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Abstract

Particle-based Bayesian inference methods by
sampling from a partition-free target (posterior)
distribution, e.g., Stein variational gradient de-
scent (SVGD), have attracted significant atten-
tion. We propose a path-guided particle-based
sampling (PGPS) method based on a novel Log-
weighted Shrinkage (LwS) density path linking
an initial distribution to the target distribution. We
propose to utilize a Neural network to learn a vec-
tor field motivated by the Fokker-Planck equation
of the designed density path. Particles, initiated
from the initial distribution, evolve according to
the ordinary differential equation defined by the
vector field. The distribution of these particles
is guided along a density path from the initial
distribution to the target distribution. The pro-
posed LwS density path allows for an efficient
search of modes of the target distribution while
canonical methods fail. We theoretically analyze
the Wasserstein distance of the distribution of the
PGPS-generated samples and the target distribu-
tion due to approximation and discretization er-
rors. Practically, the proposed PGPS-LwS method
demonstrates higher Bayesian inference accuracy
and better calibration ability in experiments con-
ducted on both synthetic and real-world Bayesian
learning tasks, compared to baselines, such as
SVGD and Langevin dynamics, etc.
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1. Introduction
Bayesian learning is a powerful approach for distribution-
based model predictions, naturally equipped with uncer-
tainty quantification and calibration powers (Murphy, 2022).
The key of Bayesian learning – computing the posterior by
Bayes’ rule, however, is well-known to be challenging due
to the intractable partition function (a.k.a. the normalizing
constant) (Andrieu et al., 2003).

To circumvent this difficulty, approaches based on sampling
according to the (target) posterior distribution without com-
puting the partition function have been considered; e.g.,
Markov Chain Monte-Carlo (MCMC) sampling (Andrieu
et al., 2003) and its gradient-based variants (e.g., Langevin
dynamics) generate samples (or particles) that follow the
target distribution asymptotically using a partition-free func-
tion. Such particle-based Bayesian inference methods,
which essentially transform a set of initial samples/particles
along certain dynamics (e.g., an ordinary differential equa-
tion (ODE) or a stochastic differential equation (SDE)) gov-
erned by a vector field, have witnessed great successes (Liu,
2017). Most of these methods, e.g. Stein variational gradient
descent (SVGD) (Liu & Wang, 2016) and preconditioned
functional gradient flow (PFG) (Dong et al., 2022), fall
into the category of gradient-flow particle-based sampling,
where the vector field is a gradient function of the Kullback-
Leibler (KL) divergence of the current distribution to the
target distribution, such that the dynamics would drive the
particles to the minimum of KL-divergence solution, i.e.,
the target distribution.

Although gradient-flow particle-based sampling methods
are shown to be flexible and efficient in some applica-
tions (Dong et al., 2022), they may not achieve the ideal
Bayesian inference performance due to not effectively cap-
turing the posterior distribution. Specifically, as a realization
of the KL-Wasserstein gradient-flow method, Langevin Dy-
namic (LD) is known to suffer from slow mixing, and in
turn tends to result in mode missing or misplaced mode
weights (Song & Ermon, 2019). It is believed that the pos-
terior for complicated models, especially Bayesian Neural
Networks (BNNs) (Goan & Fookes, 2020), contain multi-
ple modes of different weights, and mode missing would
impact its generalization, uncertainty quantification, and
calibration abilities. More detailed discussions can be found
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in Sections 3.1 and 5.1.

In this work, we propose a new family of Bayesian infer-
ence methods termed Path-Guided Particle-based Sam-
pling (PGPS). The particles follow an ODE defined by a
learned vector field, so that the distribution of the particles
is directed by a carefully designed partition-free path con-
necting the initial and the target distributions, instead of
evolving along the direction that minimizes some functional.
The performance of the PGPS approach is clearly deter-
mined by the path being followed, and we propose to rely
on a Log-weighted Shrinkage path that is more efficient and
accurate. The intuition for this choice is that logarithmic
weights admit linear mixture of the score function and the
shrinkage allows effective coverage of the target distribution
along the path.

The contributions of this work are threefold:

1. We propose PGPS as a novel framework of flow-based
sampling methods and derive a tractable criterion for
any differentiable partition-free path in Proposition 3.1;

2. We theoretically show that the Wasserstein distance
between the target distribution and the PGPS generated
distribution following the NN-learned vector field with
approximation error δ and discretization error by step-
size h is bounded by O(δ) +O(

√
h) in Theorem 4.2;

3. We experimentally verify the superior performance of
the proposed approach over the state-of-the-art bench-
marks, in terms of the sampling quality of faster mode
seeking and more accurate weight estimating, and the
inference quality with higher testing accuracy and
stronger calibration ability in Bayesian inference, in
Section 5.

2. Background
Given an inference model parameterized by parameters x,
e.g., a neural network with parameters x, Bayesian infer-
ence updates the distribution of the parameters by Bayes’
theorem, and performs statistical inference according to
the posterior distribution. Specifically, suppose parame-
ters x ∈ Rd has prior density1 p0(x), and given a data
set D, the posterior p∗(x) is updated by p∗(x) = p̂(x)

Z
with p̂(x) = p0(x)L(D|x), where L(D|x) is the likeli-
hood function of the data D and Z =

∫
p0(x)L(D|x) dx is

the partition function. The partition function Z is usually
computationally intractable. Many inference methods, in-
cluding broadly applied Monte Carlo methods (Liu & Liu,
2001), have been proposed to (approximately) draw samples
from the posterior/target distribution p∗(x) using the more

1We assume density of the parameters (random variables) exists
and do not differentiate their distribution and density.

tractable partition-free function p̂(x).

Particle-based (particularly flow-based) Bayesian infer-
ence methods direct a set of random samples/particles
{x(i)

0 }ni=1 ⊂ Rd drawn i.i.d. from an initial distribution
p0 (e.g., the prior or other distributions from which samples
can be drawn directly) along certain ODE dynamics

dxt

dt
= ϕt(xt), x0 ∼ p0,

defined by a vector field ϕt : Rd → Rd. The corresponding
evolution of the density functions is characterized by the
continuity equation (Jordan et al., 1998):

∂

∂t
pt(x) = −∇ · (pt(x)ϕt(x)), (1)

where pt(x) denotes the density of xt,∇ is the vector differ-
ential operator w.r.t. x (we omit x for simplicity throughout
the paper), and ∇ · f denotes the divergence of the vector
function f .

The critical point of the particle-flow-based methods is the
design of the vector field ϕt. A typical choice is the gra-
dient of some objective function under a certain metric,
and the dynamic is thus a gradient flow. An example of
the gradient-flow particle-based method is the Wasserstein
gradient flow (Ambrosio et al., 2005), which has drawn con-
siderable interest. It is motivated by minimizing a functional
L(pt) ∈ R in the Wasserstein space, which is a space of
distributions equipped with the Wasserstein metric

Wq(p1, p2) =

(
inf

γ∈Γ(p1,p2)
E(x1,x2)∼γ∥x1 − x2∥qq

)1/q

,

where Γ(p1, p2) is the set of all the coupling of p1
and p2. When the functional is the KL divergence
KL(pt∥p∗) = Ext∼pt

[− ln p∗(xt) + ln pt(xt)] and under
the 2-Wasserstein metric, i.e. q = 2, the resulting gradient
has a closed form

ϕt(x) = ∇ ln p∗(x)−∇ ln pt(x). (2)

Under mild assumptions, the gradient flow converges to the
optimal solution, i.e., limt→∞ pt = p∗, which implies that
with sufficiently large t, xt approximately follows the target
distribution p∗. Computing ∇ ln pt(x) in Equation (2) is
however not feasible in most practical cases. Methods such
as learning the current density pt(x) (Wang et al., 2022),
or transforming the problem of finding ϕt(x) to a tractable
learning/optimization problem (Dong et al., 2022; di Lan-
gosco et al., 2021) by a swarm of particles at step t, have
been developed to implement the gradient flow. The vector
field learning in our work is also based on a swarm of parti-
cles in the same manner, though the training loss function
and the desired vector field are significantly different.
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Evidently, the dynamics of the particles are not unique given
the evolution of the distributions. Langevin dynamics (LD)
dxt = ∇ ln p̂(xt) dt +

√
2 dBt, where Bt is a standard

Brownian motion, is a realization of the KL Wasserstein
gradient flow (Jordan et al., 1998). In other words, its dis-
tribution satisfies the same Fokker-Planck equation as that
of the ODE with vector field ϕt(x) in (2). LD and its vari-
ants, such as Metropolis-adjusted Langevin Algorithm (
MALA or LMC) and Stochastic Gradient Langevin Dynam-
ics (SGLD), have been shown to be effective since they do
not require learning ∇ ln pt(x) as in (2). However, these
methods lack a stopping criterion due to their stochastic
nature (Dong et al., 2022), and can suffer from slow conver-
gence for some target distributions.

2.1. Motivation of the Proposed PGPS Method

We first pinpoint the cause of the slow convergence of KL
Wasserstein gradient flow (e.g., LD), and provide the intu-
ition for the proposed method as a remedy. Consider the
experiment setup with a target distribution being a mixture
of two Gaussian distributions, as shown in Figure 1 (a). Tak-
ing a zero mean isometric Gaussian as initial distribution,
the convergence of LD to the target distribution is extremely
slow as shown in Figure 1 (b-c), where the particles “stuck”
at the left-hand-side mode of the Gaussian mixture and it
takes many iterations to reach the right-hand-side mode.
The reason for this behavior is that LD and similar gradient-
flow-based methods rely heavily on the target distribution,
which is an asymptotic target. Such an asymptotic target
does not reflect the short-term need to escape from the cur-
rent mode; i.e., the convergence to the target distribution can
be extremely slow. To solve this issue, we propose PGPS
which specifies a density evolution path directly connecting
the initial and target distribution, and let the distribution of
the particles evolve along such a path. At each time step,
a short-term intermediate target on the path is set for the
particles; more details are given in Section 3. As shown in
Figure 1 (d), PGPS indeed finds both modes and converges
to the target distribution with considerably fewer iterations.

In the following, we denote the unnormalized density func-
tion with a hat as (̂·), i.e. p̂t(x) ∝ pt(x) with

∫
pt(x) dx =

1 but
∫
p̂t(x) dx being an unknown positive number.

2.2. Related Works

Gradient-flow particle-based sampling usually aims at find-
ing tractable estimations for the KL-gradient flows in the
Wasserstein space. One track of works relies on the uni-
versal approximation theorem of neural networks (Hornik
et al., 1989) to approximate the gradient-flow and maximize
certain discrepancies (di Langosco et al., 2021; Grathwohl
et al., 2020; Hu et al., 2018; Dong et al., 2022), among
which preconditioned functional gradient flow (PFG) (Dong

(a) Target distributed samples (b) LD for 100 iterations

(c) LD for 4,000 iterations (d) PGPS for 650 iterations

Figure 1: An illustration of the effectiveness of PGPS over
LD in handling mode-missing.

et al., 2022) was proposed to learn the Wasserstein gradient
by a neural network with preconditioning for better approx-
imation. Probability flow ODE (Maoutsa et al., 2020) can
also be applied to learn the Wasserstein gradient flow aim-
ing at learning the vector field for a given probability flow.
Aside from focusing on the flow approximation, works fo-
cusing on the discretization adopt the Jordan, Kinderlehrer,
and Otto (JKO) scheme (Jordan et al., 1998), aiming at find-
ing a JKO operator that minimizes the target functional as
well as the movement of the particles in each step, has also
achieved good performance in arbitrary gradient flow other
than KL-gradient flow estimation tasks (Alvarez-Melis et al.,
2021; Mokrov et al., 2021).

The Stein Variational Gradient Descent (SVGD) (Liu &
Wang, 2016) can be viewed as a specific type of gradient
flow w.r.t. the KL-divergence under a metric induced by
Stein operator, i.e., approximating the gradient by a kernel
function (Liu, 2017). It inspires later works on kernel meth-
ods following different flows, e.g., Fisher–Rao Flow (Mau-
rais & Marzouk, 2024) and the flow introduced by mini-
mizing first and second moments (Wang & Nüsken, 2024).
However, the curse of dimensionality for the kernel-based
methods leads to the particle collapse in SVGD (Ba et al.,
2021), i.e., variance collapse. Projecting the inference space
to a lower dimension can naturally avoid high-dimensional
variational inference (Chen & Ghattas, 2020; Gong et al.,
2020; Liu et al., 2022).

Another area of related work is the annealing-based meth-
ods, e.g., parallel tempering (Earl & Deem, 2005), annealed
importance sampling (Neal, 2001), and sequential Monte
Carlo (Doucet et al., 2001). Annealing-based methods
utilize intermediate distributions, usually following a log-
weighted schedule where the weights are usually interpreted
as temperature, to help achieve better performance. Utiliz-
ing intermediate distributions (path) has witnessed benefits
in both Monte-Carlo estimators (Grosse et al., 2013; Chehab
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et al., 2024) and sampling tasks (Heng et al., 2020).

Learning vector fields to update the particles has been
broadly adopted in generative models that consider a dif-
ferent task aiming at generating new samples based on
existing ones. The backward process of diffusion mod-
els (Song et al., 2020; Albergo et al., 2023) is indeed learn-
ing the vector fields that can drive the particles inverting
the path introduced by the forward process. Flow match-
ing (Lipman et al., 2022), built on Continuous Normaliz-
ing Flows (CNF) (Kobyzev et al., 2021) to learn a vector
field following some specifically designed path, has demon-
strated its empirical effectiveness followed by justification
from Benton et al. (2023) theoretically.

In this work, we use SVGD, PFG and LD as benchmarks
and defer more detailed discussions on related works to Ap-
pendix A.

3. Path-Guided Particle-based Sampling
We propose Path-Guided Particle-based Sampling (PGPS)
methods based on a continuous density path linking initial
distribution p0 to target distribution p1 = p∗, while only
accessing the partition-free version of the target distribution
p̂1 = p̂. Compared to the annealing methods that also uti-
lize intermediate distributions (path), PGPS learns a vector
field that would drive the particles to the next intermediate
distribution based on a predefined path in each step, which
has not been studied previously to the best of our knowledge.
In this section, we first derive a condition for viable guiding
paths and present a novel class of log-weighted shrinkage
paths. We then propose a learning algorithm to effectively
approximate the path-guided flow.

Given a partition-free density process {p̂t}t∈[0,1] and its
normalized densities {pt}t∈[0,1], with p̂0 = p0 being the
initial distribution and p1 being the target, assume that ∂

∂t p̂t
and ∇xp̂t(x) exist for any t ∈ [0, 1] and x on the support.
We wish to construct a vector field ϕt : Rd → Rd such that
the process

dxt

dt
= ϕt(xt), x0 ∼ p0 (3)

satisfies xt ∼ pt for any t ∈ [0, 1]. The following proposi-
tion establishes that determining ϕt(x) does not require the
partition function.

Proposition 3.1. For a given partition-free density path
{p̂t}, the gradient flow guided by the vector field ϕt(x)
following the continuity equation (1) satisfies:

r(x,ϕt)− Ex∼pt

[
∂ ln p̂t(x)

∂t

]
= 0, (4)

where r(x,ϕt) =
∂ ln p̂t(x)

∂t + (∇ ln p̂t(x) +∇) · ϕt(x).

The proof of Proposition 3.1 can be found in Appendix D.

Proposition 3.1 indicates that once a vector field ϕt satis-
fying Equation (4) is obtained, we can generate samples
following the distribution on the density path {pt} when
particles evolve according to the vector field in Equation (3).
Furthermore, note that Equation (4) is free of the intractable
partition function, and we can thus learn the vector field
ϕt(x) by approximating it via a neural network that solves
for Equation (4).

3.1. Selection of Path

One of the most important components of the proposed
approach is the selection of partition-free guiding path
{p̂t}t∈[0,1]. Although any reasonable path linking the initial
and target distributions is valid to direct particles according
to Equation (3) as long as the corresponding vector field
follows the condition in Proposition 3.1, certain paths that
are more robust against democratization and more tractable
for training are preferred and may have better performance
in practice.

We propose a class of Log-weighted Shrinkage paths {p̂LwS
t }

as follows

ln p̂LwS
t (x) := (1− t) ln p0 ((1− αt)x)

+ t ln p̂1

(
x

β + (1− β)t

)
,

(5)

where α ∈ [0, 1] and β ∈ (0, 1] are controlling parameters.

It is straightforward to check that LwS paths are valid with
ln p̂LwS

0 (x) = ln p0(x) and ln p̂LwS
1 (x) = ln p̂1(x). Moreo-

ever, ∂
∂t ln p̂

LwS
t and∇ ln p̂LwS

t both exist, when∇ ln p̂1 and
∇ ln p0 exist; see Appendix B.

As its name suggested, LwS paths (5) have two components
– Log-weights and Shrinkage. The log-weights enable repre-
senting the log-distribution on the path by a linear mixture of
the log-initial-distribution and log-target-distribution terms
in Equation (5) weighted by (1− t) and t. The linear mix-
ture allows efficient computation of r(x,ϕt) in Proposition
3.1 when training ϕt by a neural network. The Shrinkage
operates on the initial-distribution term by α and the target-
distribution term by β in Equation (5). The first term spreads
the initial distribution by a factor 1/(1− αt) to cover larger
ranges as the factor increases along t; and the second term
shrinks the target distribution p̂1 towards zero (i.e., the dis-
tribution p̂1( x

β+(1−β)t ) is thinner than p̂1(x)) by a factor
β + (1 − β)t. Since a typical choice of p0 is zero-mean
Gaussian, the shrinkage allows better coverage of the target
distribution, and the coverage enables better mode seeking.
It is illustrated in Figure 2 for different choices of the hy-
perparameters α, β. We can observe that with appropriate
choices of hyperparameters (e.g., (B) and (C)), the right
mode of the target distribution is detected at an early stage
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(e.g., t = 0.2) compared to the log-weighted path without
shrinkage (e.g., (A)). We further discuss the influence of the
choice of the hyperparameters in Appendix C.

3.2. Learning Vector Field ϕt(x)

Given a viable path {pt}, we aim to find a corresponding
vector fieldϕt(x) as in Proposition 3.1 to direct the particles
as in Equation (3). However, solving Equation (4) for ϕt(x)
in closed form is intractable. We use a parameterized vector
field model ϕθ

t (x) ∈ Rd – a neural network parameterized
by θ – to approximately solve for Equation (4).

Specifically, at each time step t starting with t = 0, we have
N particles {xt,(i)}i=1,...,N and minimize the training loss

Lt(θ) =
∑

i=1...N

∣∣∣∣∣r(xt,(i),ϕ
θ
t )−

1

N

∑
j=1...N

∂ ln p̂t(xt,(j))

∂t

∣∣∣∣∣
2

(6)
resembling the squared value of the LHS of Equa-
tion (4). When particles {xt,(i)} following distribution

pt, 1
N

∑
j=1...N

∂ ln p̂t(xt,(j))

∂t is an unbiased estimate of

Ex∼pt

[
∂ ln p̂t(x)

∂t

]
.

The training algorithm is presented in Algorithm 3, where
the loss (6) is minimized by gradient descent. It is an itera-
tive algorithm starting from time step t = 0 and is increased
by ∆t after the training for time t. The time step increment
∆t is adaptively determined by Algorithm 1, which leads
to a smaller increment for larger vector field ϕθ

t to control
the movement of the particles. Since we have an intermedi-
ate target distribution p̂t on the path to follow, an optional
Langevin adjustment (Langevin dynamics w.r.t. the interme-
diate target p̂t) in Algorithm 2 can be applied to adjust the
particles’ distribution closer to pt to reduce the biasedness
in the loss function (6). We further discuss the Langevin
Adjustment in the experiment section.

Algorithm 1 Adaptive Time Step

Input: Time t, Current particles {xt,(i)}i=1...N , Flow
ϕθ

t (x), Particle step-size ψ, Maximum time step ∆t′;
∆t← (Nψ)/

∑
i=1...N

∥∥ϕθ
t (xt,(i))

∥∥;
∆t← min{∆t, 1− t,∆t′};
Output: Time step ∆t;

Training-free deployment of PGPS Many efficient algo-
rithms such as LD or SVGD, are training-free, i.e., learning
is not required during the evolution of the particles. We can
also implement PGPS in a training-free manner, where at
each time step t without training a neural network we update
the particles by Langevin adjustment solely. In other words,
we iteratively apply Langevin dynamics for sampling from
an intermediate target distribution p̂t. A similar approach

Algorithm 2 Langevin Adjustment

// Langevin dynamics //
Input: Particles {x(i)}i=1...N , density p̂;
Coefficients: Adjustment step-size δ, LD steps M ′;
for k = 1 . . .M ′ do

Sample {ξk(i)} ∼ N (0, I);

Adjust {x(i)} ← {x(i) + δ∇ ln p̂(x(i)) +
√
2δξk(i)};

end for
Output: Adjusted {x(i)};

has been proposed under the name Annealed Langevin Dy-
namics (ALD) (Song & Ermon, 2019), where a path is
given by changing the temperature of the target distribution.
In Section 5.2.3, we experimentally compare the standard
PGPS and the training-free PGPS and demonstrate the ben-
efits of learning the vector field.

4. Theoretical Analysis
In this section, we study the distribution of the PGPS-
generated particles compared to the target distribution. Note
that the target distribution p∗ ∝ p̂ equals to px1

, where
x1 = x0 +

∫ 1

0
ϕt(xt) dt with x0 ∼ p0 by Proposition 3.1.

The PGPS method without Langevin adjustment simulates
the integration by

x̂θ
th+h = x̂θ

th + ϕθ
nh(x̂

θ
th), t = 0, . . . , n− 1, (7)

where h = 1/n is the step size for some n ∈ N capturing
the discretization error, and x̂θ

0 ∼ p0.

We analyze the performance of PGPS using the 2-
Wasserstein distance between the generated distribution px̂1

and the target distribution px1
under the approximation error

δ2 :=
∫ 1

0
Ex∼pt [∥ϕθ

t (x) − ϕt(x)∥2]dt and discretization
error due to step size h in Theorem 4.2. The following
assumptions are taken in the analysis.

Assumption 4.1.

(1) Lipschitzness of ϕt and ϕθ
t on x space: There exists

K1 <∞, such that ∥ϕt(x1)− ϕt(x2)∥ ≤ K1∥x1 −
x2∥ and ∥ϕθ

t (x1)−ϕθ
t (x2)∥ ≤ K1∥x1−x2∥ for any

x1,x2 ∈ Rd, t ∈ [0, 1];

(2) Lipschitzness ofϕθ
t on t space: There existsK2 <∞,

such that ∥ϕθ
t1(x) − ϕ

θ
t2(x)∥ ≤ K2|t2 − t1| for any

x ∈ Rd, t1, t2 ∈ [0, 1];

(3) Finite vector field: There exists K3 < ∞, such that
∥ϕθ

t (x)∥ ≤ K3 for any x ∈ Rd, t ∈ [0, 1]

Theorem 4.2. For two flows ϕθ
t (x) and ϕt(x) under As-

sumption 4.1, the Wasserstein distance between the distribu-
tion px̂θ

1
of PGPS generated samples according to dynamics
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Figure 2: Different Log-weighted Shrinkage paths from the initial (left) to target (right) distribution with different hyper-
parameters. (A):α = 0, β = 1 (blue); (B):α = 1, β = 0.5 (orange); (C):α = 0.2, β = 0.5 (green).

Algorithm 3 PGPS

Input: Parameterized vector field ϕθ
t (x), Valid unnor-

malized path {p̂t}t∈[0,1], Particles from initial distribution
{x0,(i)}i=1...N , Maximum training steps M , Training
threshold ϵ, Learning rate η, Maximum time step ∆t′,
Particle step-size ψ;
Initialize t← 0;
repeat

for k = 1 . . .M do
Gradient descent θ ← θ − η∇θLt(θ);
if Lt(θ) < ϵ then

Break;
end if

end for
∆t← Adaptive Time Step[t,ϕθ

t (x), ψ,∆t
′];

// Algorithm 1 //
Update {xt+∆t,(i)} ← {xt,(i) +∆tϕθ

t (xt,(i))};
Update t← t+∆t;
(Optional) {xt,(i)} ←
Langevin Adjustment[{xt,(i)}, p̂t];
// Algorithm 2 //

until t = 1;
Output: Evolved particles {x1,(i)}i=1...N ;

(7) and the target distribution px1 is bounded as

W2(px̂θ
1
, px1) ≤ δ

√
exp(1 + 2K1)

+
√
h

√
C(exp(1 +K2

1 )− 1)

1 +K2
1

, (8)

where C = 1
2K

2
2 + 17

2 K
2
1K

2
3 + 5K1K2K3.

There are two terms in the upper bound Equation (8) by the
approximation error and the discretization error, respectively.
The first term is related to the Lipschitzness assumption on
ϕt(x),ϕ

θ
t (x) over x space (Assumption 4.1(1)). It charac-

terizes the error introduced due to the approximation of the
vector field ϕt (Lemma D.2). The second term represents
the error introduced by discretization, which is related to
the Lipschitzness property with respect to t and the finite-
ness of the vector field (Assumption 4.1(2)-(3)). The proof

of Theorem 4.2 can be found in Appendix D.

Theorem 4.2 indicates that with trained vector field of max-
imum error δ and discretized with uniform step h and the
generated distribution is close to the target distribution with
W2-distance bounded by O(δ) + O(

√
h). Therefore, we

can improve the performance of the evolved particles by
reducing the approximation error and/or refining the dis-
cretization. In the following, we illustrate that the training
objective of minimizing loss function Lt(θ) in Equation (6)
is aligned with reducing the approximation error.

Note that minimizingLt(θ) is to solve the partial differential
equation (PDE) in (4), which requires specifying the func-
tion space. Let L4(pt) be the function space with norm
∥f∥L4(pt) = (

∫
(f(x))4pt(x)dx)

1/4 and W 1,4(pt) =

{f ∈ L4(pt) :
∂

∂xi
f(x) ∈ L4(pt)} be a weighted Sobelov

space. Denote by Ψt = [W 1,4(pt)]
d a product space that

contains the vector-valued functions of interest. Specifically,
we made mild assumptions below

Assumption 4.3. (a) ϕθ
t ,∇ ln pt ∈ Ψt for any t ∈ [0, 1];

and (b) supt∈[0,1] Ex∼pt
[∥∇ ln pt(x)∥4] <∞.

Proposition 4.4. Under Assumption 4.3, for any ϕθ
t , there

exists a vector-field ϕt solution to PDE (4) that

Ex∼pt
[∥ϕθ

t (x)− ϕt(x)∥2] ≤ KLt(θ), (9)

where K > 0 is a universal constant factor and Lt(θ) is in
Equation (6) with infinite many particles following pt.

Proposition justifies the consistency of the proposed method,
i.e., ϕt can be well-approximated by minimizing the loss
function under the infinite particles regime. The impact of
finite particles relies on the generalization analysis and is
beyond the scope of the paper.

5. Experiments
We demonstrate the effectiveness of the proposed PGPS
methods compared to LD, SVGD (Liu & Wang, 2016), PFG
(Dong et al., 2022) baselines. The number of iterations for
each method is the same, where the Langevin Adjustment
steps in PGPS are counted. The code to reproduce the
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(a) score1 (b) Mode seeking distribution

(c) score2 (d) Sensitivity distribution
Figure 3: The performances of different methods: (a, c)
score1 and score2 indicating the mode capture ability with
the true score illustrated by the red dashed line; (b, d) KDE
estimated probability distributions for different methods.
The letter following PGPS indicates different hyperparam-
eters. (A): α = 0, β = 1, steps = 0 (B): α = 1, β = 0.8,
steps = 0 (C): α = 0, β = 1, steps = 10 (D): α = 1,
β = 0.8, steps = 10, where ‘steps’ indicates the number
of performed Langevin Adjustment steps. We report the
performance of PGPS with ψ ∈ {0.5, 0.1, 0.05, 0.01}.

experimetnal results can be found in our Github repository:
https://github.com/MingzhouFan97/PGPS.

5.1. Gaussian Mixture Target Distribution

We study the mode-seeking and weight-estimation capa-
bilities of the proposed PGPS for Gaussian mixture target
distributions, compared to LD, SVGD, and PFG gradient-
flow particle-based benchmarks.

5.1.1. MODE DISCOVERY MISSING

Given initial distribution N (0, 32) and target distribution of
a mixture of two Gaussian distributionsN (0, 1) andN (8, 1)
with equal weights, we investigate whether the methods can
effectively discover both modes.

Note that the left mode N (0, 1) of the target mixture is
automatically discovered by the initial distributionN (0, 32).

Define score1 =
∑N

i=1 I(xt,(i)>5)

N to capture the rates of the
samples discovering the right mode N (8, 1) by moving
across threshold 5. The score1 is shown in Figure 3a, where
the dashed true score is Ptarget(x > 0.5) ≈ 0.499. Note that
the performances of PGPS methods are scattered because
the method may require different adaptive iterations for

different hyperparameter choices. With the fact that the
intermediate state of the PGPS particle is not meaningful,
scatter plots are selected rather than lines for LD, SVGD,
and PFG. As shown in Figure 3a, PGPS recovers the right
mode faster and better with score1 close to the true score
0.49, yet the benchmarks fail. Figure 3b corroborates the
finding by visualizing the output distribution of the sample
methods, where PGPS-generated distribution is closer to the
target.

5.1.2. FALSE MODE DISCOVERY – SENSITIVITY

The benchmarks not only fail to effectively discover modes
but are also sensitive to the target distribution and may lead
to false discovery, i.e., they may focus on some negligible
mode.

Given initial distribution N (0, 22) and target distribution
of a mixture of two Gaussian distributions N (−5, 1) and
N (5, 1), where the left mode has an extremely small weight
0.001 and the right mode has weight 0.999. As shown in Fig-
ure 3d, the left mode is negligible and the target distribution
is visually indistinguishable from a Gaussian distribution.

Define score2 =
∑N

i=1 I(xt,(i)<0)

N to capture the rates of the
samples focusing on the negligible left modeN (−5, 1). The
score2 is shown in Figure 3c, where the dashed true score
is Ptarget(x < 0) ≈ 0.001. We observe that the benchmarks
have a relatively large score2, which indicates they are very
sensitive w.r.t. the target distribution. A negligible pertur-
bation from the Gaussian target may lead to these methods
focusing on a negligible mode. In contrast, the proposed
PGPS is less sensitive with score2 close to the desired value
0.001. Figure 3d corroborates the finding by visualizing the
output distribution of the methods.

Compared to the gradient-flow-based benchmarks solely re-
lying on the target distribution and its gradient, the proposed
PGPS method follows a smooth LwS path instead, and is
indeed less sensitive with better sampling quality.

5.1.3. WEIGHT RECOVERY

We investigate the capability of the proposed PGPS
method in estimating the corresponding weights besides
detecting modes. The target distribution is a mixture
of four 8-dimensional isometric Gaussian distributions
{N (µj , 0.15

2I8)} and randomly generated weights; and
the initial distribution is N (0, I8).

For generated samples {xi}Ni=1, define the estimated

weight ω̂j :=
∑N

i=1 I(∥xi−µj∥<1)

N . We evaluate the weight

mismatch by e :=
√∑4

j=1(ω̂j − ωj)2, where ωj :=

Ptarget(∥x− µj∥) < 1) is the ground truth. Smaller error e
indicates more accurate weight estimation.
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Table 1: Average Expected Calibration Error (ECE) and Accuracy (ACC) on UCI datasets over five independent runs
Expected Calibration Error (ECE) ↓ Accuracy (ACC) ↑

PGPS SVGD SGLD PFG PGPS SVGD SGLD PFG
SONAR 0.2517± 0.057 0.1712± 0.020 0.3394± 0.049 0.1678± 0.050 0.7981± 0.023 0.7962± 0.016 0.7942± 0.024 0.7673± 0.033

WINEWHITE 0.0750± 0.011 0.0988± 0.012 0.0935± 0.024 0.0876± 0.018 0.4520± 0.010 0.4520± 0.010 0.4831± 0.049 0.4520± 0.010
WINERED 0.0366± 0.005 0.0402± 0.004 0.0868± 0.029 0.0449± 0.005 0.5938± 0.018 0.5770± 0.018 0.5107± 0.096 0.5723± 0.019

AUSTRALIAN 0.1703± 0.066 0.1713± 0.064 0.3517± 0.078 0.1457± 0.047 0.8620± 0.009 0.8626± 0.006 0.7362± 0.157 0.8643± 0.006
HEART 0.4579± 0.071 0.5117± 0.064 0.5110± 0.114 0.4887± 0.089 0.2556± 0.142 0.1801± 0.042 0.2384± 0.135 0.1762± 0.033
GLASS 0.1142± 0.008 0.1155± 0.006 0.2157± 0.025 0.1289± 0.021 0.5850± 0.080 0.5383± 0.076 0.4561± 0.152 0.4505± 0.071

COVERTYPE 0.0743± 0.016 0.0950± 0.012 0.1301± 0.038 0.0926± 0.078 0.5899± 0.095 0.4867± 0.006 0.5221± 0.084 0.5088± 0.053

We take LD (a realization of the Wasserstein gradient flow)
as a baseline, and denote its weight mismatch error by eLD.
In Figure 4, we demonstrate the distribution of the differ-
ence between the weight mismatch error e of a method and
the baseline eLD averaged over 10 independent experiments.
While the baseline eLD has an average value of 0.3314, the
proposed PGPS methods consistently outperform LD with
the distributions of e − eLD being significantly less than
0. The performance of PFG is similar to LD because of
the same Wasserstein gradient flow nature, while SVGD
performs worse than LD for this task. The inferior perfor-
mance of SVGD is mainly due to the curse of dimensionality,
which makes it difficult for the particles to escape from the
trapping modes (Liu et al., 2022).

5.2. Bayesian Neural Network Inference

We further test PGPS methods for the Bayesian Neural
Network (BNN) inference tasks. BNNs, which model the
parameters of NNs as random variables to derive predic-
tive posteriors for prediction, are usually considered to be
difficult inference targets because of their non-concave like-
lihoods (Li et al., 2018). The proposed PGPS methods, with
a stronger ability to discover the modes and recover their
weights, achieve better inference performance.

Figure 4: The weight mismatch error. The letter after PGPS
indicates different hyperparameters. (A): α = 0, β = 1,
steps = 0 (B): α = 0, β = 0.5, steps = 0 (C): α = 0,
β = 1, steps = 100 (D): α = 0, β = 0.5, steps = 100,
where ‘steps’ is the number the Langevin Adjustment steps.

Table 2: Average negative log-likelihood (NLL), ACC, and
ECE on Noisy MNIST data over five independent runs

PGPS SVGD SGLD PFG
NLL ↓ 1.8202± 0.019 1.8285± 0.040 1.8184± 0.127 2.0171± 0.014
ACC ↑ 0.8788± 0.017 0.8282± 0.047 0.6419± 0.130 0.7119± 0.027
ECE ↓ 0.1716± 0.012 0.1941± 0.020 0.2183± 0.030 0.1752± 0.003

5.2.1. UCI DATASET

We conduct BNN inference for UCI datasets (Dua & Graff,
2017), where the neural network (NN) has one hidden layer
with 32 hidden neurons and Sigmoid activation. More details
of the experimental setup can be found in the Appendix E.4.

We report the averaged testing Expected Calibration Er-
ror (ECE) and testing accuracy (ACC) in Table 1, where
ECE represents the calibration ability of the uncertain pre-
diction by comparing the difference in prediction accuracy
and prediction uncertainty for the test samples. The pro-
posed PGPS methods achieve the best performance across
most of the benchmark datasets with lower ECE and higher
ACC, compared with SVGD, SGLD, and PFG baselines.

5.2.2. NOISY MNIST DATASET

Robustness is another desired property of learning Bayesian
models. It is expected that Bayesian models would give
more reasonable predictions with uncertainty quantifica-
tion (UQ) when facing out-of-distribution data. We bench-
mark the prediction and UQ performance of the pro-
posed PGPS methods for learning BNNs on the MNIST
dataset (Deng, 2012).

To test the robustness of inferred models, we create per-
turbation by injecting additive Gaussian noise into the test
MNIST images. Ensembles of 10 learned BNNs (i.e., 10
particles) are considered for evaluating competing infer-
ence methods. The performances are evaluated by negative
log-likelihood (NLL), ACC, and ECE in Table 2. We can
observe that the proposed PGPS method is again the best-
performing inference method on all the metrics with the
perturbed test data. SGLD is slightly better in NLL by 0.02
but with a large standard deviation of 0.127.

5.2.3. TRAINING-FREE PSPG

We compare the standard PGPS and the training-free PGPS
as discussed in Section 3.2 using the same Log-weighted
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Table 3: Averaged NLL, ACC, and ECE on Noisy MNIST
data over five independent runs

# particles PGPS tf-PGPS

10
NLL ↓ 1.8171± 0.0168 1.8238± 0.0251
ACC ↑ 0.8683± 0.0193 0.8380± 0.0504
ECE ↓ 0.1680± 0.0132 0.1659± 0.0083

50
NLL 1.8473± 0.0101 1.8467± 0.0108
ACC 0.9006± 0.0071 0.8672± 0.0298
ECE 0.1807± 0.0034 0.1890± 0.0071

100
NLL 1.8763± 0.0087 1.9010± 0.0135
ACC 0.9182± 0.0036 0.8956± 0.0259
ECE 0.1959± 0.0024 0.1986± 0.0068

Shrinkage Path on the noisy MNIST data as in Section 5.2.2.
The performance of standard PGPS and training-free PGPS
(tf-PGPS) is reported in Table 3). We can observe that
standard PGPS achieves better performance among almost
all metrics and the number of particles than tf-PGPS. For
the cases where tf-PGPS is better, their performances are
almost indistinguishable. Interestingly, NLL increases as the
number of particles goes up. We reason this by the fact that
when using more particles for estimation, the predictions
tend to fit the target posterior distribution better and lead to
higher ACC but higher NLL as well.

6. Conclusion
In this paper, we proposed a novel path-guided particle-
based sampling (PGPS) method and a Log-weighted Shrink-
age path as a partition-function-free path that guides the
particles moving from an initial distribution to the target
distribution. We theoretically analyzed the performance of
PGPS under the Wasserstein distance and characterized the
impact of approximation error and discretization error on
the quality of the generated samples. We conduct exten-
sive experiments to test the PGPS methods in seeking the
modes of the target distribution in sampling tasks, and the
inference performance in terms of testing accuracy and cali-
bration/uncertainty quantification in Bayesian learning tasks.
The proposed PGPS methods perform consistently and con-
siderably better than LD, SVGD, and PFG benchmarks in
the experiments.

A limitation of the standard PGPS method is the requirement
of training neural networks, similar to the PFG and other
learning-required benchmarks. We propose training-free
PGPS as an immediate solution, which is slightly worse
than the training-based PGPS but more efficient.

A better density path design in PGPS that leverages the struc-
ture of the target distribution and analysis of training-free
PGPS of its convergence to the target distribution are inter-
esting future directions with both theoretical and practical
importance.
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A. Related Works
Wasserstein gradient flow aims at building gradient flow where the density follows the steepest descent path of some
objective functional of density function under the Wasserstein metric. Sampling is fulfilled once the descent path converges
to the target distribution, which is the minimizer of the objective function. A popular objective function of density is the
KL-divergence between the density and the target distribution, and the flow is thus called KL Wasserstein gradient flow.
While it is intractable in general to derive the KL Wasserstein gradient flow, i.e., the flow does not have a closed-form, Wang
et al. (2022) resorted to Kernel Density Estimation (KDE) to estimate the gradient flow and uses Euler discretization to
update the samples. However, it suffers from the curse of dimensionality, i.e. the kernel matrix would tend to be diagonal as
dimensionality increases, due to the nature of kernels, which leads to inaccurate density estimation.

Aside from Euler discretization, the Jordan, Kinderlehrer, and Otto (JKO) scheme, aiming at finding a JKO operator that
minimizes the target functional as well as the movement of the particles in each step, has been broadly applied to discretize
the Wasserstein gradient flow. Alvarez-Melis et al. (2021) and Mokrov et al. (2021) applied a series of Input Convex Neural
Networks (ICNN, Amos et al. (2017)) to model the gradient flow to ensure the convexity of the potential function in JKO
scheme.

While the popularity of Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) arises as a particle-based VI
method, it can also be viewed as a specific type of gradient flow w.r.t. KL-divergence by determining the gradient ϕt(x) that
is the steepest descent direction under the kernelized Stein’s Discrepancy (Chwialkowski et al., 2016) by the reproducing
kernel Hilbert space (RKHS) (Liu, 2017). However, the curse of dimensionality for the kernel-based methods leads to
the particle collapse in SVGD (Ba et al., 2021), i.e., variance collapse. Currently, there are two major methods to tackle
the curse of dimensionality. Projecting the inference space to a lower dimension can naturally avoid high-dimensional
VI. While Chen & Ghattas (2020) projected the dynamics into a lower dimensional subspace and theoretically proved the
asymptotically converging performance of the projected SVGD, Gong et al. (2020) proposed sliced kernel Stein discrepancy
that projects the particle dynamics into a single dimensional subspace. More recently, Liu et al. (2022) proposed Grassmann
SVGD that also considers a low-dimensional projection and is claimed to be more efficient than projected SVGD (Chen
& Ghattas, 2020) without the need for costly eigenvector decomposition. Another type of popular method leverages the
Universal Approximation Theorem of Neural Networks (NNs) (Hornik et al., 1989) and defines more general discrepancy.
di Langosco et al. (2021) proposed to minimize Stein’s discrepancy based on the NNs, instead of functions drawn from
RKHS like SVGD. Grathwohl et al. (2020) proposed to learn a single energy function based on Stein’s Discrepancy for
energy-based models, while Hu et al. (2018) tried to learn a transport plan based on Stein’s Discrepancy or more general
f-divergence. Dong et al. (2022) modified the regularization term of the loss function to a preconditioned version but it
needs to calculate the Jacobian of the target density and in turn time-consuming.

B. Implementation of LwS Path
Though it is possible to fully depend on the AutoGrad functionality of the machine learning packages, a relatively closed form
of the gradient and derivatives of our Log-Shrinkage Path, ln p̂LwS

t (x) = (1− t) ln p0 ((1− αt)x) + t ln p̂1

(
x

β+(1−β)t

)
,

would lead to better calculation quality and faster computational speed.

Denote xa = (1− αt)x, xb =
x

β+(1−β)t . The gradient of our path p̂LwS
t (x) at time t would be

∇ ln p̂LwS
t (x) = (1− t)(1− αt)∇ ln p0(xa) +

t

β + (1− β)t
∇ ln p̂1(xb), (10)

and the derivative would be

d

dt
ln p̂LwS

t (x) = − ln p0(xa) + ln p̂1(xb)− α(1− t)x · ∇ ln p0(xa)−
(1− β)tx · ∇ ln p̂1(xb)

(β + (1− β)t)2
, (11)

where (·) denotes inner product.

In our training target of Equation (6), one critical part is the divergence∇ · ϕθ of the approximated vector field ϕθ. While
(Dong et al., 2022) proposed to use an efficient computational estimation derived by the integration-by-parts technique, a
close form of divergence can be derived for relatively simple NN implementation. Specifically, for the one hidden layer, H
hidden neuron, D dimensional input, sigmoid activation MLP we used in this work, ϕθ =W2σ(W1x+ b1) + b2, the close
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(a) α = 0, β = 0.1 (b) α = 0, β = 0.5 (c) α = 0, β = 1

(d) α = 0.5, β = 0.1 (e) α = 0.5, β = 0.5 (f) α = 0.5, β = 1

(g) α = 1, β = 0.1 (h) α = 1, β = 0.5 (i) α = 1, β = 1

Figure 5: Particles for tf-PGPS following the LwS-path with different hyperparameters discretized with a constant time
step of 0.01, 30 LD steps for each intermediate distribution. With the same computational demand, the hyperparameter
choices can influence the sample quality. The no-shrinkage setup (α = 0, β = 1) leads to the worst performance and the
hyperparameter choices that incorporate shrinkage capture much better the mode on the right.

form of divergence would be

∇x · ϕθ(x) =
D∑
i=1

(∇xϕ
θ
(i)(x))i = trace(W2diag(xg)W1) =

∑
W2 ⊗WT

1 ⊗ (1Dx
T
g ), (12)

where σ is the sigmoid function, xh = σ(W1x + b1) is the output of the first layer, ⊗ denotes entry-wise product,
xg = xh ⊗ (1H −xh), 1D and 1H denotes all one matrix with size of D× 1 and H × 1, respectively, and the “

∑
” sign in

the last equation denotes summation along both dimensions.

C. Influence of Hyperparameter in LwS Path
To show the impact of hyperparameter choices, we here give an example with the same target as the motivating example
in Figure 1(a), a mixture of two Gaussian distributions with equal weights. We apply the training-free version of PGPS
discretized with a constant time step of 0.01, i.e. 99 intermediate distributions, and 30 LD steps performed for each
intermediate distribution to ensure that different setups consume the same computational resource.

With the results illustrated in Figure 5, it can be observed that the hyperparameter choices can influence the sample quality
with the same computational demand. The no-shrinkage setup leads to the worst performance and the hyperparameter
choices that incorporate shrinkage capture the mode to the right much better.
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D. Proofs
D.1. Proof of Proposition 3.1

Proposition D.1. For a given partition-free density path {p̂t}, the gradient flow guided by the vector field ϕt(x) following
the Fokker-Planck equation (1) satisfies:

r(x,ϕt)− Ex∼pt

[
∂ ln p̂t(x)

∂t

]
= 0, (13)

where r(x,ϕt) =
∂ ln p̂t(x)

∂t + (∇ ln p̂t(x) +∇) · ϕt(x).

Proof. We start with the Fokker-Planck equation:

∂

∂t
pt(x) = −∇ · (pt(x)ϕt(x)), (14)

The right-hand side (RHS) of (14) can be derived to be:

−∇ · (pt(x)ϕt(x)) = −pt(x)[∇ ln pt(x) · ϕt(x) +∇ · ϕt(x)]. (15)

Though it is usually non-trivial to find the derivative of the path with respect to time, it is clear that ∇ ln pt = ∇ ln p̂t +
∇ ln

∫
p̂t dx = ∇ ln p̂t. Equation (15) can then be further transformed into:

−∇ · (pt(x)ϕt(x)) = −pt(x)[∇ ln p̂t(x) · ϕt(x) +∇ · ϕt(x)]. (16)

On the other hand, the left-hand side (LHS) of (14) can be derived as:

∂

∂t
pt(x) =

∂

∂t

p̂t(x)∫
p̂t(x) dx

=

∫
p̂t(x) dx

∂
∂t p̂t(x)− p̂t(x)

∂
∂t

∫
p̂t(x) dx

(
∫
p̂t(x) dx)2

=
∂
∂t p̂t(x)∫
p̂t(x) dx

− p̂t(x)∫
p̂t(x) dx

∫ ∂
∂t p̂t(x)∫
p̂t(x) dx

dx

=
p̂t(x)∫
p̂t(x) dx

∂

∂t
ln p̂t(x)− pt(x)

∫
p̂t(x)∫
p̂t(x) dx

∂

∂t
ln p̂t(x) dx

=pt(x)(
∂ ln p̂t(x)

∂t
−
∫
pt(x)

∂ ln p̂t(x)

∂t
dx)

=pt(x)

(
∂ ln p̂t(x)

∂t
− Ex∼pt

[
∂ ln p̂t(x)

∂t

])
.

(17)

Substituting equations (16) and (17) to Equation (14) and pt(x) on both sides and we have the desired result

∇ ln p̂t(x) · ϕt(x) +∇ · ϕt(x) =
∂ ln p̂t(x)

∂t
− Ex∼pt

[
∂ ln p̂t(x)

∂t

]
. (18)

D.2. Proof of Theorem 4.2

Before showing the quality analysis of the evolved particles with the discretized algorithm, we first evaluate the impact of
error between the numerical approximation ϕθ

t (x) and the true ϕt(x) satisfying Equation (4).

Lemma D.2 (Proposition 3 of Albergo & Vanden-Eijnden (2023)). For two flows ϕθ
t (x) and ϕt(x) under Assumption 4.1,

the Wasserstein distance between the distribution pxθ
1

of random variable xθ
1 = x0 +

∫ 1

0
ϕθ

t (xt) dt, and the distribution px1

of x1 = x0 +
∫ 1

0
ϕt(xt) dt is bounded:

W 2(pxθ
1
, px1) ≤ δ2 exp(1 + 2K1). (19)
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Due to the necessary discretization involved in particle evolution, another error factor arises. We here give the analysis of
the discretization error.

Lemma D.3. For a trained flow ϕθ
t (x) under Assumption 4.1, the Wasserstein distance between the distribution px1

of random variable x1 = x0 +
∫ 1

0
ϕθ

t (xt) dt and the distribution px̂1
of random variable x̂1 generated by constant

discretization x̂(n+1)h = x̂nh + ϕθ
nh(x̂nh) with step-size h is bounded:

W 2(px1 , px̂1
) ≤ h

C(exp
(
1 +K2

1

)
− 1)

1 +K2
1

, (20)

where C = 1
2K

2
2 + 17

2 K
2
1K

2
3 + 5K1K2K3 is a constant.

Proof. Here we consider the discretization error

W 2(pxt+h
, px̂t+h

) (21)

≤Eγ∥xt+h − x̂t+h∥2 (22)

=Eγ∥xt + (xt+h − xt)− [x̂t + hϕt(x̂t)]∥2 (23)

≤Eγ∥[xt − x̂t] + [xt+h − xt − hϕt(x̂t)]∥2 (24)

≤(1 + λ)Eγ∥xt − x̂t∥2 + (1 +
1

λ
)Eγ∥

∫ t+h

t

ϕ(t′,xt′)dt
′ − hϕt(x̂t)∥2 (25)

Now we bound the second term:

Eγ∥
∫ t+h

t

ϕ(t′,xt′)dt
′ − hϕt(x̂t)∥2 (26)

≤Eγ(

∫ t+h

t

∥ϕ(t′,xt′)− ϕt(x̂t)∥dt′)2 (Jensen’s) (27)

≤Eγ(

∫ t+h

t

∥ϕ(t′,xt′)− ϕt(xt′) + ϕt(xt′)− ϕt(x̂t)∥dt′)2 (28)

≤Eγ(

∫ t+h

t

∥ϕ(t′,xt′)− ϕt(xt′)∥+ ∥ϕt(xt′)− ϕt(x̂t)∥dt′)2(Triangular) (29)

≤Eγ(

∫ t+h

t

K2(t
′ − t) +K1∥xt′ − x̂t∥dt′)2 (30)

=Eγ(
K2h

2

2
+

∫ t+h

t

K1∥xt′ − x̂t∥dt′)2 (31)

≤Eγ(
K2h

2

2
+

∫ t+h

t

K1∥xt′ − xt∥+K1∥xt − x̂t∥dt′)2 (Triangular) (32)

=Eγ(
K2h

2

2
+ hK1∥xt − x̂t∥+

∫ t+h

t

K1∥xt′ − xt∥dt′)2 (33)

≤Eγ(
K2h

2

2
+ hK1∥xt − x̂t∥+

∫ t+h

t

K1K3(t
′ − t)dt′)2 (34)

=Eγ(
K2h

2

2
+ hK1∥xt − x̂t∥+

K1K3

2
h2)2. (35)

Substituting (35) to (25),

W 2(pxt+h
, px̂t+h

) (36)

≤(1 + λ)Eγ∥xt − x̂t∥2 + (1 +
1

λ
)Eγ(C1h

2 + hK1∥xt − x̂t∥)2 (37)

=(1 + λ)Eγ∥xt − x̂t∥2
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+ (1 +
1

λ
)Eγ(C

2
1h

4 + h2K2
1∥xt − x̂t∥2 + 2C1h

3K1∥xt − x̂t∥) (38)

=(1 + λ)Eγ∥xt − x̂t∥2

+ (1 +
1

λ
)(C2

1h
4 + h2K2

1Eγ∥xt − x̂t∥2 + 2C1h
3K1Eγ∥xt − x̂t∥) (39)

≤(1 + λ)Eγ∥xt − x̂t∥2

+ (1 +
1

λ
)(C2

1h
4 + h2K2

1Eγ∥xt − x̂t∥2 + 2C1h
3K1

√
Eγ∥xt − x̂t∥2), (40)

where C1 = K2

2 + K1K3

2 . Choosing γ that minimizes Eγ∥xt − x̂t∥2,

W 2(pxt+h
, px̂t+h

) (41)

≤(1 + λ)W 2(pxt , px̂t
) + (1 +

1

λ
)(C2

1h
4 + h2K2

1W
2(pxt , px̂t

) + 2C1h
3K1W (pxt , px̂t

)). (42)

Choosing λ = h,

W 2(pxt+h
, px̂t+h

) (43)

≤(1 + h)W 2(pxt , px̂t
) + (1 +

1

h
)(C2

1h
4 + h2K2

1W
2(pxt

, px̂t
) + 2C1h

3K1W (pxt
, px̂t

)) (44)

≤(1 + h)W 2(pxt , px̂t
) + (1 +

1

h
)(C2

1h
4 + h2K2

1W
2(pxt , px̂t

) + 4C1h
3K1K3) (45)

≤(1 + h)W 2(pxt
, px̂t

) + hK2
1W

2(pxt
, px̂t

) + Ch2 (46)

≤[1 + (1 +K2
1 )h]W

2(pxt , px̂t
) + Ch2, (47)

where C = 2C2
1 + 4K2

1K
2
3 + 8C1K1K3 is a constant. The fact that h4 < h3 < h2 for 0 < h < 1 and W (pxt

, px̂t
)

can be bounded by 2K3 leads to (47). W (pxt
, px̂t

) is bounded because W 2(pxt
, px̂t

) ≤ E∥x1 − x0 − (x̂1 − x0)∥2 ≤
2E∥x1 − x0∥2 + 2E∥x̂1 − x0∥2 ≤ 4K2

3 .

We therefore have
W 2(pxt+h

, px̂t+h
) ≤ [1 + (1 +K2

1 )h]W
2(pxt

, px̂t
) + Ch2, (48)

and
W 2(pxt+h

, px̂t+h
) +

Ch

1 +K2
1

≤ [1 + (1 +K2
1 )h][W

2(pxt , px̂t
) +

Ch

1 +K2
1

]. (49)

It can then be shown that

W 2(pxnh
, px̂nh

) +
Ch

1 +K2
1

≤ [1 + (1 +K2
1 )h]

n[W 2(px0 , px̂0
) +

Ch

1 +K2
1

] =
[1 + (1 +K2

1 )h]
nCh

1 +K2
1

. (50)

Hence,

W 2(px1 , px̂1
) ≤ h C

1 +K2
1

[(1 + (1 +K2
1 )h)

1/h)− 1] (51)

≤ h C

1 +K2
1

(exp
(
1 +K2

1

)
− 1). (52)

Combining Lemma D.2 and Lemma D.3, we have our main result:
Theorem D.4. For two flows ϕθ

t (x) and ϕt(x) under Assumption 4.1, the Wasserstein distance between the distribution
px̂θ

1
of random variable x̂θ

1 generated by discretization x̂(n+1)h = x̂nh + ϕθ
nh(x̂nh) with step-size h, and the distribution

px1
of x1 = x0 +

∫ 1

0
ϕθ

t (xt) dt is bounded:

W (px̂θ
1
, px1) ≤ δ

√
exp(1 + 2K1) +

√
h

√
C(exp(1 +K2

1 )− 1)

1 +K2
1

, (53)

where C = 1
2K

2
2 + 17

2 K
2
1K

2
3 + 5K1K2K3.
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Proof. Because Wasserstein distance is a metric,

W (px̂θ
1
, px1

) ≤W (px̂θ
1
, pxθ

1
) +W (pxθ

1
, px1

), (54)

where pxθ
1

is the distribution of xθ
1, the random variable following the gradient flow ϕθ

t (x). With the first term bounded by
Theorem D.3 and the second term bounded by Theorem D.2, we complete the proof.

D.3. Proof of Proposition 4.4

For a given path p̂t(x), we are essentially solving the equation (4) restated below

∂ ln p̂t(x)

∂t
+ (∇ ln p̂t(x) +∇) · ϕt(x)− Ex∼pt

[
∂ ln p̂t(x)

∂t

]
= 0 (55)

via minimizing a quadratic loss function. Note that the solution ϕt for the equation above may not be unique. We will next
show minimizing the quadratic loss function is consistent with solving the equation. Having an infinite number of samples
implies that we are studying the behavior in expectation. Note that the precise impact of finite samples is related to the issue
of generalization error, which is beyond the scope of this work. Given infinite number of particles following distribution pt,
the loss function in Equation (6) can be written as

Lt(θ) =Ex∼pt

[(
∂ ln p̂t(x)

∂t
+ (∇ ln p̂t(x) +∇) · ϕθ

t (x)− Ex∼pt

[
∂ ln p̂t(x)

∂t

])2
]

(56)

=Ex∼pt

[(
(∇ ln p̂t(x) +∇) · (ϕθ

t (x)− ϕt(x))
)2]

, (57)

where the first relation is by definition and the second relation is by (∇ ln p̂t(x)+∇)·ϕt(x) = Ex∼pt

[
∂ ln p̂t(x)

∂t

]
− ∂ ln p̂t(x)

∂t .

Discussion of the function space The discussion is the same for any t ∈ [0, 1] and we omit subscript t in the following.
We first need to specify the vector field class (the function space to solve the PDE) that the optimization is performed in.
Define the operator (T ψ)(x) := (∇ ln p(x) +∇) ·ψ(x), where ψ is a differentiable vector field. Let L2(µ) ⊂ {Rd → R}
be a weighted L2 space with measure dµ(x) = p(x)dx. It is required that T (ϕθ − ϕ) ∈ L2(µ) so that the loss function
exists. This condition is satisfied by choosing the vector field such that ∇ ln p(x), ϕθ and ϕ all lie in Ψ := [W 1,4(µ)]d,
which is the product space of the weighted Sobelov space W 1,4(µ) = {f ∈ L4(pt) :

∂
∂xi

f(x) ∈ L4(pt)} ⊂ L4(µ).

The following proposition established the desired consistency.

Proposition D.5 (Restatement of Proposition 4.4). Under Assumption 4.3, for any ϕθ
t there exists a vector-field ϕt solution

to PDE (4) that

Ex∼pt [∥ϕθ
t (x)− ϕt(x)∥2] ≤ KEx∼pt

[(
∂ ln p̂t(x)

∂t
+ (∇ ln p̂t(x) +∇) · ϕθ

t (x)− Ex∼pt

[
∂ ln p̂t(x)

∂t

])2
]

(58)

where K > 0 is a universal constant factor.

Proof. We omit the subscript t in pt,ϕt,ϕθ
t for simplicity, and we let µ be the measure associated with pt as dµ(x) = p(x)dt.

The function class L2(µ), L4(µ) and W 1,4(µ) is defined accordingly.

Note that (Ψ, ∥ · ∥Ψ) is a Banach space with

∥ψ∥2Ψ :=
∑
j

∫
ψj(x)

2dµ(x) +
∑
i,j

∫
[
∂

∂xi
ψj(x)]

2dµ(x). (59)

L2(µ) is a naturally a Banach space with ∥g∥2µ =
∫
g(x)2dµ(x) for any g ∈ L2(µ).

We next show that operator T : Ψ→ L2(µ) is

(T ψ)(x) := (∇ ln p(x) +∇) ·ψ(x), ∀ψ ∈ Ψ, (60)
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is a bounded linear operator. The linearity is straightforward. The boundedness is because that for any ψ ∈ Ψ with
∥ψ∥Ψ <∞,

∥T ψ∥µ ≤ ∥∇ ln p ·ψ∥µ + ∥∇ ·ψ∥µ <∞, (61)

where the first inequality is by triangle inequality and the second is by the fact that

∥∇ ln p ·ψ∥2µ =

∫
(∇ ln p(x) ·ψ(x))2dµ(x) (62)

≤
∫
∥∇ ln p(x)∥2∥ψ(x)∥2dµ(x) (63)

≤

√∫
∥∇ ln p(x)∥4dµ(x)

√∫
∥ψ(x)∥4dµ(x) <∞, (64)

and the fact that∇ ln p,ψ ∈ Ψ = [W 1,4(µ)]d.

Denote by G = {T ψ : ψ ∈ Ψ} the range of the linear operator T and let NT = {ψ ∈ Ψ : (T ψ)(x) = 0, ∀x} be the null
space of T . It follows that T : Ψ/NT → G is a bijection, where Ψ/NT is the quotient space. To see this bijection, observe
that T ψ ̸= T ϕ if and only if ψ − ϕ ̸∈ NT .

By the bounded inverse theorem (Treves, 2016), the invertible mapping T −1 : G→ Ψ/NT exists and is bounded. Thus
there exists a constant K > 0 that for any ϕθ, there is a ϕ which solves the PDE and

Ex∼p[∥ϕθ(x)− ϕ(x)∥2] = inf
ξ∈NT

Ex∼p[∥ϕθ(x)− ϕ(x)− ξ(x)∥2] (65)

≤ inf
ξ∈NT

∥ϕθ − ϕ− ξ∥2Ψ (66)

≤ K∥T ϕθ − T ϕ∥2µ, (67)

which concludes the proof.

E. Experimental Details
The experiments are performed on Nvidia Tesla T4 GPU and Intel Xeon 8352Y CPU. To reproduce the experimental
results, please refer to our code in our GitHub repo: https://github.com/MingzhouFan97/PGPS. Here we
briefly summarize the setup.

E.1. Illustrative Example

Illustrated as Figure 1a, the target is a mixture of two uncorrelated Gaussian with a standard deviation of 0.05 and mean of
(1, 0) and (1.5, 0), respectively. The initial particles are sampled from a two-dimensional uncorrelated Gaussian distribution
with zero mean and variance of 0.1. 200 particles are considered in this example.

E.2. Gaussian Mixture Examples

To estimate the vector field ϕt for PGPS in both experiments, we use a two-layer perceptron with 64 hidden neurons and
Sigmoid activation function. The particle step-sizes ψ is set to be {0.5, 0.1, 0.05, 0.01}, the step size for LD, PFG, SVGD,
and PGPS adjustment are all set to be 10−2.

E.3. Weight Recovery

The centers of the four modes are deterministically set to be µ1 = [1, 0, 0, 0, 0, 0, 0, 0], µ2 = [0,−1, 0, 0, 0, 0, 0, 0],
µ3 = [0, 0, 1, 0, 0, 0, 0, 0], and µ4 = [0, 0, 0,−1, 0, 0, 0, 0]. The weights are generated by performing Softmax over
samples from a 4-dimensional standard Gaussian distribution. The NN to estimate the vector field ϕt for PGPS is a two-layer
perceptron with 128 hidden neurons and Sigmoid activation function. The step size for LD, PFG, SVGD, and PGPS
adjustment are all set to be 10−4.
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E.4. Bayesian Neural Network Inference

The NN to estimate the vector field ϕt for PGPS is a two-layer perceptron with 128 hidden neurons and Sigmoid activation
function. The step size for LD, PFG, SVGD, and PGPS adjustment are all set to be 10−1. The path hyperparameter α is
selected from {0, 0.2, 0.4, 0.6, 0.8, 1} and β is selected from {0.2, 0.4, 0.6, 0.8, 1}.

F. Additional Experimental Results
F.1. BNN inference on UCI Dataset

We report the NLL along with the ACC results for Section 5.2.1 in Table 4. In many datasets, SVGD has the best NLL;
while in none of these benchmark experiments, SVGD can achieve the best ACC. We conjecture that this is due to variance
collapse that SVGD leads to particles gathering close together on the modes and in turn being ‘over-confident’ on the
prediction so that SVGD would tend to get better NLL on certain datasets but worse on ACC. Our PGPS achieves the best
ACC and second-best NLL in many of the datasets.

Table 4: Average negative log-likelihood (NLL) and accuracy (ACC) on UCI datasets over five independent runs
Negative Log-Likelihood (NLL) Accuracy (ACC)

PGPS SVGD SGLD PFG PGPS SVGD SGLD PFG
SONAR 0.5357± 0.014 0.5059± 0.010 0.5099± 0.017 0.5314± 0.011 0.7981± 0.023 0.7962± 0.016 0.7942± 0.024 0.7673± 0.033

WINEWHITE 1.9788± 0.009 1.9905± 0.011 1.9774± 0.050 1.9898± 0.010 0.4520± 0.010 0.4520± 0.010 0.4831± 0.049 0.4520± 0.010
WINERED 1.9642± 0.012 1.9566± 0.012 1.9502± 0.096 1.9359± 0.018 0.5938± 0.018 0.5770± 0.018 0.5107± 0.096 0.5723± 0.019

AUSTRALIAN 0.5042± 0.013 0.4507± 0.006 0.5732± 0.161 0.4511± 0.007 0.8620± 0.009 0.8626± 0.006 0.7362± 0.157 0.8643± 0.006
HEART 0.9428± 0.030 1.0800± 0.027 1.0686± 0.131 1.0914± 0.033 0.2556± 0.142 0.1801± 0.042 0.2384± 0.135 0.1762± 0.033
GLASS 1.6853± 0.030 1.6664± 0.027 1.7083± 0.145 1.7162± 0.029 0.5850± 0.080 0.5383± 0.076 0.4561± 0.152 0.4505± 0.071

COVERTYPE 1.6016± 0.014 1.5981± 0.018 1.6439± 0.082 1.6241± 0.011 0.5899± 0.095 0.4867± 0.006 0.5221± 0.084 0.5088± 0.053
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