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ABSTRACT

Crystal structures are characterized by atomic bases within a primitive unit cell that
repeats along a regular lattice throughout 3D space. The periodic and infinite nature
of crystals poses unique challenges for geometric graph representation learning.
Specifically, constructing graphs that effectively capture the complete geometric
information of crystals and handle chiral crystals remains an unsolved and challeng-
ing problem. In this paper, we introduce a novel approach that utilizes the periodic
patterns of unit cells to establish the lattice-based representation for each atom,
enabling efficient and expressive graph representations of crystals. Furthermore,
we propose ComFormer, a SE(3) transformer designed specifically for crystalline
materials. ComFormer includes two variants; namely, iComFormer that employs in-
variant geometric descriptors of Euclidean distances and angles, and eComFormer
that utilizes equivariant vector representations. Experimental results demonstrate
the state-of-the-art predictive accuracy of ComFormer variants on various tasks
across three widely-used crystal benchmarks. Our code is publicly available as part
of the AIRS library (https://github.com/divelab/AIRS).

1 INTRODUCTION

Accelerating the discovery of novel materials with desirable properties has values in many science,
engineering, and biomedical applications (Ramprasad et al., 2017; Meredig et al., 2014; Oliynyk
et al., 2016; Raccuglia et al., 2016; Ward et al., 2016; Liu et al., 2021b;c; Luo et al., 2021; Xie
et al., 2022; Fu et al., 2023; Wang et al.; Chanussot et al., 2021; Zhang et al., 2023). However, the
current reliance on traditional, costly, and time-consuming trial-and-error experimental methods poses
practical challenges. In this regard, computational approaches based on quantum mechanics, such as
density functional theory (DFT), have made significant contributions for predicting the physical and
chemical properties of materials to guide materials discovery experiments. Nevertheless, the high
computational cost associated with these methods (ranging from n? to n”, where n represents the
number of atoms) still poses a hurdle for novel materials discovery in the vast materials space.

To reduce computational cost, recent studies employ machine learning (ML) models (Yu et al., 2022;
Ying et al., 2021; Gao & Ji, 2019; Liu et al., 2021a; Fu et al., 2022; Passaro & Zitnick, 2023; Gasteiger
et al., 2020; Liao & Smidt, 2022; Batzner et al., 2022; Satorras et al., 2021; Qiao et al., 2022; Watson
et al., 2022; Ahmad et al., 2018), such as crystal graph representations (Xie & Grossman, 2018;
Ling et al., 2023) with deep neural networks. However, these crystal graph representations have
limitations in distinguishing different crystalline materials. In other words, they cannot guarantee
to capture the complete geometric information of input crystal structures, and may map different
crystal structures with different properties to the same graph representation and produce the identical
property predictions. Illustrative examples and detailed discussions can be found in Appendix A.1.

While graph representations that can capture any structural differences in small molecules have been
investigated in previous works (Wang et al., 2022; Klicpera et al., 2021), these methods fail short to
capture periodic patterns of crystals and cannot maintain geometric completeness for crystals. Thus,
how to construct graph representations for crystalline materials that can distinguish any different
crystals and remain the same under crystal passive symmetries detailed in Sec. 3.1 remains unsolved.
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Establishing invariant (Anosova & Kurlin, 2022; Edelsbrunner et al., 2021) and complete repre-
sentations have also been investigated for other applications, especially representations of matrix
forms or consisting of aligned coordinates that can be used to measure the structural differences
between crystals. Among them, AMD (Widdowson et al., 2022) and PDD (Widdowson & Kurlin,
2022) are two recent works that satisfy continuity under small perturbations of atom positions by
using Euclidean distances. However, AMD and PDD cannot distinguish chiral crystals and cannot be
directly used to predict crystal properties without breaking the completeness.

In this work, we focus on crystal property prediction and propose SE(3) invariant and SO(3) equivari-
ant crystal graph representations to strive for geometric completeness for crystalline materials. Based
on these expressive crystal graphs, we develop ComFormer with two variants; namely iComFormer
that employs SE(3) invariant crystal graphs, and eComFormer that uses SO(3) equivariant crystal
graphs. Both variants can scale to large-scale crystal datasets with complexity O(nk) where n
denotes the number of atoms in the crystal unit cell and k£ denotes the average number of neighbors.
We evaluate the proposed ComFormer variants on three widely-used crystalline material benchmarks.
The state-of-the-art performances of ComFormer variants on various tasks across different scales
demonstrate the effectiveness of the proposed crystal graphs and ComFormer variants.

2 BACKGROUND AND RELATED WORK

2.1 CRYSTAL STRUCTURES AND CRYSTAL PROPERTY PREDICTION

Crystal structures consist of a unit cell and a set of atom bases associated with the unit cell. The
unit cell is defined by a 3 x 3 lattice matrix indicating how the unit cell repeats itself in 3D space.
Following the notations in Yan et al. (2022), crystal structures can be represented by M = (A, P,
L), where A = [a1,a9, -+ ,a,] € R4 *" contains the d,-dimensional feature vectors for n atoms
in the unit cell, P = [py, p2, -+, pn] € R3*™ contains the 3D Euclidean positions of n atoms in the
unit cell, and the lattice matrix L = [£1, £2, £3] € R3*3 describes the repeating patterns of the unit
cell structure in 3D space. Different from molecules and proteins, crystal structures naturally repeat
infinitely in space. Formally, the infinite crystal structure can be described as

P ={pi|[pi = pi + k11 + koly + k3ls, ki, ko ks € Z,i € Z,1 < i <n},

. o . . ey
A ={d;|la; =a;,i€Z,1 <i<n},

where the set P represents all 3D positions for every atom ¢ in the repeated unit cell structure, and
the set A represents the corresponding atom feature vector for every atom. In this paper, we aim
to predict the target property value y, where y € R for regression tasks ory € {1,2,--- ,C} for
classification tasks with C classes by using crystal structure (A, P, L) as input.

2.2  GEOMETRIC COMPLETENESS FOR CRYSTAL GRAPHS AND CHALLENGES

Definition 1 (Geometrically Complete Crystal Graph). Following Widdowson & Kurlin (2022), a
crystal graph G is geometrically complete if G = Go — M = My, where = denotes that two
crystals are isometric as defined in Appendix A.3. It means if two crystal graphs G and G5 are the
same, the infinite crystal structures represented by G1 and Gs are identical.

A crystal graph G is considered geometrically complete if it can distinguish any minor structural
differences between different crystalline materials.

Challenges. Achieving geometric completeness for crystals is more challenging than small molecules.
Different from molecules, crystals consist of unit cell structures and corresponding periodic pat-
terns, with infinite number of atom positions described by P = {Pilpi = pi + k181 + kals +
k3ls, ki,ko, ks € Z,i € Z,1 < i < n}. Previous methods for molecular representation learn-
ing (Liu et al., 2022; Klicpera et al., 2021) only consider atom interactions within a radius, and cannot
capture the periodic patterns of crystals. As a result, these methods fall short to maintain geometric
completeness when extended to crystals as shown in Appendix A.1. Furthermore, different from
rotation and translation invariances for molecular representation learning, unique crystal passive sym-
metries arisen from enormous number of choices of unit cell structures and corresponding periodic
patterns to describe a crystal structure need to be considered, including unit cell SE(3) invariance,
unit cell SO(3) equivariance, and periodic invariance as detailed in Sec. 3.1.
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2.3 RELATED WORKS

Crystal graph neural networks. To capture atom interactions across cell boundaries, Xie &
Grossman (2018) proposed CGCNN with multi-edge crystal graphs which use Euclidean distances
as edge features. Based on the multi-edge crystal graph, Chen et al. (2019) and Louis et al. (2020)
proposed different model architectures to enhance property prediction accuracy. In addition to
Euclidean distances, Choudhary & DeCost (2021) and Chen & Ong (2022) proposed to include
angle information and build line graphs with complexity O(nk?) to increase the geometric modeling
capacity, where n denotes the number of atoms in the unit cell and k denotes the average number of
neighbors for every atom. Recently, Matformer (Yan et al., 2022) was proposed to encode periodic
patterns by self-connecting edges, and PotNet (Lin et al., 2023) considers the infinite summations
of pairwise atomic interactions with additional computational cost O(n?). Despite the successes
of previous crystal neural networks, it remains unsolved to achieve geometric completeness for
crystalline materials, with demonstrations provided in Appendix A.1

Geometric completeness for molecules. To pursue geometric completeness for molecules, various
approaches have been developed. SphereNet (Liu et al., 2022) achieves geometric completeness
for molecules in most cases by using the combination of Euclidean distances, bond angles, and
torsional angles, with some failure cases. GemNet (Klicpera et al., 2021) goes a step further by
incorporating dihedral angles and achieving completeness for molecules with a complexity of O(nk?).
ComENet (Wang et al., 2022) decreases the modeling complexity by selecting reference nodes using
Euclidean distances. However, these methods fall short to capture periodic patterns (Yan et al., 2022)
of crystals and are not geometrically complete for crystalline materials. As another branch of work,
Graphormer (Ying et al., 2021) uses fully-connected molecule graphs and achieves completeness for
molecules, but breaks periodic invariance as shown in Appendix A.1.2.

Complete representations for crystals. Constructing complete crystal representations in other forms
is not a new topic. There are several recent efforts, including AMD (Widdowson et al., 2022) and
PDD (Widdowson & Kurlin, 2022) of matrix forms that are complete. However, AMD and PDD
cannot distinguish chiral crystals with different properties. Additionally, using these matrix form
representations as input to predict crystal properties without breaking the completeness is challenging
in practice. First, AMD and PDD representations are designed for stable crystal structures and do not
consider atom types. The completeness of AMD and PDD is based on the assumption that no two
crystals can have the same structure but differ by a single atom type, which is only feasible for stable
crystal structures. Second, to achieve completeness, a sufficiently large number of neighbors k needs
to be predetermined for any test crystal (must be larger than the number of atoms in the cell for any
test crystal), which is not feasible and very expensive as mentioned in PDD-ML (Balasingham et al.,
2022), with more details provided in Appendix A.1.3. It is worth noting that our proposed graph
representations can apply to dynamic crystal systems and are robust to various cell sizes.

3 GEOMETRICALLY COMPLETE CRYSTAL GRAPH REPRESENTATIONS

In this section, we first demonstrate crystal passive symmetries that will not change crystal structures,
including unit cell SE(3) invariance, unit cell SO(3) equivariance, and periodic invariance. We discuss
consequences when these symmetries are not encoded. We then propose SE(3) invariant and SO(3)
equivariant crystal graph representations that achieve geometric completeness for crystalline materials.
We further provide proofs that the proposed crystal graphs satisfy crystal passive symmetries in
Appendix A.2, and are geometrically complete in Sec. 3.4, with verification provided in Appendix A 4.

3.1 CRYSTAL PASSIVE SYMMETRIES

Crystal structures are different from molecules and proteins and exhibit unique passive symme-
tries (Villar et al., 2023), including unit cell SE(3) invariance, unit cell SO(3) equivariance, and
periodic invariance. Specifically, crystal structures remain unchanged when the position matrix P of
the unit cell structure is translated alone or rotated together with L, as shown in Fig. 1(b) and (c).
Additionally, different minimum repeatable structures can be used to represent the same crystal as
the periodic transformations shown in Fig. 1(d), and these different crystal structure representations
(A, P, L) introduce a crystal passive symmetry called periodic invariance. However, reflection
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Figure 1: Illustrations of crystal passive symmetries. We show examples of a real crystal structure in
3D and corresponding simpler demonstrations in 2D. For the 2D demonstrations, we use circles with
different colors to represent different kinds of atoms, and use red dotted lines to represent periodic
unit cells. We show two cases of periodic transformations, including shifting the periodic unit cells
and changing periodic unit cells without changing the volume. Translation, rotation, and periodic
transformations will not change the crystal structure and are passive symmetries, while reflection
transformation will map the crystal structure to its chiral image if the reflection symmetry is absent.

transformation is not a crystal passive symmetry as it maps a crystal structure to its chiral image. We
then provide formal definitions of these crystal passive symmetries as follows.

Definition 2 (Unit Cell SE(3) Invariance). A function f : (A, P, L) — X is unit cell SE(3) invariant
if, for any rotation transformation R € R3*3 |R| = 1 and translation transformation b € R? , we
have f(A,P,L) = f(A,RP + b,RL).

A similar definition of unit cell E(3) invariance has been given in Yan et al. (2022). The major
difference between unit cell E(3) and SE(3) invariance is that unit cell SE(3) invariant functions
further distinguish crystal structures with different chiralities.

Definition 3 (Unit Cell SO(3) Equivariance). A function f : (A,P,L) — X' € R? is unit cell SO(3)
equivariant if, for any rotation transformation R € R3*3_|R| = 1 and translation transformation
be R, we have Rf(A,P,L) = f(A,RP + b, RL).

For a given infinite crystal structure (P,A) where P = {p;|p; = p; + kily + koly +
ksls, ki ko ks € Z,i € Z,1 < i < n}and A = {ds|d; = a;,i € Z,1 < i < n}, periodic
invariance describes that the representation of crystals should be invariant to the choice of minimum
unit cell representations. The definition is detailed below.

Definition 4 (Periodic Invariance). A function f : (A, P,L) — X is periodic invariant if, for any
possible minimum unit cell representations M’ = (A’ P’ | L') representing a given infinite crystal
structure (P, A), we have f(A,P,L) = f(A’,P',L’).

Two periodic transformations that can generate different minimum unit cell representations for the
same crystal structure are shown in Fig. 1(d), including shifting periodic boundaries shown in the left
and changing periodic patterns with the same unit cell volume shown in the right.

3.2 SE(3) INVARIANT CRYSTAL GRAPH REPRESENTATIONS

To achieve geometric completeness for crystalline materials, we introduce three periodic vectors, e;;, ,
€ii,, and ejj,, to serve as the lattice representation for node 7. The lattice representations for different
nodes are perfectly aligned because all atoms in a crystal share the same periodic patterns.

Invariant crystal graph construction. Every node in the proposed SE(3) invariant crystal graph
represents atom ¢ and all its infinite duplicates in 3D space, with positions {p;|p; = p; + k161 +
koly + k3ls, ki, ke, ks € Z} and node feature a;. An edge will be built from node j to node i
when the Euclidean distance ||ej;]|2 between a duplicate of j and i satisfies ||eji||2 = ||p; + k€1 +

kzéﬁz + ké@g, — pil|l2 < r, where r € R is the cutoff radius determined by the k-th nearest neighbor.
Each edge has a corresponding feature vector {||€;i||2, 071 ii1 5 05711105 0574415 1> With €04 i1 s 0574 4is s
and 0;/; ;;, denoting the angles between ej/; and lattice representation {e;, , €ii, , €iig |, respectively.
Duplicates 71, 72, and ¢3 are included as neighbors of ¢ to encode periodic patterns. The construction
of the lattice representation {e;, , €ii,, €ii, } for node 7 can be found below.
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Importance of periodic invariance for lattice representation. A straightforward way to obtain
lattice representation is {eii, , €ii,, €iis } = {£€1,%2, €3}, where €1, €2, €5 are the periodic lattice
vectors provided in input lattice matrix L. However, as shown in Sec. 3.1 and Fig. 1, the same
crystal structure can have different lattice matrices L when applying periodic transformations. For
instance, L = [€, £o,£3]T and L’ = [£; + £3, £, £3]7 describe the same periodic patterns and have
the same volume of the unit cell. Therefore, lattice representation needs to be invariant to periodic
transformations.

Lattice representation construction. The lattice representation is constructed as follows to satisfy
periodic invariance. First, we select the periodic duplicate i; of node ¢ that has the smallest edge length
||eii1 ||2 < ||eii/ | ‘2 for any other duplicate 1’ where {p; =p; + k1€ + kolo + k3ls, ki, ko, ks € Z}
We then select the periodic duplicate i5 of node 4 that has the smallest edge length ||esi, ||2 < ||eii]||2
for any other duplicate ¢’ except 71 and verify that e;;, and e;;, are not in the same line. If they are in
the same line in 3D space, we select the duplicate with the next smallest distance and repeat until
€ii, 1s found. We then adjust the vector e;j;, to —ej;, if the relative angle between ej;, and e;;, is
larger than 90°. Third, we select the duplicate with the next smallest distance ||eji, ||2, and verify that
€iis, €ii, and e;j;, are not in the same plane in 3D space, and repeat until e;;, is found, then adjust the
vector eji, t0 —ej;, if the relative angle between ej;, and ey;, is larger than 90°. In the end, we will
verify that {eij, , €ii,, €iiz } forms a right-hand system, if not, convert them by {—eii, , —€ii,, —€iig ;
to form a right-hand system. The proposed lattice representation {e;;, , €ii,, €ii, } satisfies the unit
cell SO(3) equivariance and periodic invariance, with detailed proofs provided in Appendix A.2.1.
We also provide proofs in Appendix A.2.1 that it distinguishes different chiral crystal structures.

3.3 SO(3) EQUIVARIANT CRYSTAL GRAPH REPRESENTATIONS

In addition to SE(3) invariant crystal graphs, we propose SO(3) equivariant crystal graphs that achieve
geometric completeness by using vector representations.

Equivariant crystal graph construction. The only difference between the proposed equivariant
crystal graphs and invariant crystal graphs is the edge feature. Every edge in the equivariant crystal
graph has the invariant edge feature ||ej;||2 and the equivariant edge feature ej; € R3.

With 3D vectors as edge features, the unit cell SO(3) equivariant property can be achieved as proven
in Appendix A.2.2 . However, SO(3) equivariant crystal graphs pose challenges to consider expressive
geometric information during message passing. If only the norm of 3D vectors were used during
message passing, it will be the same as previous methods using Eucldiean distances only, such as
SchNet (Schiitt et al., 2017) and Matformer (Yan et al., 2022).

3.4 GEOMETRIC COMPLETENESS OF PROPOSED CRYSTAL GRAPHS

Proposition 1. The SE(3) invariant and SO(3) equivariant crystal graphs are geometrically complete.

Proof. We prove by mathematical induction. We assume that the number of atoms (nodes) in the
crystal unit cell is n. Note that the crystal graph we consider is strongly connected, which means
that there exists a path between any two nodes in the graph. All crystalline materials in nature can be
constructed as strongly connected graphs.

Base case: The infinite crystal structure represented by SE(3) invariant or SO(3) equivariant crystal
graphs is unique when n = 1.

Inductive hypothesis: The infinite crystal structure is unique holds for n up to m > 1.

Inductive step: Let n = m + 1. Without loss of generality, among the existing m nodes, we safely
assume A/; is the set of nodes that form the local region of node j. Then j is the index of the
(m + 1)-th node newly connected to these nodes. To prove the infinite crystal structure is still unique,
we only need to prove that the relative position of node j is uniquely determined given the SE(3)
invariant crystal graph or the SO(3) equivariant crystal graph. The proofs of Base and Inductive cases
are provided in Appendix A.3. With that, the proposed SE(3) invariant and SO(3) equivariant crystal
graphs can determine a unique infinite crystal structure. Hence, the same crystal graphs proposed
will only represent the identical infinite crystal structure. Then, based on Definition 1, we complete
the proof of Proposition 1. O
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Figure 2: Illustration of the proposed ComFormer pipeline. In the left figure, we show different unit
cell structures for the same crystal due to passive crystal symmetries, and all of them will map to the
same invariant or equivariant crystal graph shown in the middle. In the middle, we demonstrate the
information included in our proposed SE(3) invariant and equivariant crystal graphs. Specifically, we
include node feature a; for every node ¢, and for every neighbor j of node ¢, we include edge length
||eji||2, and three angles 0;; ;. = {6 ,i, » 05i,iin, 05i,ii5 } in invariant crystal graphs, and edge vector
eji in equivariant crystal graphs. The proposed iComFormer and eComFormer are shown on the right,
with building blocks marked by different colors.

4 EFFICIENT AND EXPRESSIVE CRYSTAL TRANSFORMERS

We then propose iComFormer and eComFormer for crystal representation learning, based on the
proposed SE(3) invariant and SO(3) equivariant crystal graphs in an efficient manner.

4.1 SE(3) INVARIANT MESSAGE PASSING

In this section, we first present iComFormer as shown in the upper right panel of Fig. 2. iComFormer
utilizes SE(3) invariant crystal graphs with computational complexity of O(nk), where n is the
number of nodes, and & is the average number of neighbors for every node.

Node and edge feature embedding layer. Node feature a; for node i is mapped to f? using
CGCNN (Xie & Grossman, 2018) embedding features as the initial node feature before transformer
layers. Edge feature ||e;||2 for node pair j and ¢ is mapped to ¢/||eji||2 and embedded by RBF
kernels to initial edge feature f7;, where c is a chosen constant to mimic the pairwise potential
calculation following Lin et al. (2023). Three angles 0;; i, , 0,44, and 0,; ;;, are mapped to ]-eil ,

fh, and fi3 by cosine function and RBF kernels. More details are provided in Appendix A.6.

Node-wise transformer layer. Node-wise transformer layer first passes messages from a neighboring
node j to the center node i using node features f!, f! and edge feature ; where [ indicates the layer

number, and then aggregates all neighboring messages to update f}. The message from node j to i is
formed by the corresponding query q;;, key k;;, and value features v;; as follows,

@;i = LNG(f}). kji =(LNk (f})ILNk (f})ILNE(£5)), vji = (LNv (f)|LNy (f})|[LNg(f5;))
_Qi° or(kji)

V dei
@

where LNg, LNf, LNy, LN are the linear transformations for query, key, value, and edge features.
o i, 0oy are the nonlinear transformations for key and value, including two linear layers and an
activation layer in between. o and | denote the Hadamard product and concatenation, respectively.
BN denotes the batch normalization layer, and dg;, is the dimension of q;;. In our design, the query
in the transformer layer only contains the center node feature, while the key and value contain the
center node, neighboring node, and edge features. Then, node feature f! is updated using aggregated
messages from neighbors to center node ¢ as follows,

msg; = Z msgjia .filJrl = o-msg(fil + BN(msgl))v (3)

JEN;
where o ,,,4 denotes the softplus activation function. Because we calculate & messages for every
node ¢ where k denotes the average degree, the complexity of node-wise transformer layer is O (nk).

oy , msgj; = sigmoid(BN(ay;;)) o ov (vj:),
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Edge-wise transformer layer Edge-wise transformer layer updates edge feature f7; using angle
features fil s and m and edge features of lattice vectors ff; , f;,, and f;;_. Detailed updating
computation of edge-wise transformer layer is as follows,

e O e e Om
q]l _LNQ( )7k:]€zm (LN ( )|LN ( um>)7vjim = (LN )|LN ( um)>7
e qjioo'K( jzm|LN9( ]zm))
)

o, =
Jtm
Jda,
¢ LN% LN m ¢

where LNG,, LN%, LNY, represent linear transformations for edge feature f7;,

{1, 2, 3} represent linear transformations for edge features of lattice vectors, and LNj is the hnear
. 9 9 e : .

transformation for angle features Givs Jins m Then, edge feature f; is updated using aggregated

messages from three lattice vectors as below,

,msgf; = sigmoid(BN(esj")) o o (v5;, [LNo (7)),

msgs, = > msg . fi] = Omeg(f5 + BN(msgs,)), ®)
me{0,1,2}

because every edge ji has three neighbors, the complexity of edge-wise transformer layer is
O(3nk) = O(nk). Hence, the total complexity of iComFormer is O(nk). The proof that iCom-
Former considers expressive geometric information in message passing is shown in Appendix A.5.

4.2 SO(3) EQUIVARIANT MESSAGE PASSING

In this section, we describe SO(3) equivariant message passing for eComFormer, as shown in the
lower right panel of Fig. 2. For the design of eComFormer message passing, a core question to answer
is how to capture expressive geometric information in SO(3) crystal graphs. Specifically, different
from Euclidean distances, vector features e;; do not support nonlinear mappings. To tackle this, we
employ the recent advances in tensor product (TP) layers (Geiger & Smidt, 2022a) and capture the
expressive geometric information by properly stacking several TP layers together.

Node and edge feature embedding layer. Node feature a; and edge feature ||e;;||2 for node pair j
and 7 are embedded in the same way as iComFormer. Equivariant edge feature e;; is embedded by
corresponding spherical harmonics Y (€j;) = co, Y1(€ji) = c1 % €5 € R3 and Y, (e51) € R where
€j; = H;ﬁ and cg, ¢ are constants, with more details provided in Appendix A.6.

Node-wise equivariant updating layer. To capture geometric information represented by vector
features e;; in SO(3) crystal graphs, we propose the node-wise equivariant updating layer. Specifically,
it implicitly considers expressive geometric information by stacking two tensor product layers and
taking edge features {Y(€}i), Y1(€ji), Y2(€ji)} and node features f! as input. The first tensor
product layer aggregates higher rotation order neighborhood information to the center node 7 as
follows,

=+ o= > TP(f), Yo(eq)), fl\ = |N| > TPA(f) Yalei), A € {1,2}, (6)

‘N| JEN; JEN;

where f!' = LN(f!), |V;| is the number of neighbors of node i, and TPy, TP;, TP, are tensor
product layers that produce outputs with rotation order equal 0, 1, and 2, respectively. Then, the
second tensor product layer produce SE(3) invariant node features as below,

le* = N Z TP, -f] OvYO ejl Z TP, fj 1)Y1(e.]l + Z TPO(f]l',ZvYQ(efii)))a

il JEN; JEN; JEN; )
-fil,updated :o'equi (BN(le*)) + LNquﬁ (le)v

where o¢q; is a nonlinear transformation consisting of two softplus layers and a linear layer
in between. We then show that by the proper design of tensor product layers, the output
fil’update 4 of node-wise equivariant updating layer considers all two-hop bond angle information

2 jen; ZmeNj COS(Omj,ji) in D5, TPO(f]l-’l, Y (€j;)), with details provided in Appendix A.5.
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5 EXPERIMENTS

We assess the expressiveness of our iComFormer and eComFormer models by conducting evalu-
ations on three widely-used crystal benchmarks: JARVIS (Choudhary et al., 2020), the Materials
Project (Chen et al., 2019), and MatBench (Dunn et al., 2020). Through extensive experiments, our
proposed ComFormer exhibits excellent prediction accuracy across a range of crystal properties,
underscoring its modeling capabilities for crystalline materials.

For JARVIS and MP, we follow the experimental settings of Matformer (Yan et al., 2022) and
PotNet (Lin et al., 2023), and use mean absolute error (MAE) as the evaluation metric. Among
these tasks, there are large scale tasks with 69239 crystals, medium scale tasks with 18171 crystals,
and small scale tasks with 5450 crystals. To further evaluate the performances, we use e_form with
132752 crystals and jdft2d with only 636 2D crystals in MatBench. The baseline methods include
CGCNN (Xie & Grossman, 2018), MEGNET (Chen et al., 2019), GATGNN (Louis et al., 2020),
ALIGNN (Choudhary & DeCost, 2021), Matformer (Yan et al., 2022), PotNet (Lin et al., 2023),
M3GNet (Chen & Ong, 2022), MODNet (De Breuck et al., 2021), and coGN (Ruff et al., 2023). For
tasks in these three datasets, the best results are shown in bold and the second best results are shown
with underlines. We use one TITAN A100 for computing. More details of ComFormer settings and
benchmark details can be found in Appendix A.6 and A.7, respectively.

5.1 EXPERIMENTAL RESULTS

JARVIS. As shown in Table 1, com- Table 1: Comparison on JARVIS in terms of test MAE.
pared with highly competitive base-

lines, ComFormer variants achieve Form. Energy Bandgap(OPT)  FEiorar  Bandgap(MBJ)  Epuu
the beSt performances on all tasks Method meV/atom eV meV/atom eV meV
: : . CGCNN 63 020 78 0.41 170
Speglﬁcally, iComFormer achieves ¢ < 45 019 o 043 140
8% improvement beyond PotNet on ~ MEGNET 47 0.145 58 0.34 84
: . GATGNN 47 0.170 56 0.51 120
formation energy, 10% improvement 5| jGaN 31 0142 37 031 76
on Eyta1, and 15% improvement on Il;’léithﬂzmef ;g-i gg; ;; 822 2‘5‘
. . OtINel g . . o
FEjq11, while eComFormer achieves — —
. eComFormer 284 0.124 32 0.28 44
20% improvement on Ej,;; and the  iComFormer 272 0.122 288 0.26 47
second best performances on other
three tasks.
The Materials Project (MP). Experi- Table 2: Comparison on The Materials Project.
mental results on MP are shown in Ta-
ble 2. It can be seen that iComFormer Form. Energy Band Gap Bulk Moduli ~ Shear Moduli
achieves the best performances on three Method meV/atom eV log(GPa) log(GPa)
out of four tasks with significant margins gGh%N[N g; 8%3? g»ggg ggg;
. . Cl €l .. . .
beyond previous Works, while eCom- MEGNET 30 0.307 0.060 0.099
Former achieves the best on formation %ITSI\II‘I;I\J Z; 8-5514(8) 8-8;}? 8-8;;
energy. Specifically, the excellent pre- i iomer 210 0211 0.043 0.073
diction accuracy of iComFormer on bulk PotNet 18.8 0.204 0.040 0.0650
moduli and shear moduli with only 4664 eComFormer 18.16 0.202 0.0417 0.0729
iComFormer 18.26 0.193 0.0380 0.0637

training samples shows the expressive-
ness and robustness of the invariant crystal graphs with limited training samples.

MatBench. Experimental results for MatBench are
shown in Table 3 in terms of MAE and RMSE with
standard deviation of five benchmark runs. For the T INETs

largest scale e_form with more than 130K crystals,  eiods MAE RMSE MAE RMSE

ComFormer variants achieve the state-of-the-art per- — MobNet 44539 88875 332+73 967404
ALIGNN 21,5405 554+55 434489 1174+£429

Table 3: Comparison on MatBench.

formances, shedding light on the elegant integration  .,6x 170403 483459 3724137 10124550
of angle information in the complete crystal repre- ~_M3GNet  195£02 - 01£119 -

. . . ComF 16.5+03 454+47 37.8+9.0 102.2 +46.4
sentations beyond other methods using angle infor-  icouFomer 16503 438=37 348499 96irdes

mation like ALIGNN and M3GNet. For jdft2d task,
iComFormer is competitive with MODNet, the state-of-the-art physical descriptor based method
for materials, indicating the excellent modeling power of iComFormer with only hundreds training
samples. Overall, the robust performances of ComFormer variants on these three benchmarks for
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various crystal properties with different data scales demonstrate the effectiveness of the proposed
invariant and equivariant crystal representations and ComFormer architectures.

Efficiency. We evaluate the model complexity and Table 4: Efficiency analysis.
running time of ComFormer variants by compar-
ing them with geometrically incomplete methods —  Method Complexity Num. Params. Time/epoch
Matformer and ALIGNN on the JARVIS formation  Matformer O(nk) 29M 645
energy task. To make the comparison fair, we fol- _ALIGNN O(nk?) 40M 327
— eComFormer O(nk) 124M 115s
low Matformer and ALIGNN and use k= 12when Lo et O ) SoM 00
constructing crystal graphs. Further analysis when  iComFormer(3) O(nk) 41M 69s
O(nk) 50M 78's

increasing k is provided in Appendix A.6.2. We _{ComFormer()
use 3 and 4 to indicate the number of node layers

of iComFormer, which covers all experimental settings of iComFormer. As shown in Table 4, our
proposed ComFormer variants are significantly more efficient than ALIGNN and are comparable
with Matformer which only uses Euclidean distances.

Table 5: Verification of geometric completeness of proposed SE(3) invariant and SO(3) equivariant
crystal graphs by reconstructing crystal structures from graph representations.

Structure RMSD | MP | T2 (Pulido et al., 2017)
SE(3) invariant 3.28 % 1077 3.83% 107
SO(3) equivariant | 3.03 * 107 3.19% 1077

Completeness verification. We evaluate the completeness of proposed SE(3) invariant and SO(3)
equivariant crystal graphs by reconstructing crystal structures from graph representations. Specifically,
we use crystals from the Materials Project and T2 dataset which contains super large crystal cells with
more than 700 hundred atoms to demonstrate the robustness of these crystal graphs. The detailed
reconstruction process is provided in Appendix. A.4. After reconstruction, we compare the structure
differences between the recovered ones and the input ones using Pymatgen. As shown in Table. 5,
the input crystal structures are fully recovered, with limited structure error (less than 107°).

5.2 ABLATION STUDIES

In this section, we demonstrate the importance of geometric complete crystal graphs and Comformer
components by conducting ablation studies on JARVIS formation energy task.

Importance of geometric complete crystal graphs. Table 6: Importance of completeness.
We evaluate the importance of geometric complete-

ness by making the proposed crystal graphs incomplete. Method Complete  Test MAE
Specifically, we omit the edge-wise transformer layer w/o bond vectors X 30.2
in iComFormer and the equivariant updating layer in eComFormer v 284
eComFormer, which means that we omit bond angles w/o bond angles X 28.9
and bond vectors in corresponding graphs. As shown iComFormer v 27.2

in Table 6, using the incomplete crystal graphs will
degrade the performance of iComFormer by 6.25% from 0.0272 to 0.0289, and the performance of
eComFormer by 6.33% from 0.0284 to 0.0302.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

In this work, we propose SE(3) ComFormer variants for crystalline materials that utilize geometrically
complete crystal graphs and satisfy crystal passive symmetries. The state-of-the-art performances
of ComFormer variants on various tasks across three widely-used crystal benchmarks demonstrate
the expressive power of proposed geometrically complete crystal graphs and modeling capacity of
ComFormer variants. The limitations of our current method include (1) it is designed for crystalline
materials and cannot be directly applied to other domains, (2) it cannot model the complete geometric
information of amorphous materials, and (3) it currently cannot predict higher order crystal properties.
We plan to explore these directions in the future work. We also include discussions of potential corner
cases in Appendix A.8 to aid future users of the proposed method in need.
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A APPENDIX

A.1 LIMITATIONS OF PREVIOUS METHODS IN ACHIEVING GEOMETRIC COMPLETENESS FOR
CRYSTALLINE MATERIALS

A.1.1 LIMITATIONS OF PREVIOUS CRYSTAL GRAPH NEURAL NETWORKS

Crystalline materials are first converted into graph representations which serve as the input of crystal
graph neural networks. Thus, the geometric information considered by the crystal graph neural
networks are directly determined by the employed crystal graphs.

In this subsection, we discuss the limitations of previous crystal graph neural networks in terms
of crystal graph representations. These methods include CGCNN (Xie & Grossman, 2018),
SchNet (Schiitt et al., 2017), MEGNET (Chen et al., 2019), and GATGNN (Louis et al., 2020) which
directly use multi-edge crystal graphs, ALIGNN (Choudhary & DeCost, 2021) and M3GNet (Chen &
Ong, 2022) which uses multi-edge crystal graphs with extra bond angles, and Matformer (Yan et al.,
2022) and PotNet (Lin et al., 2023) which use additional edge features to capture periodic patterns.

We first recap multi-edge crystal graphs, and then show the limitations of previous works in distin-
guishing different crystalline materials.

Multi-edge crystal graphs. The multi-edge crystal graph is proposed by Xie & Grossman (2018)
to capture atomic interactions across periodic boundaries. As shown in Fig. 3, every node in the
multi-edge crystal graph represents atom ¢ and all its infinite duplicates in 3D space, with positions
{Di|pi = pi + k181 + kols + k3ls, ki, ko, ks € Z} and node feature a;. An edge will be built
from node j to node ¢ when the Euclidean distance ||ej/;||2 between a duplicate of j and ¢ satisfies
llegillz = ||pj + ky £y + kyly + kyls — pi||a < 7, where 7 € R is the cutoff radius. Each edge has a
corresponding edge feature ||ej;||2.

Limitations of multi-edge crystal graphs. (1) It can be seen from Fig. 4 that multi-edge crystal
graphs fail short to distinguish crystals with different periodic patterns, and may map different
crystals with different properties to the same graph. (2) It can be seen from Fig. 5 that multi-edge
crystal graphs fail short to distinguish crystalline materials with different unit cell structures,
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Figure 3: Demonstration of the multi-edge crystal graph. We use blue arrows to represent periodic
patterns ¢; and /5 for the shown crystal structure in 2D case. We use circles with different colors to
represent different atoms, and light-green lines to represent the periodic boundaries. We use N; to
represent the neighborhood of node 7 within the radius, and use red and green arrows to indicate the
captured atomic interactions by the multi-edge crystal graph. (a) A crystal structure with periodic
patterns /1 and /5 in 2D case for clarity. (b) The captured atomic interactions by the multi-edge
crystal graph, between the red nodes j and center node ¢. (c¢) The corresponding multi-edge crystal
graph. All periodic duplicates of j are mapped to a single node 7 in the multi-edge crystal graph.

Figure 4: Demonstration that multi-edge crystal graphs fail short to capture periodic patterns. We use
blue arrows to represent periodic patterns ¢; and ¢, for these two different crystal structures. Due
to the missing geometric information of periodic patterns, multi-edge crystal graphs map these two
different crystals to the same crystal graph G.

and may map different crystals with different properties to the same graph. Thus, CGCNN (Xie &
Grossman, 2018), SchNet (Schiitt et al., 2017), MEGNET (Chen et al., 2019), and GATGNN (Louis
et al., 2020) which directly use multi-edge crystal graphs fail short to achieve geometric completeness
for crystalline materials.

Limitations of encoding bond angles using multi-edge crystal graphs. Noting that further
encoding bond angles using line graphs upon multi-edge crystal graphs still fail short to capture
periodic patterns, as shown in Fig. 4. Additionally, further encoding bond angles using line graphs
upon multi-edge crystal graphs still cannot distinguish crystals shown in Fig. 5 since bond angles are
identical for these two crystals. Hence, ALIGNN (Choudhary & DeCost, 2021) and M3GNet (Chen
& Ong, 2022) which uses multi-edge crystal graphs with extra bond angles may map crystals with
different properties to the same crystal graphs.

Limitations of Matformer and PotNet. By directly encoding periodic patterns using self-connecting
edges, Matformer (Yan et al., 2022) can distinguish the two crystals shown in Fig. 4. However,
Matformer cannot distinguish crystals with the same periodic patterns but different unit cell structures
as shown in Fig. 5 due to the fact that the Euclidean distances encoded in the crystal graphs are
identical. PotNet (Lin et al., 2023) encodes periodic patterns by using infinite summations of two-
body atomic potentials. However, PotNet only considers two-body interactions and using summation
operation with errors, resulting in the inability to achieve geometric completeness.
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Figure 5: Demonstration that multi-edge crystal graphs fail short to distinguish crystalline materials
with different unit cell structures. We use 4, j, k to represent three atoms in the unit cell structures of
these two crystals, d1, d2 to represent the encoded bond lengths in the graph, and 6;, to represent the
encoded bond angle between edge ji and ik. These two crystals are different but have the identical
multi-edge crystal graphs with identical Euclidean distances and bond angles encoded. The number
of blue atoms in the middle part is three, and can increase to any arbitrary number to obtain the same
conclusion.
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Figure 6: Demonstration that directly using molecule graphs will break periodic invariance. We use
green circles to denote the local radius region for every atom in the unit cell. The two crystals shown
above are identical and obtained by using periodic transformation (shifting the periodic boundaries).
Molecule graphs treat every atom within the radius as a single node in the constructed graph, and will

include two blue nodes in total for the left crystal but include three blue nodes in total for the right
crystal. This is because molecule graphs break periodic invariance for crystals.

A.1.2 LIMITATIONS OF PREVIOUS COMPLETE MOLECULE GRAPH NEURAL NETWORKS

To achieve completeness for molecules with finite number of atoms, the molecule graphs used are
radius graphs and fully-connected graphs.

Limitations of methods using radius graphs. SphereNet (Liu et al., 2022) and ComENet (Wang
et al., 2022) use radius graphs, which fail short to capture periodic patterns similar to the multi-edge
crystal graphs as shown in Fig. 4. Additionally, molecule graphs break periodic invariance for crystal
structures and will generate graphs with different number of nodes for the same crystal as shown in
Fig. 6.

Limitations of methods using fully-connected graphs. Another approach to achieve geometric com-
pleteness for molecules will be constructing fully-connected graphs. However, crystalline materials
are periodic structures, which makes constructing fully-connected graphs infeasible. Additionally,
constructing fully-connected graphs for super cell structures will break periodic invariance as shown
in Fig. 7.

A.1.3 LIMITATIONS OF PREVIOUS COMPLETE CRYSTAL MATRIX FORM REPRESENTATIONS

There are two recent works, AMD-ML (Ropers et al., 2021) and PDD-ML (Balasingham et al., 2022)
that use previously established powerful matrix form crystal representations, AMD and PDD.

Limitations of AMD-ML. Although AMD-ML uses complete crystal matrix representation AMD, it
converts the matrix form representation to a single invariant vector using summation as the input of
machine learning algorithms. By doing this transformation, the vector itself cannot fully recover the
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Figure 7: Demonstration that constructing fully-connected graphs for super cell crystal (expanding
unit cell structures using surrounding unit cells) structures breaks periodic invariance (cannot remain
the same when the periodic boundaries are shifted).

crystal structure and loses some structural information. Additionally, AMD-ML does not consider
atom-type information of crystals and can only be used for stable crystal structures.

Limitations of PDD-ML. PDD-ML is more powerful than AMD-ML by converting the PDD matrix
into crystal graphs like CGCNN-graph. By doing so, PDD-ML considers atom-type information.
However, to achieve completeness for the PDD matrix, a large enough k& needs to be predetermined
and fixed before training for any future test samples, where k£ needs to be larger than the maximum
number of atoms in the cell for all test crystals. This means that the PDD-ML graph needs to have k
larger than 200 for The Materials Project, and larger than 700 for the T2 dataset that they tested on.
Due to this practical concern, PDD-ML only uses ky,q. = 25, which is far from completeness for
their experiments on the Materials Project and T2 dataset. Additionally, the geometric information
considered in PDD-ML for a fixed number of neighbors is the same as CGCNN with the same £ as
mentioned by the authors and verified by experiments in their paper. As demonstrated by extensive
experimental results, the proposed Comformer is significantly more effective than CGCNN in all
tasks. Additionally, by using £ = 25 nearest neighbors, our proposed graph representations achieve
completeness for the T2 dataset as shown in Tab. 8.

A.2 PROOFS THAT THE PROPOSED CRYSTAL GRAPH REPRESENTATIONS AND COMFORMER
SATISFY CRYSTAL PASSIVE SYMMETRIES

In this section, we prove that the proposed invariant crystal graph representation is SE(3) invariant,
and the proposed equivariant crystal graph representation is SO(3) equivariant, and both of them are
periodic invariant. We use the same notations following the main paper as follows.

Crystal structures are represented by M = (A, P, L), where A = [a;,as,--- ,a,] € R%x"
contains the d,-dimensional feature vectors for n atoms in the unit cell, P = [py, pa, - -+ , p,,] € R3*"
contains the 3D Euclidean positions of n atoms in the unit cell, and L = [£1, £5, £3] € R3*3 describes
the repeating patterns of the unit cell structure in 3D space. Different from molecules and proteins,
crystal structures naturally repeat infinitely in space. Formally, the infinite crystal structure can be
described as

P ={pi|p; = pi + k11 + kol + ksls, ki, ko ks € Z,i € Z,1 < i < n},

A N . ) ®
A ={d;la; =a;,i €Z,1 <i<n},

where the set P represents all 3D positions for every atom ¢ in the unit cell structure, and the set A
represents the corresponding atom feature vector for every atom.

A.2.1 SE(3) INVARIANT CRYSTAL GRAPH REPRESENTATION

As defined in the main paper, a crystal graph representation is SE(3) invariant if, for any rotation
transformation R € R3*3 |R| = 1 and translation transformation b € R? , the crystal graph remains
the same, f(A,P,L) = f(A,RP + b, RL). In the following, we prove the SE(3) invariance and
periodic invariance step by step following the invariant crystal graph construction process.
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First, we construct the lattice representation eji, , €ii,, €ii; for every node, by using the process
demonstrated in Sec.3.3. The selection of ey, , €ii,, €ii5 1S purely based on three components,
including Euclidean distances, bond angles, and whether ej;, , €ii, , €ii; form the right-hand system.
And these three components are naturally SE(3) invariant which remain unchanged under any rotation
transformation R € R3*3 |R| = 1 and translation transformation b € R3. Additionally, these three
components will remain the same for a given node ¢ and all its duplicates whatever unit cell structure
you choose to represent the infinite crystal structure. Therefore, the choice of duplicates i1, ¢, i3 in
the constructed lattice representation is SE(3) invariant and periodic invariant. Additionally, due to
the fact that reflection transformations will change whether e;;, , €ii,, €ii; form the right-hand system,
our proposed invariant crystal graph representation can distinguish chiral crystal structures.

Next, we use the minimum unit cell structure with n atoms and construct a crystal graph with n nodes.
This step is already handled by the JARVIS, MP, and MatBench datasets. Due to the fact that all the
minimum unit cell structures for a given crystal share the same number of atoms and corresponding
atom features, this step is SE(3) invariant and periodic invariant.

Then, we build edges from neighboring nodes to every node <. Specifically, an edge will be built
from node j to node 7 when the Euclidean distance ||eji||2 between a duplicate of j and ¢ satisfies
lleyiilla = [|pj + k1 €1 + kolo + kals — pil|a < 7, where r € R is the cutoff radius. Duplicates iy, 7o,
and ¢3 are included as neighbors of ¢ to encode periodic patterns. Due to the fact that the Euclidean
distance ||ej;||2 between a duplicate of j and ¢ remains unchanged under SE(3) transformations
and across different unit cell structure representations, and the choice of duplicates i1, 22, i3 in the
constructed lattice representation is SE(3) invariant and periodic invariant as shown in the first step,
the neighborhood of node ¢ is SE(3) invariant and periodic invariant.

In the end, we construct edge features for every edge. In the proposed invariant crystal graph, each
edge has a corresponding feature vector {||eji||2, @7 iiy» 057 iin, 057 iis }» Where 6515 431, 074 44,, and
8;1:.ii, denoting the angles between ej/; and {e;;, , €ii,, €iig }, respectively. Due to the fact that ej/;
and {eji, , €ii,, €ii, } Totate accordingly to arbitrary rotation matrix R € R3*3 |R| = 1, the relative
bond angles 0, ;i,, 0.5, and 0;1; ;;, remain unchanged under SE(3) transformations and across
different unit cell structure representations. Thus, the construct edge features for every edge are SE(3)
invariant and periodic invariant.

By combining these four steps in the invariant crystal graph construction process, we complete the
proof that the proposed invariant crystal graph representation is SE(3) invariant and periodic invariant.

A.2.2 SO(3) EQUIVARIANT CRYSTAL GRAPH REPRESENTATION

As defined in the main paper, a crystal graph representation is SO(3) equivariant if, for any rotation
transformation R € R3*? |R| = 1 and translation transformation b € R? , the crystal graph rotates
accordingly, Rf(A,P,L) = f(A,RP +b,RL). In the following, we prove the SO(3) equivariance
and periodic invariance step by step following the equivariant crystal graph construction process.

For the lattice representation construction and the node and edge construction, it is the same as the
invariant crystal graph. Thus, the choice of duplicates 1, 72, 73 in the constructed lattice representation
and the node and edge construction is SE(3) invariant and periodic invariant and can distinguish
chiral crystal structures.

Then, for the edge features, ||e;i||2 is naturally SE(3) invariant and periodic invariant, while ej; is
SO(3) equivariant and periodic invariant.

Overall, the whole equivariant crystal graph representation is SO(3) equivariant and periodic invariant,
with SE(3) invariant edge feature ||ej||2 and SO(3) equivariant edge feature e;;.

Relationship between unit cell SE(3) invariant and SO(3) equivariant functions. Here we show
the relationship between unit cell SE(3) invariant and SO(3) equivariant functions. For any SO(3)
equivariant function f, it satisfies Rf(A,P,L) = f(A,RP + b, RL). Then, it can be seen that
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g = ||f||2 is a corresponding unit cell SE(3) invariant function. The proof is as follows,

g(A,RP +b,RL) =||f(A,RP + b,RL)|| )
:HRf(A7P7L)||2 (10)
:Hf(A.,P,L)HQ (1D
=9(A,P,L), (12)

Then the proof that g = || f||2 is a unit cell SE(3) invariant function is complete.

A.2.3 SE(3) INVARIANCE OF COMFORMER

iComFormer. The usage of SE(3) invariant crystal graph representations make the iComFormer
SE(3) invariant. Thus, further proof is not needed.

eComFormer. The major difference between eComFormer and iComFormer is the usage of vector
edge feature e;j; in node-wise equivariant updating layer. Due to the equivariant property of tensor
product operations of TP;, TP5, and invariant property of tensor product operation TPy, after two
tensor product layers in node-wise equivariant updating layer, the updated node feature f/* is SE(3)
Invariant.

A.3 PROOFS OF BASE CASE AND INDUCTIVE STEP IN PROPOSITION 1

Definition 5 (Isometric crystal structures). Two crystal structures M = (A, P, L) and M’ = (A’,
P’, L) are isometric if 3R € R¥*3|R| = 1 and b € R3, such that

P' =R eP +b={Rp; +b|pi = pi + kily + kol + ksls, ki, ko, ks € Z,i € Z,1 < i < n},
A’ =A = {d;|d; = a;,i € Z,1 <i<n},

where 13, P’ are the infinite set representing all 3D positions for every atom in the two crystal
structures and A, A’ are the corresponding atom types as described in Sec. 2.1, and R ¢ P + b
describes applying rotation transformation R and translation b to every item in the infinite set P.

A.3.1 PROOFS OF BASE CASE

Proof. We employ contradiction to prove it. We first assume there are two different infinite crystal
structures with a single atom in the unit cells (n = 1) that have the same SO(3) equivariant crystal
graph or SE(3) invariant crystal graph, and then demonstrate this assumption leads to contradiction.

(1) Proof for SO(3) equivariant crystal graph. Following the SO(3) equivariant crystal graph construc-
tion process in Sec. 3.3, we have obtained lattice representation {ey;, , €ii,, €ii; } Where i represents
the single atom in the unit cells, and 1, io, i3 are three nearest duplicates of node i, satisfying
right-hand system. Thus, ejj, , €ii,, €ii; form a minimum lattice structure for these two crystals. Then,
we can have

Py ={pi|pi = pi + k1ess, + koex, + ksesi,, ki, ko, ks € Z}, (13)
Py ={p/|p/' = P} + krex, + koews, + kzess,, k1, ko, ks € Z}, (14)

where P and P are the infinite set for atom positions of these two different crystal structures. By
using b = p; — p;, we can have Py = Py + b. Then, according to Def. 5, it can be seen that these
two previously assumed different crystal structures are identical, and it contradicts the assumption.

(2) Proof for SE(3) invariant crystal graph. Following the SE(3) invariant crystal graph construction
process in Sec. 3.2, we have obtained lattice representation {eii, , €ii,, €ii5 } Where ¢ represents
the single atom in the unit cells, and 1, io, i3 are three nearest duplicates of node i, satisfying
right-handed system. Thus, ey, , €ii,, €ii; form a minimum lattice structure for these two crys-
tals. And duplicates 1, 72, and i3 are encoded as neighbors of node ¢. Then, we have obtained
{Ileiill2; Oiviisy > iviiias Biriiis | as the edge feature from i to 4, {||€i,ill2, Gini,iirs Piniyiins Oiniiis |
as the edge feature from is to 4, and {||€i,il|2; Oisi,iiy > Oigisiias Oisiiis | @s the edge feature from i3 to
1. Since the SE(3) invariant crystal graph is identical for these two different crystals, these angles are
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all identical to each other. Based on the Proof for SO(3) equivariant crystal graph above, we only
need to prove the minimum lattice structures of these two crystals are identical, to contradict the
assumption that these two crystals are different. Based on the edge features from node i1, 72, %3 to 4,
the minimum lattice structures of these two crystals can be recovered as follows.

For the first lattice vector e;;, and e;il for these two crystals, we have

eii, =|lei,il|2x 4 0y + 0z, (15)
ei;, =lleiil[2x + 0y + 0z, (16)

where x,y, z are unit vectors in a right-hand coordinate system, which means ||x||2 = 1,]||y||]2 =
1,]|z]lp =1andx-y =0,x-2z =0,y - z = 0, where - denotes dot product. According to Def. 5,
for this single atom case, all other choices of coordinate system can be converted to the above
representations by applying a rotation matrix R € R3*3 |R| = 1.

For the second lattice vector e;j;, and e{h for these two crystals, we have

€ii, =|l€i,il[2c05(0iyi i, )X + |€i,i]l2510(0iyiis, )y + Oz, (17)

/

€, =l[€iyill2c08(0iyi i1, )X + ||€i,il[251n(0iyi 4, )y + 02, (18)

Again, according to Def. 5, all other choices to represent the second lattice vector can be converted to
the above representations by applying a rotation matrix R € R3*3 |R| = 1.

Then, to prove that these two crystals share the same minimum lattice structure, we only need to
prove the third lattice vector is identical. For the third lattice vectors ej;; and ej;, for these two
crystals, we have

€iis - Ciiy = €, - €iis = |[€iil[3, (19)
€iiy * €ii; = €, * Ciiy = |[@igil[2]|€isil|2005(0iyi,iis) (20)
€iiy * €ii; = €, - €ii; = |[€igil[2]€ii]2c08(0igi 44, ) (21)
Then we can have
lleiig|l2 = [legigll2 = [leisil |2, (22)
(€iis — €ii,) - €1, = 0, (23)
(eiis — egis) - e, =0, (24)

which means (ej;, — egis) = 0 (identical), or (eji; — e;is) = ceji; X €ji,, Where ¢ € R and ¢ # 0.

Additionally, due to the right hand system constraint during the graph construction process, we have

€ii; X €ji, * €ji; > 0, (25)
eii, X i, - ey, > 0. (26)
Then we have

! 4 ! 5— e 0 27
€iiy X €iiz * €iig = _(@iig — €43, ) - @ity = — ([leiia[[2 — €4y, - €iig) > 0, (27)
o " /_1.. / ’_1.. / e 0 28
€ii; X €iip * €ji3 = E(eus - eiig) * €y = E(ells * €y — ||eii3||2) >0, (28)
(29)

we then can derive that

2 / _ / / 2

||€iig |2 > €, - €iis = €iiy - €51, > [[€4,[12 (30)

which contradicts that ||ej;,||5 = ||ef;, |13 Thus, (s, — €f;,) = 0, and these two crystals have the

identical minimum lattice structure. And this contradicts that these two crystals are different. Thus,
the proof for SE(3) invariant crystal graph of Base Case is done.

O
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A.3.2 PROOFS OF INDUCTIVE STEP

Here we prove the relative position of newly added node j is uniquely determined by the proposed
SO(3) equivariant crystal graph and SE(3) invariant crystal graph.

Proof. We employ contradiction to prove it. We first assume there are two different relative positions
of 7, 7/ that have the same SO(3) equivariant crystal graph or SE(3) invariant crystal graph, and then
demonstrate this assumption leads to contradiction.

(1) Proof for SO(3) equivariant crystal graph. Following the SO(3) equivariant crystal graph con-
struction process in Sec. 3.3, for any node ¢ in the m nodes already determined and ¢ € N, we have
edge feature ;5. And the relative position of node j and j’ according to node i are p;; = e;; and
pji = eij, which contradicts the assumption. The proof is finished.

(2) Proof for SE(3) invariant crystal graph. Following the SE(3) invariant crystal graph construction
process in Sec. 3.2, for any node ¢ in the m nodes already determined and ¢ € N, we have edge
feature {||eji||2, 0jiii,» 0ji,iin, Oji,iis }- Then, for the relative positions pj; and p,; of j and j’
according to ¢, we have

Dji - €ii, = ||ejill2]leii, |[2c05(05i65,) = Pjri - €y 5 (31
pji - €iiz = |[€jill2][€iis [[2005(0;4,i0,) = Pjri - €z (32)
Pji - €iig = |[€jill2|[€iig||2c08(0}i,iis) = Pjri - €iig s (33)
Then we can have
(pji — Pjri) - €y =0, (34)
(pji — Pjri) - €, =0, (35)
(Pji — Pji) - €iig = 0, (36)

and because ey, , €ii, , €ii; form a set of basis for 3D coordinate system, we have (p,; — p;;) = 0,
which contradicts the assumption. The proof is complete.

A.4 VERIFICATION OF GEOMETRIC COMPLETENESS

Geometrically complete crystal graphs can fully recover the input infinite crystal structures. We
further verify the geometric completeness of our proposed SE(3) invariant crystal graph and SO(3)
equivariant crystal graph by reconstructing the crystal structures from graphs and then compare the
reconstructed crystal structures with the original ones.

The reconstruction of infinite crystal structure using the proposed invariant crystal graph is decom-
posed into four steps, including (1) the reconstruction of lattice representation for each node, (2)
the reconstruction of neighboring node positions for a given node, (3) the reconstruction of unit cell
structure, and (4) the reconstruction of infinite crystal structure, as shown in Fig. 8. For step one,
the information used includes node feature a;, edge features ||ei, ||2. ||€iiz |25 ||€iig| |2, and Oiy; 44, »
Oigi,iiy» Digi.iig» and the right-hand system. For step two, the information used includes node feature
a;, edge features ||eji||2, and 6}; i, , 0ji iy, Ojiiis- For step three, the information used is the fact
that lattice representation is shared and aligned perfectly for a given crystal across all atoms. For step
four, the information used is the constructed lattice representation in step one.

The reconstruction of infinite crystal structure using the proposed equivariant crystal graph can
be done similarly. Specifically, in step one, the lattice representation for node ¢ can be directly
reconstructed by using e, , €ii,, €iig- And in step two, the position of the neighboring node j can
be reconstructed by using e;;. The step three and four can be done in the same way following the
demonstration in Fig. 8.

We randomly use 500 crystal structures from the Materials Project, and convert them to the proposed
SE(3) invariant and SO(3) equivariant crystal graphs using radius r determined by the 16-th nearest
neighbors for every atom, and then use above reconstruction steps to recover the crystal structures
from graphs. We then compare the structure differences between the recovered ones and the input
ones using Pymatgen. As shown in Table. 7, the input crystal structures are fully recovered, with
limited structure error (less than 1076).
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Step One Step Two Step Three Step Four

M

Figure 8: Illustrations of steps reconstructing infinite crystal structure using proposed crystal graph
representation. The needed geometric information in each step is marked by purple. (1) The edge
information in our crystal graph representation contains the edge length and three angles between
three periodic lattice vectors. (2) Construct the three periodic lattice vectors, by only using the edge
length to place the first vector, and using the length and relative angle to place the second vector. For
the third vector, two relative angles and the bond length are used. Here we choose the right-handed
coordinate system for the periodic lattices, thus the orientation is fully determined. (3) By using
three angles and the bond length, the position of every neighboring node is determined. (4) Align the
lattice vectors for neighboring node since they share the same repeating patterns and repeat step two.
(5) Repeat step three until no node is left, and then recover the infinite structure using periodic lattice
vectors.

We also extend the completeness verification to the dataset of T2, where a crystal cell can have
more than 7 hundred atoms. We use the test set of T2 dataset and convert crystals to the proposed
SE(3) invariant and SO(3) equivariant crystal graphs using radius r determined by the 25-th nearest
neighbors for every atom, and then use above reconstruction steps to recover the crystal structures
from graphs. As shown in Table. 8, the input crystal structures, which can contain more than 700
atoms, are fully recovered with only 25 neighbors, with limited structure error.

Table 7: Verification of geometric completeness of proposed SE(3) invariant and SO(3) equivariant
crystal graphs by reconstructing crystal structures from graph representations.

Structure Differences | Rooted mean square deviation | Mean of largest point-wise distance

SE(3) invariant 3.28 % 107 4.87 %1077
SO(3) equivariant 3.03% 107 4.48 %1077

Table 8: Verification of geometric completeness of proposed SE(3) invariant and SO(3) equivariant
crystal graphs by reconstructing crystal structures from graph representations - T2 test set.

Structure Differences | Rooted mean square deviation | Mean of largest point-wise distance

SE(3) invariant 3.83% 1077 2.38 % 1076
SO(3) equivariant 3.19% 1077 2.22 %106

A.5 USAGE OF GEOMETRIC INFORMATION IN COMFORMER

In this section, we discuss the usage of geometric information in iComFormer and eCom-
Former. Specifically, we show that by the proper design of tensor product layers, the output
fil’update 4 of node-wise equivariant updating layer considers all two-hop bond angle information

D jen: 2omen; COS(Omj i) in 3o nr, TPo(ff 1, Y1 (€5:))-
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iComFormer. To begin with, the geometrically complete SE(3) invariant crystal graphs are used
as the input of iComFormer. For the iComFormer, the Euclidean distance ||ej]|2 is considered
in the node-wise and edge-wise transformer layer, and three bond angles 0;; ii,, 03,415, 054,05
are considered in the edge-wise transformer layer. Therefore, iComFormer considers expressive
geometric information of crystals during message passing.

eComFormer. The input of eComFormer is the proposed SO(3) equivariant crystal graph. The
key question to answer is, how we consider expressive geometric information in eComFormer
layers. The proof that the updated node feature f! updatea considers bond angle information

ZjeM Zme/\/j COS(0,r,;,5:) is as follows.

First, > v, TPO(fj471,Y1(e3i)) is a component in fiupdated. I3 en, TPO(fjl-yl,Yl(eﬁi)) con-
siders bond angle information 3¢ v, >~,,e 7, COS(0mj5). then the updated invariant node feature

considers 3 e x> e n; COS(Omjji)-

We have
1 /
D TPo(F Yal€i) = 3 TRo(gz 3 TPi(fy Yalemy)) Ya(ei)) - ()
JEN; JEN " men;
|N| Z TPy Z TP, -f'm?Yl(emJ)) Yi(ej)) (38)
JEN; meN;
|N| > TPo( D TPi(£7,, Yalemy)), cicy) (39)
JEN; meN;
|N| Z TPO Z UmemjacleJl) (40)
JEN; meN;

where TP ( fé, Yi(emj)) = Umemj, and vy, conditioned on the invariant node feature ff;b of node
m &€ ./\/j, and learnable parameters (path weight) in TP; . Here for simplicity, we only show the one
output channel case of TPy, and in the implementation, the output can be multi-channel. Given two
vector input vq € R3, vy € R3, we have

TP()(VI, Vz) =UTp, * (Vl,x * Vo x + Viy *Vay + V1,2 * Vz,z) (41)
=vrp, * COS(0uy 0,) * [[V1][2 * [[V2][2, (42)
where vrp, is a learnable scalar value in TPy, and COS describes cosine function. And we have

TPy (cvy + vs, va) = cTPy(v1,va) + TPy(vs, va) due to the bi-linear property of TP. Based on
these, we can further have,

Z TPO f] 17Y1 e_]l |./V" Z TPO Z UmemJaclejl) (43)
]GN mEN
IN\ > vrpy # vm €1 % COS (O i) (44)
JEN; meEN;

Thus, >~ n. TPo( f]l-,l, Y (€ji)) considers all two hop bond angle information. And therefore it
considers all angle information 6;, ; ji, 0,;.ji» 0j,5,5: in the invariant crystal graph representation due
to j1, jo2, j3 € Nj. Beyond this, the node-wise transformer layer captures geometric information of
||eji||2, which further captures disturbs in pairwise Euclidean distances.

To sum up, the node-wise equivariant updating layer contains bond angle information between e;;
and ey;j, where j N; and k € N;, and therefore considers all 2-hop angle information. And the
node-wise transformer layer contains edge lengths ||e;;||2. By combining them together, eComFormer
considers expressive geometric information. And if lattice representation including i1, ¢, i3 is not
encoded as the neighbor of node i, the infinite crystal structure, especially the periodic patterns,
cannot be fully captured.

A.6 MODEL SETTINGS OF COMFORMER

We provide detailed model settings of iComFormer and eComFormer, and demonstrate the hyperpa-
rameter settings of them for different datasets and tasks in this section.
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Figure 9: Illustration of the detailed network architectures of the proposed node-wise transformer
layer, edge-wise transformer layer, and node-wise equivariant updating layer.

Detailed network architectures. We first show the detailed network architectures of the proposed
node-wise transformer layer, edge-wise transformer layer, and node-wise equivariant updating layer
in Fig. 9. For all the experiments across three crystal datasets, we use two node-wise transformer
layers, and one node-wise equivariant updating layer in between to form the eComFormer, and
use one node-wise transformer layer, followed by one edge-wise transformer layer, and then [ — 1
node-wise transformer layers to form the [ layer iComFormer.

Settings of embedding layers of ComFormer. iComFormer and eComFormer both embed node
feature a; (atomic number) to a CGCNN embedding vector of length 92 and then mapped to a
256 dimensional initial node feature f? by a linear transformation. iComFormer and eComFormer
both embed invariant edge feature ||ej/i||2 to —0.75/||eji||2, and then increase it to 256 dimensional
vector by RBF kernels with 256 center value from -4.0 to 0.0, after that, both of them transfer the
256 dimensional vector to initial edge feature f7,; by a linear transformation layer and a softplus
activation layer. iComFormer embeds the invariant edge feature 0;; ;;, , 0/ 4i,, and 0 ;. to f]e, i

f,i2, and f]‘-’, is by taking the consine values and RBF kernels with 256 center values from -1.0 to 1.0,
followed by a linear layer and a softplus activation layer. eComFormer embeds the equivariant edge
feature ej/; to spherical harmonics with rotation order 0, 1, and 2 by using e3nn (Geiger & Smidt,

2022b) library.

Settings of node-wise transformer layer. LNg, LNg, LNy, LN are linear transformation layers
that map 256 dimensional input features to 256 dimensional output features. o i, oy are the nonlinear
transformations for key and value, including one linear layer that maps the concatenated 256 * 3
dimensional input features to 256 dimensional output features, one silu activation layer, and one
linear layer that maps the 256 dimensional input features to 256 dimensional output features. 0,54 is
the softplus activation layer.

Settings of edge-wise transformer layer. Similar to node-wise transformer layer, linear transfor-
mations including LNg,, LN, LNY,, LN?{” , LN?}”, LNy map 256 dimensional input features to 256
dimensional output features. o, oy, are the nonlinear transformations for key and value, including
one linear layer that maps the concatenated 256 * 3 dimensional input features to 256 dimensional
output features, one silu activation layer, and one linear layer that maps the 256 dimensional input

features to 256 dimensional output features. o7, is the softplus activation layer.

Settings of node-wise equivariant updating layer. We directly use pherical harmonics Y (€j;) =
co, Yi(€j5i)) = 1 x € € R? and Ya(€j;) € R® implemented in e3nn. LN transfers in-
put node feature f! to fI'. TPo(f!, Yo(ej)) is the e3nn tensor product layer with rota-
tion order O output features and 128 channels. TPl(f]l-l,Yl(e}i)) and TPg(f]l-,7Y1 (€ji)) are
the e3nn tensor product layer with rotation order 1 and 2 output features and 8 channels.
TPo (£} o, Yo(€51)), TPo (£} 1, Y1(€5)), TPy (£} 5, Y2(€5:)) are the e3nn tensor product layer with
rotation order 0 output features and 128 channels. o.q; is the nonlinear transformation includes a
softplus layer, a linear transformation layer that maps 128 dimensional features to 256 dimensional
features, and a softplus layer. And LN,q,; is a linear transformation layer that maps 256 dimensional
input features to 256 dimensional output features.
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Importance of higher rotation order
features. As illustrated in Table 9, the
inclusion of equivariant updating layer with
features 37, - TPo( fi1,Y1(€5))  and
Yien: TPo(f} o, Ya(€5))  with  rotation
orders one and two consistently enhances the

performance of eComFormer from 30.2 to 28.4.

Table 9: Ablation studies. o denotes the max rota-
tion order of features in the equivariant layer.

Method node layer equivariant layer Test MAE
eComFormer 3 0 30.2
eComFormer 3 l(o=1) 29.8
eComFormer 3 1(0=2) 28.4

Graph level prediction. After the transformer layers, we aggregate the node features in the graph by
mean pooling, and then use one linear layer to map the 256 dimensional graph level feature to 256
dimensional output feature, and then use a silu activation layer, and then map the output to a scalar

value by a linear transformation layer.

A.6.1

HYPERPARAMETER SETTINGS OF COMFORMER FOR DIFFERENT TASKS

In this subsection, we share the detailed hyperparameter settings of iComFormer and eComFormer
for different tasks in these three crystal datasets. We slightly tuned the parameters of our methods,
and higher performances are expected if hyperparameters are further tuned for different tasks.

Table 10: Model settings of iComFormer for JARVIS.

| Num. node-wise transformer | Num. edge-wise transformer | Learning rate | Num. neighbors

formation energy 4
band gap (OPT) 4
band gap (MBJ) 4
total energy 4
Ehull 4

1 0.001 25
1 0.0005 25
1 0.001 12
1 0.0005 25
1 0.001 25

Table 11: Model settings of eComFormer for JARVIS.

‘ Num. node-wise transformer ‘ Num. node-wise equivariant updating ‘ Learning rate ‘ Num. neighbors
formation energy 3 1 (max order=2) 0.001 25
band gap (OPT) 3 1 (max order=2) 0.0005 25
band gap (MBJ) 2 1 (max order=2) 0.001 16
total energy 2 1 (max order=2) 0.001 16
Ehull 3 1 (max order=2) 0.001 25

Table 12: Model settings of iComFormer for the Materials Project.

| Num. node-wise transformer | Num. edge-wise transformer | Learning rate | Num. neighbors

formation energy 4
band gap 4
bulk moduli 3
shear moduli 3

1 0.0007 25
1 0.0005 25
1 0.0001 16
1 0.0001 25

Table 13: Model settings of eComFormer for the Materials Project.

‘ Num. node-wise transformer ‘ Num. node-wise equivariant updating ‘ Learning rate ‘ Num. neighbors

formation energy
band gap

bulk moduli
shear moduli

RN W

1 (max order=2) 0.001 25
1 (max order=2) 0.001 16
1 (max order=2) 0.001 16
1 (max order=2) 0.001 16

Table 14: Model settings of iComFormer for MatBench.

‘ Num. node-wise transformer ‘ Num. edge-wise transformer ‘ Learning rate ‘ Num. neighbors
e_form 4 1 0.001 25
jdftad 4 1 0.0001 16

JARVIS. We show the model settings of iComFormer and eComFormer in Tables 10 and 11.
Specifically, iComFormer is trained using MSE loss with Adam (Kingma & Ba, 2015) optimizer
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Table 15: Model settings of eComFormer for MatBench.

‘ Num. node-wise transformer ‘ Num. node-wise equivariant updating ‘ Learning rate ‘ Num. neighbors

e_form 2 1 (max order=2) 0.001 25
jdftad 2 1 (max order=2) 0.0001 16

for the tasks of MBJ bandgap and Ehull for 500 epochs, and formation energy for 700 epochs,
with Onecycle (Smith & Topin, 2018) scheduler and pct_start of 0.3. For OPT bandgap and total
energy, iComFormer are trained using L1 loss with Adam (Kingma & Ba, 2015) optimizer and
polynomial scheduler with starting learning rate 0.0005 and final learning rate 0.00001 for 800
epochs. eComFormer is trained using MSE loss with Adam (Kingma & Ba, 2015) optimizer for
all tasks for 500 epochs except OPT bandgap, with Onecycle (Smith & Topin, 2018) scheduler and
pct_start of 0.3. For OPT bandgap, eComFormer is trained using L1 loss with Adam (Kingma & Ba,
2015) optimizer and polynomial scheduler with starting learning rate 0.0005 and final learning rate
0.00001 for 800 epochs. The number of neighbors k indicates the k-th nearest distance we use as the
radius for node <.

The Materials Project. We show the model settings of iComFormer and eComFormer in Table 12
and 13. Except bandgap of iComformer, all iComFormer and eComFormer models for the Materials
Project are trained for 500 epochs using MSE loss with Adam (Kingma & Ba, 2015) optimizer with
Onecycle (Smith & Topin, 2018) scheduler and pct_start of 0.3. For bandgap, iComformer is trained
using L1 loss with Adam (Kingma & Ba, 2015) optimizer and polynomial scheduler with starting
learning rate 0.0005 and final learning rate 0.00001 for 500 epochs.

MatBench. We show the model settings of iComFormer and eComFormer in Table 14 and 15. All
iComFormer and eComFormer models for the Materials Project are trained for 500 epochs using
MAE loss with Adam (Kingma & Ba, 2015) optimizer. And we use Onecycle (Smith & Topin, 2018)
scheduler and pct_start of 0.3.

A.6.2 EFFICIENCY ANALYSIS WHEN INCREASING k

We provide further efficiency analysis for our proposed iComFormer and eComformer when increas-
ing k, where k indicates that we use k-th smallest distance from neighbors to the center to serve as
the radius for node i.

We show the running time per epoch on the task of JARVIS formation energy for different ComFormer
variants and different k values in Fig. 10. It can be seen that the running time increases linearly for all
ComFormer variants when increasing k.

A.7 DATASET DETAILS

We provide more dataset details for the Materials Project, JARVIS, and MatBench in this section.

JARVIS. JARVIS-2021.8.18 is first used by ALIGNN (Choudhary & DeCost, 2021). We follow the
experimental settings of Matformer (Yan et al., 2022) and PotNet (Lin et al., 2023) and evaluate our
methods on five important crystal property prediction tasks. The training, evaluating, and testing sets
for formation energy, total energy, and bandgap(OPT) prediction tasks contain 44578, 5572, and 5572
crystals while contain 44296, 5537, and 5537 crystals for Ehull, and contain 14537, 1817, 1817 for
bandgap(MBJ). We follow previous works and use mean absolute error as the evaluation metric. We
directly use the benchmark results from Matformer (Yan et al., 2022) and PotNet (Lin et al., 2023).
For the efficiency comparisons with previous works, we directly follow the efficiency comparison
settings of Matformer (Yan et al., 2022) and use a single RTX A6000 to test the running time per
epoch. Among these crystal structures, 18865 crystals are experimentally observed.

The Materials Project. The Materials Project-2018.6.1 was first proposed and used by MEG-
NET (Chen et al., 2019) collected from The Materials Project (Jain et al., 2013), but the methods
are compared by using different random seeds and dataset sizes. To make a fair comparison, Yan
et al. (2022) re-train all baseline methods using the same data splits. We follow the experimental
settings and data splits of Matformer (Yan et al., 2022) and PotNet (Lin et al., 2023). Specifically, the
formation energy and bandgap prediction tasks contain 60000, 5000, and 4239 crystals for training,
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Figure 10: Efficiency analysis for iComFormer and eComformer when increasing k, where k indicates

the k-th smallest distance used as the radius for node i. We show the running time per epoch on the
task of JARVIS formation energy.

Table 16: MP experimentally observed dataset.

Method | Number of training crystals | Test MAE
CGCNN (k=12) 29342 0.051
PDD-best (k=12) 29342 0.047
AMD 24067 0.78
iComformer (k=12) 24067 0.027

evaluating, and testing, respectively. And the shear and bulk moduli tasks contain 4664, 393, and
393 crystals for training, evaluating, and testing, respectively. Note that one validation sample in
Shear Moduli is removed due to negative GPa indicating the underlying unstable/metastable crystal
structure. The evaluation metric used is mean absolute error. We directly use the benchmark results
from Matformer (Yan et al., 2022) and PotNet (Lin et al., 2023). Among these crystal structures,
30084 crystals are experimentally observed. We also further conduct experiments on the pure ex-
perimentally observed crystal dataset with 30084 crystals, and use random splits 80%, 10%, 10% to
form the training, evaluating, and test sets, and compare with CGCNN, PDD, and AMD as shown in
Table 16.

MatBench. MatBench (Dunn et al., 2020) is a crystal property prediction benchmark, containing
tasks with various data scales. To evaluate the robustness of our proposed methods, we conduct
experiments on e_form with 132752 crystals and jdft2d with 636 crystals. It is worth noting that jdft2d
is a 2D crystal dataset, curated by Matbench. The traditional way (also in Matbench) to represent 2D
structure is setting ||/3]|2 > 10 Angstroms and not in the same plane of [y, l;. We directly use the
official MatBench package and guidelines to run these tasks, and report the benchmark results using
metric mean absolute error (MAE) and root mean square error (RMSE) with error bars indicating the
standard deviation of five benchmark runs. The benchmark results of our methods will be updated to
MatBench in the future. We directly use the benchmark results from MatBench.

A.8 DISCUSSIONS OF POTENTIAL CORNER CASES

In this section, we discuss the potential corner cases about geometric completeness of the proposed
crystal graphs, and potential corner cases due to the usage of the nearest neighbor algorithm, to aid
future users when they deploy the proposed method for their own applications.
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Figure 11: Demonstration of the hypothesis corner case that the constructed graph is not strongly
connected. In this hypothesis case, the minimum unit cell structure contains two groups of atoms,
marked by blue and pink. These two groups of atoms are far away from each other. We construct
crystal graphs using radius r determined by the k-th smallest Euclidean distances from neighbors to
the center node. For this corner case, if the k¥ = 5, there will be no connections between these two
groups of nodes, resulting in a not strongly connected graph. A solution to make the graph strongly
connected is to increase the value of £ and make k£ > 5 (e.g., k = 6 will result in a strongly connected

graph).

A.8.1 POTENTIAL CORNER CASES OF GEOMETRIC COMPLETENESS

To achieve geometric completeness for crystalline materials, the only assumption we need is the
constructed crystal graph is strongly connected, which means for any node pair ¢, j, where i, j
represent the index of atoms in the unit cell, there is a path from ¢ to j.

Hypothesis corner cases. We then demonstrate the hypothesis cases that the constructed graph is not
strongly connected and show how to tackle this issue. As shown in Fig. 11, if there are several groups
that are far away from each other and the radius is not large enough, the constructed graph will not
be strongly connected. It is worth noting that for a not strongly connected graph, no previous graph
representations can achieve completeness, because of the fact that no geometric information between
groups is captured.

Solution. Although this kind of hypothesis crystalline material may not exist in reality, a solution for
this Hypothesis case will be to increase the radius or increase the value of k£ (when you determine
radius r by the k-th smallest Euclidean distances from neighbors to the center node).

A.8.2 POTENTIAL CORNER CASES OF USING NEAREST NEIGHBORS

When a reference node is needed, a widely used E(3) invariant way to choose the reference node
is using Euclidean distance and nearest neighbors. Similar to SphereNet (Liu et al., 2022) and
ComENet (Wang et al., 2022) which employ the nearest neighbor algorithm to choose reference
nodes, our method also uses the Euclidean distance based nearest neighbor algorithm to determine
the lattice representations to achieve rotation and translation invariance.

Potential corner case. When several periodic duplicates of the atom in a given crystal share the
same Euclidean distances, e.g., ||€ii, ||2 = ||€iis||2 = ||€iis||2, these duplicates will share the equal
possibility to be selected as the reference node.

Solution and discussion. This issue occurs for algorithms using nearest neighbors, including
SphereNet (Liu et al., 2022), ComENet (Wang et al., 2022), CGCNN (Xie & Grossman, 2018), and
GATGNN (Louis et al., 2020). If the nearest neighbor algorithm employed is deterministic, there will
be a unique graph for the corner case. If the nearest neighbor algorithm employed is not deterministic,
these several different representations of the corner case will occur with equal possibility during the
training process (similar to data augmentation).

If the user plans to further restrict the result of the nearest neighbor algorithm, additional information
can be used to select from these candidates with the same Euclidean distances. In any case, this issue
will not influence the completeness of the constructed representation.
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