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Abstract

The neural manifold hypothesis postulates that the ac-

tivity of a neural population forms a low-dimensional man-

ifold whose structure reflects that of the encoded task vari-

ables. In this work, we combine topological deep generative

models and extrinsic Riemannian geometry to introduce a

novel approach for studying the structure of neural mani-

folds. This approach (i) computes an explicit parameteriza-

tion of the manifolds and (ii) estimates their local extrinsic

curvature—hence quantifying their shape within the neural

state space. Importantly, we prove that our methodology is

invariant with respect to transformations that do not bear

meaningful neuroscience information, such as permutation

of the order in which neurons are recorded. We show empir-

ically that we correctly estimate the geometry of synthetic

manifolds generated from smooth deformations of circles,

spheres, and tori, using realistic noise levels. We addition-

ally validate our methodology on simulated and real neural

data, and show that we recover geometric structure known

to exist in hippocampal place cells. We expect this approach

to open new avenues of inquiry into geometric neural cor-

relates of perception and behavior.

1. Introduction

A fundamental idea in machine learning is the mani-

fold hypothesis [4], which postulates that many kinds of

real-world data occupy a lower-dimensional manifold em-

bedded in the high-dimensional data space. This perspec-

tive has also informed the analysis of neural population ac-

tivity, where it is hypothesized that neural representations

form low-dimensional manifolds whose structure reflects

the structure of the task variables they encode—the neural

manifold hypothesis [12, 17, 20, 48].

A clear example of this can be observed in the brain’s

so-called “cognitive maps” of space, encoded in the activ-

ities of place cells in the hippocampus [40] and grid cells

in the entorhinal cortex [23]. These neural populations are

Three Examples of Topologies of Neural Manifolds
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Figure 1. Topology versus geometry. Topological methods re-

veal whether the neural manifold is a ring, a sphere, or a torus,

i.e., whether it belongs to one of the three columns. Our geomet-

ric analysis determines the curvature of the ring, sphere, or torus

—hence revealing their neural shape.

responsible for tracking an animal’s position as it navigates

physical space. Grid cells exhibit striking regularity in their

firing patterns, tiling space in hexagonal grids [38]. It has

been observed, however, that these grid maps of space do

not always faithfully reflect physical distances. Rather, the

animal’s cognitive map can be warped and distorted by the

reward or relevance associated with different regions of the

map [7,29,44]. Here, we propose a method that can explic-

itly quantify and analyze this kind of neural warping.

We introduce a novel approach to reveal the geometry of

neural manifolds. When applied to high-dimensional point-

cloud data, our method (i) computes an explicit parameteri-

zation of the underlying manifold and (ii) estimates its local

extrinsic curvature, hence providing a concrete quantifica-

tion of its neural shape within the neural state space (see

Fig. 1). Our contributions are as follows.

1. We present a Riemannian method for estimating the

extrinsic curvatures of neural manifolds, which lever-

ages topological Variational Autoencoders (VAEs). We
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provide intuition for the mathematics behind this ap-

proach with the analytical calculation of curvature for

three manifolds commonly encountered in neuroscience:

rings, spheres, and tori (Fig. 1).

2. We demonstrate that this method is invariant under (a)

reparameterization of the VAE’s latent space and (b) per-

mutation of the order in which recorded neurons appear

in the data array. As such, our approach is appropriate

for recovering meaningful geometric structure in real-

world neuroscience experiments.

3. We quantify the performance of the method applied

to synthetic manifolds with known curvature profiles,

by computing a curvature estimation error under varied

numbers of recorded neurons and simulated, yet realis-

tic, measurement noise conditions. We further demon-

strate its application to simulated place cell data—cells

from neural circuits involved in navigation.

4. We successfully apply our method to real hippocampal

place cells recorded from rodents moving along a cir-

cular track [27, 33]. We show that we reveal geometric

structure that is consistent with results on simulations.

This paper thus proposes a first-of-its-kind approach for

explicitly quantifying the extrinsic curvature of a neural

manifold. Our goal is to provide the neuroscience com-

munity with tools to rigorously parameterize and quantify

the geometry of neural representations. All code is publicly

available and new differential geometric tools have been in-

corporated in the open-source software Geomstats [37].

2. Related Works

Learning Low-Dimensional Structure of Neural Man-

ifolds Many approaches to uncovering manifold struc-

ture in neural population activity rely on dimensionality

reduction techniques such as Principal Component Anal-

ysis (PCA), Isomap, Locally Linear Embedding (LLE),

and t-Distributed Stochastic Neighbor Embedding (t-SNE)

[42, 43, 46, 47]. While these techniques can reveal the ex-

istence of lower-dimensional structure in neural population

activity, they do not provide an explicit parameterization of

the neural manifold, and often misrepresent manifolds with

non-trivial topology [49].

Learning the Topology of Neural Manifolds Meth-

ods based on topological data analysis (TDA), such as

persistent homology, have begun to reveal topological

structure in neural representations and the task variables

they encode [10, 14, 21, 26]. Topological methods can

identify when two manifolds have the same number of

holes—differentiating, for example, a ring from a sphere or

a torus (see topologies in Fig. 1). While these methods are

able to uncover properties of the manifold that are invari-

ant to continuous deformations, they do not necessarily cap-

ture the strictly geometric properties of the manifold—i.e.,

structure that changes under continuous deformations, such

as curvature (see vertical axis in Fig. 1). To date, few meth-

ods exist to explicitly quantify and parameterize the geo-

metric structure of neural manifolds. A geometric parame-

terization of neural manifolds would permit a more precise

understanding of the behavioral or perceptual relationships

between points in the neural state space.

Learning Riemannian Geometry with Deep Genera-

tive Models Recent theoretical advancements have per-

mitted the analysis of the Riemannian geometry of man-

ifolds learned in deep neural network models, including

VAEs [9,13,25,45]. These analyses permit geometry-aware

statistics on the model latent space [11, 32], and can be

used to improve training [2, 8, 28]. In addition to its ap-

plication in the neuroscience domain, our work also ex-

tends these techniques. Thus far, all such approaches have

focused exclusively on intrinsic notions of curvature, as

given by the Riemann curvature tensor and contractions

thereof such as the Ricci tensor or the scalar curvature ten-

sor [25,32,45]. We extend these methods with an approach

capable of quantifying the extrinsic curvature of latent man-

ifolds, which—as we will argue—is more suitable to de-

scribe manifolds emerging in experimental neuroscience.

3. A Riemannian Approach to Neural Popula-

tion Geometry

We propose a method to compute geometric quanti-

ties—the first fundamental form (i.e. the pullback metric),

the second fundamental form, and the mean curvature vec-

tor at every point on a neural manifold—resulting in a pow-

erful and precise description of the geometry of neural pop-

ulation activity.

3.1. Overview

We denote with M the neural manifold of interest, which

represents the population activity of N neurons in the neural

state space X = R
N
+ as illustrated in Fig. 1 and Fig. 2.

Our approach learns the neural population geometry in three

steps.

1. Learn the Topology: The topology of M can be de-

termined using topological data analysis methods such as

persistent homology [22]. We define the template man-

ifold Z as the canonical manifold homeomorphic to M.

For example, for a neural manifold with the topology of

a one-dimensional ring, we choose Z to be the circle, S1.

In our neuroscience applications, we specifically consider
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Figure 2. Methods Overview. Neural activity vectors are represented as orange points in X = R
N

+ : they correspond either to the activation

of an artificial neural network layer with N neurons, or to the electrical recordings of N biological neurons. Together, the set of neural

activity vectors forms a neural manifold. Our method uses a topologically-aware variational autoencoder (VAE), whose latent space has

the (known) topology of the neural manifold, shown here as the ring S1. The decoder provides an estimate of the differentiable function f̂
whose derivatives yield the Riemannian metric, as well as the intrinsic and extrinsic curvatures of the neural manifold.

template manifolds that are either n-spheres Sn, or di-

rect products of n-spheres, as these include the most com-

mon topological manifolds observed in neuroscience exper-

iments: S1, S2 and T 2 = S1 × S1.

2. Learn the Deformation: We determine the mapping

f : Z → X that characterizes the smooth deformation

from the template Z to X . We encode f with a neural net-

work and propose to learn it with a variational autoencoder

(VAE) [30] trained as a latent variable model of neural ac-

tivity in X = R
N
+ for N neurons. The VAE’s latent space

is topologically-constrained to be Z , as in [16, 19, 35, 36].

After training, the VAE’s decoder provides an estimate f̂ of

f , i.e. a differentiable function whose derivatives yield the

Riemannian metric, and intrinsic and extrinsic curvatures of

the neural manifold —see Fig.2.

3. Learn the Geometry: By using a decoder that is twice

differentiable, via neural network activation functions such

as tanh(·) and softplus(·), and considering the fact that in-

vertible matrices are a dense subset in the space of square

matrices, the map f̂ is a diffeomorphism from Z to the

(learned) neural manifold M̂, and an immersion of Z into

the neural state space X = R
N
+ . As such, f̂ allows us to en-

dow a pullback metric on the latent space template manifold

Z , which characterizes the Riemannian geometry of M em-

bedded in the neural state space X . We use automatic dif-

ferentiation to compute the pullback metric and curvatures

from f̂ .

3.2. Learning the Deformation with Topologically­
Aware VAEs

Variational Autoencoders (VAEs) [30] are probabilistic

deep generative models that learn to compress data into a

latent variable, revealing latent manifold structure in the

process. The supplementary materials provide an introduc-

tion to this framework. In a standard VAE, latent variables

take values in Euclidean space, z ∈ R
L (where typically

L < N ), and their prior distribution p(z) is assumed to

be Gaussian with unit variance, p(z) = N (0, IL). While

these assumptions are mathematically convenient, they are

not suitable for modeling data whose latent variables lie on

manifolds with nontrivial topology [16, 19]. Our approach

instead constrains the latent space of the VAE to the tem-

plate manifold Z , assumed to be an n-sphere Sn or direct

products thereof. We follow the implementation of a hyper-

spherical VAE [16] and a toroidal VAE [5] to accommodate

the product of circles as well.

Hyperspherical VAEs The hyperspherical VAE uses the

uniform distribution on the n-sphere U(Sn) as its non-

informative prior p(z), and a von Mises-Fisher vMF(µ, κ)
distribution as its approximate posterior. We follow [16]

to implement the regularization loss corresponding to the

Kullback-Leibler divergence for the hyperspherical VAE

and also use their proposed sampling procedure for vMF,

which gives a reparameterization trick appropriate for these

distributions. Hyperspheres represent a very important class

of neural manifolds, e.g. emerging in the circular structure

of the head direction circuit [10].
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Toroidal VAEs To accommodate additional neural mani-

folds of interest to neuroscience, we extend the hyperspher-

ical VAE by implementing a toroidal VAE: T n-VAE [5].

The n-Torus T n can be described as the product of n circles

T n = S1 × · · · × S1

︸ ︷︷ ︸
n

. Each subspace S1 of the latent space

T n can be treated independently, so that the posterior distri-

bution can be factorized into a product of vMF distributions

over each latent angle. Tori are a very important class of

neural manifolds, e.g. emerging in the toroidal structure of

grid cell representations [21].

Parameterization of the Neural Manifold Our VAE’s

latent space is constrained to be the template manifold Z ,

i.e., it has the topology of the neural manifold M. We

train the VAE with a L2 reconstruction loss and the KL-

divergence that is suited for the chosen template manifold.

The map f̂ of its learned decoder gives a continuous pa-

rameterization of the neural manifold: the points z of the

template manifold Z parameterize the points f̂(z) on the

neural manifold M. Addressing the lack of uniqueness of

the parameterization learned will be the focus of Section 4.

3.3. Geometry: Learning Neural Curvatures

We leverage the learned deformation f̂ : Z → M ¢ X
to extract geometric signatures of the neural manifold M.

Importantly, we compute its extrinsic curvature, which rep-

resents its neural shape in the high-dimensional data space.

We rely on Riemannian geometry, which provides tools to

quantify curvatures and geometric structures. Additional

background on geometry can be found in [3].

Definition 1 (Riemannian metrics and manifolds [3]). Let

Z be smooth connected manifold and TzZ be its tangent

space at the point z ∈ Z . A Riemannian metric g on

Z is a collection of positive-definite inner products gz :
TzZ × TzZ → R that vary smoothly with z. A manifold

Z equipped with a Riemannian metric g is called a Rie-

mannian manifold (Z, g).

We learn the Riemannian metric of a neural manifold

M to learn its geometry. To do so, we represent the neu-

ral manifold as a parameterized high-dimensional surface

in the neural state space X = R
N
+ : a representation given

by the learned deformation f̂ , which is an immersion (see

Fig. 3).

Definition 2 (Immersion [3]). Let f be a smooth map f :
Z → X between smooth manifolds Z and X . The map f

is an immersion if its differential at z, i.e. the map dfz :
TzZ → Tf(z)X , is injective ∀z ∈ Z .

To satisfy the injectivity requirement, we can see that

f is an immersion only if dim(Z) f N . A trivial ex-

ample of an immersion is the injection (x1, ..., xd) 7→

Figure 3. Immersion f sending Z = S1 into f(S1) immersed in

R
N

+ . The function f maps a point z ∈ S1 into a point f(z) ∈
f(S1). Its differential df(z) at z maps vectors u, v tangent to S1

at z, into vectors tangent to f(S1) at f(z).

(x1, ..., xd, 0, ..., 0) from R
d to another vector space RN>d.

By using a decoder f̂ that is twice differentiable, via neural

network activation functions such as tanh(·) and softplus(·),

the learned map f̂ is an immersion. Figure 3 shows an im-

mersion f going from the template manifold Z = S1 to

the neural manifold M ¢ X . The map f parameterizes the

manifold f(S1) immersed in X with angular coordinates in

S1.

Pullback Riemannian Metric The immersion f̂ induces

a Riemannian metric structure on M, or equivalently on its

template manifold Z .

Definition 3 (Pullback metric [3]). Let f be an immersion

f : Z → X where X = R
N
+ is equipped with a Riemannian

metric g. The pullback metric f∗g is a Riemannian metric

on Z defined ∀z ∈ Z and ∀, u, v ∈ TzZ as:

(f∗g)z(u, v) = gf(z)(df(z).u, df(z).v)

Intuitively, the pullback metric quantifies what the neu-

ral manifold “looks like” in X = R
N
+ , i.e. its neural shape

in neural state space. In this paper, we choose g to be the

canonical Euclidean metric of X : in other words, we quan-

tify the geometry of the neural manifold M by using (or

pulling back) the Euclidean metric of X on M. In practice,

the pullback metric is computed with automatic differentia-

tion from f̂ . To further provide intuition on definition 3, the

derivations of pullback metrics of the common neural mani-

folds in the first row of Fig. 1 are given in the supplementary

materials.

Extrinsic Curvature The Riemannian metric of the neu-

ral manifold allows us to calculate geometric quantities like

angles, distances, areas, and various types of curvatures.

Riemannian geometry applied to deep learning has focused

on intrinsic notions of curvatures, given by the Riemann

curvature tensor and contractions thereof, such as the Ricci

tensor or the scalar curvature tensor [25, 32, 45]. However,
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we argue that extrinsic curvatures contain more meaning-

ful information, specifically in the context of neural mani-

folds. Indeed, intrinsic curvatures cannot provide an inter-

esting description of the local geometry of one-dimensional

neural manifolds such as rings, as their value is identically

zero at each point of such neural manifold (see proof in the

appendices). Since one-dimensional neural manifolds are

ubiquitous in neuroscience, we suggest instead to use an ex-

trinsic notion of curvature. We use one particular extrinsic

curvature: the mean curvature vector. We consider a local

coordinate system on Z around z and index its basis ele-

ments with i, j, k. We will use a local coordinate system on

M = f(Z) ¢ X around f(z) and index its basis elements

with α, β, γ. These notations are used in Definition 4, and

in the appendices, together with Einstein summation con-

vention for repeated indices.

Definition 4 (Mean curvature vector H). Consider the im-

mersion f of Definition 2 representing the manifold M ¢
X = R

N
+ parameterized by Z . The mean curvature vector

H(z) ∈ R
N is defined, for α ∈ {1, ..., N}, as:

Hα(z) =
1

N
(f∗g)ijz (∂

2
ijf

α(z)− Γk
ij(z)∂kf

α(z)),

where (f∗g)ijz is the inverse of the Riemannian (pullback)

metric matrix of Definition 3, Γk
ij are the Christoffel sym-

bols associated with the metric f∗g.

This definition is only valid upon choosing g to be the

canonical Euclidean metric of R
N
+ . The general formula

for any metric g is in the supplementary materials together

with the derivation of Definition 4 in the Euclidean case,

and of the mean curvature vectors in the special cases of

two-dimensional surfaces in R
3.

Intuitively, the mean curvature vector at a given point of

the manifold z is orthogonal to the manifold with a norm in-

versely proportional to the radius of the best fitting sphere at

that point z: spheres of small radii have high curvatures and

vice-versa. The mean curvature vector leads us to define

the quantity that we use to visually represent the geomet-

ric structure of neural manifolds from our experiments: the

curvature profile.

Definition 5 (Curvature profile). Consider the immersion f

of Definition 2 representing the manifold M ¢ X parame-

terized by Z . Consider a latent variable z0 ∈ Z and a unit

tangent vector u0 ∈ Tz0Z . We define the curvature profile

of M in direction df(z0).u0 as the map from R to R:

s → ∥H(z(s))∥z(s) for: z(s) = Expf
z0
(s.u0),

where Expfz0 is the Riemannian exponential on Z corre-

sponding to the pullback metric f∗g.

Intuitively, this definition gives the curvature profile of

the manifold Z in any direction u0, as if the manifold was

“sliced” according to u0. Importantly, the curvature pro-

files are parameterized with the length s along the geodesic

leaving from z0 in the direction of u0. To further provide in-

tuition on Definition 5, we give the curvature profiles of the

common neural manifolds shown on the first row of Fig. 1

in the supplementary materials. In practice, we extend the

software Geomstats [37] by integrating the computation

of the mean curvature vector, together with the differen-

tial structures of the so-called first and second fundamental

forms that provide a general, open-source and unit-tested

implementation.

4. Theoretical Analysis

Our method, described in Section 3, yields the curvature

profile of a neural manifold. If the neural manifold has the

geometry of a “perfect” circle, sphere, or torus (as in Fig. 1,

top row), we expect to find curvature profiles corresponding

to the ones computed in the supplementary materials. By

contrast, if the neural manifold presents local variations in

curvature (as in Fig. 1, bottom row), experiments will give

curvature profiles with a different form.

To yield meaningful results for real-world data, the

model must additionally meet two theoretical desiderata:

invariance under latent reparameterization, and invariance

to neuron permutation. Here, we demonstrate that these

desiderata are met.

4.1. Invariance under Latent Reparameterizations

We demonstrate that our approach does not suffer from

the VAE non-identifiability problem of variational autoen-

coders [24]. By utilizing the geodesic distance s on the la-

tent space in Definition 5, we avoid relying on the specific

coordinates of the latent variables, resulting in meaningful

curvature profiles.

VAE Non-Identifiability Consider a VAE trained on data

xi ∈ M ¢ X , which learns the low-dimensional latent

variables zi ∈ Z with prior p(z) and the decoder f : Z →
X . Consider a reparameterization

ϕ : Z → Z, z 7→ z̃ = ϕ(z)

with the property that z ∼ p(z), z̃ ∼ p(z̃), p(z̃) = p(z).
Then a VAE with latent variables z̃ and decoder f̃ = f◦ϕ−1

will yield the same reconstruction, and thus be equally opti-

mal. Thus, parameterizing the curvature profile of the neu-

ral manifold with a latent variable z will not be meaning-

ful, in the sense that the overall profile will exhibit features

that depend on the parameterization ϕ of Z . This is known

as VAE non-identifiability, and it requires us take caution

when analyzing the geometry of the latent space [24].

Invariant Curvature Profile We show that the curvature

profile defined in Definition 5 is invariant with respect to

reparameterizations ϕ.
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Lemma 1 (Invariance under reparameterizations). The cur-

vature profile is invariant under reparameterizations f →
f ◦ ϕ−1 of the neural manifold M.

We provide a proof in the supplementary materials. The

consequence is that our proposed method does not suffer

from VAE non-identifiability. An alternative approach to

deal with VAE non-identifiability is to directly link each

latent variable z with a real-world variable correspond-

ing to its data point x. The term Llatent corresponds to

the squared distance between the latent variable z and its

ground-truth value zgt, computed using the Euclidean met-

ric of the embedding space of Z: LZ

latent = dist(z, zgt)
2

where dist is the geodesic distance associated with the

canonical Riemannian metric of Z (not the pullback met-

ric). This approach is supervised as we enforce that the la-

tent variables z bear meaning related to the real-world task:

the local curvature of the neural manifold can be studied in

correlations with real-world variables. This supervised ap-

proach effectively selects a canonical parameterization that

parameterizes the neural manifold by real-world task vari-

ables.

4.2. Invariance under Neuron Permutation

In experimental neuroscience, the order in which neu-

rons appear in a data array may change between recording

sessions and has no bearing on the underlying latent struc-

ture. Thus, methods for extracting geometric structure from

neural data should not depend on neuron ordering. In this

regard, we first validate our pre-processing step and previ-

ous topological methods that rely on TDA by demonstrat-

ing the independence of the topology of the neural manifold

from neuron order. We also show that the order in which

we record the N neurons to form the neural state space R
N
+

does not impact the curvature profiles.

Lemma 2 (Invariance under permutations). Consider a

neural manifold M embedded in neural state space R
N
+

corresponding to the recording of N neurons. Permuting

the order of the N neurons: (i) leaves the topology of M
invariant, (ii) leaves the geometry of M invariant.

The proof is in the supplementary materials and relies

on the fact that a permutation of the neurons in R
N
+ yields

an isometry of M, in other words: that the Euclidean met-

ric g of RN
+ is invariant to permutations. Consequently, fu-

ture works aiming at pulling back another metric should first

verify that the new metric is invariant to permutations.

5. Experiments

5.1. Synthetic Manifolds

We first test our method on synthetic datasets of circles,

spheres and tori distorted by small Gaussian “bumps”, em-

bedded in R
2
+, R3

+ and R
3
+ respectively —see Fig. 4. The

Figure 4. Synthetic manifolds created from smooth deformations

of template manifolds S1, S2 and T 2. A. Left, synthetic manifold

created from deformed circle along with its VAE reconstruction,

color represents ground-truth angle. Right, profile of mean cur-

vature norm: ground-truth (blue) compared to estimated (orange)

along with the calculated error. B and C. The left side shows the

synthetic manifolds and their corresponding reconstructions (color

added for visualization of bump-like deformations); the right side

shows the norm of the mean curvature plotted on the template

manifolds, computed (1) from the ground truth smooth deforma-

tion, and (2) from the smooth deformation f̂ learned by the VAE

decoder.

exact process generating these datasets in given in the sup-

plementary materials. In these synthetic experiments, the

curvature profile can be computed analytically and com-

pared to the learned curvature profile, as in Fig. 4. We verify

that the ground-truth topology and geometry can be recov-

ered, validate the model’s invariance under reparameteriza-

tion, and test the effects of simulated experimental noise

and the number of simulated neurons.

Validation of Learned Topology and Geometry We first

verify that TDA correctly learns the topology of the neural

manifold in the synthetic datasets. This is illustrated in the

supplementary materials. We next verify that our approach

correctly learns the geometry of the neural manifolds when

supervision is added to enforce a canonical parameteriza-

tion of the latent space. Our VAE correctly learns a com-

pressed latent representation z in the desired template man-

ifold Z , that further corresponds to the ground-truth zgt, as

shown in Fig. 4 A, B for z = θ representing the angle on S1
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and the latitude on S2 respectively. The VAE’s trained de-

coder provides an accurate reconstruction of the input neu-

ral manifold (see Fig. 4 (A-B-C) Left). The trained decoder

function then allows us to calculate the local mean curvature

at each point on the manifold (see Fig. 4 (A-B-C) Right).

Effect of Noise and Number of Neurons We run exper-

iments on synthetic distorted circles to evaluate the accu-

racy of the curvature estimation. Our evaluation metric is

the curvature estimation error defined as a normalized error

proportional to the integrated difference squared of the two

mean curvature profiles:

Definition 6 (Curvature Estimation Error). The error be-

tween the estimated curvature Ĥ and its true value H is

given by:

Error(H, Ĥ) =

∫

Z

∥H(z)− Ĥ(z)∥2 dZ(z)
∫

Z

(∥H(z)∥2 + ∥Ĥ(z)∥2) dZ(z)

,

where Z is the known template manifold and dZ(z) its Rie-

mannian measure.

The curvature estimation error is thus expressed as a

fraction (%) of the sum of both curvatures. We compute

Error(H, Ĥ) for curvature profiles estimated from a wide

range of distorted circles. Specifically, we generate syn-

thetic distorted circles as outlined in the supplementary ma-

terials, where we vary: (i) the noise level, i.e., the stan-

dard deviation of the Gaussian noise: σ ∈ [0%, 12%] ex-

pressed in % of the radius of the distorted circle, i.e. the

manifold’s size; and (ii) the number of recorded neurons N ,

which is the embedding dimension of the synthetic mani-

fold: N ∈ [3, 25]. We emphasize that we chose these noise

values in order to match the noise amplitudes observed in

real neural data [27], and we chose values for N that cor-

respond to the number of neurons traditionally recorded in

real experimental neuroscience.

Fig. 9 (A) in the supplementary materials shows that

Error(H, Ĥ) varies between 0.5% and 5% of the true cur-

vature for both distorted circles across these realistic noise

levels when the number of neurons is fixed at N = 2.

For each value of σ, a synthetic manifold was created and

our method was applied 5 times: the vertical orange error

bars show the minimum and maximum of the error across

5 trainings. Fig. 9 (B) shows that Error(H, Ĥ) does not de-

pend on the number of neurons N , and specifically does not

reach the magnitude of error observed upon varying σ. This

demonstrates that our method is suited to learn the geom-

etry of neural manifolds across these realistic noise levels

and number of neurons, and motivate its use in the next sec-

tion on simulated and experimental one-dimensional neural

manifolds.

Figure 5. Computed curvature profiles of learned decoder immer-

sion, plotted on the a circle of radius 1/2. Left: We plot the mag-

nitude of the mean curvature as a function of the latent angle θ,

∥H∥ = ∥H(θ)∥. This curvature profile suffers from VAE non-

identifiability. Right: We plot the magnitude of the mean curvature

as a function of the distance of a latent angle θ to some reference

angle θ0, ∥H∥ = ∥H(dist(θ0, θ))∥, where dist is computed using

the pullback metric. This approach is significantly better able to

capture the true curvature structure on the neural manifold S1

Validation of Invariance under Reparameterizations

As shown in Fig. 5, we experimentally demonstrate that

in the unsupervised setting, our parameterization-invariant

approach for computing the curvature profile of distorted

circles is better able to recover the true curvature struc-

ture on the synthetic manifold, compared to the naive

parameterization-sensitive procedure.

5.2. Neural Manifolds

5.2.1 Simulated Place Cells

We simulate the neural activity of place cells to provide in-

tuition about the neural geometry that we expect to find in

experimental data (next section). In this simulation, an an-

imal moves along a circle in lab space. We simulate the

activity of 3 place cells as shown in Fig. 6 (A): each neuron

peaks when the animal is at a specific lab angle on the cir-

cle (40 degrees, 150 and 270 degrees respectively) and has a

place field of a fixed width (80, 300, and 180 respectively).

These neural recordings form the neural manifold M ¢ R
3
+

shown in Fig. 6 (A) (Right - Simulated). In this experiment,

we can record the true positional angle of the animal with

cameras provided in the lab. Therefore, we use a canonical

parameterization of the latent space’s angles with latent loss

term from the previous section.

Our approach correctly reconstructs the neural activity

and learns a neural manifold whose geometry matches the

ground-truth in Fig. 6 (A). The canonical parameterization

of the latent space is correctly learned thanks to the supervi-

sion of the latent loss, see Fig. 6 (B). The curvature profile

is shown in Fig. 6 (C) The profile shows 3 shallow peaks,

which correspond to the higher curvature observed in the

neural manifold when the animal is at at angle that is in be-

tween the peaks of two place fields.
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Figure 6. Simulated place cells. (A) Left: Simulated and recon-

structed neural activity with respect to the positional angles of the

animal in lab space. Right: Simulated and reconstructed neural

manifolds, colored with the simulated and reconstructed activa-

tions of neuron 3. (B) Latent parameterization: angular latent vari-

ables are colored by the animal’s positional angles in lab space.

(C) Curvature profile in log scale: angles represent the animal’s

positional angles, colored by the reconstructed activation of neu-

ron 3.

5.2.2 Experimental Place Cells

We apply our method to real neural data from rats [27] run-

ning in a VR Dome apparatus [33], which realizes the simu-

lations from the previous subsection. In this experiment, an-

imals run on a circular track S1 surrounded by projected vi-

sual cues, while we record the neural activity of place cells

in the hippocampal CA1 region. As place cells typically en-

code the position of the rat in space, we expect the topology

of the neural manifold to be S1 and choose Z = S1. This

experiment also possesses a “canonical” parameterization

as the animal’s positional angle is recorded by a lab cam-

era: we use this angle to supervise the latent angles with the

latent loss. We discuss the details of the experimental place

cell data in the supplementary materials. Here, we detail

how our approach can be used to reveal novel neuroscience

insights. In the Dome experiment, visual landmarks were

moved by a fraction (G) of the rat’s physical movement on

the circular track [27]. Place cells remain locked to these

moving landmarks - i.e. the radius of the S1 neural man-

ifold scales according to G. This scaling persists even af-

ter landmarks are turned off, indicating a recalibration of

self-motion inputs. In the original work, the radius of the

neural manifold (∝ inverse of curvature H) was determined

through a Fourier-based method, necessitating multiple cy-

cles through the manifold to generate an averaged estimate.

Our method can track the sub-cycle evolution of H , allow-
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Figure 7. Experimental Place Cells. (A) Recorded versus recon-

structed neural activity with respect to the animal’s positional an-

gles in lab space. (B) Latent parameterization: angular latent vari-

ables are colored by animal’s positional angles in lab space. (C)

Curvature profile in log scale: angles represent animal’s positional

angles colored by the reconstructed activation of neuron 4.

ing for more precise understanding of how local sensory in-

puts (such as proximal landmarks) contribute to the dynam-

ical scaling of neural geometry. A subsequent experiment

showed how the latent position encoded in place cells can

be decoupled from physical space in the absence of visual

landmarks [34]. Our method can be used to decode the local

curvature profile of the neural representation in the absence

of correlated real-world variables. Recent research shows

that neurons of the cognitive map can encode task-relevant

non-spatial variables [1, 15, 31, 39, 41]. Our method can be

used to test whether the geometric features of these latent

variables correspond to that of the task.

6. Conclusion

We have introduced a novel approach for quantifying the

geometry of neural manifolds. We expect that this method

will open new avenues for research in the geometry of neu-

ral representations.
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