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Quantum mechanics? It’s all fun and games until some one loses an i*
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QBism regards quantum mechanics as an addition to probability theory. The addition provides an extra normative rule
for decision-making agents concerned with gambling across experimental contexts, somewhat in analogy to the doubleslit
experiment. This establishes the meaning of the Born Rule from a QBist perspective. Moreover, it suggests that the best
way to formulate the Born Rule for foundational discussions is with respect to an informationally complete reference
device. Recent work has demonstrated that reference devices employing symmetric informationally complete POVMs
(or SICs) achieve a minimal quantumness. They witness the irreducible difference between classical and quantum. In
this paper, we attempt to answer the analogous question for real-vector-space quantum theory. While standard quantum
mechanics seems to allow SICs to exist in all finite dimensions, in the case of quantum theory over the real numbers it
is known that SICs do not exist in most dimensions. We therefore attempt to identify the optimal reference device in the
first real dimension without a SIC (i.e., d = 4) in hopes of better understanding the essential role of complex numbers
in quantum mechanics. In contrast to their complex counterparts, the expressions that result in a QBist understanding
of real-vector-space quantum theory are surprisingly complex. © Anita Publications. All rights reserved.
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1 Introduction

Since the days of Heisenberg, Born, Jordan, Dirac, and Schrodinger in the mid-1920s, physicists
have used the theory of quantum mechanics as it was taught to them. But why just that theory and not
some other? The debate is ongoing to this day, and there is still plenty to learn. One technique for better
understanding why we use the formalism that we do is to consider “foil theories™ in which some aspect of
our usual quantum mechanics is either relaxed or restricted [1]. For example, one can consider a quantum-
like theory without imaginary numbers and try to see what “goes wrong”. This is a conceptual game
with a long and distinguished history [2-13]. In this setting, probabilities are still given by the squares of
amplitudes, but now amplitudes are drawn from vectors in a real vector space, where the phases are simply
£1. Similarly, density matrices — positive semi-definite Hermitian matrices of unit trace — are replaced by
their real counterparts, positive semi-definite symmetric matrices, and the unitary matrices furnishing time

*This paper is dedicated to Prof Gopal Rao upon his promotion to Distinguished Professor Emeritus status. Prof Rao
once remarked to one of us (CAF) that being at UMass Boston|rather than say at Harvard or Yale allowed his career to
excel. UMass Boston brought him academic freedoms he could not find elsewhere: He worked on whatever he pleased,
without pressure for high-dollar funding or worries over journals' impact factors. We offer this paper to Prof Rao in his
own spirit. True science is founded upon the freedom to become fascinated by a simple pebble on a beach, whether it
be polished or not, or whether it have any value at the local market.
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evolution are replaced by real orthogonal matrices (i.e., simple rotations). The hope is that by contemplating
such a theory, one can begin to “see around” standard quantum mechanics and start to understand what is
genuinely unique about it.

A case in point has to do with the QBist interpretation of quantum mechanics [14-17]". QBism
stresses that it is possible to express any quantum-like foil theory (over any number field) purely in terms
of measurement-outcome probabilities, without ever referencing state vectors, amplitudes, or operators [18].
From this point of view, the Born Rule is regarded as a physically motivated addition to the usual Law of
Total Probability (LTP) [19]. It is an addition useful for transferring one’s expectations from one experimental
situation to another, a situation the LTP has no jurisdiction over. The exact expression the Born Rule takes,
however, depends on one’s choice of a “reference device” [20].

One might wonder, then, which reference devices minimize the difference between the Law of
Total Probability and the Born Rule — in other words, which reference devices witness the irreducible
difference between classical and quantum uses of probability, by some measure of “quantumness”. In the
case of quantum mechanics, the answer has been provided by DeBrota et al [21]; the optimal reference
device is one which employs a symmetric informationally complete measurement. Such measurements are
often called simply SICs (pronounced “seeks™) for short.

More formally, suppose one has a d-level quantum system, a qudit. A set of & state vectors |y)
satisfying,

21 .
] =—Vj#k 1
Kyl = = Vi # (M
is known as symmetric informationally complete, and when the projectors onto these vectors are rescaled to
1
R.= P Wl » k=1.2,...d% (2)

the collection represents the possible outcomes of a reference measurement on the qudit. What licences
the designation of such a device as a reference-measurement is that the operators R; can be proven to be
linearly independent, and since there are d” of them they will span the space of Hermitian operators. Thus
they form a basis for that space. On the other hand the symmetry of the set is apparent in Eq (1). Since one
can think of the projectors onto the vectors as specifying lines in a d-dimensional space, these structures
are also known as maximal sets of complex equiangular lines’.

In this paper, we consider the analogous question in the setting of real-vector-space quantum
theory, and offer some preliminary results. One might think that the analogue of a SIC in this setting would
correspond to a maximal set of real equiangular lines. However, there is a catch. A minimal informationally
complete measurement for a d-level system in real vector-space quantum theory (a RIC) requires d(d+1)/2
POVM elements in order to match the dimension of the symmetric matrices. But it is known that d(d+1)/2
only provides an upper bound on the actual maximal number N,,,, of equiangular lines—a bound that is
sometimes achieved, but mostly not [26].

'From here out, we reserve the term “quantum mechanics” for normal complex-vector-space quantum theory. Whereas,

when speak of “a quantum theory,” this generally will include the possibility that it could also be a quantum-like foil
theory.

ZAfter 23 years of research, it remains an open question whether SICs in fact exist in all complex dimensions. See Ref
[22] for a review. However, that does not mean the SICs cannot already be a playground for better understanding physics.
Currently, exact constructions of SICs can be found in all dimensions d < 53 and for 72 specific dimensions beyond that,
going all the way out to d = 39,604 [24]. Furthermore, there is high-precision numerical evidence for all dimensions d
54 to 193. See Refs [25]. There is a general belief in the community that SICs exist in all finite dimensions, but until a
proof of such, it is only an educated guess.
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As it turns out, the bound is tightind=2and 3: ind=2, N, ,, =3 and in d = 3, N, = 6. Therefore,
in d = 2 and 3, SIC-POVMs exist. However, as stated, the bound is not tight in most real dimensions, as
Table 1 attests.

Table 1. The number of elements required for the analogue of a SIC in a real vector space versus the actual maximum
number of equiangular lines [27] in that dimension. One sees that N, achieves the upper bound only in dimensions d
=2,3,7 and 23. It is not known whether N,,,, achieves the upper bound in any further dimensions.

d Dimension of Operator Space Ny

2 3 3
3 6 6
4 10 6
5 15 10
6 21 16
7 28 28
8 36 28
9 45 28
14 105 28
15 120 36
16 136 40
23 276 276
24 300 276

What is of interest to us in this paper is a d = 4 system’, one with the lowest dimension for which
Npax # d(d + 1)/2. There, the maximum number of equiangular lines is 6, but one requires 10 elements to
span the space of real density matrices.

The broadest question on our minds is what might a QBist stand to learn about normal quantum
mechanics by studying this case? Particularly, what is the stand-in for the result of Ref [21] mentioned
earlier? What reference devices in real-vector-space quantum theory witness the irreducible difference
between classical and quantum uses of probability theory? Moreover, when one uses that optimal device to
express the Born Rule, how does the expression compare to the one found in normal quantum mechanics?

The main message of this paper is that in normal quantum mechanics the Born Rule remains
relatively elegant in appearance when expressed in irreducible QBist form, whereas in real-vector space
quantum theory, the irreducible form is genuinely ugly by any aesthetic measure. In fact, we must admit
that when we first embarked on this project, we did expect the expression to be a little ugly (that was our
desired result). However, we were quite unprepared for the magnitude of the ugliness we ultimately found.
(For a preview, see Eq (33)). Moreover, in contrast to the quantum mechanical case, the irreducible form

! T'his is mathematically equivalent to the case of two rebits [28]. Viewing it that way, i.e., as a bipartite system, there is a
significant literature on its “broken” notion of a tensor product and the similarly problematic concept of entanglement that
comes with it [29-34]. Herein however, we will always think of d = 4 as associated with a single system, as for instance
with a four-level atom where there is no natural notion of two subsystems. A consequence of this is that the “broken
thing” we demonstrate in this paper will be of quite a distinct character from the ones to do with entanglement.
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appears not to be unique, having a delicate dependence on the norm used for defining it. So whereas the
quantum mechanical concept is a robust one, in the real-vector-space case, the notion of an irreducible form
appears to be flawed from the outset. To a QBist nose, there certainly seems to be a lesson in this. Caslav
Brukner likes to ask [35] what is so special about regular quantum mechanics for the QBist, since one can
ostensibly give a QBist interpretation to any generalized probabilistic theory (GPT) [36] ?. May be the
answer is this: For normal quantum mechanics, the various QBist-inspired developments of the formalism
seem to fit the theory like a glove. But, if the real-vector-space theory exhibits the more common behavior
among GPTs, and it is indeed so ill-fitting, one could question whether it is so fruitful to think in QBist
terms for that theory in the first place. Like the Bohmian rewriting of quantum mechanics, it can be done,
but at what cost?

The plan of the remainder of our paper is as follows. In Section 2, we review how DeBrota et al
[21] set up the problem in regular complex-vector-space quantum mechanics and exhibit the result found
there. In Section 3, we recount our initial stabs in the dark toward an optimal RIC-POVM reference device,
beginning with certain known symmetrical polytopes and ending with sampling from the space of RICs. In
Section 4, we discuss the initial results of constrained optimization of the quantumness over unbiased rank-1
RICs following the parallel-update rule. In Section 5, we consider biased RICs and uncover an intriguing
parametric structure that offers a different optimal RIC for each choice of p-norm. Then in Section 6, we
realize that allowing a distinct post-measurement offers an opportunity for even lower quantumness, for
which we are yet to have an analytic expression. Finally, in Section 7 we conclude with some remarks on
the significance of this work and further directions that might be taken.

2 Review of the Quantum Mechanical Case

QBism begins with the observation that, instead of working with density matrices and measurement
operators for all one’s quantum mechanical calculations, one can work just as well (if perhaps inconveniently)
with probabilities and conditional probabilities for the outcomes of a fixed reference device. This is singularly
important to the interpretation, for if it were not true, one might be tempted (as many philosophers of physics
are [37]) to view quantum states as something more substantial than personal degrees of belief. To see how
the translation works, first recall some concepts from quantum information theory.

Throughout we will restrict ourselves to finite dimensional quantum systems. For this section, let
H,; be a d-dimensional complex Hilbert space, and let {£;} be a set of N positive semidefinite operators

whose elements sum to the identity operator:
N

2 E=1 (3)
J~1
Such sets are called positive-operator-valued measures (POVMs) and represent the most general
measurements allowed in quantum mechanics, where N is any nonnegative integer. The elements of the set
stand for the N possible outcomes of the measurement [38] '. APOVM is said to be informationally complete
(IC) if the E;span the space of Hermitian operators on H,, and an IC-POVM is said to be minimal if it
contains exactly N=d 2 elements—i.e., it forms a basis for the space. For brevity, we will call a minimal
informationally complete POVM a MIC (pronounced “meek”), and if all the elements of {E;} are rank-1,
we will call it a rank-1 MIC.

*Note how this differs from the treatment of measurement one finds in textbooks from the pre-quantum-information
era. There a measurement is associated with a single Hermitian operator, and the outcomes correspond to the operator’s
eigenvalues. Here, however the operators are the outcomes, and particularly the number of outcomes N can exceed the
dimensionality of the underlying Hilbert space.
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The standard procedure in quantum mechanics for generating probabilities starts with an observer or
agent, say Alice, assigning a quantum state p to a system. When she plans to measure the system, she represents the
outcomes of her measurement with a POVM {E;}. Assigning p implies that Alice assigns the Born Rule probabilities

QE) =t Ep “)
to the measurement’s outcomes. In this way, any quantum state p may be thought of as a catalog of
probabilities for all possible measurements. However, one does not have to consider all possible measurements
to completely specify p. Because MICs form bases for the space of operators, p is uniquely specified by the
agent’s expectations for the outcomes of any single MIC. Indeed, Q(£)) represents the Hilbert-Schmidt inner
product between p and E;, and if one knows p’s projections onto a basis, then one knows p itself. Thus with
respect to any MIC, any quantum state, pure or mixed, is equivalent to a single probability distribution.

P(Ej|R;)

; [T &
TN TN
P(R;) P(Ej;)

; ’ 1B
) —— G — ||/,
on @) off w

Q(E;)

Fig 1. Two distinct experiments. In QBism, the Born Rule is not about either experiment individually, but rather
about the connections between their probabilities. In the top experiment, the reference device is turned on so that
there are three probabilities in its telling (P(R)), P(E}|R)), P(E)): they must satisfy the Law of Total Probability,
Eq (12). However, in the bottom experiment the reference device is turned off—there is only one probability in
its story (Q(E,)). The Born Rule is the narrative glue that ties the two stories together.

One can further eliminate the need to use the operators p and E; in the Born Rule by reexpressing
it as a relation between the agent’s expectations in two distinct experiments (see Fig 1). Suppose Alice has
a preferred reference device consisting of a MIC R;} followed by a post-measurement preparation of the
quantum system: If the MIC obtains outcome R,, a new state o; will be ascribed to the system. We will
require that the o; be drawn from a linearly independent set, but otherwise the set may be arbitrary. The
reason for the linear independence is that we want the inner products tr Ejg; to uniquely characterize the
operators ;. Let P(R;) be the agent’s probabilities for the measurement {R;} and

P(E;| R) = 1r Ejo; ®)

be her conditional probabilities for a subsequent measurement of {£;} after obtaining outcome R;. What
consistency requirement among Q(£)), P(R;), and P(E]R;) does quantum physics entail?

Using the fact that {o;} is a basis, we may write

p= Z;: a0y, (6)
for some set of real coefficients ¢;. The probability of outcome R, is then
PR)=3 ot Rio; = 3 (9705, ™
J J
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where we have defined the “Born matrix” @ through its inverse,
[@ ', =trRa;=rtrp;0;, (8)
for p; = R/r; and r; = tr R;. The invertibility of @ is assured by the linear independence of the MIC and post-

measurement sets. This implies that the coefficients of p in the o; basis may be written as the multiplication
of the @ matrix onto the vector of probabilities,

P= Z‘: %[(D];k P(RY) | o; ©)

Now, the probability Q(E)) can finally be revealed by another application of the Born Rule, which becomes
dZ al2

Q(E}) = Z [Z [q)]fﬁP{Rk) P{'E”Rj) (10)
i=1'k=1

In short, the Born Rule is purely about the relation between the probabilities in the two experiments.

In a more compact matrix notation, our result becomes particularly evocative. Let P(R) and Q(E)
denote vectors whose components are P(R,) and O(E)), respectively, and P(E|R) denotes an appropriately
sized stochastic matrix. Then, Eq (10) becomes

O(E) = P(E|IR) D P(R). (11)
Note how similar, yet different, this is to the Law of Total Probability, which only relates the
probabilities in the top experiment in Fig | together

P(E) = P(EIR) P(R). (12)

The only difference between the right-hand sides of Eqs (11) and (12) is that in the first, the two
terms are separated by @ and in the second they are implicitly separated by the identity / > In fact, before
knowing any quantum mechanics, one’s intuition might have been that Q(£) ought to just be P(E). But that
is an intuition drawn from classical physics, where the role of experiment in shaping reality is thought to
be ultimately eliminable.

This point raises an interesting mathematical question for the QBist. Depending upon which reference
device the agent chooses for their QBist representation, Eq (11) can be made to look more or less like the
classical LTP. If one could find a reference device so that @ = I, then one would have the LTP identically,
and classical intuition would be validated afier all. But there is no such reference device [40]. So, how
close can @ be made to look like the identity? The answer to this question would establish an important
fact about quantum mechanics. It would signal the irreducible difference between the Born Rule and the
classical intuition that would seek to set O(E) = P(E) if not impeded.

Fuchs, DeBrota, and Stacey [21] quantified this question by introducing a class of distance functions
(or quantumness measures) based on unitarily invariant norms

d(l, ®)=|I- | (13)
A unitarily invariant norm is a matrix norm for square matrices such that [UXV| = [X] for any unitary

matrices U and V. These norms form a significant class in matrix analysis [44] and include the Schatten

-norms
P Lip

I1x1,=(Z,s7) (14)

among which are the trace norm, the Frobenius norm, and the operator norm when p = 1, 2, and o,
respectively and the Ky Fan k-norms. Here, the s, represent the singular values of X. The class of © matrices
that achieve the minimal distance from the identity [ define the irreducible quantumness of the Born Rule.

*Mathematical expressions for the Born rule with forms similar to Eq (11) go back at least to the work of Lucien Hardy
in 2001. See Ref [39].
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To set ourselves up for expressing the irreducible quantumness, let us say a bit more about the
SICs first. A SIC is a MIC for which all the R; are rank-1 and
Y (1s)
d* d+1
SICs have yet to be proven to exist in all finite dimensions d, but they are widely believed to [22], and have
even been experimentally demonstrated in some low dimensions [42-44]. The SIC projectors associated
with a SIC are the pure states, p, = dR,. When there is no chance of confusion, we will refer to the set of
projectors as SICs as well. In the past, QBism has given special attention to the case of a reference device
whose measurement is a SIC and whose post-measurement states are SIC projectors associated with the
same SIC [18,16,45], but in all cases previous to Ref [21], it was essentially for aesthetic reasons. In this
special case we denote @ by @g and note that Eq (10) takes a particularly simple form
di
OE)= %

i=1

@+ new) - rg r) (6)

In other words, the total action of ®g¢ is a component-wise affine transformation of the
probabilityvector. If one had to generalize away from the LTP, what could be a simpler modification of it?

Now for the result of Ref [21], it can be proven that for all the distance measures considered in
Eq (13) and for all reference devices,

d(l, ®) =z d(I, Dsyc) (0]
with equality if and only if the reference device measures a SIC and outputs post-measurement states that
are also elements of a SIC. That is, ®gc is not only an aesthetic choice, but one that tells us something
deep about the very structure of quantum mechanics.

However, as we have observed, a SIC generally does not exist in real-vector-space quantum theory.
What can that be telling us about the foil theory? We will study this in detail in the remaining sections.
Going forward, it is worth noting some of the aspects particular to the SIC reference devices in quantum
mechanics:

1. Unbiasedness: The trace of each POVM element R; in the reference device is the same—i.e., it is equally
weighted. If the quantum state is p = I/d, the outcomes of {R,} will thus be equally probable. In a general
reference device, the weights might be different from each other, representing POVMs for which some
outcomes are intrinsically more likely than others.

2. Rank-1: Each element can be written in the form R; = a; |y,) (v for @;> 0. Thus we can also consider a
SIC-POVM to correspond to frame theory’s notion of a tight vector frame [46-49] in H,;. More generally,
a MIC need not have rank-1 elements.

3. Equiangularity: ttR;R; = c, when i # j. This of course is part of the defining condition for a SIC, but it
can also be achieved by non-rank-1 MICs. Either way, it is already a very restrictive condition on a MIC.

4. Robust Minimality: Using SICs for both the POVM eclements and the post-measurement states of a
reference device minimizes the quantumness || / — @ || with respect to any unitarily invariant norm. One
can imagine a world where that might not have been the case—where each norm would need a separate
treatment—but that is not the case with quantum mechanics.
5. Parallel Update: In the case where the reference POVM {R,} is a SIC, the post-measurement states o;
can be chosen to be drawn from the same SIC without loss of generality. However, there is nothing in the
definition of irreducible quantumness that would make that property a priori obvious.

As we now begin to identify the reference devices for achieving the irreducible representation of
the Born Rule for d = 4 real-vector-space quantum theory, we shall see which of these properties have to
be compromised to get there.
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3 Initial Considerations

Before going forward, let us review a key theorem from Ref [20] upon which much of our analysis
is based. Consider a set of N normalized vectors |o;) in H; with weights 0 <¢; < 1. Then E; = ¢;| @;){¢,| forms
a rank-1 POVM if and only if the “little Gram matrix” g defined by

[g]; = 12 lo:X o,
is a rank-d projector. Furthermore, defining the “big Gram matrix” G by

[Gly=tr E, E}, (19)
the set {E;} will be a rank-1 RIC, if and only if N=d(d + 1)/2 and rank G = N.

Also in light of what follows, we note that if a SIC had existed in d = 4, assuming the parallel-
update rule, its ® matrix would have been

_@d+2) 1 20

it VT d+ 0
1

- 35, & @

Thus (7 — ®) would have one singular value of 0 and N —1= 9 singular values equal to d/2 = 2,
leading to a p-quantumness of 2x9*1# ' In particular, when p = 2, we obtain 6.

Our initial hope was that the reference device achieving the irreducible representation for d = 4
real-vector-space theory would be related to some long-known symmetric polytope already available in the
literature. For example, the rectified 4-simplex has an intimate connection with the famed Petersen graph,
containing 10 vertices and 15 edges. One can form a matrix whose rows and columns are labeled by the
graph’s vertices, whose elements are: 2/5 along the diagonal, — 4/15 if the two vertices are connected by an
edge, and 1/15 if not [47]. This 10x10 matrix is a rank-4 projector, and so corresponds to a rank-1 POVM
which we shall call the Petersen RIC [48]; the vectors |p,) can be recovered from the little Gram matrix via a
singular value decomposition. Since, there are only two unique inner products between elements of the Petersen
RIC, one could justly hope that its quantumness might be minimal. Assuming the parallel-update rule, the

2-quantumness (i.e., defined with respect to the Schatten 2-norm) of this reference device is 6 4(161/5) =34.05.

Next, we considered a RIC conjured from the so-called runcinated 5-cell [51,52], a 4-polytope
with 20 vertices, which come in antipodal pairs, picking out 10 lines in 4 dimensions. In fact, the vertices
are root vectors of the simple Lie group” 4,. In dimension 4, again assuming the parallel-update rule, the

A4-RIC has 2-quantumness 2 21=9.17, kicking the Petersen RIC out of the water, and coming quite close
to the 2-quantumness of the non-existent SIC. Even better, its POVM elements also have but two unique
inner products between them.

For insight into the structure of these four dimensional objects, one can proceed as follows to
visualize them [53]. Let
10
w(iz)) = ‘H1<z|«p,-> (22)
i=
where |z) = [z|, z,, z3, z4]- Then pick a 3-sphere and a plane, e.g.
(elzy = R?|2) L [0,1,-1,-1], (23)

% In fact, one can build a RIC in any dimension d out of the root vectors of A, In dimension 2, one obtains a hexagon,
whose three diagonals form an equiangular set—in other words, a SIC-POVM whose 2-quantumness is ¥ 2. In dimension
3, one obtains a RIC built from the cuboctahedron, whose 2-quantumness is y21=4.58, which one can compare to the
quantumness of the SIC derived from the 6 diagonals of the icosahedron, the latter being (34/5)/2 = 3.35.
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from some choice of R. At the intersection of the 3-sphere and the plane, the function y(|z}) reduces to a
function over the 2-sphere. Each vector |¢;) is represented by a great circle on the sphere, and the angles
between the circles faithfully represent the angles between the original four dimensional vectors (See Fig 2).

Fig 2. On the left, a visualization of the Petersen RIC; and on the right, a visualization of the 4,-RIC.

Of course, guessing the answer can only take one so far. We thus began a series of numerical
experiments in order to survey the terrain of RIC-POVMs, at first sampling at random from the landscape.
For example, Fig 3 offers a histogram of the values of the 2-quantumness for 10,000 random RICs fit to a
Lévy distribution, whose pdf is

) = 1 paes-m 24)
3
al2m(x=b
Pt
with scale parameter a = 341.31 and shift parameter b = 5.12. It peaks at = 120 with a long tail thereafter.

The lowest value found for the 2-quantumness was =~ 16, leaving the 4,-RIC unchallenged. Indeed, adding
noise to the 4,-RIC’s elements only ever increased its 2-quantumness.

0.0016

0.0014

0.0012

0.0010

0.0008

probability

0.0006

0.0004

0.0002

0.0000
0 1000 2000 3000 4000 5000

quantumness
Fig 3. Histogram of the 2-quantumness for 10,000 randomly sampled RICs.

‘We then considered randomly sampling from the space of unbiased rank-1 RICs using an alternating
projection method. Beginning with a matrix of initial (row) vectors |g,), we alternate between (a) enforcing
the POVM condition by taking the generalized polar decomposition F = UP for U an isometry and P
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Hermitian, thereafter throwing away the Hermitian part; and (b) normalizing the vectors—until we have an
unbiased rank-1 RIC up to some desired tolerance. Moreover, we experimented with adding a third projection,
knocking down the quantumness, whereby at each step one calculates the singular value decomposition { —
® = UZV" and then replaces  — @ with UV, keeping track of the sign factors in the original little Gram
matrix so that some set of vectors |p;) can be recovered for the next round of projections. By this method,
for example, we found RICs with 2-quantumness as low as =7.3. This made it clear that the 44-RIC could
not be the end of the story. At this point we turned to constrained optimization methods in hopes of directly
minimizing the quantumness.

4 Unbiased, Rank-1, Parallel Update

‘We began our journey into constrained optimization by trying to preserve as many properties of the
SICs as we could. So we looked for real unbiased rank-1 POVMs, with post-measurement states proportional
to the POVM elements, which minimize ||I — @|f,.

Indeed, assuming the POVM is rank-1 with proportional post-measurement states, we can just as
well represent our reference device as an n x d rectangular matrix F, with d =4 and n = d(d +1)/2 = 10. The
rows of this matrix are the d dimensional unnormalized vectors |p;) whose corresponding POVM elements
are E; = |p;)@,. The demand that the POVM elements sum to the identity amounts to the constraint that the
columns of this matrix be orthonormal. Thus, under the constraint that FF = 7, or more specifically, || FTF
=1|l,= 0, we want to minimize the 2-quantumness |/ — @||,. Recall that @ is defined through its inverse.
Since we are taking our RIC to be rank-1 with post-measurement states proportional to POVM elements,
we have

L Kl

Py = Qyilyy) @5
Another way of thinking about this is to begin with the little Gram matrix of the POVM g = FF' and then
graduate to the big Gram matrix G = gog, where °© denotes the Hadamard or entry-wise matrix product [44].
If we define a matrix D whose columns are the diagonal entries of g, we can write

®=DoG !, (26)
and in particular, if we demand that our POVM is unbiased, this amounts to (d/n)G '. We then find the
singular values s; of 7 — @ in order to calculate the Schatten p-norm to be minimized. Recall that the co-norm
corresponds to the maximum singular value.

Finally, we impose the condition that the vectors be unbiased, which can be expressed by the

constraint | € —(d/n)T||, = 0, where £ is the diagonal of g and T is the vector of all 1’s. Then we are in
position to perform a minimization of ||/ — ®||,, with our two constraint functions, the one imposing the

POVM condition 2 E; = I and the other imposing that each element has equal trace. The result of the
]

optimization” for p = 2 is given by Eq (27) in terms of the little Gram matrix g, which is a rank-4 projector.

As we have seen previously, this specifies the vectors |@;) up to an overall rotation.

"The numerical optimizations in this paper were carried out using both python and Mathematica. The basic python tool
employed was the sequential least squares constrained optimizer implemented in the open source library scipy. The
Jacobians of the objective function and the constraint functions were automatically differentiated and compiled with
jax for speed. On the Mathematica side, we employed FindMinimum, and took advantage of the ability to compile the
constraint functions to machine code.
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This matrix of algebraic numbers was inferred from floating point results, and indeed, the
corresponding POVM is informationally complete since det G # 0. We will henceforth refer to it as the
unbiased 2-RIC. Its 2-quantumness can be calculated exactly to be

3/2991907

784

This value agrees with the numerical result up to 10 %, Given that the 2-quantumness for the
non-existent SIC would have been 6, it became clear at this point in our journey that we had entered into
fertile territory.

= 6.61879967... (28)

Note that the little Gram matrix splits into two parts. The upper left block represents four vectors
which are equiangular among themselves. When rescaled by 15/8, this 4x4 block forms a rank-3 projector,

34 14 -1/4 1/4
/4 3/4 1/4 -1/4

U4 14 34 U4 29
/4 -1/4 1/4 3/4
which can be interpreted as a non-informationally complete POVM corresponding to four equiangular lines
in 3D. The lower right block represents six vectors which are 2-angular among themselves. Specifically,

each of these six vectors makes the same angle with four of the others, and a different angle with one of
them up to sign.

The eigenvalues of
25 -1/5 -1/6 1/6 16 —1/6
-1/15  2/5 -1/6 1/6 16 —1/6
-1/6 -1/6 2/5 1/15 -1/6 1/6
1/6 /6 1715 2/5 176 -1/6 (30)
1/6 e -1/6 1/6 2/5  1/15
-1/6 -1/6 1/6 -—1/6 1/15 2/5
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are {1, 7/15, 7/15, 7/15, 0, 0}. Thus this block does not itself correspond to a POVM in 4D. Finally,
considering the upper right and lower left off-diagonal blocks, we can see that the four vectors in the first
block make equal angles (up to sign) with respect to the six vectors in the second block. Overall then, we
have an unbiased RIC-POVM with four unique inner products.

Of course, we can perform the same optimization for different choices of p. These results are displayed
in Fig 4, along with the p-quantumness of the unbiased 2-RIC we have been discussing for comparison.
There is excellent agreement up to about p = 6, after which they diverge, the true minima asymptoting to
the red line, and the latter to the yellow line. Thus, it is clear that the unbiased 2-RIC is not univocally

a minimally quantum unbiased reference device: different choices of p-norm deliver different minima.
6.0

55

p-quantumness
F- w
in o

Fl
£

3.5

3.0 T T T T

p-norm

Fig 4. The minimized value of the p-quantumness for each p over unbiased parallel-update RICs is plotted
in blue. The minimized co-quantumness, to which the former asymptotes, is plotted in red. Meanwhile,
plotted in green is the p-quantumness of the unbiased 2-RIC: Its co-quantumness is in yellow. Clearly, the

unbiased 2-RIC is not optimal for all values of p.

On the other hand, as we’ve seen, the unbiased 2-RIC has a particularly simple structure, with only
five unique entries in its little Gram matrix (up to sign), for which we were able to infer exact algebraic
expressions. In contrast, this is not true for other unbiased p-RIC’s. For example, we were unable to find
simple algebraic expressions for the little Gram of the unbiased oo-RIC, which appears to have many more
than 5 unique entries. Of course, since we are using floating point numbers in our numerical searches, we
can only say that a matrix has a certain number of unique entries up to a certain precision. In Table 2 one
can see how the number of distinct little Gram entries grows as one considers more decimal places in the
case of the unbiased 2-RIC as compared to the unbiased «-RIC as furnished by our numerical optimization.

Table 2. Number of distinct inner products in little Gram matrix, up to sign.

Decimal Cutoff | Unique entries (unbiased 2-RIC) Unique entries (unbiased «-RIC)
6 5 9
11 5 45
18 55 55
26 55 55
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Fig 5. On the left, a visualization of the unbiased 2-RIC; and on the right, a visualization of its cousin,

the biased 2-RIC.
Like a SIC, then, the unbiased 2-RIC is at least relatively simple in its structure; in contrast, the unbiased
oo-RIC is not. We shall see how this situation changes dramatically when we consider reference devices
which are biased.

5 Biased, Rank-1, Parallel Update

Philosophically speaking, it would be a somewhat strange proposal to adopt a reference device
with an intrinsic bias, i.e. one for which certain outcomes occur more or less often regardless of the input
into the device®. Nevertheless, in a search for true minimality, to leave no stone unturned, one should
consider relaxing the condition that the reference POVM be unbiased. Amazingly, it turns out that one can
parameterize a whole family of biased RIC-POVMs by a single variable f delivering a biased RIC which
apparently minimizes the p-quantumness for any choice of p.

Indeed, discovering this was a stroke of good fortune. We began by numerically minimizing the
2-quantumness without imposing any constraint on the bias. Inspecting the little Gram matrix of the resulting
biased RIC, it became clear that up to sign there were approximately five unique matrix elements. Replacing
the numerical values with 5 unknowns while keeping the sign structure intact (of utmost importance), we
obtained the following matrix:

e d d —d —e a —c ¢ —c¢ —d \
d f b b d d —-d d d b
d b f b d d —d —d —-d -b
—d —b b f d —-d —-d —-d —-d b
c d d d e c —a -—c c d
9= a d d —d ¢ e c —c ¢ —d’ S

—c —d —d —-d —a ¢ e —-c ¢ —d

¢c d —d —d —¢c —¢ —¢ e a d

— d —d -d ¢ ¢ ¢ a e d
\ -d b -b b d -d -d d d f )
Next we imposed the rank-1 POVM constraint directly on this matrix, i.e., that the little Gram g
must be a rank-4 projector. The 5 unknowns thus reduced down to a single unknown: f. We will refer to the
resulting family of RICs as the parametric structure. Interestingly, when f'= 2/5, we recover the unbiased

¥ This point is often emphasized by Blake Stacey.

13 of 20 7/31/24,9:11 AM



Firefox

14 of 20

1720 Christopher A Fuchs, Maxim Olchanyi, and Matthew B Weiss

2-RIC from the previous section. Indeed, these parameterized RICs have the same structure as the unbiased
2-RIC: five unique entries up to sign, a block of four elements, a block of six elements, with a single angle
between them. We call f the bias parameter since it ends up controlling the relative bias between the two
blocks: All values 0 < f'< 3/4 lead to valid RIC’s.

With this in hand, we can obtain an explicit formula for the p-quantumness in terms of the singular
values of / — @, and thus minimize the parameter f for each choice of p. The values of the p-quantumness
then agree up to 107'¢ or more with those obtained separately through numerical optimization over biased
rank-1 parallel-update RIC-POVMs without any assumptions about their structure. So it appears that given
any choice of p, there is a value of f which delivers a biased RIC which minimizes the p-quantumness.
In other words, it appears that the minimally quantum biased rank-1 parallel-update RICs are all part of a
single parameterized family with a relatively simple structure which takes into account the dependence of
the quantumness on the choice of norm. For example, the 2-quantumness finds its minimum at = 6.61544478
with /= 0.40446637: We shall call the resulting RIC the biased 2-RIC.

18
16
14

12

10

p-quantumness

25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
p-norm

Fig 6. The smooth green line depicts the p-quantumness minimized over arbitrary rank POVMs (the
minimized co-quantumness is the red line). The blue dots depict the minimized p-quantumness over rank-
1 POVMs (the minimized co-quantumness is in yellow). In both cases, the parallel-update rule was used.
Furthermore, we performed the same optimization over higher rank POVMs. The rank-1 and arbitrary
rank optimizations agree on average up to about 10 (Fig 6): This is to be expected as the arbitrary rank
optimization explores a comparatively more difficult parameter space, essentially that of Kraus operators
K; such that £~K;K,. Thus it appears the rank-1 assumption is a relatively safe one.

Finally, the form of the Born Matrix @ in terms of the bias parameter f becomes

/ qr r r|s s s S S§ § \
r g r r|{s s s s S s
rr q r|s s s s § s
r r r g|ls s s s s s

= t t t t vow o w o ow w 32)

t t t tlv wu w w w w
t t t t w o ou v w w
t ¢t ¢t tlw w v u w w
t t t tlw w w w u v

\ t ¢t ¢t tlw w w w v u /
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where

(f-DEr-3)
of
_ (/- D32 841+ 57)
33 -41)
_(f-D(32f* 12 +3)
o 33 -4f)
_ A-DE121+3)
o 33— 4f )
With this, the Born Rule can be written out explicitly in terms of / as

4 9
O(E) =§1P(E,-IR;) gP(R,-) +

t:

15 3| ¢ 3 }
Segyd) = wy+(1-3) 2 P

+ (é) % P(E:|R) [(90;"- 723 P(R) + (72 f - 18 f)P(R;)
6fB-4s)y ;=5 T ' i

4
+(4f - 3)12 P(Ry) — (64 13— 96 [*+ 24f) > P(R;)]
=1 =5

where
~Ji+ Lifiodd
A= i—1,ifieven (33)
After meeting this beasty, recall once again what the @ for the non-existent real 4 = 4 SIC would have
looked like:
4 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 14 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 14 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 14 -1 -1 -1 -1 -1 -1
rf-1r -1 -1 -1 14 -1 -1 -1 -1 -1
== 34
¢ 51 -1 -1 -1 -1 -1 14 -1 -1 -1 -1 4

-1 -1 -1 -1 -1 -1 14 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 14 -1 -1
-1 -1 -1 -1 -1 -1 -1 =1 14 -1
\ -1 =1 =1 =1 =1 =1 =1 =1 =1 14

which would have given the Born Rule in irreducible QBist form as:
10
OE) = 2 [3P(R) — USIP(EJR)). (35)

i=1

That is really quite some difference.
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6 Non-Parallel Update

Finally, we can consider relaxing the parallel-update rule itself. In this case, we must search over
not only the RICs, but also the post-measurement states o;. It turns that out we can, in fact, obtain a lower
p-quantumness than in the parallel-update case. This is true for both the unbiased and biased cases, and
what’s more, we can obtain a lower value if the post-measurement set itself {o;} is not required to be
rescalable to a POVM. That is, it is allowed to be an arbitrary set linearly independent density matrices.

Whereas the equanimity of a SIC implies there is no advantage to having a distinct post-measurement
set, evidently the asymmetry of these RICs means that there is. We may note that this is not unlike certain
quantum eavesdropping protocols—those in which Alice transmits elements of an ensemble of quantum
states to Bob, only for Eve to intercept them first, subject them to a POVM, and on the basis of the
outcome, choose from a set of states to send to Bob in hopes of fooling him into thinking she’s Alice. One
might think the optimal move would be for Eve to pick a post-measurement set proportional to her POVM
elements, but this is generally not the case [49,50]. Unless there is a significant symmetry, the input states,
the measurement elements, and the output states will all be different.

In the end, the lowest 2-quantumness we have found so far clocks in at =6.60798217. However,
we have been unable to find a simple expression for the Born Rule in this case, other than simply pointing
to a matrix @, full of floating point numbers.

7 Conclusion

For quantum mechanics over C, SICs provide ideal QBist reference devices. They consist of
unbiased, equiangular, rank-1 POVMSs with post-measurement states proportional to POVM elements.
Moreover, they minimize the quantumness with respect to any unitarily invariant norm. We have seen
that for quantum mechanics over R in d = 4, the only property to survive is apparently that the POVM
and post-measurement set may be rank-1. Not only can lower quantumness be achieved by having biased
POVM elements, and by choosing an independent post-measurement set, but even the quantumness itself is
no longer a stable quantity: Different reference devices minimize the quantumness with respect to different
matrix norms!

It was always clear that the ideal QBist reference device for real-vector-space quantum mechanics
must be a more asymmetrical beast, diverging even more from the classical Law of Total Probability than in
the complex case, given the lack of a sufficiently large set of equiangular vectors. Qur method of exploration
has been to proceed by numerical counterexample, and subsequent refinement of the results. It remains to
be explained in a positive sense precisely why the somewhat baroque structures detailed in this note must
arise. We leave that for a future investigation. Indeed, such an investigation may prove useful beyond
quantum foundations, as the structures we’ve uncovered here may have significance in coding theory (as
was the frame that originally inspired this investigation, Rels [47,48]), or the theory of finite tight frames
more generally [46].

Perhaps the overall message could be summed up in this way. By reformulating quantum mechanics
in QBist terms, placing probabilities with respect to reference devices in pride of place, rewriting the Born
Rule and even Schridinger’s equation in entirely probabilistic terms, one hides what is perhaps one of the
most initially striking aspects of quantum theory: its use of complex numbers. Nevertheless, the i is still deeply
in the theory: If one drops it and confines oneself to real-vector-space quantum mechanics, its absence is
palpable. In the end, the use of complex numbers is really about the symmetry group that underlies quantum
theory, one which apparently provides a fertile ground for SICs. Break that and all hell breaks loose as
evidenced by the ugliness of the QBist version of the Born Rule. This is why establishing SIC existence in
all complex dimensions is such a crucial philosophical issue: If we find that a SIC does not exist in some
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particular dimension, then the Born Rule when written in irreducible QBist form will likely be every bit
as ugly as the expression for d = 4 real-vector-space quantum mechanics. Indeed, in that case, it would be
tempting to regard the probabilistic reformulation as a mere proof-of-principle exercise. In contrast, it is
precisely the elegance of the Born Rule in the case of SIC existence, its utterly subtle modification of the
Law of Total Probability, that continues to inspire confidence that QBism’s philosophical approach is on
the right track. Following Table shows our results.

Table 3. Our results, in short.

Candidate 2-quantumness
Petersen RIC 34.0470263
A,-RIC 9.1651514
Unbiased 2-RIC 6.6187997
Biased 2-RIC 6.6154448
Non-parallel biased 2-RIC 6.6079822
Non-existent SIC 6.0000000
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