% Formal Methods in Computer-Aided Design 2023

Sylvia: Countering the Path Explosion Problem in
the Symbolic Execution of Hardware Designs

Kaki Ryan
University of North Carolina
Chapel Hill, NC, USA
kakiryan@cs.unc.edu

Abstract—Symbolic execution is a powerful verification tool for
hardware designs, in particular for security validation. However,
symbolic execution suffers from the path explosion problem in
which the number of paths to explore grows exponentially with
the number of branches in the design. We introduce a new
approach, piecewise composition, which leverages the modular
structure of hardware to transfer the work of path exploration
to SMT solvers. Piecewise composition works by recognizing that
independent parts of a design can each be explored once, and
the exploration reused. A hardware design with N independent
always blocks and at most b branch points per block will
require exploration of O(2°N) paths in a single clock cycle
with our approach compared to O(ZI’N) paths using traditional
symbolic execution.

We present Sylvia, a symbolic execution engine implementing
piecewise composition. The engine operates directly over RTL
without requiring translation to a netlist or software simulation.
We evaluate our tool on multiple open-source SoC and CPU
designs, including the OR1200 and PULPissimo RISC-V SoC.
The piecewise composition technique reduces the number of paths
explored by an order of magnitude and reduces the runtime by
97% compared to our baseline. Using 84 properties from the
security literature we find assertion violations in open-source
designs that traditional model checking and formal verification
tools do not find.

Index Terms—symbolic execution, verilog, register transfer
level, verification, formal methods, hardware security

I. INTRODUCTION

The verification of hardware designs is a key activity for
ensuring the correctness and security of a design early in the
hardware lifecycle. Current best practice includes assertion-
based verification (ABV) [17], which has simulation-based
testing as the underlying means of verification, and formal
verification techniques, an umbrella term encompassing many
techniques with the goal of proving a given property of a de-
sign. One technique that has gained recent attention, especially
in security verification applications, is symbolic execution [8],
[40], [44], [48]. In addition to finding property violations,
symbolic execution has been used to verify information-flow
properties [25] or to find hardware trojans [44].

Symbolic execution generalizes testing by replacing input
values with symbols, where each symbol represents the set of
possible values of the input parameter. A symbolic execution
engine drives symbolic execution using the semantics of the
program’s language, but updated to include symbols. As exe-
cution proceeds the symbols are used in place of literal values.
When a branch point, or control flow statement, is reached

d https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_19

Cynthia Sturton
University of North Carolina
Chapel Hill, NC, USA
csturton @cs.unc.edu

(e.g., an if statement), both possible branches are explored
separately. The result of symbolically executing a design for
one clock cycle is a tree of paths, each one associated with
a unique path condition that describes the conditions satisfied
by branches taken along the path. Symbolic execution is often
used to find assertion violations. If any path is found to violate
a given assertion, then the associated path condition acts as
a precise description of the inputs that will drive (concrete)
execution along the same path. Concrete values that satisfy
the path condition are a counter-example to the assertion.

Unfortunately, symbolic execution suffers from the path
explosion problem: the number of paths grows exponentially
with the number of branch points in the design. Prior work
has sought to avoid the path explosion problem by combining
symbolic execution with model checking [6], concrete execu-
tion traces [40], or by limiting the use to small designs [42].

We introduce piecewise composition, a technique that lever-
ages the structure of hardware designs and the power of
satisfiability modulo theories (SMT) solving to reduce the
amount of repeated work. A single clock cycle of symbolic
execution produces a full tree of paths, where the root of the
tree is the initialized reset state and the leaves are realizable
design states in the next clock cycle. The inspiration behind
piecewise composition is the recognition that independent
parts of the design are being re-explored unnecessarily in each
root-to-leaf path. Instead, each independent block of logic can
be explored once, without consideration of the other blocks. To
reconstruct full root-to-leaf paths through the design, whether
for finding assertion failures, describing how information flows
through a design, or to generate testcases, the algorithm uses
SMT queries to combine the independently explored path
fragments.

Perhaps surprisingly, we show that with piecewise compo-
sition, a design with N always blocks, each with at most
b binary branch points, symbolic execution for a single clock
cycle requires exploring O(2°N) paths, instead of the O(2°V)
paths typical of standard symbolic execution. The number of
paths to explore grows exponentially with only the number of
branch points in any one independent block, and linearly with
the number of blocks.

Symbolic execution is closely related to symbolic simulation
[2] [3] [6]. In both, concrete input values are replaced with
symbolic values, representing any possible value, and the sym-
bolic values are allowed to propagate through the design. How-

This article is licensed under a Creative
BY Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://orcid.org/0009-0002-7764-5715
https://orcid.org/0000-0003-3930-7440
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_19
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_19
https://creativecommons.org/licenses/by/4.0/

ever, in symbolic simulation, the analysis is centered around
dataflow. At the end of a simulation run, each signal may hold
the value true, false, or a boolean expression characterizing
the entire circuit that drives that particular signal. Where
there are control points in the circuit, they are expressed as
if-then-else (ITE) statements in the boolean expression.
In symbolic execution, the analysis is centered around control
flow. At the end of one iteration of symbolic execution, each
signal holds a symbolic expression in a subset of first-order
logic that characterizes the particular path taken through the
register-transfer level (RTL) code. In addition, there is a path
condition that represents the conditions under which execution
would follow the particular path through the design.

In comparing symbolic simulation and symbolic execution,
there is a trade-off being made between the complexity of
queries sent to the SMT solver (symbolic simulation) and
the number of paths to explore (symbolic execution). With
piecewise composition, we examine a new point in the design
space, reducing the number of paths to explore to a tractable
amount, while still keeping SMT queries simple enough for
modern solvers. The result is a symbolic execution engine that
can handle large designs and operate directly over the register-
transfer level design. Sylvia targets the Verilog hardware
description language (HDL), however the approaches and
principles presented in this work are applicable to other HDLs.

This paper presents the following contributions:

1) Introduction and definition of piecewise composition, a
technique that leverages the modular nature of hardware
designs to counter the path explosion problem in sym-
bolic execution;

Design and implementation of Sylvia, a symbolic exe-
cution engine for Verilog RTL using piecewise compo-
sition;

Evaluation of piecewise composition and our implemen-
tation on five open-source designs, including an SoC and
two CPUs.

2)

3)

II. PRELIMINARIES
A. Example Verilog RTL Fragment

In the following discussion we will use the fragment of
Verilog shown in Figure 1. In this example, inpA and inpB
are input signals (along with clk), while all other named
variables are state-holding regs. We use the set V to denote
all design variables (regs, wires, etc.) other than clk. In
Figure 1, V = {inpA,inpB,g0,gl,y,z}.

B. Symbolic Execution

In symbolic execution [33], concrete values are replaced
with symbolic values. Each symbol represents an arbitrary,
but fixed, value of appropriate type. As execution proceeds,
the symbols are used in place of concrete values wherever
they occur. Variables may take on concrete values ({0,1}"),
symbolic values (&, B, 7,...), or a symbolic expression (e),
which is an expression in a quantifier-free subset of first-order
logic that supports bitvector arithmetic, the standard Verilog
operators and the theory of equality. The symbolic execution

always @ (posedge clk) begin
it (g0)
y <= inpA; //inpA is an input signal
else
y <= 0;
end
always @ (posedge clk) begin
if (gl)
z <= inpB; //inpB 1is an input signal
else
z <= 0;
end

Fig. 1: Verilog RTL fragment with two branches.

engine (or just engine from now on) implements the semantics
of the RTL Verilog; there is no compilation down to a netlist.

We model the symbolic execution of a design as a transducer

SE = (RTL, X, 11, 6y, My, &):

o RTL is the design, modeled as a partially ordered se-
quence of Verilog statements.

o X C2"*E s the set of symbolic stores. Each symbolic
store 0 € X is a function mapping program variables in
V to symbolic expressions in E: ¢ :v —e.

o IIis the set of path conditions. A path condition 7 € IT is
a boolean formula in the same subset of first of first-order
logic mentioned in the preceding paragraph. The path
condition is composed of symbolic and concrete literals,
which describe the conditions satisfied by branches taken
along the current path.

e Oy is the initial symbolic store. All input variables other
than the clock are initialized with fresh symbols.

o Ty is the initial path condition, which is always initialized
to my = True.

o & CRTL x X xITIxRTL x X xII is the transition relation
of the engine. Given the current RTL statement, symbolic
store, and path condition the engine updates the symbolic
store and path condition and moves to a next statement
to execute (at branch points there is more than one to
choose from).

To continue with our example, in the RTL fragment shown
in Figure 1, the symbolic store 6 would maintain the values
of variables inpA, inpB, g0, g1, v, z. (In the following
discussion, we write out only the part of the symbolic store that
is relevant to the discussion.) Let the (partial) initial symbolic
store and path condition be:

0o ={inpA=a,g0 =7y}, m =True

When a branching statement is reached (e.g., line 2 in
Figure 1), the engine uses the current path condition to decide
which path of execution to follow. If the engine has current
path condition 7 and is at a branch statement with the boolean
condition b, and if @ — b, the then branch is taken and the

111

path condition is updated: @ = w A b. Otherwise, if T — —b,
the else branch, if present, is taken and the path condition
is updated: & = 7 A —b. If neither implication holds, then both
paths must be explored in turn. In our example, the engine
will explore the two paths from line 1 to line 6, resulting in
the following two symbolic stores and path conditions:

1) 0={inpA=a,g0=7,y=0a}, 1 =TrueAy==1
2) 0 ={inpA=a,g0=79,y=0}, 1 =TrueAy==0

This example is simple, but in practice, path conditions
quickly become complex, involving hundreds of terms and
complex constraints in the theories necessary to express all
Verilog operators.

At each branch point, the number of paths to explore
doubles. This is the path explosion problem, and the result is
that not all paths can feasibly be explored. Typically heuristics
are used to guide the exploration toward paths that will
maximize coverage or depth, or path-merging strategies are
used to reduce the number of paths at the expense of less
precise analysis [6], [18], [35].

C. Symbolic Execution Trees

A trace, 7, of symbolic execution is a sequence
of symbolic store and path condition pairs,
T = {((00,m),(0i,m),(0},7;),...,(On,M)), where the

subscripts indicate the line of code associated with the
symbolic state and path condition, and 0 < i < j < n.' The
complete symbolic execution of the RTL produces a tree of
traces, 7, as seen, for example, in Figure 2b. A path through
the tree from the root node to a leaf node is a symbolic
execution trace T.

Each node (o;,m;) in the tree is associated with a line
of code in the RTL. More than one node in the tree will
be associated with the same line of code. For example, in
Figure 2b there are two distinct nodes associated with line
9, representing the two paths that can be taken to arrive at
that line. These two nodes will necessarily have unique path
conditions, the conjunction of which will be unsatisfiable.

D. Multiple Clock Cycles

The symbolic execution of a hardware design corresponds to
a single clock cycle. Every path through the tree from the root
node n, = (0p, M) to a leaf node n; = (0,,m,) corresponds to
a realizable step of the design from one state to the next. If n,
corresponds to a reachable state of the design (e.g., the reset
state) that can be reached in k clock cycles, then n; corresponds
to a reachable state of the design that can be reached in k+1
clock cycles. The path condition associated with a leaf node
n; can be viewed as a predicate describing the (concrete) input
values that would drive execution down the current path.

'The engine considers the subset of Verilog that uses only statically
bounded loops and unrolls loops before execution, so that the engine never
executes line i after line j, i < j.

2:90

©
Q

1

i

(b) Full tree of paths

(a) Control flow graph

VAR N

(| 19 |

N~ N
|/J\‘; (5) (10) (12)
N AN _/ _/

(c) Trees of paths to be independently explored
under piecewise composition

Fig. 2: Piecewise Composition

E. Comparison with Symbolic Simulation

Symbolic simulation is a well-established technique in hard-
ware testing and verification [9], [10], [12], [13], [34], [37].
Conceptually, symbolic simulation and symbolic execution are
closely related. In both, symbols are used in place of concrete
values for input or state variables. The symbolic values prop-
agate as execution proceeds, and variables in the design take
on symbolic expressions as values. Both techniques generalize
testing, symbolic execution in the software domain [33], and
symbolic simulation in the hardware domain [43].

A key difference in the two techniques, however, is in how
branch points are handled. In symbolic execution, execution
proceeds separately down each path following the branch
point, with the path condition 7 keeping track of the conditions
associated with the current path of execution. In symbolic
simulation, however, there is no notion of separate paths and
there is no path condition. Instead, branch points are captured
as conditional assignments to variables. For example, for the
code in Figure 1, as before, the value of y at the end of
symbolically simulating the code fragment would be?:

y:=1ite(y,a,0)
= (YA &)V (=Y N0)
=YANo

The value of each output variable is a symbolic expression
capturing the complete dataflow path from the inputs. How-
ever, without the separation of paths, the symbolic expression
for variables becomes complex; this complexity is the limiting
factor for symbolic simulation and is managed by initializing
control variables to concrete values, a reasonable constraint for
many functional verification tasks (e.g., [31]). For example, g0
would be given a concrete value, rather than the symbolic 7y.

2ite is the if-then—else operator.

112

In contrast, symbolic execution separates paths and uses
the path condition to store the constraints along the current
path. As a result, control signals can by made symbolic
without adding complexity to the symbolic expressions for
each variable. Symbolic control signals allow for verifying a
series of control-flow dependent properties without modifying
the verification environment. For example, in our evaluation,
the same environment set-up was used to verify all properties
of a given design: the design was started in its initialized
state, all input variables were made symbolic, and the desired
property was checked.

While the limiting metric for symbolic simulation is the
complexity of each variable’s symbolic expression, the limiting
metric for symbolic execution is the number of paths to
explore. In this paper we present a technique to reduce the
number of explorations needed.

F. Comparison with Bounded Model Checking

In bounded model checking the initial state of the system
and the transition relation of the system are formally defined
in a logic system, typically a subset of first-order logic [14],
[15]. The reachable states of the system are computed up to
a bound and checked against a desired property. Techniques
such as IC3 [26] can allow for unbounded proofs of a property.

Prior work has reported that symbolic execution is at times
able to find security property violations that model checking
does not (see Section VI). In addition, in recent years, the
hardware security community has turned its attention to ana-
lyzing how information flows through a design [4], [27], [29].
Doing so requires reasoning about hyperproperties [16], which
requires self-composition in model checking [24], adding to
the complexity of the verification task.

Symbolic execution, on the other hand, is suited to
information-flow analysis, as the symbolic state ¢ and path
condition 7 provide precise tracking of information flow from
reset to the current execution point. A number of recent
papers have explored the use of symbolic execution to analyze
information flow through a hardware design [6], [25], [41].

G. Symbolic Simulation, Model Checking, Symbolic Execution

We do not advocate replacing either symbolic simulation
or model checking with symbolic execution. Rather, it has
become clear in recent years that symbolic execution is a
valuable tool to add to the formal verification toolbox, es-
pecially when it comes to security verification tasks [6], [21],
[25], [40]. We present an algorithmic technique to improve the
performance of symbolic execution for hardware designs.

III. PIECEWISE COMPOSITION

In conventional symbolic execution, each line of code is
potentially visited multiple times, once for each path explored.
Our approach is to aggressively decompose the design into in-
dependent blocks, symbolically explore each block once, then
use an SMT solver to compose path conditions and symbolic
stores from each block. This strategy is made possible by
the inherent modular nature of hardware designs, and lets us

leverage the relative speed of modern SMT solvers compared
to the cost of symbolically executing lines of code.

While the number of paths in the full symbolic execution
tree is exponential in the number of branches in the design,
the engine explores a number of paths exponential in only
the number of branches in any single independent block and
polynomial in the number of blocks.

A. Motivating Example

Figure 1 shows a snippet with two always blocks and
branch points at lines 2 and 9. The corresponding control
flow graph with an arbitrary ordering of the always blocks
is given in Figure 2a, and the tree of paths through the
design is given in Figure 2b. With conventional symbolic
execution, each of the four root-to-leaf paths in Figure 2b is
symbolically executed. This is the strategy taken by current
approaches (e.g., [8], [25], [48]) that translate a hardware
design into a C++ representation and then use the KLEE
symbolic execution engine [11]. The two subtrees rooted at
a node labeled 9 represent repeated work. For each subtree,
the symbolic execution engine is exploring the same paths
through the block starting at line 9.

The branching condition and assignments in lines 2-5 are
independent of the branching condition and assignments in
lines 9-12. Regardless of which path is taken at the first branch
(line 2), the symbolic execution starting at the second branch
point (line 9) will produce the same sub-tree. The feasibility
of the second condition will be the same, and updates to the
symbolic state will be the same. For example, let the initial
symbolic store and path condition be:

0p = {inpA = a,g0 = ,inpB=f.g1 =N}
o = True.
After symbolically executing the path in which both

branches are taken (nodes (2,3,9,10) in the symbolic exe-
cution tree), the symbolic store and path condition would be:

023910 =
{inpA = o,g0 = y,inpB = B,gl =Y,y = a,z:= B}
39,10 =YWAN.
Whereas, for the path in which the first branch is not taken,

but the second one is ({2,5,9,10)), the symbolic store and
path condition would be:

025910 =
{inpA = o,g0 = Y, inpB = B,g1 = Y,y :=0,z:= B}
59,10 = "YWAN-
In both paths, the updates to z are the same, despite the
different updates to y.
B. Piecewise Composition

With piecewise composition, the engine explores indepen-
dent blocks of the RTL separately, producing independent
trees of path fragments. In the above example, piecewise
composition results in the two trees shown in Figure 2c.

113

The engine now explores the second if-else block only
once. Continuing with our example, piecewise composition
will separately explore the two always blocks, producing the
following four path fragments with associated path conditions
and (partial) symbolic stores:

(2,3): os={y=a}, m3z=%

(2,85): os={y:=0}, ms=-n
(9,10) : 0910={z:=B}, Mmi0o="
(9,12) : oo n={2:=0}, M=%

To find full paths through the design and to successfully
find assertion violations, all realizable combinations of path
fragments are composed with the help of an SMT solver. For
example, to realize path (2,5,9,10), the engine queries the
SMT solver to find whether the two path fragments, (2,5)
and (9,10) can be joined: isSAT(y=0A-pAy=BAY). In
this simple example, all four combinations of path fragments
are possible, but in general that will not always be the case.

Piecewise composition will ultimately be constructing the
same path conditions as conventional symbolic execution. The
difference is in repeated work during the path exploration.
Looking again at Figure 2c, The conventional approach will
execute the following paths and their corresponding lines of
code: (2,3,9,10), (2,3,9,12), (2,5,9,10), (2,5,9,12). Lines
2-3, 2-5, 9-10 and 9-12 are all explored twice. Piecewise
composition will explore the following path fragments and cor-
responding lines of code, each only once: (2,3), (2,5), (9,10),
(9,12). With this small example, piecewise composition is able
to cut the path exploration workload in half. As the size of the
design grows, the number of paths to explore with piecewise
composition will be exponential only in terms of the number
of branch points in a given always block and linear in the
number of always blocks. We examine this more closely in
the complexity analysis in Section III-D.

A conventional symbolic execution engine will query the
SMT solver at branch 9 twice, once for path (2,3,9) and once
for path (2,5,9). These queries are checking for feasibility
of the branching condition at line 9 in the RTL. Piecewise
composition will only query the solver for the branch on
line 9 once. Piecewise composition will then require queries
for all four complete paths through the design: (2,3,9,10),
(2,3,9,12), (2,5,9,10), (2,5,9,12). These queries are ensur-
ing that the accumulated path conditions are satisfiable and the
execution path is realizable. In this small example, we do not
reduce our SMT solving workload, but as the design becomes
more complex piecewise composition yields a slight reduction
in queries performed as we reduce the amount of redundant
branch points explored. We evaluate the impact of piecewise
composition both on lines of code explored and SMT queries
in Section VI

C. Comparison with Backtracking and Caching

Piecewise composition shares some similarities with back-
tracking and caching, two techniques often used in software
symbolic execution engines (e.g., KLEE [11], Angr [32]). But,

there are key differences. Backtracking reduces repeated work
by maintaining state at each point in a path and allowing
two paths with a shared prefix to reuse the saved state. For
example, If path (2,3,9,10) has been explored, then when
the engine explores path (2,3,9,12), backtracking allows the
engine to reuse the saved state at point 9 and continue ex-
ploration from there. Backtracking prevents re-exploring path
(2,3) for each of (9,10) and (9,12); piecewise composition
also prevents this re-exploration. However, with backtracking,
paths (9,10) and (9, 12) will be re-explored to create the paths
starting with prefix (2,5); this re-exploration is prevented by
piecewise composition.

Caching queries reduces the time spent in the SMT solver
by reusing the results from prior queries. Caching queries is
a technique orthogonal to piecewise composition. Using the
two techniques together could further reduce runtime.

D. Complexity Analysis

We separately compute the lines of code visited by the
engine during symbolic execution and the number of queries
to the solver for both the baseline implementation and the
implementation that uses piecewise composition to develop a
theoretical understanding of the benefits of piecewise compo-
sition.

We perform the analysis with the following Verilog design
parameters and assumptions:

e b: The maximum number of branch points in any one
always block. All branch points are assumed to have at
most two branches. Case statements can be rewritten to
use only 2-branch conditionals.

o N: The number of sequential-logic always blocks.

« c¢: The maximum number of lines of code after any branch
point until either the next branch point or an exit point.
In other words, the maximum number of lines of code in
any basic block.

o Assumption 1: We assume that all loops are unrolled.

o Assumption 2: We approximate combinational logic with
a fixed constant for both the baseline and piecewise com-
position approaches. We do this because the piecewise
composition technique is only applicable to sequential
always blocks. The underlying implementation strat-
egy used by Sylvia to ensure clock-cycle accuracy with
combinational logic statements results in each block of
combinational logic being executed twice per clock cycle
in the worst case (see Section IV-A for more details).

When we use the baseline approach, the symbolic execution
of a design is represented by a single binary tree (as in
Figure 2b). To simplify the analysis, we assume a perfect
binary tree in which every interior node has two children and
all leaf nodes are at the same level. This assumption only holds
in practice if every branch point in the code is reachable along
every path, which in general is not the case. Our analysis,
therefore, provides a loose upper bound on complexity; a
tighter bound may be possible.

114

When we use piecewise composition, the symbolic execu-
tion of a design is represented by N binary trees, one for each
sequential-logic always block (as in Figure 2c).

1) Baseline: Lines of Code Symbolically Executed

Every node in the tree is visited once per path it belongs
to.

bN(2°N) +cbN(2PV) (1)
—— N——
(a) (b)

(a) Visit and execute each branch point (bN) once per path
it is part of (2°V)

(b) Visit and execute the ¢ lines of code in the basic block of
either the right or left branch for each branch point (bN),
once per path (2°V).

The time complexity for executing the design symbolically
using the baseline implementation is O(chbN2”V). As the
design size grows, the number of lines of code explored is
growing exponentially with AN, the total number of branch
points in the entire design.

2) Baseline: SMT Queries

Every branching node in the tree generates one query per
visit, and is visited once per path it belongs to.

bN (2PN 2

(a) Visit each branch point (bN) once per path 2PNy it is part
of, and each visit generates one query.
The time complexity for querying the SMT solver under the
baseline implementation is O(bN2°V).
3) Piecewise Composition: Lines of Code Symbolically Ex-
ecuted
Every node in every tree is visited once per path it belongs
to.

bN(27) +cbN(2") (3)
—— N——
(@) (b)

(a) For each tree (N), visit and execute each branch point (b)
once per path it is part of (2°)

(b) For each tree (N), visit and execute the ¢ lines of code in
the basic block of either the right or left branch for each
branch point (), once per path 2.

The time complexity for executing the design symbolically
using piecewise composition is O(chN2?). Compared with
the baseline implementation, piecewise composition drops the
exponential factor N and explores each unique path fragment
once.

4) Piecewise Composition: SMT Queries

In addition to the queries for each branching node visited,
one query is generated for every combination of paths, one
from each tree, in order to recreate the full root-to-leaf paths.

bN(2%)+ (22N “4)
—— =~
(a) (b)
(a) For each tree (N), visit each branch point (b) once per
path it is part of, and each visit generates one query.
(b) Generating each path through the full design requires one
query. Each of N trees has 2” paths, and all combinations
need to be combined.

The time complexity for querying the SMT solver using
piecewise composition is O(2V). In the limit, there is a slight
advantage in the number of SMT queries compared to the
baseline implementation, and in practice we do see less time
spent in the solver (see Figure 3).

IV. A SYMBOLIC EXECUTION ENGINE WITH PIECEWISE
COMPOSITION

We introduce Sylvia, a symbolic execution engine im-
plementing piecewise composition. Importantly, Sylvia op-
erates directly over the Verilog RTL without translating to
C or compiling down to the netlist. This allows for greater
human-readability of any found assertion violations. Sylvia
is cycle accurate. We assume no combinational latches, no
asynchronous resets, and always blocks are conditioned on
input clocks. These assumptions are in keeping with prior work
in this area [6].

The core data structures Sylvia builds and uses are the
Verilog AST and control-flow graphs (CFG). Sylvia constructs
one CFG per always block. The symbolic execution trees
described in the preceding sections are useful as a conceptual
model of symbolic execution, but in practice the engine
executes over the basic blocks of statements that are collected
in each CFG. A single execution path in Sylvia is encoded as
a combination of individual paths through the set of CFGs.

The engine achieves piecewise composition by decomposing
a design into partitions: one partition to contain all com-
binational logic in the design, one partition for all register
declarations, and a set of N partitions, one per always
block, to handle the sequential logic in the design. Each
partition is symbolically explored once per clock cycle, with
the exception of the combinational logic partition, discussed
next in Section IV-A.

Each of the N sequential always block partitions are
explored independently of the other always blocks, and the
exploration produces a set of path fragments. The complete ex-
ploration of the full design produces N sets, one per always
block. The set of full root-to-leaf symbolic execution paths
through the design is formed by taking the cross-product of
the N sets of path fragments. The SMT solver is used to ensure
only those combinations that are sound — that correspond to
true paths through the design — are kept.

A. Combinational Logic

The engine will check for any combinational latches, and
if any appear, will exit with an error. Otherwise, Sylvia first
symbolically executes each statement in the combinational

115

logic partition and then begins to execute the control flow
paths through each always block. As each always block is
executed the engine keeps track of a dirty bit for each signal,
which gets set to 1 when the signal is updated within that
particular clock cycle. The intuition here is that if one of
the combinational logic dependencies becomes dirty during
the symbolic execution of the always block, we need to
re-evaluate the corresponding combinational assign. Once
a path has been completed, every assign statement in the
combinational logic partition for which the right-hand side
involves a dirty signal is re-evaluated. In the worst case, this
means each statement in the combinational logic partition
may be symbolically executed twice. During this re-evaluation,
the engine continues to track when signals become dirty and
propagate updates as needed to ensure clock-cycle accuracy.

B. Sequential Logic

Each sequential always block is explored independently.
This approach is sound if the always blocks are truly
independent — the path condition and symbolic state of the
various paths through one block are the same regardless of
the paths taken through other blocks. In the following we
discuss the issue of independence in more detail. Consider
two sequential always blocks, By and By, both triggered on
the same edge of the input clock signal.

1) Independence

In the simplest case, none of the variables that appear in By
appear in Bj. The two blocks are independent and, within a
single clock cycle, the execution of one block has no bearing
on the execution of the second block. The two blocks can
be explored separately and their paths can be composed in
any order. This case is rare, however, as an input reset signal
typically appears in all or most blocks.

2) Read-read dependence

In the next case, the same variable may appear in a branch
condition or right-hand side of an assignment in both By
and B;. The two blocks can still be explored separately and
their paths can be composed in any order. However, some
combinations of paths may not be feasible, as variables that
appear in branch conditions in both blocks, say by and by,
respectively, will preclude the combination of paths from By
in which by holds with paths from B; in which b holds when
bo A\ by is unsatisfiable.

3) Read-write dependence

In the next case, a variable may appear in a branch condition
or on the right-hand side of an assignment in By and on the
left-hand side of an assignment in B;. When non-blocking
assignments are used, updates to variables in B; take effect in
the next clock-cycle, whereas reads and conditional branches
in By use values set in the previous clock cycle. The symbolic
execution engine keeps the appropriate value and there is no
conflict. The two blocks can be explored separately and their
paths can be composed in any order. Sylvia does not support
the use of blocking assignments within sequential always
blocks.

4) Write-write dependence

In the final case, variables appear on the left-hand side of an
assignment in both always blocks. This violates best practice
in Verilog design. The symbolic execution engine will check
for any instances of write-write dependence, and if any appear
will exit with an error.

C. Further Optimizations

1) Repeat Submodules

When the modules are duplicate instantiations of the same
module there is room for reduction in the total search space.
The idea is similar in spirit to piecewise composition; the
engine explores each submodule once for each path. Then
instead of re-exploring again for each repeat instantiation, the
engine merges in the symbolic store and path condition for
the given root-to-leaf path using SMT queries.

2) Cone of Influence Analysis

This optimization prunes the exploration space at the block
level. The symbolic execution engine will read in the expres-
sions supplied in the assertions, perform a dependency analysis
over the signals in the assertions and then complete an AST
traversal to determine which blocks read from or write to the
signals of interest or their dependencies. After this initial pass,
the engine will only explore blocks that involve the signals of
interest or their dependencies.

V. IMPLEMENTATION

Sylvia® is built in python 3.8 and implements the Verilog
semantics according to the IEEE 1364-2005 standard. We use
the pyVerilog library to build the Verilog AST, networkX to
manage graph search and traversal, and the Z3 python API
for SMT solving. The engine reads in a design, including the
assertions written according to the SystemVerilog 1800-2017
standard, and outputs replayable counterexamples.

VI. EVALUATION

We evaluate Sylvia over five open-source designs to study
its viability as a platform for the verification of hardware
designs. Our evaluation considers the following questions:
1) How well does piecewise composition counter the path
explosion problem? 2) What effect do piecewise composition
and the optimizations described in Section IV-C have on
performance? 3) Does our engine produce assertion violations
with replayable counter-examples for vulnerable designs?

A. Dataset and Experimental Setup

We collected five designs and 84 security critical assertions.
The first three designs and associated assertions came from the
Security Property/Rule Database available on TrustHub [22],
[23]. These are an enhanced version of the Serial Peripheral
Interface available on Motorola’s MC68HC11 family of CPUs;
openMSP430, a synthesizable 16-bit microcontroller core
compatible with Texas Instruments’ MSP430 microcontroller
family; and a CrypTech True Random Number Generator

3Sylvia is fully open-source and can be accessed at https:/github.com/
kakiryan/Sylvia

116

https://github.com/kakiryan/Sylvia
https://github.com/kakiryan/Sylvia

(TRNG). For each of these designs, the database included 9,
2, and 2 security properties, respectively.

The fourth design is the buggy PULPissimo SoC used
in a recent Hack@DAC competition [1]. Using the English
description of the properties, as well as the walkthrough of
the test-case generation in the RTL-ConTest paper [40] we
developed 26 assertions for use with our tool.

The fifth design is the OR1200 processor core. We
collected 30 security-critical bugs from two prior papers,
SPECS [28] and SCIFinder [49] and 70 security assertions
from SPECS [28], Security Checkers [7], SCIFinder [49], and
Transys [50].

The experiments are performed on a machine with an Intel
Xeon E5-2620 V3 12-core CPU (2.40GHz, a dual-socket
server) and 62G of available RAM.

B. Mitigation of Path Explosion

For each design we compare the average number of lines of
code and branch points visited to find an assertion violation
both with and without piecewise composition. Table I has the
results. The number of paths in a design will not change,
but the amount of work to realize a path does. Piecewise
composition reduces the number of lines of code visited (i.e.,
reduces redundant visits to the same line of code) by 92%—
99% and branch points visited by 64%—-99%.

To gain a more complete picture, we symbolically explore
all paths through the small MC68HCI11 SPI. This design has
15 always blocks and 1459 possible paths. These results
are reported in Table II. Without piecewise composition more
than 90k lines of code and more than 7k branch points are
explored. With piecewise composition, the engine needs to
explore roughly only 7% of those 90k lines of code and only
4% of those 7k branch points.

The benefits of piecewise composition come from the pres-
ence of composable always blocks. We report on the number
and dependency type (Section IV-B) of these structures in our
benchmarks in Table IIl. As expected, all always blocks
have at most read-write dependencies, allowing them to be
composed.

C. Effects of Optimizations

Figure 3 shows the impact of piecewise composition on
the average number of SMT queries and average time spent
in the SMT solver for each design. One concern might be
that the win in minimizing redundant explorations comes at
the expense of exploding SMT solver work. However, the
opposite occurs. Reducing the number of paths explored also
reduces the number of queries to the solver overall; remember
that during exploration, the solver is queried at each branch
point. With piecewise composition turned on there was an 18%
decrease, on average, in the number of SMT queries and a 21%
decrease in the amount of time spent solving.

In Table IV we measure runtime for four cases: Baseline,
with no optimizations enabled; Piecewise, with piecewise
composition enabled, Repeat, with repeated modules explored
only once; and COI, with cone-of-influence analysis completed

Effect of Piecewise Composition on Time Spent in Solver

1500

1000

500 —

Time Spentin Solver (Seconds)

0OR1200 HACK@DAC TrustHub

Desian(s)

Baseline [Piecewise Composition

(a) Solver Time

Effect of Piecewise Composition on Number of SMT Queries

400000 —
300000 -

200000 +—

MNumber of SMT Queries

100000 +—

0R1200 HACK@DAC TrustHub

Design(s)

Baseline [l Piscewise Composition

(b) SMT Queries

Fig. 3: Effects of Optimizations on Solver Time and Number
of SMT Queries

before exploration. Each case is cumulative, for example, in
the Repeat case, the Piecewise optimization is enabled as well.
For each design we take the average when looking for each
assertion. For all but the smallest design, Baseline could not
reliably complete exploration within 30 minutes at which point
we stopped searching. Table IV shows the results. Overall, the
optimizations decrease the engine’s runtime by 95-99%.

D. Finding Assertion Violations

To evaluate the engine’s ability to find assertion violations,
we run a set of experiments in which we have ground-truth
knowledge of the (minimum) number of violations in each
design. In these experiments, symbolic execution begins in
the reset state with all input signals made symbolic, and
execution continues until an assertion violation is found. All
counterexamples generated by our engine were successfully
replayed in simulation starting from the reset state using
Vivado. Table V summarizes the results.

The engine finds 25 of the 31 bugs in the Hack@DAC SoC.
The organizers of Hack@DAC report finding 6 and 15 bugs
using the commercial tools Cadence SPV and Cadence FPV,
respectively [1]. The engine finds 29 of the 30 bugs in the
OR1200. The bug missed does not a have a property in our
dataset that covered it.

117

Design Baseline Piecewise Composition Percent Decrease
LoC branch points LoC branch points LoC branch points
explored explored explored explored explored explored
OR1200 54018 7803 881 45 98% 99%
Hack@DAC 493032 15093 3525 276 99% 98%
MC68HC11 SPI 2093 158 174 57 92% 64%
openMSP430 15293 377 489 68 97% 82%
CrypTech TRNG 8930 421 336 91 96% 78%

TABLE I: Average Impact of Piecewise Composition on Path Explosion

Configuration LoC branch points paths
explored explored completed

Baseline 90706 7380 1459

Piecewise Composition 6783 323 1459

TABLE II: Full Exploration of MC68HC11 SPI Design

The engine is consistently able to find vulnerabilities that
both commercial and open-source model checking tools are
unable to find. Table VI summarizes how Cadence and Sym-
biYosys [2], a symbolic model checking engine built on top
of Yosys, fared in finding the same known vulnerabilities.*

At the time of writing we don’t know why the model
checking tools were unable to find all the assertion violations
and further investigation is warranted. We do not believe
that it is the result of a theoretical limitation of bounded
model checking or the strength of the algorithms used by
the underlying proof engines. More likely, our hypothesis
is that there are some abstractions introduced to manage
complexity that cause the property violations to be missed.
The properties we are searching for are specifying system level
behavior and in some cases have been automatically generated.
The complexity inherent to these types of security properties
compared to typical functional correctness properties may
make it more difficult for a traditional formal verification
approach like model checking to find the violations.

We set the bound for the model checking tools to be 5
clock cycles over the minimum bounds needed to find the
violation, and let the tools run to completion. Our results align
with results reported by the authors of performing comparable
experiments [40] [48] and [19] and match those of the authors
of the TrustHub designs and properties that we were using for
evaluation.

We demonstrate how our approach allows search to scale
more efficiently over multiple clock cycles compared to Sym-
biYosys in Figure 4. We take the MSP430 design and embed
properties into the design that require an increasing number
of cycles to produce a counterexample. SymbiYosys begins by
outperforming our tool in terms of speed — it takes Symbiyosys
under half a second to complete 4 cycles while we take around
3 seconds. As the complexity of the search space grows,
piecewise composition scales more manageably.

4The numbers in the Cadence column are pulled from the literature [1],
[23], [40], [48]. Our license does not allow for head-to-head comparisons.

Multiple Cycles in the MSP430: Piecewise Composition vs. Model Checking
50

40
30

20

Execution Time (seconds)

2 4 8 8

Clock Cycles

== Piecewise Composition == Symbiyosys

Fig. 4: Scaling Search Over Multiple Cycles

E. Comparison to Current State of the Art

Coppelia is a tool that performs symbolic execution over
the C++ model of a Verilog hardware design. In comparison
to Coppelia [48], we see significant performance gains. On
average, Coppelia takes 4 minutes and 12 seconds to find
the same known security vulnerabilities in the OR1200 that
our tool is able to find in 25.22 seconds. The authors report
that most (62%) of exploits in their experiments are generated
within 15 minutes. However, several (7%) are found within 2—
4 hours. Symbolic execution with piecewise composition, by
contrast, finds the same 7% of exploits in under two minutes.

The authors of RTLConTest [40], a concolic execution
engine, report that it takes around an hour and 40 minutes
to complete on the PULPissimo SoC, which is a modified
version of the HACK@DAC 2018 design. Once they perform
the concolic execution and generate the tests, it takes 10
seconds on average to produce a counterexample. They find
14 out of the 31 bugs while our engine is able to find 25.
Our tool performs the complete end-to-end symbolic execution
workflow to generate counterexamples in 81.83 seconds, on
average.

VII. RELATED WORK

Symbolic Simulation Of the papers presented in Sec-
tion II-E, we note the early work implementing symbolic
simulation at the RT level [34] that introduces a path-merging
approach for handling and mitigating the complex queries
characteristic of symbolic simulation. A more recent project
is the Rosette/Racket solver-aided programming platform [45],

118

Design LoC Always Blocks Branch Points % Independent % Read-Read % Read-Write % Composable
OR1200 30611 405 976 6.81% 40.98% 52.21% 100%
Hack@DAC 96444 650 4452 12.89% 42.33% 44.78% 100%
MC68HCI11 SPI 527 14 43 21.45% 34.89% 44.66% 100%
openMSP430 9154 144 316 15.34% 27.27% 57.39% 100%
CrypTech TRNG 5926 54 309 8.21% 32.31% 59.48% 100%
TABLE III: Logical Structure of Benchmarks
Design Baseline Piecewise Redund COI Overall
runtime runtime % dec runtime % dec runtime % dec % dec
(sec) (sec) (sec) (sec)
OR1200 timeout (1800) 5247 97.08% 37.56 21.31% 2522 12.56% 98.60%
Hack@DAC timeout (1800) 174.24 90.32% 121.94 28.34% 81.83 16.62% 95.45%
MC68HC11 962 17.53 98.18% 1430 19.93% 0.07 99.19% 99.99%
openMSP430 timeout (1800) 37.65 9791% 23.14 38.55% 0.73 96.83% 99.96%
CrypTech TRNG timeout (1800) 1492 99.17% 12.08 19.15% 0.09 99.19% 99.99%

TABLE IV: Average Effect of Optimizations on Runtime

Design # Bugs # Bugs Avg Max

Found Time Clock

(sec) Cycles

Taken
Hack@DAC 31 25 81.83 4
OR1200 30 29 25.22 5
MC68HCI11 9 9 0.07 3
openMSP430 2 2 0.73 2

TABLE V: Finding Known Bugs: Runtime Performance

Design # Bugs Our Cadence SymbiYosys
Engine

OR1200 30 29 18 18

Hack@DAC 31 25 21 16

MC68HC11 9 9 8 5

openMSP430 2 2 2 1

TABLE VI: Finding Known Bugs: Comparison to Model
Checking

whose use is demonstrated for verification in Notary [5]. Both
works, like all symbolic simulation, merge symbolic states
after each branch point, and require constraining the control-
flow with concrete inputs to manage expression complexity.

Model Checking As discussed in Section II-F, model
checking is a mature tool widely used in industry and research.
SymbiYosys [2] is a formal verification engine for Verilog that
operates at the netlist level. We compare to this tool in our
evaluation (Section VI). Symbolic Quick Error Detection [20],
[38] is a technique involving self-consistency checks that has
been used to find bugs in open-source RISC-V processors and
uses the CoSA model checker [39].

Symbolic and Concolic Execution Symbolic execution and
the related technique of concolic execution are emerging from
the academic research community as useful techniques for the
security verification of hardware designs [8], [25], [40], [47],

[48]. However, many of these papers rely on first translating
Verilog to C++ and using KLEE [11], a tool written for, and
fine-tuned for, the symbolic execution of software programs.

Fuzzing Fuzzing has also been shown to be a useful
technique for finding security vulnerabilities in SoCs and CPU
designs. RFUZZ is a coverage-directed fuzz tester for circuits
that presents a hardware-specific coverage metric called mux
control coverage [36]. DifuzzRTL is an RTL fuzzing tool used
to find unknown security bugs that measures coverage based
on control registers rather than multiplexors’ control signals to
improve efficiency and scalability [30]. A recently developed
Hardware Fuzzing Pipeline translates the RTL to a software
model to improve scalability in bug finding via fuzzing [46].

VIII. CONCLUSION

We have presented piecewise composition, a technique for
countering the path explosion problem in symbolic execution.
We implemented Sylvia, a symbolic execution engine using
the technique and evaluated the engine on five open-source
designs. The engine reduces redundant work by 98%-99%
compared to conventional symbolic execution, improves over-
all performance and successfully finds assertion violations.

IX. ACKNOWLEDGMENTS

We would like to thank Sayak Ray and the anonymous
reviewers for their insightful comments and suggestions. This
material is based upon work supported by the National Science
Foundation under Grant No. CNS-1816637 and Grant No.
CNS-2247754, and by a Meta Security Research Award.
Any opinions, findings, conclusions, and recommendations
expressed in this paper are solely those of the authors.

REFERENCES

[1] “Hack@DAC 2018 SoC,” https://github.com/seth-1ab-tamu/
hackdac-2018-soc, accessed: 2022-02-15.

[2] “SymbiYosys,” https://github.com/YosysHQ/sby, accessed: 2022-11-21.

[3] “Voss II,” https://github.com/TeamVoss/VosslI, accessed: 2022-11-21.

119

https://github.com/seth-lab-tamu/hackdac-2018-soc
https://github.com/seth-lab-tamu/hackdac-2018-soc
https://github.com/YosysHQ/sby
https://github.com/TeamVoss/VossII

[4]

[5]

[6]

[7]
[8]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register Transfer
Level information Flow Tracking for Provably Secure Hardware De-
sign,” in DATE, 2017, pp. 1691-1696.

A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zeldovich,
“Notary: A Device for Secure Transaction Approval,” in 27th
Symposium on Operating Systems Principles (SOSP). New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3341301.3359661

A. Athalye, M. F. Kaashoek, and N. Zeldovich, “Verifying Hardware
Security Modules with Information-Preserving Refinement,” in OSDI.
USENIX Association, 2022.

M. Bilzor, T. Huffmire, C. Irvine, and T. Levin, “Security Checkers:
Detecting processor malicious inclusions at runtime,” in HOST, 2011.
N. Bruns, V. Herdt, and R. Drechsler, “Processor Verification using
Symbolic Execution: A RISC-V Case-Study,” 2023. [Online]. Available:
https://agra.informatik.uni-bremen.de/doc/konf/2023_DATE_NB.pdf

R. E. Bryant, “Symbolic Simulation—Techniques and Applications,”
in Proceedings of the 27th ACM/IEEE Design Automation Conference,
ser. DAC ’90. New York, NY, USA: Association for Computing
Machinery, 1991, p. 517-521. [Online]. Available: https://doi.org/10.
1145/123186.128296

R. E. Bryant, D. L. Beatty, and C.-J. H. Seger, “Formal Hardware
Verification by Symbolic Ternary Trajectory Evaluation,” in ACM/IEEE
DAC, 1991.

C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems
Programs.” in OSDI, vol. 8, 2008, pp. 209-224.

S. Chakraborty, Z. Khasidashvili, C.-J. H. Seger, R. Gajavelly, T. Hal-
dankar, D. Chhatani, and R. Mistry, “Symbolic Trajectory Evaluation for
Word-Level Verification: Theory and Implementation,” Form. Methods
Syst. Des., vol. 50, no. 2-3, p. 317-352, Jun. 2017.

K. Claessen and J.-W. Roorda, “An Introduction to Symbolic Trajectory
Evaluation,” in Formal Methods for Hardware Verification, M. Bernardo
and A. Cimatti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 56-77.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” vol. 19, no. 1, p. 7-34, 2001.

E. M. Clarke, “Model Checking,” in Foundations of Software Technology
and Theoretical Computer Science, S. Ramesh and G. Sivakumar, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 54-56.

M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput.
Secur., vol. 18, no. 6, pp. 1157-1210, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1891823.1891830

C. N. Coelho and H. D. Foster, Assertion-Based Verification.
MA: Springer US, 2004, pp. 167-204.

D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on Firmware:
Finding Vulnerabilities in Embedded Systems Using Symbolic Execu-
tion,” in USENIX Security Symposium, 2013.

G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “HardFails: Insights
into Software-Exploitable Hardware Bugs,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 213-230. [Online]. Available: https:
/lwww.usenix.org/conference/usenixsecurity 19/presentation/dessouky

M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,
and W. Kunz, “Symbolic Quick Error Detection Using Symbolic Initial
State for Pre-Silicon Verification,” in Design, Automation & Test in
Europe (DATE), 2018, pp. 55-60.

M. R. Fadiheh, A. Wezel, J. Muller, J. Bormann, S. Ray,
J. M. Fung, S. Mitra, D. Stoffel, and W. Kunz, “An Exhaustive
Approach to Detecting Transient Execution Side Channels in
RTL Designs of Processors,” IEEE Transactions on Computers,
vol. 72, no. 1, pp. 222-235, jan 2023. [Online]. Available:
https://doi.org/10.1109%2Ftc.2022.3152666

N. Farzana, F. Farahmandi, and M. M. Tehranipoor, “SoC Security
Properties and Rules,” JACR Cryptol. ePrint Arch., vol. 2021, p. 1014,
2021.

N. Farzana, F. Rahman, M. Tehranipoor, and F. Farahmandi, “SoC Secu-
rity Verification using Property Checking,” in 2019 IEEE International
Test Conference (ITC), 2019, pp. 1-10.

B. Finkbeiner, M. N. Rabe, and C. Sanchez, “Algorithms for Model
Checking HyperLTL and HyperCTL,” in Computer Aided Verification,
D. Kroening and C. S. Pasdreanu, Eds. Cham: Springer International
Publishing, 2015, pp. 30-48.

Boston,

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

120

F. Fowze, M. Choudhury, and D. Forte, “EISec: Exhaustive Information
Flow Security of Hardware Intellectual Property Utilizing Symbolic
Execution,” in Asian Hardware Oriented Security and Trust Symposium
(AsianHOST). 1EEE Xplore, 2022.

A. Goel and K. Sakallah, “Model Checking of Verilog RTL Using
IC3 with Syntax-Guided Abstraction,” in NASA Formal Methods, J. M.
Badger and K. Y. Rozier, Eds. Cham: Springer International Publishing,
2019, pp. 166-185.

M. Goli and R. Drechsler, “VIP-VP: Early Validation of SoCs Infor-
mation Flow Policies using SystemC-based Virtual Prototypes,” in 2021
Forum on specification & Design Languages (FDL), 2021, pp. 1-8.
M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS: A
Lightweight Runtime Mechanism for Protecting Software from Security-
Critical Processor Bugs,” in ASPLOS, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015, p. 517-529.

W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kastner,
“Property Specific Information Flow Analysis for Hardware Security
Verification,” in ICCAD, ser. ICCAD ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DifuzzRTL:
Differential Fuzz Testing to Find CPU Bugs,” in 42nd IEEE S&P. 1EEE,
2021, pp. 1286-1303.

R. Kaivola and N. B. Kama, “Timed Causal Fanin Analysis for
Symbolic Circuit Simulation,” in Formal Methods in Computer-
Aided Design (FMCAD), 2022, pp. 99-107. [Online]. Available:
https://repositum.tuwien.at/handle/20.500.12708/81329

S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing Intermediate Representations for Binary Analysis,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 353-364.
J. C. King, “Symbolic Execution and Program Testing,” Commun. ACM,
vol. 19, no. 7, p. 385-394, Jul. 1976.

A. Kolbl, J. Kukula, and R. Damiano, “Symbolic RTL Simulation,”
in Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232), 2001, pp. 47-52.

S. Krishnamoorthy, M. S. Hsiao, and L. Lingappan, “Tackling the Path
Explosion Problem in Symbolic Execution-Driven Test Generation for
Programs,” in 2010 19th IEEE Asian Test Symposium, 2010, pp. 59-64.
K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-Directed Fuzz Testing of RTL on FPGAs,” in ICAAD, 2018,
pp- 1-8.

W. K. Lam, Hardware Design Verification: Simulation and Formal
Method-Based Approaches (Prentice Hall Modern Semiconductor De-
sign Series). USA: Prentice Hall PTR, 2005.

F. Lonsing, K. Ganesan, M. Mann, S. S. Nuthakki, E. Singh, M. Srouji,
Y. Yang, S. Mitra, and C. Barrett, “Unlocking the Power of Formal
Hardware Verification with CoSA and Symbolic QED: Invited Paper,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2019, pp. 1-8.

C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan,
“CoSA: Integrated Verification for Agile Hardware Design,” in 2018
Formal Methods in Computer Aided Design (FMCAD), 2018, pp. 1-5.
X. Meng, S. Kundu, A. K. Kanuparthi, and K. Basu, “RTL-ConTest:
Concolic Testing on RTL for Detecting Security Vulnerabilities,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 3, pp. 466477, 2022.

N. Moroze, A. Athalye, M. F. Kaashoek, and N. Zeldovich, “rtlv:
push-button verification of software on hardware,” in Workshop on
Computer Architecture Research with RISC-V (CARRV), 2021. [Online].
Available: https://vm-web.pdos.csail.mit.edu/papers/rtlv:carrv21.pdf

R. Mukherjee, D. Kroening, and T. Melham, “Hardware Verification
Using Software Analyzers,” in 2015 IEEE Computer Society Annual
Symposium on VLSI, 2015, pp. 7-12.

C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic
Evaluation of Partially-Ordered Trajectories,” Formal Methods in
System Design, vol. 6, no. 2, p. 147-189, Mar 1995. [Online].
Available: https://doi.org/10.1007/BF01383966

L. Shen, D. Mu, G. Cao, M. Qin, J. Blackstone, and R. Kastner,
“Symbolic Execution Based Test-patterns Generation Algorithm for
Hardware Trojan Detection,” Comput. Secur., vol. 78, pp. 267-280,
2018.

E. Torlak and R. Bodik, “A lightweight symbolic virtual machine
for solver-aided host languages,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and

https://doi.org/10.1145/3341301.3359661
https://agra.informatik.uni-bremen.de/doc/konf/2023_DATE_NB.pdf
https://doi.org/10.1145/123186.128296
https://doi.org/10.1145/123186.128296
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://doi.org/10.1109%2Ftc.2022.3152666
https://repositum.tuwien.at/handle/20.500.12708/81329
https://vm-web.pdos.csail.mit.edu/papers/rtlv:carrv21.pdf
https://doi.org/10.1007/BF01383966

[46]

(471

[48]

Implementation, ser. PLDI *14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 530-541. [Online]. Available:
https://doi.org/10.1145/2594291.2594340

T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing Hardware Like Software,” in USENIX ’22). Boston,
MA: USENIX Association, Aug. 2022, pp. 3237-3254.

H. Witharana, Y. Lyu, and P. Mishra, “Directed Test Generation for
Activation of Security Assertions in RTL Models,” ACM Trans. Des.
Autom. Electron. Syst., vol. 26, no. 4, jan 2021.

R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-End

121

[49]

[50]

Automated Exploit Generation for Validating the Security of Processor
Designs,” in Proceedings of the International Symposium on Microar-
chitecture (MICRO). 1EEE/ACM, 2018.

R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
Security Critical Properties for the Dynamic Verification of a Processor,”
in ASPLOS, ser. ASPLOS *17. New York, NY, USA: ACM, 2017, p.
541-554.

R. Zhang and C. Sturton, “Transys: Leveraging Common Security
Properties Across Hardware Designs,” in Proceedings of the Symposium
on Security and Privacy (S&P). IEEE, 2020.

https://doi.org/10.1145/2594291.2594340

	Introduction
	Preliminaries
	Example Verilog RTL Fragment
	Symbolic Execution
	Symbolic Execution Trees
	Multiple Clock Cycles
	Comparison with Symbolic Simulation
	Comparison with Bounded Model Checking
	Symbolic Simulation, Model Checking, Symbolic Execution

	Piecewise Composition
	Motivating Example
	Piecewise Composition
	Comparison with Backtracking and Caching
	Complexity Analysis
	Baseline: Lines of Code Symbolically Executed
	Baseline: SMT Queries
	Piecewise Composition: Lines of Code Symbolically Executed
	Piecewise Composition: SMT Queries

	A Symbolic Execution Engine with Piecewise Composition
	Combinational Logic
	Sequential Logic
	Independence
	Read-read dependence
	Read-write dependence
	Write-write dependence

	Further Optimizations
	Repeat Submodules
	Cone of Influence Analysis

	Implementation
	Evaluation
	Dataset and Experimental Setup
	Mitigation of Path Explosion
	Effects of Optimizations
	Finding Assertion Violations
	Comparison to Current State of the Art

	Related Work
	Conclusion
	Acknowledgments
	References

