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ABSTRACT
We present SEIF, an exploratory methodology for information flow
verification based on symbolic execution. SEIF begins with a stat-
ically built overapproximation of the information flow through a
design and uses guided symbolic execution to provide a more pre-
cise picture of how information flows from a given set of security
critical signals. SEIF can recognize and eliminate non-flows with
high precision and for the true flows can find the corresponding
paths through the design state with high coverage. We evaluate
SEIF on two open-source CPUs, an AES core, and the AKER access
control module. SEIF can be used to find counterexamples to infor-
mation flow properties, and also to explore all flows originating
from a source signal of interest. SEIF accounts for 86–90% of stati-
cally identified possible flows in three open-source designs. SEIF’s
search strategies enable exploring the designs for 10-12 clock cycles
in 4-6 seconds on average, demonstrating that this new exploratory
style of information flow analysis can be practical.
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1 INTRODUCTION
Analyzing how information flows through a hardware design is
critical to verifying the security of the design [4, 5, 11, 12, 14, 19, 33–
35, 37, 38, 42, 43, 49, 50, 57, 58]. Unwanted flows of information to
or from a signal in the design can violate desired security policies
in the form of access authorization violations [45, 46], memory
leakage vulnerabilities [17, 24], and possible privilege escalation
vulnerabilities [55]. Existing research and commercial information
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flow analysis tools use model checking [1], taint tracking [32], and
symbolic analysis [28] to detect these vulnerabilities early in the
hardware verification life-cycle [22, 30].

However, these conventional methods of information flow ver-
ification require the engineer to provide well-specified security
properties to the verification engine, which in turn requires the
engineer to have signal-level and often cycle-accurate knowledge
of where information should and should not be allowed to flow.
Developing these properties is challenging and time-consuming.
Furthermore, verifying a single property about, for example, in-
formation leakage from a security-critical signal may say nothing
about whether information is leaking to another unprivileged area
of the design not covered by the property. In response to these chal-
lenges, a new style of analysis is emerging that allows the developer
to explore information flow through the design, rather than prove
or disprove a set of information flow properties [21, 39].

We present SEIF (pronounced “safe”), an information flow analy-
sis methodology and tool in this new exploratory style that uses
symbolic execution to give the engineer a view of how information
flows through a design. SEIF takes as input a hardware design in
RTL Verilog and a set of security-critical signals of interest, and
produces, for each signal, a set of information flow paths that de-
scribe how information flows from the given signal, which signals
can be influenced by the given signal, and what sequence of design
inputs will drive execution to produce the flow.

Symbolic execution is a path-based symbolic analysis that can
provide a precise information-flow analysis. The challenge is that
for even modestly sized hardware designs, the number of paths to
explore is too large. To mitigate this problem, we use an augmented
signal connectivity graph built by parsing the RTL Verilog that acts
as a guide to the symbolic execution engine. The graph provides an
overapproximation of all possible information flows through the
design, and for each possible flow, provides a sequence of landmark
points in the hardware design that execution must reach in order to
realize the information flow. Additionally, we develop and evaluate
four search strategies with the goal of making the search space
more tractable.

SEIF is able to provide traditional counterexamples to informa-
tion flow properties and will return, when applicable, the set of
all found flows that violate a property, which can be helpful when
patching a bug or doing the root-cause analysis for a violation. Out-
side of property violations, SEIF will return all found flows from the
given source signal, pointing the security engineer to areas of the
design that may require attention. The flows that SEIF finds may
represent flaws in the RTL that are exploitable post-deployment. In
those cases, SEIF can find flaws that occur by benign human error
in the specification, design, or implementation phases.
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In our toolflow, we use the parsing and static analysis portion of
the hyperflow graph tool [39] to build the signal connectivity graph,
and we use Sylvia, an open-source symbolic execution engine [47],
to perform the symbolic analysis.

Our contributions are:
• Define SEIF, an augmented symbolic execution methodology
for information flow analysis.

• Implement the methodology and search heuristics on top of
the Sylvia symbolic execution engine [47].

• Evaluate SEIF on four open-source designs.

2 PRELIMINARIES
It is useful to keep in mind three models: the state diagram of
the design showing machine states and transitions between them;
the Hyperflow (HF) graph, which is the labeled, directed signal-
connectivity graph [39]; and the symbolic execution (SE) tree, show-
ing execution paths through the RTL. We first introduce a fragment
of Verilog RTL as a toy example to help illustrate the three models.

2.1 Toy Example
The code snippet of Figure 1 shows a flow from an input, secret,
to an output, led. The flow is guarded by an internal, state-holding
variable and the secret will only flow to the LED output in the clock
cycle after count = 3. Note that with non-blocking assignments
(“<=”) all right-hand side expressions are calculated at the same
time and assignments take effect at the next clock cycle. Blocking
assignments (“=”) take effect immediately.

1 a lways @( posedge c l k ) beg in
2 i f ( enab l e ) beg in
3 prev <= count ;
4 count <= count + 1 ;
5 end
6

7 i f ( count == 3 )
8 guard <= s e c r e t ;
9 e l s e
10 guard <= 0 ;
11 end
12

13 a s s i g n l e d = ( prev == 3 ) ? guard : 0 ;

Figure 1: Toy example. clk, enable, and secret are input
wires. count, prev, and guard are state-holding regs. Not
shown is the initialization, which sets count, prev, and guard
to 0. led is an output wire. secret flows through guard to led
after four clock cycles.

2.2 State Diagram
Figure 2 shows one possible sequence of state transitions for the toy
example. In this sequence, the initial state (𝑠0 = ⟨prev = 0, count =

0, guard = 0⟩ with output led = 0) transitions to state 𝑠1 = ⟨prev =

0, count = 1, guard = 0⟩ when enable is high on the positive clock
edge. Other sequences are possible, for example, if enable remains
low on the first positive clock edge.

Figure 2: State transitions of the toy example (Figure 1) in
which information flows from secret to led.

2.3 Symbolic Execution
In symbolic execution, concrete input values are replaced with
abstract symbols. The design is executed using the symbols in
place of concrete values. When a branch point (e.g., if(enable))
is reached, both paths are separately explored. For each path, the
branching condition that must be true for that path (e.g., enable
== 1). is maintained in the path condition. At the end of a single path
of symbolic execution, satisfying assignments to the constraints in
the path condition can be used as concrete input values to drive
concrete execution down that same path.

Symbolic execution is modeled as a tree of nodes. Each node is
associated with a line of code in the RTL and contains a symbolic
state and path condition. The tree that results from the complete
exploration of a design represents one clock cycle of execution. A
path from the root node to any leaf node in that tree corresponds
to a single state transition of the design. The number of paths to
explore grows quickly. For example, the symbolic execution of the
design in Figure 1 for the four clock cycles necessary for secret to
flow to led would yield the tree of nodes shown in Figure 3.

Figure 3: Symbolic execution tree of the design in Figure 1
after four clock cycles.

2.4 Hyperflow Flow (HF) Graph
The Hyperflow (HF) graph [39] is a labeled, directed graph that
captures signal connectivity from the RTL Verilog. Nodes represent
the variables (wires and regs) of the design, and edges indicate
a possible flow of information from one variable to another. An
edge (𝑣1, 𝑣2) exists when there is an explicit flow in the form of
an assignment in the RTL from 𝑣1 to 𝑣2 (e.g., 𝑣2 <= 𝑣1), or when
there is an implicit flow because 𝑣1 appears in a condition (e.g.,
if(𝑣1)), and 𝑣2 appears on the left-hand side of an assignment in
either branch. The edge is labeled with the line number of the
relevant Verilog statement and lists the surrounding conditions in
the code that must be true for the information flow to take place.
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For example, in Figure 4, which shows the HF graph for the code in
Figure 1, the edge (secret, guard) is labeled (although not shown
for space) with the condition that count == 3.

Figure 4: A HF graph for the code in Figure 1. Dashed lines
represent implicit flows of information and solid lines rep-
resent explicit flows. Labels are omitted for space.

Note that the HF graph has no inherent notion of timing or clock
cycles. For example, the fact that it takes at least three clock cycles
to reach a state in which count == 3 is not discernible from the
graph. In addition, multi-hop paths through the HF graph may
not correspond to viable information flows. Consider the code in
Figure 1, but with the last line replaced with the following:
assign led = (prev == 2) ? guard : 0;

The HF graph is still as shown in Figure 4, although the label
for edge (guard, led) would be different, but the path from secret
to guard to led does not correspond to any flow of information
through the design. This is because when prev == 2, the value in
guard is 0, not the secret value.

There are two reasons why a path through the HF graph may
not correspond to a true information flow. Either (as seen above)
the sequence of conditions needed for each edge cannot be satisfied,
or a path through the HF graph from 𝑥 to 𝑦 may not correspond to
a true flow of information (e.g., 𝑦 = 𝑥 ⊕ 𝑥 ).

3 SEIF: SYMBOLIC EXECUTION FOR
INFORMATION FLOW

Given a design and input signals of interest, the goal is to find
how information flows from the sources through the design during
execution. Our approach harnesses the HF graph to guide symbolic
execution to find those flows. A high-level view of the SEIF work-
flow is shown in Figure 5. Once the HF graph is generated, the
analysis proceeds in three main phases: pruning globally unreal-
izable paths, symbolically executing the design to find realizable
paths through the design, and analyzing each found path to find true
paths of information flow. In the following sections, we describe
each phase.

3.1 Pruning Globally Unrealizable Paths from
the HF Graph

In the first phase, the goal is to eliminate paths through the HF
graph that are easily falsified before moving on to the next, more ex-
pensive phase. Consider the example code in Figure 6. The variable
temp carries the input secret only when the input signal enable is
high. The secret information is conditionally passed on to result

Figure 5: SEIF workflow.We use an existing tool [39] to gener-
ate theHF graph.We augment an existing symbolic execution
engine [47] to implement our search strategies and heuristic.

and from there to led2. The corresponding HF graph is shown in
Figure 7. While the HF graph appears to show a flow of information
from secret to led2 via temp, the constraints for edges (secret,
temp) and (temp, result) require enable to be high and low, re-
spectively. Since both edges must occur in the same clock cycle,
this flow cannot be realized.

1 wire temp = ( enab l e ) ? s e c r e t : 0 ;
2 a lways @( posedge c l k ) beg in
3 i f ( enab l e ) beg in
4 r e s u l t <= 0 ;
5 prev <= count ;
6 count <= count + 1 ;
7 end e l s e
8 r e s u l t <= temp ;
9

10 i f ( count == 0 )
11 guard0 <= s e c r e t ;
12 e l s e i f ( c l e a r )
13 guard0 <= 0 ;
14 e l s e
15 guard0 <= guard0 ;
16

17 i f ( count == 3 )
18 guard <= guard0 ;
19 e l s e beg in
20 guard <= 0 ;
21 end
22

23 a s s i g n l e d = ( prev == 3 ) ? guard : 0 ;
24 a s s i g n l e d 2 = r e s u l t ;

Figure 6: A design demonstrating globally unrealizable paths
and the challenges of stalling.

This analysis requires knowing where clock cycle boundaries
are. In the HF graph, an edge corresponding to a non-blocking
assignment (e.g., result <= temp) denotes a clock cycle boundary.
When result is updated in one clock cycle, the updated value can
be read in the next clock cycle.

At the start of this phase, the information flow (IF) path is di-
vided into segments with one division happening at each non-
blocking assignment in the path. If a path has 𝑛 non-blocking

3



HASP ’23, October 29, 2023, Toronto, Canada Kaki Ryan, Matthew Gregoire, and Cynthia Sturton

Figure 7: The partial HF graph for the code shown in 6, show-
ing only the paths through temp. Although the graph shows
a path from secret to led2, an SMT query finds that the con-
straints along the path will never be co-satisfiable.

assignments, it has 𝑛 + 1 segments. Each segment can con-
tain a sequence of hops in the HF graph, representing both
implicit and explicit flows. For example, consider the IF path
⟨(secret, temp), (temp, result), (result, led2)⟩ in Figure 7. This
path has two segments: ⟨(secret, temp), (temp, result)⟩ and
⟨(result, led2)⟩.

For every segment in a given IF path, the conditions involved in
that segment are collected and checked for co-satisfiability. If the
hops in any one segment have mutually contradictory constraints,
that path is discarded. In Figure 7, the segment ⟨(secret, temp),
(temp, result)⟩ has contradictory constraints, as the first hop re-
quires that enable is high, while the second hop requires it to be
low.

This pruning analysis is sound—only unrealizable paths are
discarded—as long as the co-satisfiability check considers only state-
holding signals and input signals in the satisfiability query, as these
signals do not change value in the middle of a clock cycle.

3.2 Symbolic Execution to Find Paths through
the Design

In the second phase, the goal is to find true paths through the
design for each remaining path in the HF graph. We use symbolic
execution to find a sequence of machine states and a corresponding
sequence of input signals (for example, as seen in Figure 2) that
aligns with the HF graph path.

3.2.1 Symbolic Execution Guided by IF Path Segments. The seg-
ment analysis done in the first phase provides information about
where the clock cycle boundaries lie, and which lines of code must
execute for each hop in a segment. In each clock cycle, the sym-
bolic execution engine is restricted to following only those design
paths which include the lines of code that must be executed for the
current IF-path segment to be realized. In Figure 1, for example, the
symbolic execution engine would consider only paths which take
the branch at line 8, when count == 3, significantly reducing the
search space.

However, there may still be many possible paths through the
design to consider, only some of which allow the complete IF path
to be realized. Consider the first clock cycle of symbolic execution,
shown at the top of Figure 3. The path of interest, annotated by
lines of code, is

⟨(secret, guard)line 8, (guard, led)line 13⟩.

In Figure 3, it would appear that two of the four possible paths
achieve the desired flow in clock cycle 1. But annotations in the

HF graph tell us that the sequence of conditions (count == 3)𝑠3,
(prev == 3)𝑠4 needs to be met. For this to happen, lines 3–4 need
to execute in the first four clock cycles and lines 8, 13 need to
execute in only the fourth clock cycle. While this is clear to see
when examining the state transition diagram (Figure 2), there is
nothing in the HF graph, or even the code itself, indicating that it
will take four clock cycles to realize this flow.

3.2.2 Pruning Unrealizable Paths at Clock Cycle Boundaries. At
each clock cycle, the engine first checks the co-satisfiability of the
conditions required in the current IF segment, similar to the check
done to prune globally unrealizable paths (Section 3.1). However,
now the SMT query includes the current symbolic state along with
the conditions required for the IF segment.

In our example from Figure 1, at the start of the initial clock
cycle, the symbolic execution engine checks whether the condition
required for the first hop in the HF graph (count == 3) is co-
satisfiable with the initial symbolic state (in which count == 0).
It is not, and the symbolic execution engine discards any paths
that would include line 8, which is required for the first hop in the
HF graph.1 At this point, SEIF recognizes that realizing the first
segment of the HF graph at the current state (state 𝑠0) is infeasible.

3.2.3 Stalling the IF Path to Advance to a New Machine State. The
second strategy used by SEIF is to pause the search for realizing
a segment of the IF path in order to advance the design to a next-
state. In our example, the first segment of the HF graph cannot be
realized from the initial reset state. SEIF symbolically executes the
design for a single clock cycle, without considering the constraints
required by the next IF path segment, to advance the design to a
new state. SEIF then checks whether the HF graph segment can be
realized from this new state.

There are many possible next-states and SEIF must find one that
advances the design toward a state in which the next IF segment
can be realized and also does not undo any prior progress along
the IF path that has been made. We discuss search strategies for
finding valuable next-states in the next section.

To demonstrate how prior progress can be undone, consider the
IF path from secret to guard0 to guard to led in Figure 6. To
achieve the second flow segment, ⟨(guard0, guard)⟩, SEIF needs
to first advance the design to a state 𝑠′ = ⟨count == 3⟩. However,
if the clear signal is set, a 0 would be written to guard0 undoing
the flow from secret to guard0 in the prior IF path segment.

To prevent undoing prior progress SEIF stalls, which means sym-
bolically executing the design for a single clock cycle to advance to
a next-state, but without changing the position along the IF path. To
do this, SEIF considers the node 𝑛 in the IF path, in which informa-
tion currently “resides.” In our current example, this would be the
node guard0. SEIF then uses the HF graph to find all edges incident
to node 𝑛, which are labeled with lines of code corresponding to
flows of information from variables in the design to 𝑛, and prevents
explorations of any corresponding design paths.

SEIF handles the edge cases of self-loops and direct assignments
of constants during symbolic execution by abandoning the execu-
tion paths in which they occur.
1Discarding these paths can be done prior to exploration of any paths in the current
clock cycle, as the engine has information from the design’s statically built control
flow graph about which lines of code are included in which path.
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3.2.4 Search Strategies. The search space for the symbolic execu-
tion is large. An IF path with 𝑛 segments requires at least 𝑛 clock
cycles through the design. When stalling is needed, the number
of clock cycles required is unbounded (but finite). Additionally, a
single IF hop can correspond to many paths through the symbolic
execution tree. We developed four search strategies to tackle the
large search space.

Baseline 1: Continue / Stall Only. In this strategy, SEIF will either
symbolically execute until a design path is found in which the
segment conditions are satisfied (termed a continue), or will stall for
some bounded number of cycles. For an IF path, SEIF exhaustively
tries all possible continue, stall combinations, prioritizing shorter
paths with fewer stalls.

Baseline 2: Backtracking Only. In this strategy SEIF begins by
symbolically executing until a design path is found for the first
segment. If the flow is found, SEIF moves to the next segment in
the IF path. If at any segment SEIF runs out of design paths to try
for that clock cycle, SEIF backtracks to an earlier segment to find a
different design path that satisfies the same segment conditions.

Stalling with Backtracking. This strategy is a hybrid of baselines
1 and 2. For any given continue, stall pattern, after successfully
executing consecutive continues, and reaching a stall, SEIF stalls for
a bounded number of clock cycles and attempts to find execution
paths where SEIF can make forward progress in the next segments.
If all symbolic execution paths are explored, or SEIF reaches a
pre-determined bound, it backtracks.

Stalling with Heuristic. This strategy builds on top of stallingwith
backtracking. Our heuristic relies on the UNSAT core, the subset
of constraints in a SAT query for which no satisfying assignment
exists. If SEIF stalls, it searches for a new machine state that will
satisfy the conditions of the next IF path segment. In this case,
SEIF pushes the symbolic state and the constraints from the next
segment to the SMT solver, which returns the UNSAT core. For each
path explored while stalling, SEIF checks if the UNSAT core became
smaller. If it did, SEIF continues searching for a new machine state
along the path. If it grows, SEIF prioritizes the next candidate stall
path.

3.3 Semantic Analysis to Identify True
Information Flows

For each path found in the prior phase, SEIF analyzes the semantics
of the information flow to discard paths that represent viable design
paths, but not true flows of information. SEIF discards explicit
textual flows which do not represent information flows (e.g., y <=
x ⊕ x), but cannot detect implicit textual flows that are not true
information flows (e.g., if (x ⊕ x)).

In the case of reconvergent fan-out SEIF may or may not find
the flow. This is because if an input signal splits off into different
areas of the design (i.e. modules, always blocks), different bits of
a signal may be written under different conditions. Based on the
path conditions in the different areas of the design and contents of
the writes, SEIF will only correctly account for reconvergent flows
if it is able to exhaustively explore all paths in that clock cycle.

4 IMPLEMENTATION
We implemented SEIF using the open-source Sylvia symbolic ex-
ecution engine [47] and using the static-analysis portion of the
hyperflow graph tool [39]. SEIF is implemented in python3: Sylvia
is a python-based engine and the HF graphs generated by the hy-
perflow graph tool can be loaded into a python environment. Sylvia
implements the Verilog semantics according to the IEEE 1364-2005
standard. SEIF uses the Z3 SMT solver, via the python Z3 API, for
SMT queries in all phases. The SEIF tool is publicly available at
github.com/kakiryan/SEIF.

5 EVALUATION
We evaluate SEIF over four open-source designs to study its efficacy
in producing information flows of a hardware design. The evalua-
tion starts with two case studies (Sec. 5.2) demonstrating how SEIF
can provide a richer information flow verification environment,
providing supporting information alongside traditional property
counterexamples. We then empirically address the following per-
formance questions (Sec. 5.4-5.5): 1) How well does SEIF perform in
fully explicating the complete set of information flow paths? 2) How
effective are the search strategies at guiding SEIF to realizable paths
through the design? We conclude with an investigation into the
types of false positive flows eliminated by SEIF from the statically
built HF graph.

5.1 Dataset and Experimental Setup
The Verilog designs used in the evaluation are the OR1200 [3], a
5-stage open-source RISC processor, openMSP430 [2], a synthesiz-
able 16-bit microcontroller core often used in embedded systems;
the AKER Access Control Wrapper (ACW) [45], and an AES imple-
mentation from TrustHub [25, 26]. The experiments are performed
on a machine with an Intel Xeon E5-2620 V3 12-core CPU (2.40GHz,
a dual-socket server) and 62G of available RAM.

5.2 Case Studies: Providing Feedback Beyond
Traditional Counterexamples

The SEIF workflow starts with a Verilog RTL design and a set of
source signals of interest. The signals can either be ones the engi-
neer is interested in exploring, or can be taken from an information
flow property. In the former case, SEIF will return a set of true
information-flow paths through the design, originating at the given
source, and if desired, a sequence of inputs to the design that will
drive execution down that path. In the latter case, SEIF can be con-
figured to add constraints to the solver specifying the preconditions
of the property. If the property can be violated (within the clock
bounds set by the engineer), SEIF will again return a set of true
information-flow paths, along with the associated sequence of in-
puts, each of which is a counter-example to the property. We verify
these counterexamples are replayable in simulation. Otherwise,
SEIF will return a result of no violations found. Whether used for
information flow exploration or for finding property violations,
SEIF returns a set of information flow paths and summary informa-
tion about the paths, including how many distinct information-flow
paths are found, how many destination signals the source flows
into, and for property verification tasks, how many violating paths
are found.

5
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The first case study examines all flows from the program counter
in the MSP430 core. The program counter may be assumed to flow
everywhere in the core, however, anyone with access to informa-
tion from the program counter may be able to learn confidential
information about the program executing. For this reason it is im-
portant that information from the program counter does not leak to
the debug access port during normal operation. A property to that
effect, slightly modified from the TrustHub Security Property/Rule
Database [25, 26] is as follows. We use the notation =/=> to indicate
no flow and→ to indicate conditional flows.

(dbg_0.dbg_en_s == 1′b0) →
frontend_0.pc =/=> dbg_uart_txd

To verify this property, and gain additional insights into how
information from the program counter flows through the design,
we ran SEIF on the MSP430 with the source signal set to the pro-
gram counter, and path condition constrained to match that of the
property. The results are shown in Table 1. SEIF finds the known
property counter-example given in the TrustHub database, and also
finds 45 additional paths that violate the property. SEIF also reports
that 41 sink signals are influenced by the program counter. On
average, SEIF searches through just over 8 clock cycles and finds a
counter-example path in less than a second.

Metric Result

Total IF paths from source: 19060
Total sinks reachable from source: 41

Total IF paths violating security property: 58
Avg. time to produce a counterexample (s): 0.678

Avg. no of clock cycles explored: 8.13
Total realizable paths violating security property: 46

Table 1: Security Property Verification: Program Counter in
MSP430

The second case study examines all flows from the key input in
the AES module. In order to prevent key leakage through informa-
tion side channels, it is important that information from the AES
key does not leak to any unprivileged internal data registers [62].
If at least one bit of the key material flows into the same inter-
mediate register that at least one bit of the plaintext flows into,
that intermediate register is vulnerable to side-channel attacks. The
properties to check this requirement for a specific intermediate
register, Drg[0], take the following form, where Krg is the secret
key. [25, 26] :

(clk_count == 3) → 𝐾𝑟𝑔[𝑖]=/=> Drg[0]

The results are shown in Table 2. SEIF finds the known property
counter-example given in the TrustHub database, and also finds 24
additional paths that violate the property. SEIF reports that 39 sink
signals are influenced by the AES key material. This information
can be used by the engineer to do a quick spot-check that no sur-
prising signals are showing up in this list. On average, SEIF searches
through just over 4 clock cycles and finds a counter-example path
in about half a second.

Metric Result

Total IF paths from source: 61639
Total sinks reachable from source: 39

Total IF paths from source violating security property: 57
Avg. time to produce a counterexample (s): 0.505

Avg. no of clock cycles explored: 4.102
Total realizable paths violating security property: 25

Table 2: Security Property Verification: Secret Key in AES
Implementation

5.3 Methodology for Empirical Evaluation
In the following experiments we look at the OR1200, MPS430, and
ACW designs and analyze security-critical signals collected from
known security properties. For the OR1200 and ACW, we identified
20 source signals each from properties developed in the security
literature [13, 31, 52, 60, 61] [21, 46]. For the MSP430, we selected
10 signals analogous to those in the OR1200 security properties.

For each source signal there can be tens of thousands of IF paths.
For the efficacy and performance evaluations in this and the next
two sections, we analyze a subset of the total paths. For each source
signal of interest, we randomly selected 300 paths from the HF
graph for analysis.

We empirically determined the number of clock cycles to stall
for each search strategy that involves stalling: baseline 1, bounded
stalling with backtracking, and the UNSAT core heuristic (baseline
2 does not involve stalling). We used the OR1200 and 5 security-
critical signals from our dataset for this analysis. Once we did not
see any gains from stalling for an additional clock cycle, the bound
was set. We experimentally found the bounds to be 5 cycles, 5 cycles,
and 4 cycles for the respective three stalling-based heuristics.

5.4 Accounting for Paths in the HF Graph
We examine SEIF’s ability to explicate paths in the HF graph, either
by finding paths through the design that correspond to the HF path,
or by eliminating the IF path as infeasible. Figure 8 summarizes the
results. For 86% to 90% IF paths on average, SEIF either finds the
corresponding path through the design or can falsify it – statically
or during symbolic execution. The majority of accounted-for IF
paths, 58% to 77% on average in the three designs, are true paths in
the design, indicating that the static analysis done to build the HF
graph is a decent first approximation of information flow through
the design. We show the percentage of the IF paths for which SEIF
returns a design path that starts at the reset state vs. a design path
that starts at some intermediate state. Paths that start at the reset
state are better for the engineer as they can be immediately replayed
from the known reset state.

5.5 Evaluation of Search Strategies
In the following we evaluate the four search strategies. Figure 9
reports the percentage of IF paths found by each. As expected,
the heuristic guided search outperforms the others in all three
designs, improving over the baselines by 26% on average and over
bounded stalling with backtracking by 11% on average. Baseline 2,
which does not include stalling, is the least successful at finding
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Figure 8: Accounting for IF Paths

corresponding paths in the design. This highlights the value of SEIF:
many IF paths give an incomplete picture of a path through the
design and include points where the design must advance to a new
state before the IF path can continue. Without SEIF, it is up to the
engineers to figure out how and whether to advance the design
state.

Figure 9: Finding Design Paths Corresponding to IF Paths

Figures 10 and 11 report on the performance of the four search
strategies. The heuristic-guided search outperforms the other strate-
gies, completing the search for each IF path in 3-6 seconds. Figure 12
shows that the amount of backtracking that is required is lowered
when we incorporate bounded stalling. Adding the heuristic im-
proves the efficacy of stalling and therefore decreases backtracking
even further.

Figure 10: Time to Find Design Paths

Figure 11: Clock Cycles to Find Design Paths

Figure 12: Frequency of Backtracking

5.6 Falsified Paths in the HF Graph
We examine how IF paths that do not correspond to information-
flow paths through the design are falsified in Figure 13. This ex-
periment uses the same 300 randomly chosen paths for the 20
security-critical signals in the OR1200. The largest percentage of
eliminated paths are found statically before symbolic execution be-
gins. This is good news, as that is the cheapest and quickest phase
of the analysis. There is a non-trivial portion, 5% to 7%, that are
eliminated because they do not represent true flows of information
through the design. The pruning of these IF paths guides the user
towards paths that are more likely to realize the path of interest
and away from paths that are unrealizable. SEIF’s use of symbolic
execution allows for this precise analysis, which taint tracking may
not be able to provide.

Figure 13: Breakdown of how flows are falsified by SEIF
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6 RELATEDWORK
Symbolic Execution of HW Designs for Information Flow
Analysis EISec uses netlist-level symbolic execution to verify infor-
mation flow safety and quantify confusion and diffusion in crypto-
graphic modules [28]. Our work allows analysis at the RT-level and
enables verification of a wider class of information-flow properties.
Other tools use symbolic simulation (e.g., [51]) to verify particular
binaries running on the hardware [7, 17].

Symbolic Execution of SW for Information Flow Analysis
The software community was perhaps the first to leverage sym-
bolic execution to verify information flow. The approach has been
used in combination with taint tracking [16], to find and mitigate
side channels [10, 15, 53, 54], and to identify programs that are
vulnerable to transient execution attacks [29].

Symbolic Execution of SW or HW to Find Exploitable
Flaws There is a long history of using symbolic execution in soft-
ware to find exploitable security flaws (e.g, [8, 9, 44]). In hardware,
symbolic execution has been used to find violations of and exploits
for security-critical assertions [59] and to find and trigger trojans
in the Verilog RTL [48]. As with SEIF, the main challenge is guiding
search to find the salient paths. Static analysis in SW was leveraged
to produce a “code property graph” to find insecure code [56]

Information Flow Tracking in HW The state of the art for
information flow analysis in hardware is information flow track-
ing (IFT), which instruments a design with tracking logic [50].
Many tools operate at the netlist level, although some operate at
the RTL level [5]. IFT has also been used in analog designs [11],
and tools exist to synthesize designs that incorporate tracking
logic [42, 43]. IFT can be used to check hyperproperties and has
been used to verify the safety and security of many different sys-
tems [4, 14, 18, 33, 34, 36, 40, 45, 46, 49]. IFT has also been used to
automatically generate information flow properties for use with
formal verification engines [20, 21]. We used these properties in
our evaluation; although our technique is not property-based we
used the security-critical signals they identified for analysis. IFT
has also been used to develop security metrics for the OpenTitan
Hardware Root of Trust [41]. SEIF also shows that there is inter-
esting information to be gleaned during the verification process in
addition to property violations (see Tables 1, 2).

Formal Analysis for Information Flow Proof-checking ap-
proaches have been used for detecting security vulnerabilities in
hardware designs [24, 35]. These approaches are often less auto-
mated, more time intensive, and tackle smaller designs, for stronger
results that are both sound and complete. VeriCoq translated Verilog
to Coq for proof-carrying designs [12]. Another approach is to use
self-composition, or program products, to verify information-flow
properties [23]. Security extensions in the hardware description
language can enforce information flow policies at the language
level [6, 19, 27, 37, 38, 58].

7 CONCLUSION
SEIF uses symbolic execution guided by a HF graph to find informa-
tion flows in hardware designs. SEIF can be used to find counterex-
amples to information flow properties, and also to explore all flows
originating from a source signal of interest. In our experiments,
SEIF accounts for 86–90% of statically identified possible flows in

three open-source designs. SEIF’s search strategies enable explor-
ing the designs for 10-12 clock cycles in 4-6 seconds on average,
demonstrating that this new exploratory style of information flow
analysis can be practical.
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