

λ1(G) = 1 and hence we have Lip∞(f) ≥ λ1(|W |).

E.2. Proofs for Section 2

Proof of Proposition 2.1. First recall the operator splitting problem 3 in Section 1:

find 0 ∈ (F + G)(vec(Z)),

where
F(vec(Z)) = (I −G⊤ ⊗W)vec(Z)− vec(gB(X)) and G = ∂f,

16

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

here f is the indicator of the positive octant, i.e. f(x) = I{x ≥ 0} for which we have proxαf equals σ, the ReLU

activation function, for all α > 0. Note that, from the condition K = 1
2

(

G⊤ ⊗W +G ⊗W⊤
)

⪯ (1 −m)I , one has

G⊤ ⊗W ⪯ (1−m)I and hence

I −G⊤ ⊗W ⪰ mI

which says F is m-strongly monotone for some m > 0. As the function F is a linear and hence continuous function

defined on the entire R
d×n, it is then automatically maximal monotone once it is monotone. Since f is a CCP function, its

subdifferential operator G = ∂f is maximal monotone. In particular, as the linear map F is single-valued, we can apply the
FB splitting scheme in Appendix C.2 as the following: for any α > 0, we have

0 ∈ (F + G)(vec(Z)) ⇔ vec(Z) = RG(I − αF)(vec(Z)).

⇔ vec(Z) = proxα
f

(

vec(Z)− α ·
(

vec(Z)−G
⊤ ⊗W vec(Z)− vec(gB(X))

))

,

⇔ vec(Z) = σ
(

vec(Z)− α ·
(

vec(Z)−G
⊤ ⊗W vec(Z)− vec(gB(X))

))

.

When α = 1 in the last above, we recover the MIGNN model Equation (2):

vec(Z) = σ(G⊤ ⊗W vec(Z) + vec(gB(X))

This shows the equivalence between finding a fixed point of MIGNN model Equation (2) and finding a zero of the operator

splitting problem Equation (3). Therefore, when K ⪯ (1−m)I , the linear map F is strongly monotone and Lipschitz, the

monotone splitting problem and hence the MIGNN model is well-sposed, see Appendix C.2.

E.3. Proofs for Section 3

Proof of Proposition 3.1. Since the normalized Laplacian L is symmetric, we have

K =
1

2

(

1

2
L⊤ ⊗W +

1

2
L⊗W⊤

)

=
1

2
L⊗

(

1

2

(

W +W⊤
)

)

.

The property of Kronecker product (Theorem D.2) tells us that the eigenvalues of K are the products of the eigenvalues of

L and
(

1
2 (W +W⊤)

)

. Therefore, the MIGNN model satisfies the well-posedness condition in Proposition 2.1 once

λi

(

1

2
L

)

λj

(

1

2
(W +W⊤)

)

≤ 1−m

for all eigenvalues from 1
2L and

(

1
2 (W +W⊤)

)

. Notice that 1
2L is positive semi-definite and all its eigenvalues are within

[0, 1]. Therefore, W guarantees the well-posedness of MIGNN as long as all eigenvalues satisfy

λi

(

1

2
(W +W⊤)

)

≤ 1−m.

When W = (1−m)I−CC⊤+F −F⊤, we have 1
2 (W +W⊤) = (1−m)I−CC⊤. As CC⊤ is positive semi-definite,

all eigenvalues of 1
2 (W +W⊤) are no more than (1−m).

The following properties of the Cayley map are used in this paper.

Proposition E.2. Let S be a skew-symmetric matrix. Then its image under the Cayley map Cay(S) := (I − S)(I + S)−1

is an orthogonal matrix, and hence the magnitude of all its eigenvalues is 1.

Proof. To verify that the Cayley map is well-defined, it suffices to show that −1 is not an eigenvalue of S. This can be

derived from the general fact that each eigenvalue of any skew-symmetric matrix is purely imaginary. To see this, let λ be an

eigenvalue of S with corresponding eigenvector v where both λ and v possibly contain complex numbers. Let vH and SH

denote the conjugate transpose of the vector v and the matrix S respectively. We then have

vHSv = vH(λv) = λ|v|2C,

where | · |C denotes the Euclidean norm for a complex vector. At the same time, one has

vHSv = (SHv)Hv = (−Sv)Hv = −λ̄|v|2C,

17

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

where λ̄ denotes the complex conjugate of λ. Hence λ = −λ, that is λ is purely imaginary. This concludes the proof that

(I − S)(I + S)−1 is well-defined.

Note that (I−S)(I+S)−1
(

(I − S)(I + S)−1
)⊤

= (I−S)(I+S)−1(I+S)(I−S)−1 = I . Therefore, (I−S)(I+S)−1

is (real) orthogonal.

In the last part, we present a short proof that the magnitude of all eigenvalues of a (real) orthogonal matrix O equals 1. Let

λO be an eigenvalue of O and w is its eigenvector. Then we have

|λO||w|2C = (Ow)H(Ow) = wHOHOw = (Ow)H(Ow) = wHO⊤Ow = |w|2C.

Hence, |λO| = 1.

E.4. Proofs for Section 4

The following result about Kronecker product is adapted from [39] which we include here for completeness.

Proof of Equation (9) used in Section 4. Since G⊤ is symmetric, it admits an eigen-decomposition G⊤ = QG⊤ΛG⊤Q⊤
G⊤

where QG⊤ is orthogonal and hence satisfies Q−1
G⊤ = QG⊤ . As W is diagonalizable, it admits a eigen-decomposition

W = QWΛWQ−1
W . Then we can write

G⊤ ⊗W = [QG⊤ΛG⊤Q⊤
G⊤]⊗ [QWΛWQ−1

W]

= [QG⊤ ⊗QW][ΛG⊤ ⊗ΛW][Q⊤
G⊤ ⊗Q−1

W]

Let n = dim(G) and d = dim(W), we have

Ind = In ⊗ Id = [QG⊤InQ
⊤
G⊤]⊗ [QW ImQ−1

W] = [QG⊤ ⊗QW][In ⊗ Im][Q⊤
G⊤ ⊗Q−1

W]

Therefore, for some matrix B ∈ R
d×n,

V (vec(U)) =
1

1 + α

(

Ind −
α

1 + α
(G⊤ ⊗W)

)−1

(vec(U))

=
1

1 + α

(

Ind −
α

1 + α
(G⊤ ⊗W)

)−1

(vec(U))

1

1 + α

(

[QG⊤ ⊗QW]

[

Ind −
α

1 + α
ΛG⊤ ⊗ΛW

]

[

Q⊤
G⊤ ⊗Q−1

W

]

)−1

(vec(U))

1

1 + α

(

[QG⊤ ⊗QW]

[

Ind −
α

1 + α
ΛG⊤ ⊗ΛW

]−1
[

Q⊤
G⊤ ⊗Q−1

W

]

)

(vec(U))

Note that
[

Ind − α
1+αΛG⊤ ⊗ΛW

]

is a diagonal matrix whose inverse is given by the diagonal matrix Diag(vec(H))

where the entires of H is given as Hij := 1/
(

1− α
1+α (ΛW)ii(ΛG⊤)jj

)

. Here the notation Diag(v) denotes the diagonal

matrix that has v as its diagonal for any vector v. From this we have,

V (vec(U)) =
1

1 + α

(

[QG⊤ ⊗QW] Diag(vec(H))
[

Q⊤
G⊤ ⊗Q−1

W

])

(vec(U))

=
1

1 + α
([QG⊤ ⊗QW] Diag(vec(H)) vec(Q−1

W UQG⊤)

=
1

1 + α
[QG⊤ ⊗QW] vec

(

H ⊙ [Q−1
W UQG⊤]

)

=
1

1 + α
vec
(

QW [H ⊙ [Q−1
W UQG⊤]]Q⊤

G⊤

)

where ⊙ denotes entry-wise multiplication.

18

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

F. MIGNN via Anderson-Accelerated Operator Splitting Schemes

In this section, we present the pseudocodes of Anderson-accelerated MIGNN operator splitting schemes discussed in

Section 4.

F.1. Pseudocode for MIGNN with operator splitting schemes

FB Splitting. The detail of the FB splitting scheme iteration function Equation (6) of solving MIGNN is presented in

Algorithm 1.

Algorithm 1 FB-forward-MIGNN

Z := 0; err := 1
while err > ϵ do

Z(+) := (1− α)Z + αWZG+ αgB(X)
Z(+) := proxαf (Z

(+))

err := ∥Z(+)−Z∥
∥Z(+)∥

Z := Z(+)

end while

return Z

PR splitting. The details of the PR splitting scheme encoded in the iteration function Equation (7) of solving MIGNN is

presented in Algorithm 2.

Algorithm 2 PR-forward-MIGNN

z,u = vec(U) := 0; err := 1; V := (I + α(I −G⊤ ⊗W))−1

while err > ϵ do

z(1/2) := proxαf (u)

u(1/2) := 2z(1/2) − u

z(+) := V (u(1/2) + α vec(gB(X)))
u(+) := 2z(+) − u(1/2)

err := ∥u(+)−u∥
∥u(+)∥

z,u := z(+),u(+)

end while

return proxαf (u)

F.2. More details on backward propagation

In the backward propagation, the following result from [57] allows us to convert the computing of the inverse Jacobian term

(I − J(G⊤ ⊗W))−⊤ to the (transpose of) matrix inverse term V = (I −G⊤ ⊗W))−1 which is already calculated in

the forward pass.

Proposition F.1 (Adapted from Theorem 3 in [57]). Let vec(Z∗) be the fixed point of the MIGNN model (2) and J is the

Jacobian σ of the non-linearity at the G⊤ ⊗W vec(Z∗) + vec(gB(X)). For any v ∈ R
n the solution u∗ of the equation

u∗ = (I − J(G⊤ ⊗W))−⊤v

is given by

u∗ = v + (G⊗W⊤)ũ∗

where ũ is a solution of the operator splitting problem 0 ∈ (F̃ + G̃)(ũ), with operators defined as

F̃ (ũ) =
(

I −G⊗W⊤
)

(ũ), G̃(ũ) = Dũ− v (18)

where D is the diagonal matrix defined by J = (I +D)−1 (where Dii = ∞ if Jii = 0).

19

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Note that, since the non-linearity σ is applied entry-wise, the Jacobian J is a diagonal matrix, and its diagonal entries

consist of the vectorization of the Jacobian
∂σ(WZG⊤)

∂Z |Z∗ . Therefore, the Jacobian J and hence D can be efficiently

computed. We provide the pseudo-codes of FB and PR splitting schemes for the backward propagation described in the

above proposition as Algorithm 3 and Algorithm 4 respectively and their Anderson-accelerated version can be found in

Algorithm 7 and Algorithm 8.

Remark F.2. It is worth noting that the non-linearity function σ commonly used in practical applications may not be

differentiable. However, versions of the generalized implicit function theorem [47; 13] exist, allowing us to apply the

implicit differentiation theorem in our setting. Please refer to Section 3 of [13] for further details.

FB backward propagation We now present the pseudo-code of FB splitting method (Algorithm 3) for the backward

propagation with the procedure described in Proposition F.1.

Algorithm 3 FB-backward-MIGNN

u = vec(U) := 0; err := 1; v := ∂ℓ
∂vec(Z∗)

while err > ϵ do

u(+) := (1− α)u+ α vec(W⊤UG⊤)

u
(+)
i :=

{

u
(+)
i

+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
err := ∥u(+)−u∥

∥u(+)∥

u := u(+)

end while

Set U := vec−1(u)
return v + vec(W⊤UG⊤)

Let u(k) be the intermediate variable, the procedure of applying FB splitting on monotone splitting problem Equation (18)

can be summarized as finding the fixed-point u∗ of the following iteration function

u(k+1) := BFB
α (u(k)) = (I + αD)−1((1− α)u(k) + αW⊤v). (19)

PR backward propagation We now present the pseudo-code of PR splitting method (Algorithm 4) for the backward

propagation with the procedure described in Proposition F.1. Let y(k) be the intermediate variable, the procedure of applying

Algorithm 4 PR-backward-MIGNN

y := 0;u = vec(U) := 0; err := 1; v := ∂ℓ
∂vec(Z∗) ; V := (I + α(I −G⊤ ⊗W))−1

while err > ϵ do

u
(1/2)
i :=

{

yi+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
y(1/2) := 2u(1/2) − y

u(+) := V ⊤y(1/2)

y(+) := 2u(+) − y(1/2)

err := ∥y(+)−y∥
∥y(+)∥

y,u := y(+),u(+)

end while

Compute u where ui :=

{

yi+αvi
1+α(1+Dii)

if Dii < ∞
0 if Dii := ∞

Set U := vec−1(u)
return v + vec(W⊤UG⊤)

PR splitting on Equation (18) can be summarized as first finding the fixed-point y∗ of the following iteration function

y(k+1) := BPR
α (y(k)) = 2V ⊤

(

2(I + αD)−1(y(k) + αv)− y(k)
)

− 2(I + αD)−1(y(k) + αv) + y(k) (20)

20

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

and then the final solution of the operator splitting problem is ũ = (I + αD)−1(y∗ + αv).

F.3. Anderson acceleration

We first introduce the general Anderson acceleration scheme. Let f : Rn → R
n be a function s.t. the Lipschitz constant

L(f) < 1. Therefore, the function f admits a unique fixed point and can be obtained through Picard iteration. Let

h(x) = f(x)− x be the residual function. Let x(0) be the initial guess, β ∈ (0, 1) be a relaxation parameter, and m > 1 be

an integer parameter. Then the Anderson acceleration update x(k) as

x(k+1) = (1− β)

m
∑

i=0

γ
(k)
i x(k−m+i) + β

m
∑

i=0

γ
(k)
i h

(

x(k−m+i)
)

(21)

where the coefficients γ(k) =
(

γ
(k)
0 , . . . , γ

(k)
m

)⊤

are determined by a least-square problem as the following:

min
γ=(γ0,...,γm)⊤

∥

∥

∥

∥

∥

m
∑

i

h(x(k−m+i))γi

∥

∥

∥

∥

∥

s.t.

m
∑

i=0

γi = 1.

Note that, when β = 1, the trivial weight γ(k) = (0, . . . , 0, 1)⊤ recovers Picard iteration. Therefore, when the Picard

iteration converges, the Anderson acceleration also converges and typically faster.

In Algorithm 5, we present the FB MIGNN forward propagation with Anderson acceleration on the FB iteration function

FFB
α which is introduced in Section 4 and recalled here:

Z(k+1) := FFB
α (Z(k)) := proxαf

(

Z(k) − α ·
(

Z(k) −WZ(k)G− gB(X)
))

.

Algorithm 5 MIGNN-FB-Forward: FB MIGNN forward propagation

Input: initial point Z(0) := 0, FB damping parameter α, AA relaxation parameter β, max storage size m ≥ 1.

Compute F (0) = FPB
α (Z(0)),H(0) = F (0) −Z(0).

for k = 1, . . . ,K do

Set mk = min(m, k)
Compute F (k) = FPB

α

(

Z(k)
)

, H(k) = F (k) −Z(k)

Update H := (H(k−mk), . . . ,H(k))

Determine γ(k) =
(

γ
(k)
0 , . . . , γ

(k)
mk

)⊤

that solves

min
γ=(γ0,...,γmk

)
⊤

∥Hγ∥ s.t.

mk
∑

i=0

γi = 1.

Set

Z(k+1) := β

mk
∑

i=0

γ
(k)
i FPB

α (Z((k−mk)+i)) + (1− β)

mk
∑

i=0

γ
(k)
i Z((k−mk)+i).

end for

return Z(k+1)

In Algorithm 6, we present the PR MIGNN forward propagation with Anderson acceleration on the PR iteration function

FPR
α which is introduced in Section 4 and recalled here:

u
(k+1) := FPR

α (u(k)) = 2V
(

2 proxα
f (u

(k))− u
(k) + α vec(gB(X))

)

− 2 proxα
f (u

(k)) + u
(k), (22)

21

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Algorithm 6 MIGNN-PR-forward: PR MIGNN forward propagation

Input: initial point u(0) = vec(U (0)) := 0, PR damping parameter α, AA relaxation parameter β, max storage size

m ≥ 1.

Compute f (0) := FPR
α (u(0)),h(0) := f (0) − u(0).

for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := FPR

α

(

u(k)
)

, h(k) := f (k) − u(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(

γ
(k)
0 , . . . , γ

(k)
mk

)⊤

that solves

min
γ=(γ0,...,γmk

)
⊤

∥Hγ∥ s.t.

mk
∑

i=0

γi = 1.

Set

u(k+1) := β

mk
∑

i=0

γ
(k)
i FPR

α (u((k−mk)+i)) + (1− β)

mk
∑

i=0

γ
(k)
i u((k−mk)+i).

end for

Set U (k+1) := vec−1(u(k+1))
return proxαf (U

(k+1))

The FB iteration function for the backpropagation BFB
α is introduced in Appendix F.2 and recalled here:

u(k+1) := BFB
α (u(k)) = (I + αD)−1((1− α)u(k) + αW⊤v). (23)

We present the Anderson-accelerated FB MIGNN backward propagation as Algorithm 7.

Algorithm 7 MIGNN-FB-Backward: FB MIGNN backward propagation

Input: initial point u(0) := vec(U) := 0, v := ∂ℓ
∂vec(Z∗) , PR damping parameter α, AA relaxation parameter β, max

storage size m ≥ 1.

Compute f (0) := BFB
α (u(0)),h(0) := f (0) − u(0).

for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := BFB

α

(

u(k)
)

, h(k) := f (k) − u(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(

γ
(k)
0 , . . . , γ

(k)
mk

)⊤

that solves

min
γ=(γ0,...,γmk

)
⊤

∥Hγ∥ s.t.

mk
∑

i=0

γi = 1.

Set

u(k+1) := β

mk
∑

i=0

γ
(k)
i BFB

α (u((k−mk)+i)) + (1− β)

mk
∑

i=0

γ
(k)
i u((k−mk)+i).

end for

Set U (k+1) := vec−1(u(k+1))
return v + vec(W⊤U (k+1)G⊤)

The PR iteration function for the backpropagation BPR
α is introduced in Appendix F.2 and recalled here: let y(k) be the

22

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

intermediate variable,

y
(k+1) := BPR

α (y(k)) = 2V ⊤
(

2(I + αD)−1(y(k) + αv)− y
(k)

)

− 2(I + αD)−1(y(k) + αv) + y
(k)

(24)

and then the final solution of the operator splitting problem is ũ = (I + αD)−1(y∗ + αv). We now present the Anderson-

accelerated PR MIGNN backward propagation as Algorithm 8.

Algorithm 8 MIGNN-PR-Backward: PR MIGNN backward propagation

Input: initial point y(0) := 0, v := ∂ℓ
∂vec(Z∗) , PR damping parameter α, AA relaxation parameter β, max storage size

m ≥ 1.

Compute f (0) := BPR
α (y(0)),h(0) := f (0) − y(0).

for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := BPR

α

(

y(k)
)

, h(k) := f (k) − y(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(

γ
(k)
0 , . . . , γ

(k)
mk

)⊤

that solves

min
γ=(γ0,...,γmk

)
⊤

∥Hγ∥ s.t.

mk
∑

i=0

γi = 1.

Set

y(k+1) := β

mk
∑

i=0

γ
(k)
i BPR

α (y((k−mk)+i)) + (1− β)

mk
∑

i=0

γ
(k)
i y((k−mk)+i).

end for

Compute u(k+1) where u
(k+1)
i :=

{

y
(k+1)
i

+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
Set U (k+1) := vec−1(u(k+1))
return v + vec(W⊤U (k+1)G⊤)

G. Effects of the Order of Neumann Series Expansion

In this section, we perform ablation studies on the effects of the order of the Neumann series for approximating matrix

(I + α(I − G⊤ ⊗ W))−1 in MIGNN-NK. We study the performance of MIGNN-NK for synthetic directed chain

classification, benchmark graph node classification, and graph classification.

G.1. Directed chain classification

Examining the Neumann series expansion for the synthetic chain classification task demonstrates the trade-off between

accuracy and time complexity. We train MIGNN-NK for three-class classification, where the order K ranges from 1 to 5 in

increments of 1. Fig. 9 plots the resulting test accuracy, number of iterations, and time elapsed for each training epoch.

We make three observations as the order of the Neumann series increases. First the accuracy increases with respect to the

order with diminishing returns. Second the number of iterations increases relative to the order up 3. Finally, the time elapsed

also increases with respect to the order up to 4 and 5 which are similar. These observations underscore the trade-off between

accuracy and time complexity as the order increases.

G.2. Graph classification

In this subsection, we apply MIGNN-NK to classify the MUTAG dataset, where K ranges from 1 to 5 incrementing by

1. Fig. 10 plots the test accuracy, the number of iterations, and the time elapsed for training one fold of the 10-fold cross

validation.

23

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

J. Training procedure details

We provide a short description of the training procedure for each taks and report the tuned hyperparameters for each model.

The hyperparameters were selected using the Bayesian search feature of Weights&Bias [11] over a limited range of inputs.

The hyperparameters considered are detailed in Table 5.

Hyperparameter Options

lr {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}
weight decay {0, 5e-5, 3e-5, 1e-5, 5e-4, 3e-4, 1e-4}

dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
hidden features {16, 32, 64, 96, 128, 160, 256}

lambda max {0.9, 0.95, 0.99, 1.0}
alpha {0.5, 0.8, 0.9}
fp tol {1e-6, 3e-6}

Table 5. Hyperparameter tuning range for all tasks.

Synthetic chains dataset. The synthetic chains dataset is used for node classification with randomly generated training

(5%), validation (10%) and test (85%) portions. The training procedure uses the Adam optimizer to minimize the negative

log likelihood (NLL) loss between the model predictions and ground truth node labels. The model is trained for the full

duration of 2000 epochs, at which point the test accuracy is reported.

lr weight decay dropout hidden features lambda max alpha fp tol

IGNN 0.01 5e-4 0.5 16 0.99 - 3e-6
MIGNN-NK 0.01 5e-4 0 16 1.0 0.9 1e-6

Table 6. Hyperparameter selection for synthetic chains dataset.

Table 6 details the hyper parameters used for the various chain classification tasks. In particular, we use these hyperparameters

for Figures 1, 2, 3, 4, 11 and 12.

Citation dataset. The citations dataset is used for node classification with training, validation and test splits comprising

48%/32%/20% of the data respectively. We use the ten fixed data splits from Pei et al. [45], and use 10-fold cross validation

to evaluate the model performance. Each model is trained using the Adam optimizer to minimize the NLL loss between the

model predictions and ground truth node labels. The training will perform early stopping if the validation accuracy does not

improve after 100 epochs.

lr weight decay dropout hidden features lambda max alpha fp tol K

Cora

MIGNN-Mon 0.005 3e-5 0.8 128 1.0 0.5 3e-6 —

MIGNN-NK 0.007 5e-5 0.8 128 1.0 0.5 3e-6 12

Citeseer

MIGNN-Mon 0.005 3e-5 0.8 128 1.0 0.5 3e-6 —

MIGNN-NK 0.005 3e-5 0.8 128 1.0 0.5 3e-6 12

PubMed

MIGNN-Mon 0.005 3e-5 0.8 128 1.0 0.5 3e-6 —

MIGNN-NK 0.005 3e-5 0.8 128 1.0 0.5 3e-6 12

Table 7. Hyperparameter selection for Citations datasets.

Bioinformatics datasets. The bioinformatics dataset is used for graph classification with training and test splits comprising

90% and 10% of the data respectively. We use ten randomly generated data folds to perform 10 fold cross validation. The

27

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

training procedure uses the Adam optimizer to minimize the NLL loss between the model predictions and the ground truth

graph labels. On each fold, the model is trained for the full duration of 200 epochs.

lr weight decay dropout hidden features lambda max alpha fp tol

MUTAG

MIGNN-Mon 0.001 0 0.1 128 0.99 0.5 3e-6
MIGNN-N1 0.01 0 0.1 128 1.0 0.5 3e-6
MIGNN-N3 0.01 0 0.1 128 1.0 0.5 3e-6

PTC

MIGNN-Mon 0.001 0 0.4 128 0.99 0.5 3e-6
MIGNN-N1 0.001 0 0.4 128 1.0 0.5 3e-6
MIGNN-N3 0.001 0 0.4 128 1.0 0.5 3e-6

COX2

MIGNN-Mon 0.001 0 0.1 128 0.99 0.5 3e-6
MIGNN-N1 0.01 0 0.1 128 1.0 0.5 3e-6
MIGNN-N3 0.01 0 0.1 128 1.0 0.5 3e-6

Proteins

MIGNN-Mon 0.001 0 0.4 128 0.99 0.5 3e-6
MIGNN-N1 0.002 0 0.4 128 1.0 0.5 3e-6
MIGNN-N3 0.002 0 0.4 128 1.0 0.5 3e-6

NCI1

MIGNN-Mon 0.001 0 0 128 0.99 0.5 3e-6
MIGNN-N1 0.001 0 0 128 1.0 0.5 3e-6
MIGNN-N3 0.001 0 0 128 1.0 0.5 3e-6

Table 8. Hyperparameter selection for Bioinformatics datasets.

Amazon product co-purchasing network. The Amazon product co-purchasing dataset is used for node classification

with fixed training, validation and test splits provided by Gu et al. [24]. Notably the portions of the training data vary as

described in Section 5.2. The training procedure uses the Adam optimizer to minimize the BCEwithLogitLoss provided by

the Pytorch library. The model is trained for the full duration of 5000 epochs, at which point the F1-micro/F1-macro scores

on the test data are reported.

lr weight decay dropout hidden features lambda max alpha fp tol

MIGNN-N1 0.01 0 0 256 1.0 0.9 1e-6

Table 9. Hyperparameter selection for Amazon product co-purchasing dataset.

Pore networks. The pore networks are used for node classification where the data is generated on the fly following [43].

In particular, 32 training graphs are used for training in every forward epoch with a new training graph sampled every 32nd

epoch. The training procedure uses the Adam optimizer to minimize the mean squared error (MSE) between the model

predictions and the ground truth node pressures. The model is trained for the full duration of 1000 epochs, at which point

the MSE for each test graph is reported.

lr weight decay dropout hidden features lambda max alpha fp tol

MIGNN-Mon 0.001 0 0 16 1.0 0.9 1e-6
MIGNN-N1 0.001 0 0 16 1.0 0.9 1e-6
MIGNN-N3 0.001 0 0 16 1.0 0.9 1e-6

Table 10. Hyperparameter selection for pore network dataset.

28

