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Abstract—This work explores optimization of multi-winding
transformers which may be used for high-frequency isolated
power conversion and wireless power transfer. We extend the
concept of current ballasting previously used to reduce AC losses
in multi-winding inductors, allowing efficient operation at higher
frequencies. An analytical framework based on a multi-port
impedance matrix is used to determine the optimal current for
each winding that maximizes overall power transfer efficiency.
Design insights for planar spiral transformers include that the
optimal current distribution depends on both loss and coupling
of each winding but interestingly, the relative loss fraction of
each winding should be the same. The analytical model has
been verified with numerical optimization and experimental
measurements using wire-wound multi-winding transformer.

I. INTRODUCTION

Galvanically isolated power conversion is critical in a
number of applications where different voltage domains are
stacked or floating, where rejection of common-mode noise
transients is required, or where voltages are high enough to
present safety challenges [1]. Even though signal isolation
has been achieved by a variety of techniques, isolated power
transfer predominantly uses transformers [1]–[3]. With ever
increasing needs for high power density, miniaturization of
such power transformers is necessary. This leads to very
high-frequency (VHF) operation in the range of 30 to 300
MHz where primarily air-core transformers are practical [4].
Unfortunately, eddy currents and circulating current increase
the AC resistance and hence pose a major challenge for such
designs [4], [5]. For non-isolated VHF power conversion,
multi-winding current ballasting techniques have been used
to counter VHF circulating currents, which leads to enhanced
efficiencies [6]–[8]. This has provided the key motivation
for this work i.e., understanding the multi-winding current
ballasting concept in the context of VHF transformers.

Fig. 1 illustrates different design scenarios for planar-spiral
air-core transformers, where here we refer to the conductors as
traces. In examples with high current, windings may be formed
with wide traces to reduce series resistance. Unfortunately,
the benefit of low dc resistance using wide traces is reduced
at high frequency due to skin- and proximity-effect current
crowding, which reduces efficiency. In other examples where
higher numbers of turns are used to support higher voltage
and lower current, thinner traces may be used. While thin
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Fig. 1. Illustration of planar-spiral air-core transformer configurations. (a)
Single-turn with wide traces, (b) Multi-turn with narrow traces, and (c) Mul-
tiple (parallel) windings with independently-controlled (ballasted) currents.

traces may help mitigate skin-effect current crowding, the main
limitation of this approach is that, depending on the geometry
of the transformer, such a uniform current distribution is
sub-optimal. Intuitively, we do not want the same current
in small-radius turns (closer to center of the spiral, which
have low resistance) as in the turns with larger radius (outer
turns of the spiral, which have higher resistance). What is
even more interesting for a transformer is the dependence
on the primary to secondary coupling for turns in different
locations. If turns in certain locations have poor coupling
compared to others, there would be no reason to force the
same current without any substantial power being transmitted
while still incurring substantial conduction losses. This is the
foundational motivation for this work.

We investigate alternatives where wide traces are split into
narrow traces to mitigate eddy current effects, or multi-turn
transformer windings are separated into multiple parallel
windings, each with fewer turns, to optimize current distri-
bution. Leveraging passive or active current ballasting [9],
[10], we assume the possibility of controlling the current



through each winding independently. As we will show, parallel
windings with optimized per-winding current can provide both
higher power transfer and higher efficiency.

A central question that arises with the multi-winding trans-
former is what is the optimal current to force in each winding?
or what is the optimum current density profile to force in the
transformer? These questions are treated using a multi-port
impedance matrix for the transformer structure, such as can be
extracted from finite-element electromagnetic simulation. The
result of the analytical model describes both the amplitude and
phase relationships of primary and secondary winding currents
that achieve maximum efficiency and maximum power trans-
fer. The result of the analysis is both powerful and general.
It can be used to determine the optimal current flow in a
wide variety of multi-winding transformers based on a simple
impedance-matrix characterization. While this paper doesn’t
describe ’how’ to enforce the per-winding currents, other
related works discuss methods to achieve this via impedance-
based current ballasting. However, knowledge of the optimal
current flow and current-density profile in transformers pro-
vides significant design insight and helps to improve efficiency
and power-density.

II. OPTIMAL CURRENT DISTRIBUTION FOR
MULTI-WINDING TRANSFORMERS

A multi-winding transformer with multiple primary sec-
ondary windings may be modelled as a multi-port network
which has a symmetric impedance matrix with N2 terms,
where N is the total number of windings including primary
and secondary windings. While Fig. 2 shows an example
with multiple single-turn spiral windings, the analysis applies
regardless of the number of turns or configuration of the
windings. Our analysis does not directly depend on the number
of turns in each winding and we use N for the number of
windings rather than the number of turns; specifically Np is
the number of primary windings and Ns is the number of
secondary windings.

For a general multi-winding transformer of this form, the
impedance matrix may be compactly written as

Z =

[
Rp + jXp Rm + jXm

(Rm + jXm)T Rs + jXs

]
, (1)

where Rp and Rs are the resistance matrices of the primary
and secondary sides respectively. Xp = ωLp and Xs = ωLs

are the reactance due the primary and secondary inductance
matrices, Lp and Ls. Rm is the mutual resistance matrix and
Xm = ωLm is the reactance of the mutual inductance matrix,
Lm, which links the primary and secondary windings.

As shown in (Fig. 2) the analytical treatment presumes
Np and Ns sinusoidal currents driving each winding of the
primary and secondary sides respectively. Current and voltage
polarities in Fig. 2 are defined such that power flowing into
the transformer is positive while power flowing out is negative.
We presume all currents are at the same frequency, but their
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Fig. 2. Multi-port model of a multi-winding transformer.

individual amplitudes and phases may be independently chosen
to maximize power efficiency.

Given the desired objective, we first define our notation.
The kth input current of the primary side is denoted as Ip,k =
Îp,ke

jθp,k , where Îp,k and θp,k are its amplitude and phase
respectively with k ∈ [1, ..., Np]. Similarly, the nth secondary
side output current (n ∈ [1, ..., Ns]) is denoted as, Is,n =
Îs,ne

jθs,n with amplitude, Îs,n and phase, θs,n. Hence, we
are presented with an optimization problem over (Np + Ns)
complex-variables.

Since we are trying to maximize efficiency, its mathematical
expression will serve as the cost function for this optimization.
To construct the efficiency function, we first analyze the per-
winding real power. This approach, as we shall see soon,
provides an intuitive understanding of the trade-offs involved
without compromising the mathematical rigor. From network
theory we can compute real power dissipated (consumed) by
an individual primary (secondary) branch as,

Preal = Re (V · I∗) /2

where, V is any branch voltage and I∗ is the complex
conjugate of the branch current in a network.

While the interested reader may consult Appendix A for
the full derivations, the key expressions are as follows. The
total real power supplied by all the primary side input current
sources is given by

PP = PP,self + PPS + PM (2)

where PP,self captures power loss due to primary-side cur-
rent conduction, associated with resistance matrix Rp. PPS

captures real power transmitted (received) by the primary
(secondary). Finally, PM includes power associated with the
mutual resistance matrix Rm, which captures transresistive
interactions between the primary and secondary (effects which
are typically small in modestly coupled transformers).

Similar to the primary side calculation, the secondary cal-
culation proceeds as,

PS = PS,self − PPS + PM (3)

where PS,self captures the conduction losses due to the
resistances in Rs of the secondary side.

Presuming that the primary side is supplying power and the
secondary side is receiving power, using the polarities defined
in Fig. 2, combined with (2) and (3), efficiency goes as,



η = −PS

PP
=

PPS − PM − PS,self

PPS + PM + PP,self
. (4)

As mentioned above, in scenarios with moderate to weak
coupling between the primary and secondary, such as are
common in wireless power transfer and air-core-based isolated
power transfer, mutual resistances in Rm may be two or three
orders of magnitude lower than resistances in Rp and Rs.
In this paper going forward, we will neglect Rm terms and
assume PM = 0 to simplify the analysis and make general
intuitive conclusions without significant loss of accuracy.

A. Optimal Phase Relationships Among Transformer Windings

With the assumption that mutual resistance terms PM are
negligible in (4), trigonometric relationships can be used to
show that efficiency is maximized when:

θp,k = θp (5)

∀ k, where θp is a constant.
θs,n = θs (6)

∀ n, where θs is a constant. Finally,
θp − θs = π/2. (7)

This signifies that for optimal operation, the winding currents
in the primary side should all have the same phase. The
secondary side currents should also have the same phase as
each other but should lag the primary currents by 90o. Such
orthogonal phasing for the simplistic case of single winding
transformers is well-known and used in wireless power transfer
applications [11], [12]. Going ahead, we will set θp = 0 as a
reference phase and thereby get θs = −π/2.

B. Optimal Current Amplitudes Among Transformer Windings

The optimal phases can now be substituted in (2) and (3)
to obtain significant simplification. Due to phase alignment of
the currents in the same side, we need only specify the current
amplitudes, which we denote as vectors Îp = [Îp,1, ..., Îp,Np

]T

and Îs = [Îs,1, ..., Îs,Ns
]T for the primary and secondary

windings, respectively. Thus, (2) can be shown to be modified
to become

PP =
1

2

(
Îp

T
XmÎs + Îp

T
RpÎp

)
, (8)

and (3) becomes
PS =

1

2

(
Îs

T
RsÎs − Îp

T
XmÎs

)
. (9)

We use the impedance matrix of the multi-winding transformer
(1), to relate to the resistance and reactance matrices used in
the above expressions. The term PPS = Îp

T
XmÎs is the

transmitted power from the primary to the secondary side
under optimal phase conditions. Using (8) and (9), we can
also compute the overall conduction loss in the multi-winding
transformer,

Ploss = PP + PS =
1

2

(
Îp

T
RpÎp + Îs

T
RsÎs

)
. (10)

We may now perform standard convex optimization to max-
imize the efficiency function, η = − PS

PP
. The result obtained

is a system of matrix equations given by(
P 2
loss

4PPPS

)
Îp = λcomÎp = MpÎp, (11)

for the primary side and similarly for the secondary side,
λcomÎs = MsÎs. (12)

We denote Mp = (XT
m)+RsX

+
mRp and Ms =

X+
mRp(X

T
m)+Rs. (XT

m)+ and X+
m are the pseudo-inverses

of Xm
T and Xm, respectively. We observe that (11) and (12)

are of the form λv = Av, where λ and v are the eigenvalues
and eigenvectors of the matrix A. Thus, we may conclude
that, if for Mp and Ms there exists a common eigenvalue
λcom, then the solution of the optimal current amplitudes for
primary and secondary sides are the eigenvectors of Mp and
Ms respectively. We should note that the two eigenvectors
only inform us how the primary or secondary currents scale
with respect to each other and does not directly tell us the
relative scaling between primary and secondary currents.

At this juncture, a question may arise, which eigenvalue
should be chosen if there are multiple common eigenvalues
for Mp and Ms? Observing (11), we may show λcom =
(1− η)2/4η. This indicates that the closer the efficiency is to
unity, the smaller will be λcom. Therefore, we should choose
the minimum of all the common eigenvalues. In addition, the
relationship between the efficiency and λcom helps us obtain
the maximum efficiency as

ηmax = (1 + 2λcom)−
√

(1 + 2λcom)2 − 1. (13)

This leads to an important conclusion that, for a given multi-
winding transformer, there is an intrinsic efficiency maximum
determined solely by the impedance matrix Z. It is straight-
forward to show that, in the case of two-winding transformers
(a single primary winding and a single secondary winding),
the result (13) exactly matches the results previously obtained
in the literature [2].

In Appendix B, the relative scaling of primary to secondary
current is also derived. The key takeaway, however, is that if
we choose the amplitude of Îs,1 = 1 as the reference, the
value of Îp,1 is scaled by a factor αps. This, in conjunction
with the eigenvectors of Mp and Ms, provides optimal current
amplitudes for all windings on both sides.

We should take note of the specific yet common case of
symmetric multi-winding transformers i.e., identical primary
and secondary windings. Here, Mp = Ms, and they will share
identical eigenvalues and eigenvectors.

Another key point to observe is the form of Mp and
Ms. As these include the ratio of self-resistances to mutual
reactances of the transformer, they capture information on
damping or (inverse) quality factor Q. Thus, Mp and Ms

provide information on the quality of power transmission (or
reception) of a transformer. The closer these matrices are to
singular matrices, the higher is the transmission Q of the



transformer. Furthermore, this would lead to λcom → 0, which
means higher efficiency. It should be noted here that efficiency
is the combined effect of the transmission efficiency, i.e.,
how much of the input power is transmitted and reception
efficiency, i.e., how much of the transmitted power is finally
realized at the output.

In summary, any multi-winding transformer has an intrinsic
ηmax associated with it, which is determined by its impedance
matrix Z. In typical scenarios (with negligible mutual resis-
tance), to achieve ηmax, each winding current on a given side
(primary or secondary) should have the same phase. The side
that is receiving power (secondary) should have current that
lags by the transmitting side (primary) by 90o. Importantly,
the impedance matrix Z (which can be determined from FEM
simulation or experimental measurement of a transformer) con-
tains sufficient information to determine the optimal excitation
amplitudes quickly and accurately.

III. VERIFICATION USING NUMERICAL TECHNIQUES

The analytical results in Section II were verified using
numerical optimization in MATLAB using the following pro-
cedure:

1) The impedance matrix Z of a sample transformer was
obtained from FEM simulations.

2) The fmincon optimizer was deployed with Z as its input.
3) We denoted the voltage on primary and secondary wind-

ings as Vp and Vs respectively assuming complex pri-
mary and secondary current vectors Ip and Is respec-
tively.

4) The efficiency function was defined as −PS/PP =

− real(Vs·I⋆
s )

real(Vp·I⋆
p)

.
5) We set first secondary winding current amplitude, Is,1, to

be 1 A and first primary current phase to be ∠0
◦
. The

optimizer outputs are the optimal amplitude and phase in
all the other Np+Ns−1 windings to maximize efficiency
given the constraint that PP > −PS > 0.

Results are shown in Fig. 3 to demonstrate the phase
alignment on 27 symmetric circular spiral transformer designs
with different inner radius and 2, 3, or 4 windings. Consistent
with the analysis, Fig. 3 shows that the primary currents phases
are close to ∠0

◦
, while those of the secondary side close to

∠−90
◦
.

To verify the current distribution, nine symmetric circular
spiral transformer designs with different areas were examined.
The inner radius, individual trace width and trace-to-trace
spacing are kept constant. The designs differ by varying
the number of windings from 10 to 60. Consequently, the
transformer area also varies. The maximum normalized current
distribution difference, defined as max(|Îana,i − Înum,i|),
is less than 0.1% for all the 9 designs. Îana,i and Înum,i

represents the ith current for a given design obtained from the
analytical calculation and numerical optimization respectively.
The difference can be reduced with a tighter tolerance setting
in the numerical optimization. Our conclusion is that the
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difference between the analytical and numerical results is
mainly because of the finite accuracy of the numerical method.
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The relative efficiency difference is defined as (ηnum − ηana)/ηana.

An alternate verification method performed here is to find
the best operation regime with the highest efficiency inde-
pendently using the numerical and analytical methods. Fig. 4
shows the efficiency obtained from both methods. Across all
of the 9 designs, the efficiency difference is less than 0.05%.
This further confirms that both the analytical and numerical
methods are converging to effectively the same design.

In conclusion, both the optimal phase and optimal amplitude
strategy proposed in Section II are effective in finding the
best operation regime when mutual resistance is negligible.
Approaching the problem with numerical techniques will result
in the same choice of operating conditions.



IV. DESIGN EXAMPLE AND MODEL INSIGHTS

To explore, exemplify, and provide design insights, we
applied the analytical model to a representative high-frequency
planar spiral transformer. We based the example on the avail-
able metal stackup, dimensions, and dielectrics in a standard
CMOS 180-nm integrated circuit (IC) process. The results
are for a symmetric air-core transformer of circular geometry
with outermost radius of 1 mm. The primary side transformer
has 54 concentric 1-turn windings with uniform width. The
separation distance between the primary and secondary sides
is varied from 10 µm to 1 mm. The transformer is driven in
a similar setup as described in Fig. 2.

(a)

(b)

Fig. 5. Optimization results: per winding, by radius (a) primary current
distribution profile; (b) Ttransmission and reception loss fraction.

Fig. 5(a) shows an interesting trend regarding the depen-
dence of optimal current distribution on the separation distance
between primary and secondary, s. Here the total currents in
all cases are the same and the currents are normalized to the
maximum winding current across all cases. The winding with
the peak current is more centrally located when the separation
is small compared to the transformer dimensions. It gradually

moves towards the outer radius when the separation becomes
larger.

Fig. 5(b) shows the ratio of the power loss to transmitted
power in the primary side as well as the ratio of the power
loss to received power in the secondary-side windings. These
loss fractions provides insight about the per-winding transmis-
sion and reception efficiencies of the primary and secondary
respectively. Interestingly, the optimal conditions are constant
across radius.

For any given winding at the primary side, the coupling
between it and any secondary side coil is at its maximum
when the two windings are the same size. For a given distance
between the primary and secondary side windings, the larger
the winding, the better the maximum coupling. For small
isolation distances (e.g. 10 µm and 300 µm) and for winding
diameters much bigger than s, the rate of increase in coupling
with diameter is not as great. In this case the windings with
slightly smaller size on the primary side have the best overall
power transmission to the secondary side, because they have
high coupling to the corresponding secondary winding, and
they can couple well to windings that are both smaller and
larger than their own diameter. This is depicted in Fig. 6. As
a result, the optimal distribution puts the highest current in
those windings. In contrast, for a design with a large isolation
distance (e.g. 1 mm), the smaller sized windings, due to poor
coupling, have poor power transfer, and the optimized current
distribution exhibits a monotonically increasing profile with
radius.

0 0.2 0.4 0.6 0.8 1

Radius of the winding in other side (mm)

0.01

0.1

1

10

M
u

tu
al

 i
n
d

u
ct

an
ce

 (
n
H

)

r = 0.065mm

r = 0.2925mm

r = 0.52mm

r = 0.7475mm

r = 0.9925mm

Fig. 6. Mutual inductance of some primary windings with different radius
with all secondary windings for s = 10µm.

Fig. 7 provides a qualitative validation of the above dis-
cussion. Here the radial distribution of an estimate of the
transmission quality is plotted when the distance of separation
is 10 µm. The metric plotted here is defined as the ratio of
the total mutual reactive impedance of a particular winding in
the primary due to all winding in the secondary side, to the
self resistance of that primary side winding. Windings with



radius around 0.7 mm, owing to their superior overall coupling
as seen in Fig. 6 and lower resistance than the outermost
windings, exhibit the highest transmission Q. Compared to the
distribution with the actual radial current distribution in Fig.
5, we find a very strong correlation. This informs us that the
optimal distribution is dependent on the transmission quality
of the transformer and is maximized in the neighbourhood of
the region with the peak transmission Q.
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V. EXPERIMENTAL VALIDATION

We performed some experiments to validate the theoretical
results obtained in Section II.

A. Experimental setup
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Fig. 8. Schematic of the experimental setup.

The schematic of the setup is shown in Fig. 8. We performed
our experiments on a multi-winding transformer with two
windings on each of the primary and secondary sides. To
establish a challenging scenario for efficient operation, and
to make accurate measurement easier, each of the windings
has a 1 Ω resistor connected in series. These resistors reduce

the Q of the transformer, modifying the overall Z. Hence,
all comparisons made between the theory and experiments are
with this modified Z.

Function generators are used to provide sinusoidal excitation
at 200 kHz. In order to measure the winding currents they are
terminated to ground via series sense resistors. In this exper-
iment, 15 Ω resistance was used. The output of the function
generators and the sense resistor voltages are measured using
an oscilloscope. The function generators are synchronized in
order to ensure correct phase relationships among the currents.

B. Test transformer

The transformer used is shown in Fig. 9. The transformer
is constructed using AWG 24 magnet wire wound on a 3D
printed circular bobbin. Each of the primary and secondary
sides has two windings, one with 10 and one with 15 turns. The
transformer impedance matrix is computed using an impedance
analyzer [13], [14].

10-turn 
Primary 
winding

10-turn 
Secondary 

winding

15-turn 
Primary 
winding

15-turn 
Secondary 

winding

Circular 
bobbin

Fig. 9. Wire-wound air-core transformer on a 3D printed circular bobbin.

C. Measurement technique

The validation requires correct measurement of the AC
power consumed and delivered at the primary and secondary
sides, respectively. As depicted in Fig. 8, the current is
obtained by measuring the voltage across the sense resistor and
scaling it by the resistance value. The voltage of the winding
is measured by taking the difference between the associated
function generator and sense resistor voltages. The average
value of the product of the measured by winding current and
voltage gives the real AC power consumed by the winding.

D. Results

We performed two sets of experiments to compare both
single and multi-winding transformer setups. For the single-
winding case, we excite one of the two windings on each of
the primary and secondary sides of the transformer in Fig.
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9. Next, we excite both windings. The excitation amplitudes
are adjusted as per the theory and the phase shift between
secondary and primary currents is varied. The results obtained
are shown in Fig. 10.

In both single- and multi-winding cases, experimental re-
sults match very closely with the theoretical calculations. Thus,
this provides a good validation of the optimization analysis for
multi-winding transformers.

VI. CONCLUSIONS

To summarize, this work outlines optimal operating con-
ditions for multi-winding transformers which could be used
for wireless or isolated power transfer. An analytical model is
developed that can determine the optimal current distribution
from the transformer impedance matrix Z which can be
derived from FEM simulation or experimental measurement.
The model is verified with numerical optimization and can be
applied to a wide range of different transformer designs. The
results provide insight into winding geometry and operational
details. An integrated isolated power converter with this op-
erational regime applied is currently being designed on the
basis of the theory. This will provide further confirmation of
its accuracy and usefulness.
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APPENDIX

A. Efficiency Derivation

We denote any element of the impedance matrix Z as
Zp,ab, Zs,ab and Zm,ab where, a and b are indices, for
primary, secondary or mutual impedances respectively. The
complex power on the kth primary winding can be denoted
as Sp,k = 1

2Vp,k · I∗p,k, which can be expanded as

SP =
1

2

Np∑
k=1

Vp,k · I∗p,k =
1

2

 Np∑
k=1

Ip,kZp,kkI
∗
p,k

+

Np∑
a=1

∑
b̸=a

Ip,aZp,baI
∗
p,b +

Np∑
m=1

Ns∑
n=1

Is,nZm,mnI
∗
p,m

 .

(14)
Since Zp,ab = Zp,ba, (14) can be reorganized as

SP =
1

2

 Np∑
k=1

Î2p,kZp,kk + 2

Np−1∑
a=1

Np∑
b=a+1

Îp,aÎp,b cos(θp,a

−θp,b)Zp,ab +

Np∑
m=1

Ns∑
n=1

Is,nZm,mnI
∗
p,m

 .

(15)
Hence, the real power supplied at the primary side PP can

be expressed as

PP = Re(SP ) =
1

2

 Np∑
k=1

Î2p,kRp,kk

+2

Np−1∑
a=1

Np∑
b=a+1

Îp,aÎp,bRp,ab cos(θp,a − θp,b)

+

Np∑
m=1

Ns∑
n=1

Îp,mÎs,nXm,mn sin(θp,m − θs,n)

+

Np∑
m=1

Ns∑
n=1

Îp,mÎs,nRm,mn cos(θp,m − θs,n)

 .

(16)

The correlation of (16) to (2) is as follows.

PP,self =
1

2

Np∑
k=1

Î2p,kRp,kk

+

Np−1∑
a=1

Np∑
b=a+1

Îp,aÎp,bRp,ab cos(θp,a − θp,b),

(17)

PPS =
1

2

Np∑
m=1

Ns∑
n=1

Îp,mÎs,nXm,mn sin(θp,m − θs,n), (18)

PM =
1

2

Np∑
m=1

Ns∑
n=1

Îp,mÎs,nRm,mn cos(θp,m − θs,n). (19)

We can perform the exact same derivation for the secondary
side to evaluate the terms in (3). The remaining terms in (3)
are given as,

PS,self =
1

2

Ns∑
k=1

Î2s,kRs,kk

+

Ns−1∑
a=1

Ns∑
b=a+1

Îs,aÎs,bRs,ab cos(θs,a − θs,b).

(20)



With the detailed expressions above and assuming that PM

is negligible we can solve for optimal phases using (4). An
intuitive way of solving this with basic trigonometry is as
follows. The efficiency expression will be maximized when
the sin(θs,n − θp,m) terms becomes unity. This means any
arbitrary θs,n and θp,m are orthogonal to each other. Since the
choice of θs,n was arbitrary, all θs,n should be equal to each
other. The same holds true for θp,m.

With the phase orthogonality, the efficiency expression be-
comes,

η =

∑Ns

n=1 Îs,n(
∑Np

k=1 Îp,kXm,kn −
∑Ns

x=1 Îs,xRs,nx)∑Np

k=1 Îp,k(
∑Ns

n=1 Îs,nXm,kn +
∑Np

a=1 Îp,aRp,ka)
. (21)

We should also notice that (21) is the ratio of the expanded
forms of (9) to (8).

Using (21), we can perform convex optimization to maxi-
mize η. While for space constraints we do not provide the full
derivation, the key steps are as follows.

We choose any arbitrary primary side current, Îp,b. To find
its optimal value, we perform ∂η

∂ ˆIp,b
= 0. After some algebraic

manipulations, we then get,(
Îp

T
RpÎp + Îs

T
RsÎs

Îs
T
RsÎs − Îp

T
XmÎs

)
Ns∑
n=1

Îs,nXm,bn = 2

Np∑
k=1

Îp,kRp,bk.

(22)
Since the choice of Îp,b was arbitrary, (22) hold true for all

primary windings. Thus, recalling (9) and (10), the condition
for all windings can be compactly written in matrix form as,(

Ploss

2PS

)
Xm

T Îs = RpÎp. (23)

Similarly, for the secondary side, we can derive,(
Ploss

2PP

)
XmÎp = RsÎs. (24)

We can now use (23) to express Îs in terms of Îp. Then
performing substitution to (24) gives us,(

P 2
loss

4PPPS

)
Îp = (XT

m)+RsX
+
mRpÎp. (25)

This is exactly (11) in its expanded form. Thus, the optimal
primary current scaling is obtained. The secondary currents
can derived in the same process starting by eliminating Îp to
obtain (12).

B. Current Scaling Derivation

Since Ip and Is are eigenvectors, the relative scaling
between the currents will be fixed. We can choose the first
current amplitude for both primary and secondary side to be
the reference. From it, we obtain

Îp = Îp,1
[
1 αp,2 · · · αp,Np

]T
= Îp,1αp

T (26)

Îs = Îs,1
[
1 αs,2 · · · αs,Ns

]T
= Îs,1αs

T . (27)

Plugging (26) and (27) into (8) and (9), we can express the
efficiency as

η = −PS

PP
=

Îp,1Îs,1αp
TXmαs − Î2s,1αs

TRsαs

Îp,1Îs,1αp
TXmαs + Î2p,1αp

TRpαp

. (28)

We denote Îp,1/Îs,1 as αps Eq. (28) can be reorganized as

η =
αpsαp

TXmαs −αs
TRsαs

αpsαp
TXmαs + α2

psαp
TRpαp

. (29)

As we can obtain the efficiency η from (13), and
αp

TXmαs,αp
TRpαp,αs

TRsαs are all known scalars, the
valid root of the above quadratic equation may be chosen to
obtain the current scaling factor αps.
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