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Abstract

Molecules are frequently represented as graphs,
but the underlying 3D molecular geometry (the lo-
cations of the atoms) ultimately determines most
molecular properties. However, most molecules
are not static and at room temperature adopt
a wide variety of geometries or conformations.
The resulting distribution on geometries p(z) is
known as the Boltzmann distribution, and many
molecular properties are expectations computed
under this distribution. Generating accurate sam-
ples from the Boltzmann distribution is therefore
essential for computing these expectations accu-
rately. Traditional sampling-based methods are
computationally expensive, and most recent ma-
chine learning-based methods have focused on
identifying modes in this distribution rather than
generating true samples. Generating such samples
requires capturing conformational variability, and
it has been widely recognized that the majority
of conformational variability in molecules arises
from rotatable bonds. In this work, we present
VonMisesNet, a new graph neural network that
captures conformational variability via a varia-
tional approximation of rotatable bond torsion
angles as a mixture of von Mises distributions.
We demonstrate that VonMisesNet can generate
conformations for arbitrary molecules in a way
that is both physically accurate with respect to the
Boltzmann distribution and orders of magnitude
faster than existing sampling methods.

1. Introduction

Accurate prediction of molecular properties is an important
task in computational chemistry. Many physical and chemi-
cal properties are dependent on a molecule’s 3D conforma-
tions, and some properties, such as spectroscopic properties
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like nuclear magnetic resonance (NMR) chemical shifts,
are measured on timescales considerably longer than the
timescale of molecular motion. At room temperature, most
molecules are not static and adopt a wide variety of con-
formations. These properties are therefore computed as
expectations with respect to the probability density that gov-
erns molecular conformations, known as the Boltzmann
distribution. This density is given by
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p(z) =
where z € R™*3 is the set of atomic coordinates that de-
fine a conformation over the n atoms, F(z) is the potential
energy, 1" is the temperature, Z is a normalizing constant,
and kg is the Boltzmann constant (Tuckerman, 2010). E(x)
has been modeled extensively using fundamental chemistry
knowledge. For example, there are classical mechanics-
based force fields, such as the widely-used Merck Molec-
ular Force Field (MMFF) (Halgren, 1996), and quantum
mechanical-based approaches, such as Density Functional
theory (DFT).

Generating accurate samples from this distribution is essen-
tial for computing accurate molecular property expectations.
However, sampling from p(z) is very challenging because it
is a high-dimensional and multi-modal distribution; generat-
ing samples from high-dimensional distributions is a classic
problem in computational statistics (Liu, 2008).

The complexity in the Boltzmann distribution is primarily
due to the large number of degrees of freedom that a given
molecule possesses. These degrees of freedom are typically
defined in terms of three types of so-called internal coor-
dinates: bond lengths, which are distances between pairs
of bonded atoms; bond angles, which are angles between
bonds connected to a common atom; and torsions, which are
dihedral angles formed by four consecutively bonded atoms.
The number of degrees of freedom therefore increases sub-
stantially as a function of molecule size.

There are a variety of classical approaches to conformation
generation, including stochastic methods and systematic
methods (Hawkins, 2017). Some stochastic methods, such
as Markov Chain Monte Carlo and Molecular Dynamics,
attempt to generate samples from the Boltzmann distribution
(which we refer to below as “Boltzmann samples™) but can
suffer from long runtimes on the order of minutes or even
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hours for large molecules (Tuckerman, 2010).

Other stochastic methods, such as Monte Carlo Multiple
Minimum and Low Mode Search, generate low energy (i.e.,
high probability) conformations and have shorter runtimes
(Chang et al., 1989; Freyberg & Braun, 1991; Wilson et al.,
1991; Kolossvary & Guida, 1996; Parish et al., 2002; Su-
pady et al., 2015; Schrodinger, 2016). However, finding
modes is different than generating true samples from the
underlying distribution. Generating modes can be useful,
and it is possible to utilize strategies such as importance
sampling to compute expectations with them. However,
this is not ideal for computing expectations with respect to
the Boltzmann distribution, because there are lots of inher-
ent symmetries and flexibility that can make mere mode
identification insufficient.

Distance geometry methods, such as RDKit’s ETKDG algo-
rithm (Riniker & Landrum, 2015), use a stochastic approach
in conjunction with knowledge-based rules to produce a
diverse set of geometries, but these conformations are not
Boltzmann samples. Systematic methods, such as Confab
(O’Boyle et al., 2011), aim to generate conformations via
brute force search or using knowledge-based libraries, but
this becomes intractable for large molecules and these meth-
ods also do not produce Boltzmann samples (Kothiwale
etal., 2015; Cole et al., 2018).

A number of machine learning approaches have been in-
troduced which aim to improve the speed and accuracy of
conformation generation. Most of these approaches, includ-
ing DL4Chem (Mansimov et al., 2019), CGCF (Xu et al.,
2021), GeoMol (Ganea et al., 2021), and RMCF (Wang
et al., 2022), have focused on generating low energy confor-
mations (Shi et al., 2021; Luo et al., 2021; Xu et al., 2022).
Similar to some of the classical methods, these methods do
not generate Boltzmann samples. GraphDG was designed to
generate such samples when combined with an importance
sampling scheme, but it was only trained and evaluated on
a limited set of 197 distinct molecular graphs from a sin-
gle molecular formula (Simm & Hernandez-Lobato, 2020).
Noé et al. devised so-called Boltzmann generators, which
utilize normalizing flows to generate Boltzmann samples
(Noé et al., 2019). These have shown promise on proteins
as well as small organic molecules (Kohler et al., 2021), but
a separate model needs to be trained for every molecule,
because the normalizing flows operate on intrinsic coordi-
nates specific to a given molecule. This limits their utility
for high-throughput tasks (Jing et al., 2022).

A Torsional Diffusion method was recently introduced by
Jing et al. which exclusively models rotatable bond torsion
angles (Jing et al., 2022). It is well-understood that the
primary source of conformational variability arises from
torsional rotations about so-called rotatable bonds (Chen
& Foloppe, 2011; Axelrod & Gomez-Bombarelli, 2022).

Rotatable bonds are canonically defined as single, non-ring
bonds which are attached to atoms that are non-terminal
and not triply bonded.! Jing et al. use a slightly more ex-
pansive definition of rotatable bond as any bond which, if
severed, would produce two connected components in the
molecular graph. The authors trained a Torsional Diffusion
model to produce low energy conformations, and it showed
state-of-the-art performance on standard datasets. Because
the model provides exact likelihoods, the authors were also
able to train a Torsional Diffusion model to generate inde-
pendent samples from the marginal Boltzmann distribution
of rotatable bond torsion angles for a variety of molecules.
However, it was only trained and evaluated on molecules
with between 3 and 7 rotatable bonds (using the authors’
definition), which excludes large swaths of chemical space;
ibuprofen, for example, has 8 rotatable bonds. Torsional
Diffusion is also more computationally expensive than other
machine learning models.

In this work, we present VonMisesNet, a new graph neu-
ral network that captures conformational variability via a
variational approximation of rotatable bond torsion angles
as a mixture of von Mises distributions.? Similar to Tor-
sional Diffusion, we focus on modeling the rotatable bonds,
although we use the canonical rotatable bond definition be-
cause it excludes some bonds, such as double or triple bonds,
that may not be freely rotatable. VonMisesNet places no re-
striction on the number of rotatable bonds that it can process,
and therefore it can be used to generate conformations for
arbitrary molecular graphs. It is also the first machine learn-
ing method that specifically accounts for chirality inversion,
a phenomenon that can strongly influence the local geome-
try about atoms with three neighbors and one lone pair of
electrons, which is often the case with nitrogen atoms. We
show that our method is not only more accurate than other
methods in terms of its ability to generate samples from the
marginal Boltzmann distribution of rotatable bond torsion
angles, but that it is also orders of magnitude faster than
diffusion-based methods.

2. Methods

2.1. Ground Truth Conformation Generation

To train a machine learning model to generate Boltzmann
samples, we require datasets that contain Boltzmann sam-
ples for a variety of molecules. However, most widely-used
benchmark datasets consist of low energy conformations.
For example, the popular datasets GEOM-QM?9 (Ramakrish-
nan et al., 2014) and GEOM-DRUGS (Axelrod & Gomez-

'This definition is based on the canonical rotatable bond
SMARTS string from RDKit: [!$ (#)&!D1]-![!$ (#X
)&!D1].

2Code is available at https:/github.com/thejonaslab/vonmises-
icml-2023.
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Bombarelli, 2022) consist of low energy conformations
generated from DFT calculations. Simm and Hernandez-
Lobato introduced the CONF17 benchmark (2020), which
consists of conformations generated via ab initio Molecular
Dynamics simulations. Although these conformations are
Boltzmann samples, the dataset only consists of 197 unique
molecular graphs with the formula C7H;¢O5.

Therefore, to train and evaluate on Boltzmann samples that
represent a much larger and more diverse set of molecules,
we construct our own ground truth dataset. We combine Par-
allel Tempering and Hamiltonian Monte Carlo, techniques
that are both well-known to efficiently sample complex dis-
tributions (Liu, 2008; Tuckerman, 2010). We refer to this
method as PT-HMC (see Appendix §A for details).

In our PT-HMC simulations, we use MMFF to give the
molecular potential energy, F(x). The Torsional Diffusion
model that was trained to generate Boltzmann samples for
rotatable bonds also utilized MMFF. We use the MMFF
implementation in RDKit to compute potential energies
and gradients (Tosco et al., 2014). Although quantum me-
chanical approaches would yield more physically accurate
geometries, classical force fields allow for more compu-
tationally efficient simulations while still providing good
approximations to the true Boltzmann distribution. This lets
us show proof of concept for our method; future work will
investigate the use of quantum mechanical approaches.

2.2. Datasets

We used PT-HMC to generate conformations for two
datasets of molecules: NMRShiftDB and GDB-17 (see
details in Appendix §B). We use 32,171 molecules from
NMRShiftDB and 134,228 molecules from GDB-17 that
have at most 64 atoms and elements in the set {H, C,
O, N, F, S, P, Cl}. We split each of these datasets into
training (NMRShiftDB-train and GDB-17-train) and test
(NMRShiftDB-test and GDB-17-test) datasets by comput-
ing a hash of the Morgan fingerprint with a radius of 4 and
2,048 bits for each molecule. If the last digit of this hash
is a 0 or a 1, the molecule is in the test set, otherwise it
is in the train set. This produces an 80/20 train/test split,
and it allows us to consistently determine whether a given
molecule is in the train set or the test set. Each molecule
has approximately 560 conformations.

2.3. VonMisesNet

In this section, we describe VonMisesNet and how it is
used to generate conformations. In subsections 2.3.1, 2.3.2,
and 2.3.3, we describe the geometric components that Von-
MisesNet predicts and explain our modeling choices. In
subsection 2.3.4, we describe the VonMisesNet architecture
and training procedure. In subsection 2.3.5, we explain how
the predictions from VonMisesNet can be used to rapidly

generate accurate molecular conformations.

2.3.1. ROTATABLE BOND MODELING

Our primary goal is to model the marginal Boltzmann distri-
bution of rotatable bond torsion angles in a given molecule.
To do so, we need a canonical way of defining these angles,
which are dihedral angles formed by four consecutively
bonded atoms. The central two atoms are fixed as the begin
and end atoms of the bond itself, but there can be multiple
choices for the other two atoms. We use a breadth-first
search approach based on the Cahn-Ingold-Prelog (CIP)
(Cahn et al., 1966) rules to determine which four atoms,
including the two central atoms, should be chosen (see Ap-
pendix §C for details).
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Figure 1. Rotatable bonds example. (a) Molecular graph of butane,
with the three rotatable bonds highlighted. (b) Marginal and pair-
wise joint distributions of the three rotatable bond torsion angles
in butane from 560 conformations generated via PT-HMC. The
diagonal plots show the marginal distributions. Each of these dis-
tributions has three distinct modes (note that the axes represent a
periodic angle variable ranging from — to 7). The plots above
and below the diagonal show scatter and kernel density estimates
of the pairwise joint distributions, respectively. The pairwise joint
distributions present clearly as product distributions, which indi-
cates that the distributions are approximately independent.

If 6; is the angle of the i*" rotatable bond and there are
N rotatable bonds, then our target distribution is given by
p(b1,...,0n). We make two primary assumptions about this
distribution: independence and multi-modality.

Independence. The first assumption is that the individual
rotatable bond torsion angle distributions are approximately
independent. Under this assumption, we express the target
distribution as a product:

p(01, ... 0n) = [ [ p(6:) )

We find that this formulation facilitates straightforward mod-
eling and rapid generation of conformations, but in future
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work we hope to relax this assumption and to explicitly
model long-range interactions.

Butane is an example of a molecule that supports this as-
sumption. In Figure 1, the pairwise joint distributions of the
rotatable bond torsion angles clearly present as product dis-
tributions. In Appendix §D, we show that these distributions
are approximately rank-1, which indicates independence.
We also show that on average, for a larger set of molecules,
pairs of rotatable bonds have a joint distribution that is
approximately rank-1, with the approximation improving
when the bonds are farther apart within a molecule.

0.751 —— Sum of Components 0.75 --- Component 1
> > Component 2
= = 050 --- Component 3
Qo Q
© © \ ko ’
2 2 \ A /
\ 1
a & 025 ' ! \ /
\ ! \ ll
] \ ’
0.00 +— . <
-n -2 0 n2 n
Angle
(@) (b)

Figure 2. von Mises distribution example. (a) The probability den-
sity of a mixture of three von Mises distributions with means
w1 = —1.25, o = 1.25 and pu3 = 7. The concentrations «; are
all equal to 10, and the weights w; are all equal to 1/3. (b) The
probability densities of the individual component distributions.

Multi-modality. The second assumption is that most indi-
vidual rotatable bond torsion angle distributions are multi-
modal, typically with up to four distinct modes. As shown
in Figure 1, butane also exemplifies this. In Appendix §E,
we show that in a larger set of molecules, the majority of
rotatable bond torsion angle distributions have fewer than
four distinct modes.

With these assumptions, we model a given rotatable bond
torsion angle distribution as a mixture of von Mises distri-
butions. We use a von Mises distribution because it is a
continuous probability distribution on the circle with sup-
port in [—, 7], which is the periodic range of rotatable bond
torsion angles. We use a mixture of von Mises distributions
to capture the multi-modal nature of rotatable bond torsion
angles. The weighted sum of /N von Mises distributions is
given by
N emcos(efp,i)

p(0) :Zwima 3

=1

where 6 is the angle, I is the modified Bessel function
of order 0, w; is the weight, y; is the mean, and &, is the
concentration of the it" distribution.> Figure 2 shows an
example. In our experiments we use /N = 4 as most of the
distributions have up to four distinct modes. VonMisesNet

3The concentration is analagous to the inverse variance.

predicts the parameters of this weighted sum for each rotat-
able bond using the molecular graph as the input. Hence,
we capture conformational variability via a variational ap-
proximation of rotatable bond torsion angles as a mixture
of von Mises distributions.

2.3.2. CHIRALITY INVERSION MODELING

Some atoms can undergo a specific type of transformation
that influences the local geometry about a rotatable bond.
Atoms that have three bonded neighbors and one lone pair
of electrons can exhibit chirality inversion. (From here on
we refer to such atoms as “chirality inversion atoms.”) This
means that the atom moves through the plane formed by its
three neighbors, which causes an oscillation between R and
S chirality (see Appendix §G for details). This can often
occur with nitrogen atoms, where the thermodynamic barrier
for this inversion, ~ 25 kJ/mol, is low enough to allow rapid
inversion at room temperature, leading to a racemic mixture
of R and S configurations (Kennepohl, 2022). An example
is shown in Figure 3.

Figure 3. Chirality inversion example. A molecular fragment with
a chirality inversion atom (blue) connected to three bonded neigh-
bors (white) along with a lone pair (yellow). The chirality inversion
atom moves through the plane formed by the three neighbors. As-
suming that the neighbors are numbered in order of decreasing
CIP priority and that the lone pair has the lowest priority, the con-
figuration on the left has S chirality and the configuration on the
right has R chirality; one cannot simply rotate the one on the left
to achieve the one on the right.

If a chirality inversion atom is an endpoint of a rotatable
bond, then the inversion can influence the rotatable bond
torsion angle distribution. 31% of molecules in our NMR-
ShiftDB data and 60% of molecules in our GDB-17 data
have at least one rotatable bond connected to a chirality
inversion atom.

We model chirality inversion as follows. Let 6 be a rotatable
bond torsion angle where one of the endpoint atoms, A, is a
chirality inversion atom.* Let p(6|R) be the angle distribu-
tion when A has R chirality, p(0|.S) be the angle distribution

“There are some cases where both of the atom endpoints are
chirality inversion atoms. There are only 203 molecules with such
rotatable bonds in our NMRShiftDB data (0.6%) and none in our
GDB-17 data, so we do not explicitly handle this special case.
As described below, when making predictions for such cases, we
condition on the chirality of just one of the endpoint atoms.
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when A has S chirality, and p(R) be the probability that A
has R chirality. Then, we can express the rotatable bond
torsion angle distribution as

p(0) = p(R) - p(0|R) + (1 —p(R)) - p(0]5). (4

We model p(f|R) and p(6]S), each, as mixtures of von
Mises distributions, as described above. For each rotatable
bond that has a chirality inversion endpoint atom, VonMis-
esNet predicts the von Mises mixture parameters for both
p(0|R) and p(6|.S). It additionally predicts p(R) for each
chirality inversion atom in the molecule.

2.3.3. BOND LENGTH AND BOND ANGLE MODELING

Although rotatable bonds are responsible for most of the
conformational variability in a molecule, its geometry is
also determined by bond lengths and bond angles. These
are typically unimodal distributions with minor variance,
which obviates the need to predict full distributions for them.
Therefore, VonMisesNet predicts averages for bond lengths
and bond angles.

2.3.4. ARCHITECTURE AND TRAINING

VonMisesNet is a graph neural network that takes a molecu-
lar graph with an initial 3D structure as input and predicts
the following: the probability of R chirality for each chi-
rality inversion atom, average length for all bonds, average
angle for all bond angles, and parameters for a mixture of
four von Mises distributions for each rotatable bond (includ-
ing two sets of parameters for any rotatable bond that is
connected to a chirality inversion atom, conditioned on R
and S). These predictions can be used to rapidly generate
conformations. We use a multi-partite graph representation
for molecules, which removes the need to update edge or
global features, allowing a simple message passing scheme
to be used for nodel-level predictions of all quantities of
interest. In Figure 4, we illustrate the multi-partite graph rep-
resentation and summarize the neural network architecture
that we use to produce node-level predictions (see Appendix
§F for details on our node-level featurization and Appendix
§J for further details on the neural network architecture).
During training, we minimize the negative log likelihood of
the ground truth angle samples for a given rotatable bond
under a mixture of four von Mises distributions defined by
the predicted parameters. For all of the other predictions,
we minimize the mean squared error.

2.3.5. CONFORMATION GENERATION

To generate conformations, we create an initial geometry
from ETKDG and run inference with VonMisesNet on the
molecular graph. Using RDKit, we set all of the non-ring
bonds in the initial geometry, as well as the bond angles
containing at least one rotatable bond, to the respective

predicted averages from VonMisesNet. Then, we generate a
specified number of conformations using the following steps.
For each chirality inversion atom, we randomly set the atom
to have R or S chirality based on the predicted probability
(see Appendix §G for details). For each rotatable bond,
we sample a value from its predicted von Mises mixture
distribution and set the rotatable bond torsion angle in the
initial geometry to that value. For rotatable bonds that
are connected to a chirality inversion atom, we use the
von Mises mixture distribution that is conditioned on the
chirality of that atom. When both endpoints of the bond are
chirality inversion atoms, we condition on the chirality of the
“begin atom” in RDKit. At this point, a full conformation
has been generated. This process is repeated to generate the
specified number of conformations.

There is an optional filtering step in this process. After a
conformation is generated, we check if there are any two
atoms separated by more than five bonds that are closer
than the average of their van der Waals radii. If so, we
discard the conformation and re-generate, up to a maximum
number of total retries. This is inspired by the ETKDG
algorithm, which uses the sum of the van der Waals radii of
two atoms more than five bond lengths apart as a constraint
in the distance geometry process.’ These constraints are
useful because it is unphysical for two atoms to overlap
spatially. We find that this filtering approach is a crude but
effective way of mitigating the fact that VonMisesNet does
not explicitly model long-range interactions.

3. Results

In this section, we evaluate the speed and accuracy of Von-
MisesNet. In subsection 3.1 we discuss baselines for com-
parison, and in subsection 3.2 we compare speed via runtime
per conformer. For the problem of generating low energy
conformations, accuracy evaluations typically focus on a
set of reference conformations and use RMSD to measure
the fraction that are recovered by a given method. Because
our goal is to sample from a distribution rather than to gen-
erate low energy conformations, we use accuracy metrics
that compare distributions rather than individual conforma-
tions. Specifically, we compare the generated distributions
of rotatable bond torsion angles (subsection 3.3) and the
distributions of pairwise atomic distances (subsection 3.4)
to the respective ground truth Boltzmann distributions.

3.1. Baselines

We use three baselines: ETKDG, GeoMol, and Torsional
Diffusion. When ETKDG generates conformations, it oc-

>We use a looser constraint as we find that it increases the
ratio of preserved conformations while also improving evaluation
metrics.
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Figure 4. VonMisesNet architecture. (a) A fragment of a molecule represented in typical fashion with atoms corresponding to nodes and
bonds corresponding to edges. (b) We transform this graph into a multi-partite representation that has atom nodes, bond nodes, and angle
nodes. The atoms remain fixed as nodes, shown in blue, but the bond edges become two edges connected to a bond node, shown in yellow.
In addition, we add angle nodes, shown in green, which are connected by edges to the endpoints of a set of three consecutive atom nodes
that define a bond angle. We perform message passing on this input graph, which results in node-level vectors. For each node type, shown
in (c), we generate the relevant predictions using Feed Forward Networks (FFN), shown in (d). p(R) is the probability of R chirality, and

Wi, ki, and w; are the von Mises parameters.

casionally swaps the indices of otherwise indistinguishable
atoms, which can affect the comparison metrics we use.
We made a small modification to enforce consistent atom
indexing, which we call ETKDG-Clean (see Appendix §I
for details). For Torsional Diffusion, we use the Boltzmann
generator model that was trained at 300 Kelvin, using the
default 20 de-noising steps, a target sample temperature of
293 Kelvin, and the GEOM-DRUGS featurization configu-
ration. Although GeoMol is designed to generate low energy
conformations, we use it as a baseline to examine whether
such a model can be easily repurposed to generate Boltz-
mann samples. Because GeoMol was originally trained
on DFT geometries, we re-trained it on our ground truth
data using the default hyperparameters and GEOM-DRUGS
featurization configuration so that it generates geometries
that are closer to our MMFF-based ground truth. When
evaluating on molecules from NMRShiftDB-test, we use
the VonMisesNet and GeoMol models that were trained
on NMRShiftDB-train, and when evaluating on GDB-17-
test, we use the corresponding models that were trained on
GDB-17-train. Below, VonMisesNet-Filtered means that
we use the optional filtering step when generating confor-
mations. We generate 560 conformations per molecule for
each method.

3.2. Runtime

Runtime is an important metric because conformation gen-
eration is often an intermediate step in high-throughput
molecular property prediction tasks. In Table 1, we compare
the average time it takes to generate a single conformation.
VonMisesNet is the fastest method and Torsional Diffusion

Table 1. Runtime per conformer in milliseconds averaged across
58 molecules from NMRShiftDB-test, along with standard error
measurements. We selected 100 random molecules, 58 of which
satisfed the Torsional Diffusion rotatable bond constraints. 100
conformers were generated for each molecule on a 64-core ma-
chine that has a single NVIDIA GeForce RTX 2080 Ti GPU. We
do not include the start up times for any of the methods (e.g.,
loading neural network weights).

METHOD CPU (Ms) GPU (Ms)
ETKDG-CLEAN 1234+ 1.5 NA
GEOMoOL 3.6+ 0.2 NA
TORSIONAL DIFFUSION 682.7+46.9 140.0+£5.3
VONMISESNET 3.1+ 0.2 3.0+0.2
VONMISESNET-FILTERED 4.7+ 0.7 49+0.8

is the slowest. Compared to Torsional Diffusion, VonMises-
Net is about 47 times faster on a GPU and about 220 times
faster on a CPU.

3.3. Rotatable Bond Torsion Angle Distributions

To evaluate the accuracy of generated rotatable bond tor-
sion angle distributions, we measure the KL divergence and
Earth Mover’s Distance (EMD) relative to the PT-HMC
ground truth. These metrics show how well a model is
capturing the distributions for individual rotatable bonds.
Among 1000 random molecules from NMRShiftDB-test,
we select 538 that satisfy the Torsional Diffusion rotatable
bond constraints, and among 1000 random molecules from
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GDB-17-test, we select 610 that satisfy the constraints.® As
shown in Table 2, VonMisesNet and VonMisesNet-Filtered
outperform the other methods and have the lowest average
KL and EMD values. In Figure 5, we examine a specific ex-
ample where chirality inversion has a nontrivial effect on the
distribution, which is captured by VonMisesNet. In Figure
6, we compare VonMisesNet and PT-HMC across several
example rotatable bonds. Additional evaluations on the
full sets of 1000 random molecules, without the Torsional
Diffusion constraints, are shown in Appendix §H.

Table 2. Rotatable bond torsion angle distributions evaluation. Av-
erage KL divergence and EMD of rotatable bond torsion angle
distributions, per molecule, relative to PT-HMC ground truth in
538 molecules from NMRSthiftDB-test and 610 molecules from
GDB-17-test, respectively. Standard error is in parentheses. The
KL is measured with 32 bins. EC, GM, TD, VMN, and VMN-F
stand for ETKDG-Clean, GeoMol, Torsional Diffusion, VonMis-
esNet, and VonMisesNet-Filtered, respectively. NMR and GDB
stand for NMRShiftDB-test, and GDB-17-test, respectively.

KL Divergence

EC GM TD VMN VMN-F
NMR  2.80(0.09)  2.62 (0.08) 1.14 (0.05)  0.82(0.04)  0.76 (0.04)
GDB 3.97 (0.09)  2.70 (0.07) 1.71 (0.04) 1.36 (0.04)  1.31(0.04)
Earth Mover’s Distance (EMD)
EC GM TD VMN VMN-F
NMR  0.75(0.03) 0.92(0.04) 0.76(0.03)  0.47(0.03)  0.46 (0.02)
GDB 1.13 (0.03) 1.69 (0.07) 1.02 (0.03)  0.93(0.03)  0.93(0.03)

3.4. Pairwise Distance Distributions

To evaluate the accuracy of pairwise distance distributions,
we measure the EMD of these distributions as well as the
mean absolute error (MAE) of the expected distance rel-
ative to the PT-HMC ground truth.” When the shortest
path between two atoms contains n atoms, we say that
the distance is a 1-n distance. Comparing these 1-n dis-
tance distributions gives us a way to evaluate the accu-
racy of generated geometries as a function of the graph-
distance between pairs of atoms. We use the same sets
of molecules as in §3.3. In the first row in Figure 7, we
evaluate 1-n distances for which every intermediate bond
along the shortest path is rotatable, which lets us focus on
how well models are capturing the marginal Boltzmann dis-
tribution of rotatable bond torsion angles.® VonMisesNet,
VonMisesNet-Filtered, and Torsional Diffusion outperform
the other methods. VonMisesNet shows relatively stronger

5We do not use the entire test sets due to the large amount of
time it would take to run inference for all methods.

"We do not use KL because there are no consistent lower and
upper bounds on the distances, and therefore we cannot easily
assign bins for KL.

8By intermediate bonds, we mean all bonds along the shortest
path except for the first and the last.

1.00 —— PT-HMC (true)
—— TorsionalDiffusion
—— VonMisesNet

- -n2 0 n/2 n
Angle
(@) (b)

1.00 R 1.00 R
> s > s
20.75 £0.75
2 2
@ 0.50 @ 0.50
a [a}

0.25 0.25

0.00 0.00

-n -n/2 0 n/2 n -n -2 0 n/2 n
Angle Angle
© (d)

Figure 5. Predicting chirality inversion example. (a) A molecule
from NMRShiftDB-test, where the highlighted rotatable bond is
between a carbon atom and a chirality inversion nitrogen atom. The
nitrogen atom has R chirality in 54.2% of the PT-HMC conforma-
tions, 47.8% of the VonMisesNet conformations, and 100% of the
Torsional Diffusion conformations. (b) Kernel density estimates
of the rotatable bond torsion angle distribution from PT-HMC,
VonMisesNet, and Torsional Diffusion. (c) and (d) show the distri-
butions of this angle conditioned on the chirality of the nitrogen
atom for PT-HMC and VonMisesNet, respectively. See Figure
21 in the Appendix for a plot that includes ETKDG-Clean and
GeoMol as well.

performance for n < 6 and weaker performance in some
cases for n = 6, and VonMisesNet-Filtered performs best
overall. In the second row, we allow for any intermediate
bond along the shortest path except for those that belong
to a non-aromatic ring. There is a regression in the relative
performance of GeoMol and Torsional Diffusion, and Von-
MisesNet and VonMisesNet-Filtered outperform all other
methods on nearly all metrics. In the third row, we remove
the non-aromatic restriction and consider all bonds along the
shortest path, and ETKDG-Clean performs better overall.
Future work will handle non-aromatic rings, which are an
especially complex case for which, to the best of our knowl-
edge, no full machine learning solution exists. Evaluations
with n > 6 and without the Torsional Diffusion constraints
are shown in Appendix §H.

4. Discussion

In this work, we presented VonMisesNet, a graph neural
network that models conformational variability with a varia-
tional approximation of rotatable bond torsion angles as a
mixture of von Mises distributions. Conformations gener-
ated with VonMisesNet have more accurate rotatable bond
torsion angle distributions with respect to the Boltzmann
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Figure 6. VonMisesNet prediction examples. We compare kernel density estimates of the torsion angle distributions of several rotatable
bonds from PT-HMC and VonMisesNet. These molecules are taken from NMRShiftDB-test. The KL divergence of the VonMisesNet
distributions relative to PT-HMC are, from left to right, 0.11, 0.024, 0.25, and 3.19. VonMisesNet performs well in the first three and
poorly in the fourth. In the fourth example, the PT-HMC distribution is an odd function despite the presence of a methylbenzene group,
which is symmetric under flipping of the aromatic ring. We find that the energy barrier is approximately 800 kcal/mol based on the MMFF
implementation in RDKit, suggesting that such 180 flips may never occur in nature.
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Figure 7. Pairwise distance distributions evaluation. We evaluate pairwise distance distributions relative to PT-HMC ground truth for
538 molecules from NMRShiftDB-test and 610 molecules from GDB-17-test. We evaluate 1-4, 1-5, and 1-6 distances for which every
intermediate bond along the shortest path is rotatable in row 1, for which every intermediate bond along the shortest path is not part
of a non-aromatic ring in row 2, and with no restrictions in row 3. In columns 1 and 2 we compare the average EMD, per molecule,
and the MAE of expected distance, per molecule, respectively, for the molecules from NMRShiftDB-test. Columns 3 and 4 show the
same for molecules from GDB-17-test. For the expected distance evaluations, in row 1 we additionally include 1-2 distances that are not
part of a ring and 1-3 distances for which at least one of the bonds is rotatable. In row 2, we include 1-2 distances that are not part of a
non-aromatic ring and 1-3 distances for which neither of the bonds is in a non-aromatic ring. In row 3, there are no 1-2 or 1-3 restrictions.
We exclude 1-2 and 1-3 distances from the EMD evaluations as these distributions are typically unimodal with small variance.
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distribution than the other methods, and they also tend to
have the most accurate 1-n pairwise distance distributions,
especially for n < 7 and when excluding non-aromatic
rings. The performance of Torsional Diffusion tends to
improve relative to VonMisesNet as a function of n, but
VonMisesNet is orders of magnitude faster. To the best of
our knowledge, it is also the only machine learning model
that takes chirality inversion into account.

There are several avenues for future work. First, we focused
exclusively on rotatable bonds and have not yet modeled
non-aromatic rings, which are often flexible and can con-
tribute to conformational variability. Second, we showed
proof of concept with MMFF-based energies, but training
on ground truth data from quantum mechanical calculations
would allow for generating conformations with more accu-
rate geometries. Finally, explicitly modeling joint rotatable
bond torsion angle distributions would likely yield more ac-
curate long-range interactions. Torsional Diffusion achieves
this with a diffusion model that operates on the hypertorus
defined by the torsion angles. Some of the low energy con-
formation generation methods also model joint probabilities.
For example, GeoMol jointly predicts all torsion angles
with graph neural networks, and RMCF models the joint
distribution of molecular fragments and dihedral angles via
a Markov random field. However, these methods are not
suitable for Boltzmann sampling.

We believe that the variational inference framework intro-
duced here could be extended to joint distributions, and
therefore long-range interactions, while maintaining com-
putational efficiency. For example, future ideas include
modeling the joint distribution for all pairs of rotatable bond
torsion angles, yielding a Markov random field which is
still fast to sample from, in contrast to diffusion approaches
that require multiple slow diffusion steps (multiple neural
network forward passes) for each conformation.
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A. Simulation Details for Ground Truth Conformation Generation

To generate ground truth molecular conformations, we combine Parallel Tempering and Hamiltonian Monte Carlo (PT-HMC).
In the context of molecular systems, Hamiltonian Monte Carlo is a Monte Carlo simulation where at each step, a short
Molecular Dynamics simulation is used to propose a molecular geometry. Parallel Tempering refers to the technique
of running multiple Monte Carlo simulations simultaneously at different temperatures and periodically proposing swaps
between the states of adjacent temperatures. For the PT-HMC simulations, we used 70,000 total steps, sampling every
100 steps. We used eight different temperatures for parallel tempering: 293, 400, 500, 600, 700, 800, 900, and 1000
Kelvin. 293 Kelvin served as the target base temperature. In other words, the generated conformations are sampled from
the Boltzmann distribution with 7" = 293 Kelvin. We used a Parallel Tempering temperature-swap probability of 0.2, and
for the Hamiltonian Monte Carlo Molecular Dynamics trajectories, we used L = 100 steps with a step size of ¢ = 1.5
femtoseconds. Empirically, we found that these parameters were sufficient to explore the potential energy landscape for a
variety of molecules. Each molecule has approximately 560 conformations. There are minor differences in the total number
of generated conformations for each molecule, because conformations are only proposed and then accepted with a certain
probability in PT-HMC simulations.

In the fourth example of Figure 6, the left hand side of the molecule has a methylbenzene group, which is symmetric under
flipping of the aromatic ring, but the ground truth distribution is an odd function. We carefully inspected our data and found
that for nearly all molecules in our training data that contain relevant symmetry configurations, we properly recover even
functions. We identified several with odd functions (12 in NMRShiftDB) and systematically investigated rotational barriers.
We find that the energy barriers are so high (hundreds of kcal/mol) that it is possible that such 180 degree flips would never
occur in nature. For this example, the energy barrier is approximately 800 kcal/mol based on the MMFF implementation in
RDK:it.

B. Dataset Details

For NMRShiftDB we took 32,171 molecules from NMRShiftDB (Kuhn, 2019), a popular database of nuclear magnetic
resonance spectra, limiting it to molecules with up to 64 atoms of elements H, C, O, N, F, S, P, Cl and no formal charges or
radicals. We ensured that every molecule had an assigned stereo chemistry.

For GDB-17 we took a random 134,228 molecule subset of the publically-available SOM “lead-like” molecules made
available by the GDB-17 enumeration of chemical space (Ruddigkeit et al., 2012). As GDB provides non-isomeric SMILES
strings, we leveraged RDKit’s stereo enumeration code and identified at least one stereoisomer with a reasonable force-field
energy (that is, no pathological steric hindrance).

In Figures 8 and 9, we examine the distribution of number of rotatable bonds and number of atoms in our NMRShiftDB and
GDB-17 datasets.
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Figure 8. NMRShiftDB dataset statistics. (a) Distribution of number of rotatable bonds per molecule in our NMRShiftDB data. (b)
Distribution of number of atoms per molecule in our NMRShiftDB data.
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Figure 9. GDB-17 dataset statistics. (a) Distribution of number of rotatable bonds per molecule in our GDB-17 data. (b) Distribution of
number of atoms per molecule in our GDB-17 data.

C. Dihedral Angle Encoding for Rotatable Bonds

We use a breadth-first search approach based on the Cahn-Ingold-Prelog (CIP) (Cahn et al., 1966) rules to determine which
four atoms, including the two central atoms, should be chosen to define a given rotatable bond torsion angle. For each of
the two central atoms, we use the following procedure. We construct a list of neighbors excluding the other central atom.
If, among this list, there is one with a unique largest atomic number, then we select that atom. If there is a tie, atoms at a
distance of two bonds from the central atom are examined. We replace each atom in the original list with a list of the other
atoms bonded to it that have not yet been examined. These lists are compared atom by atom, and at the earliest difference,
the group with the highest atomic number is given higher priority. This process is repeated recursively until any ties are
broken. In the case where there is a tie at distance n but there are no bonded atoms at distance n + 1, the first atom or list of
atoms is given priority.

D. Approximate Independence of Rotatable Bond Torsion Angle Distributions

In this work, we make the assumption that individual rotatable bond torsion angle distributions are approximately independent.
Butane is an example of a molecule that supports this assumption. Figure 10 shows an example pair of rotatable bonds in
butane whose joint torsion angle distribution is approximately rank-1, which indicates independence. There are, of course,
cases where pairs of rotatable bonds are not approximately rank-1, as exhibited in Figure 11. However, we show in Figure
12 that on average, across a large set of molecules, pairs of rotatable bonds have a joint distribution that is approximately
rank-1, with the approximation improving when the bonds are farther apart within a molecule.

E. Mode Analysis for Rotatable Bond Torsion Angle Distributions

In this work, we make the assumption that most individual rotatable bond torsion angle distributions are multi-modal,
typically with up to four distinct modes. In Figure 13, we show that for a large subset of molecules from our NMRShiftDB
data, most distributions have fewer than four distinct modes.

F. Molecular Graph Featurization

For each node in a molecular graph, we create a feature tensor to use in the graph neural network. These features are
generated from basic molecular properties found in RDKit. They are padded with leading and/or trailing zeros so that each
node has the same feature tensor shape whether it corresponds to a bond, atom or angle. In Tables 3 and 4 we describe the
features used for bond and atom nodes, respectively. For angle nodes, we use a single feature. For the three atoms that
correspond to an angle node, we compute the angle between them by using pairwise distances based on the average of upper
and lower distance bounds provided by RDKit.

Therefore, in total, each node has a feature tensor with 15 + 113 + 1 = 129 elements (# bond + # atom + # angle). -10 is used
as the sentinel value in place of features for other node types.
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Figure 10. Rank-1 example. (a) Molecular graph of butane along with two adjacent rotatable bonds highlighted. (b) A histogram of the
torsion angle joint distribution of the highlighted rotatable bonds, using 32 bins. (c¢) shows a rank-1 approximation to this histogram with
reconstruction mean squared error (MSE) 0.47, (d) shows a rank-2 approximation with MSE 0.31, and (e) shows a rank-3 approximation
with MSE 0.21. Although the rank-1 MSE is higher, it’s clear from the visualization that the ground truth distribution is approximately
rank-1, indicating independence.

G. Computing and Setting Chiralities using RDKit

To determine whether an atom has R or S chirality, we compute the oriented volume formed by the atom and its three
neighbors (Ganea et al., 2021). If the oriented volume is 1, then we say the atom has R chirality, and if the oriented volume
is -1, we say the atom has S chirality. The oriented volume is given by:

1 1 1 1
1 X2 T3 X4
Yi Y2 Y3 Ya
zZ1 V) z3 zZa

OV(p17p27p3ap4) = SZgn (5)

We assign atoms to these four vectors in a consistent fashion by using the same CIP priority rules that we use for selecting
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Figure 11. Non-rank-1 example. (a) Molecular graph of a molecule from NMRShiftDB along with two adjacent rotatable bonds highlighted.
(b) A histogram of the torsion angle joint distribution of the highlighted rotatable bonds, using 32 bins. (¢) shows a rank-1 approximation
to this histogram with reconstruction mean squared error (MSE) 8.01, (d) shows a rank-2 approximation with MSE 0.53, and (e) shows a
rank-3 approximation with MSE 0.28. This is a clear example where the joint distribution is not approximately rank-1.

the four atoms that define a rotatable bond torsion angle. The neighbors of the atom that have first, second, and third priority
are assigned to p,, p,, and ps, respectively. The atom itself is assigned to p,,.

If we need to flip the chirality from R to S or vice versa, we do the following. If A is the atom, we 1) compute the plane
formed by A’s three neighbors 2) compute the projection of A onto the plane, 3) compute the plane formed by A, one of its
neighbors, and A’s projection onto the neighbor plane, and 4) reflect all atoms across this plane.

H. Additional Evaluations

In this section we show additional evaluations. When evaluating without the Torsional Diffusion constraints, we use 997
out of the 1000 random molecules from NMRShiftDB-test and 997 out of the 1000 random molecules from GDB-17-
test after removing molecules for which ETKDG embedding failed. In Figure 14, we evaluate rotatable bond torsion
angle distributions without the Torsional Diffusion constraint. As in section 3.3, VonMisesNet and VonMisesNet-Filtered
outperform the other methods. In Figures 15, 16, and 17, we evaluate 1-n pairwise distance distributions up to n = 10. As
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Figure 12. Large-scale rank-1 analysis. For each pair of rotatable bonds in each molecule of a random subset of 4,225 molecules from our
NMRShiftDB data, we computed a 2D histogram of the torsion angle joint distribution using 32 bins. We then computed the reconstruction
mean squared error (MSE) of the rank-1, rank-2, and rank-3 approximations to this histogram. We show these averages as a function
of the graph distance between rotatable bond pairs. (a) shows that the rank-1 value rapidly converges to approximately 0.4, which is
below the rank-1 value from butane in Figure 10. The average MSE value across all pairs is 0.51. This suggests that pairs of rotatable
bonds have a joint distribution that is approximately rank-1, with the approximation improving when the bonds are farther apart within a
molecule. (b) shows a similar plot that is restricted to rotatable bonds attached to methyl groups, which we would expect to be pairwise
independent. The rank-1 value indicates approximate independence across all path lengths.
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Figure 13. For each rotatable bond in a random subset of 4,870 molecules from our NMRShiftDB data, we computed the number of
modes by counting maxima in a kernel density estimate of the angle distribution. The plot above shows the frequency distribution of
number of modes.

in section 3.4, VonMisesNet, VonMisesNet-Filtered, and Torsional Diffusion generally outperform the other methods when
restricted to rotatable bonds, shown in Figure 15. The performance of VonMisesNet-Filtered remains strong for n > 6,
while the performance of VonMisesNet degrades. The performance of Torsional Diffusion tends to improve relative to
VonMisesNet as a function of n. VonMisesNet and VonMisesNet-Filtered outperform the other methods on most metrics
when all torsions are allowed except those belonging to non-aromatic rings, shown in Figure 16, and ETKDG-Clean
performs best with no restrictions, shown in 17. In Figures 18, 19, and 20, we evaluate on the random molecules from
NMRShiftDB-test and GDB-17-test without the Torsional Diffusion constraints. Similar trends hold.
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Table 3. Features for Bond Nodes. Note: RDKit BondStereo types: {ANY, CIS, E, NONE, TRANS, Z}

ROTATABLE BOND IS BOND ROTATABLE
ToTAL 15

FEATURE DESCRIPTION NUMBER OF ELEMENTS
BOND TYPE ONE HOT ENCODED FROM {0, 1, 1.5, 2, 3} 5
CONJUGATED IS BOND CONJUGATED 1
IN RING IS BOND PART OF A RING 1
STEREO BOND STEREO TYPE, ONE HOT ENCODED FROM RDKIT BONDSTEREO TYPES 6
SAME RING ARE ENDPOINTS OF BOND ARE IN ANY RING TOGETHER 1

1

Table 4. Features for Atom Nodes. Note: RDKit ChiralTypes: {UNSPECIFIED, Tetrahedral CW, Tetrahedral CCW, OTHER, Tetrahedral,
Allene, Square Planar, Trigonal Bipyramidal, Octahedral}. MMFF Atom Types selected: [1, 2,3,4,5,6,7,8,9, 10, 11, 12, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 39, 40, 42, 43, 44, 46, 48, 59, 62, 63, 64, 65, 66, 70, 71, 72, 74,75, 78].

FEATURE DESCRIPTION NUMBER OF ELEMENTS
ATOMIC NUMBER ONE HOT ENCODED FROM {H, C, O, N, F, P, S, CL} 8
VALENCE ONE HOT ENCODED FROM 1-6 6
AROMATICITY WHETHER ATOM IS IN AROMATIC STRUCTURE, DETERMINED BY RDKIT 1
HYBRIDIZATION ONE HOT ENCODED FROM {s, sp, sp?, sp*, sp>d, sp®d?, UNSPECIFIED} 7
PARTIAL CHARGE GASTEIGER CHARGE FROM RDKIT (SET TO ZERO IF NOT FINITE) 1
FORMAL CHARGE PRESENCE OF NET CHARGE, ONE HOT ENCODED FROM {-1, 0, 1} 3
COVALENT RADIUS RDKIT COVALENT RADIUS 1
VAN DER WAALS RADIUS  RDKIT VAN DER WAALS RADIUS 1
DEFAULT VALENCE VALENCE OF ATOM ON PERIODIC TABLE, ONE HOT ENCODED FROM 1-6 6
RINGS WHETHER THE ATOM IS IN A RING OF SIZE N FOR N FROM 3-8 6
CHIRALITY ONE HOT ENCODED FROM RDKIT CHIRALTYPES 9
MMFF AtoM TYPES ATOM TYPE FROM RDKIT’S MMFFMOLPROPERTIES, ONE HOT ENCODED 51
DEGREE ONE HOT ENCODED FROM 1-6 6
NUMBER OF HYDROGENS  TOTAL NUMBER OF HYDROGENS ON ATOM, ONE HOT ENCODED FROM 0-3 4
RADICAL ELECTRONS NUMBER OF RADICAL ELECTRONS, ONE HOT ENCODED FROM (-2 3
TOTAL 113

I. Enforcing Consistent Atom Indexing

When ETKDG generates multiple conformations for a single molecule, it can arbitrarily swap atom indices from one
conformation to the next. This can happen specifically for atoms connected to a central atom that has four neighbors but
does not have an existing chiral tag, or for neighbors of endpoint atoms of double bonds where the bond does not have a
cis/trans stereochemistry tag and both endpoint atoms have more than one neighbor. Our metrics for computing pairwise
distances require consistent atom indices, because we measure distances between specific indices across all conformations
of a molecule. So, given an input molecule with an existing 3D geometry, we use the following procedure to prevent atom
index swapping for any further conformations generated by ETKDG. For each atom that has four neighbors and no chiral
tag, we compute the chirality based on the oriented volume and then assign an RDKit chirality tag accordingly. This will
force future conformations generated by ETKDG to preserve the chirality and therefore preserve the current atom indexing.
For each double bond where the bond does not have a cis/trans stereochemistry tag and both endpoint atoms have more than
one neighbor, we set the double bond tag to cis in a consistent manner. This will force future conformations generated by
ETKDG to preserve the stereochemistry of the double bond and therefore preserve the current atom indexing. When we
generate conformations using this procedure, we refer to the method as ETKDG-Clean.

When re-training GeoMol with our datasets, we noticed that failures occurred in the form of massive spikes in the train and
validation loss for some molecules. We found that this occurred when the atom indices in RDKit were ordered in such a way
that did not correspond to an ordering that results from creating the molecule directly from a SMILES string representation.
This suggests that GeoMol requires atom indices to have the ordering based on a SMILES parsing. Therefore, for all
input molecules to GeoMol for either training or inference, we first permute the atom indices so that they correspond to a
SMILES ordering. Post-inference, we undo the permutation so that the atom indexing is consistent when comparing to other
conformation generators. As a precaution, we used the same reordering procedure when running inference with Torsional
Diffusion.
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J. VonMisesNet Architecture

VonMisesNet is a graph neural network that processes a multi-partite graph representation of molecules. The neural network
architecture is as follows. We process the node features in the input graph with a linear layer followed by Layer Norm.
Subsequently, a series of graph convolution layers perform message passing between the graph nodes, where each message
passing step is followed by a linear layer and ReLLU activation, one for each step. Message passing is performed using
matrix multiplication between the graph adjacency matrix and the node feature vectors, so that the messages are the current
features and the aggregation function is a simple mean over neighbors. This results in a set of hidden vectors, one for each
node in the graph. The ordering of the nodes is computed in a canonical way based on the ordering of atoms and bonds
given by RDKit. For each prediction task, we process a relevant subset of the nodes using a separate readout function,
i.e., feedforward neural network (FFN). Each of these FFNs applies Layer Norm to the inputs, applies a linear layer with
size 128 followed by the ReLLU activation, and then applies a final output linear layer. There is an FFN for the bond angle
predictions that processes all of the angle nodes, an FFN for the bond length predictions that processes all of the bond nodes,
and an FFN for the chirality probability predictions that processes all of the chirality inversion atom nodes. The output layer
for each of these FFNSs has size 1, and we also take the square of the outputs in order to enforce positive values. There are
three FFNs that predict the von Mises mixture mean, concentration, and weight parameters, respectively, which process
all of the rotatable bond nodes that do not have a chirality inversion endpoint atom. There are also two more sets of three
FFNs that predict the von Mises mixture parameters, one for conditioning on R chirality and the other for S chirality, which

5 - BN ETKDG-Clean
- GeoMol
B VonMisesNet
4} -{ === VonMisesNet-Filtered

Avg. KL per molecule

NMRShiftDB-test GDB-17-test

(@)
Q
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o
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Figure 14. Rotatable bond torsion angle distributions evaluation without Torsional Diffusion constraints.(a) Average KL divergence of
rotatable bond torsion angle distributions, per molecule, relative to PT-HMC ground truth in 997 random molecules from NMRShiftDB-test
and 997 random molecules from GDB-17-test. Standard error bars are shown in black. The KL divergence is measured with 32 bins. (b)
Average EMD of rotatable bond torsion angle distributions, per molecule, relative to PT-HMC ground truth for the same sets of molecules.

17



Von Mises Mixture Distributions for Molecular Conformation Generation

1.4
3.01 mmm ETKDG-Clean I ETKDG-Clean
s GeoMol < 1, ™ GeoMol
55| M TorsionalDiffusion ; ' Il TorsionalDiffusion
B VonMisesNet 2 1 mm VonMisesNet
B VonMisesNet-Filtered S 0 B VonMisesNet-Filtered
(%)
a il
= _g 0.8
w 9]
2 8 oo
<4 [
x
[
45 0.4
w
§ 0.2
0.0
1-4 1-5 1-6 1-7 1-8 1-9 1-10 -2 13 14 15 16 17 18 19 110
NMRShiftDB-test NMRShiftDB-test
(@) (b)
0.5 0.5
I ETKDG-Clean B ETKDG-Clean
I GeoMol I GeoMol
0.4 | ™ TorsionalDiffusion 0.4 mmm TorsionalDiffusion
Emm VonMisesNet Hmm VonMisesNet
I VonMisesNet-Filtered I VonMisesNet-Filtered

o o
N w

MAE of Expected Distance (4)
o

0.0 -
1-4 1-5 1-6 1-7 1-8 1-2 1-3 1-4 1-5 1-6 1-7 1-8

GDB-17-test GDB-17-test
(© (d)

Figure 15. Pairwise distance distributions evaluation, up to 1-10, rotatable. We evaluate pairwise distance distributions relative to
PT-HMC ground truth for 538 molecules from NMRShiftDB-test and 610 molecules from GDB-17-test. We evaluate distances for which
every intermediate bond along the shortest path is rotatable. In (a) and (c) we compare the average EMD, per molecule, and in (b) and (d)
we compare the MAE of the expected distance, per molecule. For the expected distance evaluations, we additionally include 1-2 distances
that are not part of a ring and 1-3 distances for which at least one of the bonds is rotatable.

process all of the rotatable bond nodes that have a chirality inversion endpoint atom. The output layer for each of these
FFNs has size four. We scale the concentration outputs to be between one (mininum concentration) and 20 (maximum
concentration) by applying BatchNorm1d and then a sigmoid activation to the concentration outputs, and then multiplying
by the maximum and adding the minimum. We apply softmax to the weights outputs so that they sum to one. We use 20
graph convolution layers, a hidden size of 256, a batch size of 32, and the Adam optimizer with a learning rate of 0.0001.
We use gradient clipping for all of the model parameters with a cutoff value of 1.0. We scale the mean squared error losses
for bond lengths, bond angles, and chirality probabilities by a factor of 32. Training on NMRShiftDB-train took 7.7 hours
and training on GDB-17-train took 16.7 hours on a single NVIDIA GeForce RTX 2080 Ti GPU.
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Figure 16. Pairwise distance distributions evaluation, up to 1-10, excluding non-aromatic. We evaluate pairwise distance distributions
relative to PT-HMC ground truth for 538 molecules from NMRShiftDB-test and 610 molecules from GDB-17-test. We evaluate distances
for which every intermediate bond along the shortest path is not part of a non-aromatic ring. In (a) and (¢) we compare the average EMD,
per molecule, and in (b) and (d) we compare the MAE of the expected distance, per molecule. For the expected distance evaluations,
we additionally include 1-2 distances that are not part of a non-aromatic ring and 1-3 distances for which neither of the bonds is in a

non-aromatic ring.
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Figure 17. Pairwise distance distributions evaluation, up to 1-10, no restrictions. We evaluate pairwise distance distributions relative to
PT-HMC ground truth for 538 molecules from NMRShiftDB-test and 610 molecules from GDB-17-test. We evaluate distances without
restrictions. In (a) and (¢) we compare the average EMD, per molecule, and in (b) and (d) we compare the MAE of the expected distance,
per molecule. For the expected distance evaluations, we additionally include 1-2 distances and 1-3 distances without restrictions.

20



VYon Mises Mixture Distributions for Molecular Conformation Generation

I ETKDG-Clean I ETKDG-Clean
1751 mmm GeoMol & 10 mmm GeoMol
mmm VonMisesNet ‘q'; mmm VonMisesNet
1.501 I VonMisesNet-Filtered g I VonMisesNet-Filtered
@©
A 12 w
= =
W 1,00 1 O
g g
< 0.75 1 S
i
Y—
0.50 4 o
w
<
0.25 4 =
0.00 -
1-4 1-5 1-6 1-7 1-8 1-9 1-10 -2 13 14 15 16 17 18 19 1-10
NMRShiftDB-test NMRShiftDB-test
(@) (b)
I ETKDG-Clean 0.8 B ETKDG-Clean
104 mm GeoMol B GeoMol

El VonMisesNet
B VonMisesNet-Filtered

Il VonMisesNet
B VonMisesNet-Filtered

I o o
w» o N
| ) A

Avg. EMD
o
=

MAE of Expected Distance (4)

1-6 1-7 1-8 - - 12 13 14 15 16 17 1-8 19 1-10
GDB-17-test GDB-17-test
(© (d)

Figure 18. Pairwise distance distributions evaluation, up to 1-10, excluding Torsional Diffusion constraints, rotatable. We evaluate
pairwise distance distributions relative to PT-HMC ground truth for 997 random molecules from NMRShiftDB-test and 997 random
molecules from GDB-17-test. We evaluate distances for which every intermediate bond along the shortest path is rotatable. In (a) and (c)
we compare the average EMD, per molecule, and in (b) and (d) we compare the MAE of the expected distance, per molecule. For the
expected distance evaluations, we additionally include 1-2 distances that are not part of a ring and 1-3 distances for which at least one of
the bonds is rotatable.
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Figure 19. Pairwise distance distributions evaluation, up to 1-10, excluding Torsional Diffusion constraints, excluding non-aromatic. We
evaluate pairwise distance distributions relative to PT-HMC ground truth for 997 random molecules from NMRShiftDB-test and 997
random molecules from GDB-17-test. We evaluate distances for which every intermediate bond along the shortest path is not part of a
non-aromatic ring. In (a) and (c¢) we compare the average EMD, per molecule, and in (b) and (d) we compare the MAE of the expected
distance, per molecule. For the expected distance evaluations, we additionally include 1-2 distances that are not part of a non-aromatic
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ring and 1-3 distances for which neither of the bonds is in a non-aromatic ring.
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Figure 20. Pairwise distance distributions evaluation, up to 1-10, excluding Torsional Diffusion constraints, no restrictions. We evaluate
pairwise distance distributions relative to PT-HMC ground truth for 997 random molecules from NMRShiftDB-test and 997 random
molecules from GDB-17-test. We evaluate distances without restrictions. In (a) and (¢) we compare the average EMD, per molecule, and
in (b) and (d) we compare the MAE of the expected distance, per molecule. For the expected distance evaluations, we additionally include
1-2 distances and 1-3 distances without restrictions.
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Figure 21. Predicting chirality inversion example, extended. (a) A molecule from NMRShiftDB-test, where the highlighted rotatable

bond is between a carbon atom and a chirality inversion nitrogen atom. Kernel density estimates of the rotatable bond torsion angle from
PT-HMC and from ETKDG-Clean, GeoMol, Torsional Diffusion, and VonMisesNet are shown in (b), (¢), (d), and (e), respectively.
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