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Subtraction-based densities for positrons created inside supercritical fields1
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We introduce an approach to investigate the spatial distribution of positrons generated from the Dirac vacuum
state through a localized supercritical electric field. The well-known degeneracy of energy states in the upper
and lower continua of a supercritical Dirac Hamiltonian has posed a significant challenge in distinguishing
between the appropriate subspaces of electronic and positronic states within the interaction zone. Consequently,
accurately partitioning the fully coupled quantum field operator into its electronic and positronic contributions
has been widely viewed as problematic. However, this partitioning would be beneficial for determining positronic
densities, which would provide valuable insights into the particles’ birth positions and production rate within
the interaction zone. Naturally, the computed quasidensities obtained by projecting onto force-free (or partially
dressed) energy eigenstates exhibit spatially dependent mathematical corrections, resulting in deviations from
the true physical positronic density. These corrections are not attributable to real particles during the interaction.
Our work focuses on developing a quantitative understanding of these corrections, allowing us to effectively
subtract them out and gain insights into the genuine dynamics within the pair-creation interaction zone.
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I. INTRODUCTION20

One of the most intriguing predictions of strong-field quan-21

tum electrodynamics is the prospect that elementary particles,22

such as electrons and positrons, can emerge from the vac-23

uum’s quantum state under the influence of extraordinarily24

powerful external fields [1–6]. Despite the significance of this25

phenomenon, it is remarkable that the fundamental mecha-26

nisms underlying the birth of matter in such a scenario, within27

the full context of space-time, remain far from being com-28

prehended. This enigma gives rise to a multitude of questions,29

each pivotal in its own right: Where precisely within the local-30

ized external field region do positrons come into existence?31

Do positrons and electrons within a pair materialize at the32

same location, or do they exhibit a certain separation? Is the33

birth of positrons and electrons synchronized, as suggested by34

classical conservation of total charge? Are these particles born35

at rest, or is there an inherent velocity distribution? And, what36

about the interrelated characteristics of particles within a pair–37

do they adhere to intuitive classical mechanics expectations?38

The absence of answers to these questions largely stems39

from the well-established challenge of formulating the funda-40

mental laws or theoretical framework necessary to describe41

the dynamics at the point of particle generation. Presently,42

even distinguishing between positrons and electrons within43

the interaction zone presents a formidable challenge. How-44

ever, a clever theoretical approach circumvents this dilemma45

by focusing solely on predicting particle properties after46

they have exited the interaction zone. In this S-matrix based47

method [7–9], the interaction zone is treated as a black box48

environment.49

Lessons from other realms of physics, such as the study of50

strong-field ionization in atoms and molecules, underscore the51

immense value of gaining microscopic insights into electronic52

dynamics [10]. Theoretical investigations with a comprehen- 53

sive space-time resolution have unveiled various mechanisms, 54

leading to phenomena like the generation of higher harmonics 55

in scattered light spectra [11,12], above-threshold ionization 56

[13], and atomic stabilization [14]. There is no inherent reason 57

why quantum field theoretical studies of pair creation could 58

not benefit from a similar level of advancement. 59

A frequently employed strategy to examine the Sauter- 60

Schwinger mechanism [15–17] for electron-positron pair cre- 61

ation in supercritical electromagnetic fields revolves around 62

the Dirac equation for the electron-positron field operator. 63

In the absence of external fields, the separation between en- 64

ergy eigenstates corresponding to positrons and electrons is 65

straightforward due to the presence of the mass gap, 2mc2. 66

These distinct subspaces enable a meaningful separation of 67

the full field operator into its positronic and electronic com- 68

ponents. However, the situation becomes intricate in the 69

presence of supercritical fields, leading to a partial degeneracy 70

of states within the upper and lower energy continua. This 71

complicates the energy-based separation into solely positronic 72

and electronic states, presenting a key challenge. This chal- 73

lenge is at the crux of the difficulty in disentangling purely 74

positronic properties and defining a clear, time-dependent 75

count of created pairs within the interaction zone. 76

There have been several works devoted to the challenge of 77

calculating and interpreting time-dependent particle numbers 78

during the interaction. In 2006, Krekora et al. [18] noted 79

interpretational difficulties in associating field-theoretical 80

quantities with properties of particles when projections based 81

on field-free states to identify positronic states were involved. 82

They showed that spatial probability densities inside the in- 83

teraction zone depend on the choice of the Hilbert subspace 84

on which the field operator is projected. They associated the 85

term “ghost states” with unphysical contributions to spatial 86
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densities that could not be interpreted as physical probabilities87

of real particles. In the same year, Gerry et al. [19] showed88

that for time-dependent subcritical potentials, instantaneous89

energy eigenstates provide physically meaningful subspaces90

to define unambiguous time-dependent particle numbers dur-91

ing the interaction. In 2014 [20] and 2016 [21], Dabrowski and92

Dunne introduced the concept of time-dependent superadia-93

batic particle numbers for the Schwinger particle production94

in time-dependent electric fields by truncating (diverging and95

asymptotic) adiabatic expansions at optimal order. This opti-96

mally truncated particle number provided also a clear picture97

of quantum interference processes, which are responsible for98

particle production for perturbations with nontrivial temporal99

substructure. In 2019, Unger et al. [22] provided an alternative100

formulation to the traditional quantum kinetic Vlasov equa-101

tion [23], where a projection based on field-free states instead102

of the instantaneous basis was investigated. It was suggested103

that the temporal turn-off shape of the external field would104

determine which approach is physically more meaningful.105

To further unlock the mysteries of the birth process, recent106

proposals in 2021 [24] and 2023 [25] employed a machine107

learning-based approach with the potential to surmount this108

conceptual hurdle. Here, genetic-programming–based sym-109

bolic regression algorithms first learn multiple sequences of110

partially dressed positronic spatial probability densities as111

training data and then exploit their features as a function of112

the dressing strength in order to predict the particles’ true113

distribution in space and momentum. In 2022 Ilderton [26]114

stressed that in addition to the question about the most suitable115

basis system a better understanding of the physics implied116

by the choice for each basis set and what it really counts is117

crucial. He examined the adiabatic number of pairs introduced118

in [20,21] and suggested its physical meaning in terms of a119

very rapid (but not abruptly) turn off of the external field. In120

2023, Diez et al. [27] studied the particles’ formation length121

and timescales.122

While our work is of fundamental theoretical nature, it is123

worth noting that this phenomenon of vacuum breakdown in124

strong external fields is now gaining immense experimental125

attention, owing to remarkable advancements in high-power126

laser systems’ capabilities [28–32].127

The structure of this work is organized as follows: In128

Sec. II we review our numerical methodology to compute129

the quasidressed density that describes real positrons and its130

corrections. In Sec. III we approximate these corrections by131

the density of positrons that are solely created due to the time132

dependence of an abruptly changing potential. We provide133

numerical, perturbative, and phenomenological expressions134

for these corrections. In Sec. IV we examine the properties135

of the positron’s true density obtained by the proposed sub-136

traction scheme and examine a consistency test to examine its137

accuracy. We conclude in Sec. V with a brief discussion and138

an outlook on future research directions.139

II. THE GENERAL FRAMEWORK OF COMPUTATIONAL140

QUANTUM FIELD THEORY141

In this section we briefly review our numerical approach142

(Sec. II A), and the electronic and positronic subspaces143

(Sec. II B) required to partition the field operator into its144

positronic part (Sec. II C), which is needed to compute the 145

quasidressed densities (Sec. II D). We also introduce the con- 146

cept of abruptons, which is essential to correctly interpret the 147

physical meaning of spatial densities inside the interaction 148

zone. The review parts of Secs. (II A) to (II C) can be skipped 149

by readers who are already familiar with the basic idea of 150

computational quantum field theory (CQFT). 151

A. The total electron-positron field operator 152

In contrast to many other powerful approaches to study 153

strong-field quantum electrodynamics (QED) effects, where 154

dressed propagators, S matrices, Feynman graphs, worldline 155

instantons, Wigner functions, n-point correlation functions, 156

scattering cross sections, spectra, and vacuum expectation val- 157

ues serve as the central quantities in CQFT, the fundamental 158

quantity of interest is the fully correlated electron-positron 159

field operator �(z,t). Its space-time evolution can be obtained 160

from multiple wave-function solutions to the Dirac equation. 161

If the spatial dimension is reduced to 1, it is possible to use 162

a finite space-time grid to evaluate this operator exactly with- 163

out any further approximation. For example, by introducing 164

fermionic creation and annihilation operators associated with 165

a certain Hilbert state basis, the quantum field theoretical 166

operator �(z,t) as a function of time t and position z can be 167

expanded [33,34] as the summations 168

�(z, t) = �pbp(t)φp(u; z) + �pd
†
p(t)φp(d; z) (2.1a)

= �pbpφp(u; z, t) + �pd
†
pφp(d; z, t). (2.1b)

Traditionally, φp(u;z,t) and φp(d;z,t) are chosen as the com- 169

plete set of wave functions evolved in time under the general 170

Dirac Hamiltonian (in one spatial dimension): 171

H(V0) = c σ1[p − e A(z, t)/c] + σ3 mc2 + e V(z, t) (2.2)

where eV is the interaction energy and e and m are the 172

positron’s charge and mass. The solution technique is general 173

enough to be applied to any vector potential A(z,t) and scalar 174

potential V(z,t). However, for better clarity we consider in 175

this work the case where A(z,t) = 0 and where the potential 176

V(z, t) = V0(mc2/e) Vs(z) f(t). Here, f(t)≡ sin2[πt/(2Ton)] 177

for t < Ton and f(t) � 1 for Ton < t governs the type of 178

temporal turn on and the (scaled) electrostatic potential Vs(z) 179

changes from Vs(z → –∞) ≡ 1 and to Vs(z → ∞) ≡ 0. For 180

the dynamics of interest, we will choose the (scaled) unitless 181

amplitude V0 = 5, which makes the system supercritical. The 182

corresponding spatially localized supercritical electric field 183

follows as E(z) = −dV(z)/dz. 184

The initial states φp(u; z, t = 0) and φp(d; z, t = 0) are the 185

energy eigenstates of the force-free Dirac Hamiltonian, given 186

by H0 ≡ c σ1 p + σ3 mc2, where p labels again their momen- 187

tum. They fulfill H0φp(u; z) = epφp(u; z) and H0φp(d; z) = 188

–epφp(d; z) with ep ≡ [m2c4 + c2p2]1/2. It is important to note 189

that the operator solution �(z,t) does not depend on which 190

particular set of basis states has been chosen for the mode 191

expansion in Eqs. (2.1). 192

In general, the characteristic spatial and temporal scales for 193

the electron-positron dynamics are naturally provided by the 194

fermions’ Compton wavelength λ ≡ h̄/(mc) = 3.8 × 10–13 m 195

and the time T ≡ h̄/(mc2) = 1.3 × 10–21 s. Below, we use λ 196
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and T as the basic units for the presentation of our numerical197

data.198

B. Positronic and electronic subspaces of the partially199

dressed Dirac Hamiltonian200

If the potential is chosen supercritical (i.e., V0 > 2), then201

the usual mass gap between the energy eigenstates of posi-202

tive and negative energy disappears and some of the states203

become energy degenerate. This means that a unique and un-204

ambiguous (energy-based) distinction between electronic and205

positronic subspaces is no longer possible. This separation is206

only possible if the unitless amplitude (which we denote from207

now on with α) of the potential α (mc2/e)Vs(z) is chosen less208

than 2, i.e., for a Hamiltonian:209

H(α) ≡ c σ1 p + σ3m c2 + αmc2Vs(z). (2.3)

Obviously, for α → V0, this Hamiltonian H(α) becomes210

identical to the fully dressed Hamiltonian H. If α < 2,211

the potential is subcritical and the energy of the eigenstates212

of H(α) can be used as a yardstick to separate unambigu-213

ously between purely positronic and electronic states. These214

corresponding (partially dressed) eigenstates are defined as215

H(α) φP(u, z;α) = Eu,P(α) φP(u,z;α) and H(α) φP(d, z;α) =216

Ed,P(α)φP(d, z;α), with Eu,P(α) and Ed,P(α) < mc2.217

C. Separation of the electron-positron field operator218

into its positronic portion219

Ideally, in order to compute an unambiguous spatial num-220

ber density for the created positrons ρ(e+,z,t), we have to221

partition first the electron-positron field operator �(z,t) into222

its positronic contribution. To calculate a “true” field operator223

for the positrons only, we would need to project the full field224

operator at any time onto the subspace of positronic states for225

α = 5. However, due to the unavoidable energy degeneracy226

mentioned above, for α > 2 the required states φP(u,z;α)227

for the corresponding projector cannot be identified based on228

energetic considerations. Therefore, we can only define the229

positronic (electronic) portions of the field operator for the230

dressing parameters α that are less than 2. Here, using a pro-231

jection of the (fully dressed) electron-positron field operator232

�(z,t) onto the Hilbert space of partly dressed energy eigen-233

states |Pα〉 of positive energy, one can introduce a positronic234

(and electronic) part of the operator,235

�(e+, z, t; α, V0)

≡ �Pα|Pα〉〈Pα|�(z, t)

= �PαφP(u, z;α)
∫

dz′φP(u, z
′, α)†�(z′, t), (2.4a)

�(e−, z, t;α, V0)

≡ �PαCφP(d, z;α)
∫

dz′φP(d, z
′, α)†�(z′, t). (2.4b)

Here, C denotes the antiunitary charge-conjugation opera-236

tor. As each value of α characterizes its own set of energies237

(labeled by Pα), the projected operator �(e+,z,t; α, V0) does238

depend on α. These positronic (partly dressed) states |Pα〉 can239

be calculated as the energy eigenstates for the fully coupled240

Dirac Hamiltonian, but the amplitude (denoted by α) has to be 241

subcritical, instead of the supercritical value V0 = 5 used to 242

compute the dynamics for�(z,t). We can define the positronic 243

quasinumber density by the vacuum expectation value: 244

ρ(e+, z, t;α, V0) ≡ 〈�†(e+, z, t;α, V0)�(e+, z, t;α, V0)〉
(2.5)

We should mention that two prior works [24,25] referred 245

to in the Introduction have explored some sophisticated 246

machine-learning techniques to use sequences of quasiden- 247

sities for ρ(e+, z, t; α, V0) for several dressing strengths α 248

< 2 to predict ρ(e+, z, t; α = V0) for the supercritical value 249

α = V0. 250

Using Eqs. (2.1), (2.4a), and (2.5), the time dependence of 251

the total number of positrons according to N(α,V0,t) � � dz 252

ρ(e+, z, t; α, V0), can be evaluated to 253

N(α,V0, t) = �n �Pα |〈Pα|n(t)〉|2, (2.6)

where |n(t)〉 denotes the time-evolved energy eigenstate of H0. 254

This expression also nicely formalizes the traditional Dirac 255

picture for pair creation, where the initial bare vacuum state is 256

represented by all negative energy eigenstates |n〉. If under the 257

time evolution |n〉 can excite any eigenstate of the subspace 258

of the positive-energy eigenstates of H(α), we interpret this 259

transition with the creation of a positron into the positive- 260

energy state |Pα〉. As the total number of created positrons is 261

equal to the number of electrons, we can omit the label e+ in 262

N(α,V0,t). Similarly, the resulting quasidressed spatial density 263

of the positrons amounts to 264

ρ(e+, z, t; α, V0) = �n|�Pα〈Pα|n(t)〉φP(u, z, α)|2 (2.7)

D. The quasidressed density ρ(e+, z, t; α, V0) describes 265

real positrons and corrections 266

During the time evolution, the computed “quantity” ρ(e+, 267

z, t; α, V0) defined in Eqs. (2.5) and (2.7) describes both 268

real physical positrons and (unfortunately) also mathematical 269

contributions. The part that corresponds to the real spatial 270

distribution of positrons, denoted by ρphys(e+, z, t, V0), cannot 271

depend on the dressing parameter α. Far outside the pair- 272

creation zone, where the electric field is zero, we should 273

consistently have ρ(e+, z, t;α,V0) = ρphys(e+, z, t,V0). This 274

is fully consistent with the fact that the spatial form of the 275

energy eigenstates outside the interaction zone (where Vs = 0 276

or Vs = 1) is independent of α. The key problem is, of course, 277

to compute the true positronic particle density ρphys(e+, z, t, 278

V0) inside the interaction zone. 279

In order to obtain the true observable density of physical 280

positrons at a given time t, it is necessary to project the 281

evolved field operator �(z,t) onto the corresponding subman- 282

ifold of instantaneous energy eigenstates of the true Dirac 283

Hamiltonian associated with positrons at that moment in time. 284

For instance, if the potential is zero at a specific time t (or, 285

equivalently, turned off abruptly to zero at time t), then the 286

projection should be performed on the completely force-free 287

(α = 0) energy eigenstates to obtain the true particle density. 288

This means that the (commonly studied) time-dependent den- 289

sity ρ(e+, z, t;α = 0,V0) (based on the popular projection 290

onto force-free states) corresponds only to the true den- 291

sity at time t if the potential’s amplitude V0 was suddenly 292
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turned off to V0 = 0 at that time t. However, it is crucial to293

acknowledge that due to the (unavoidable) time dependence294

of (even an abrupt) turn off, shape of the potential additional295

pair annihilation and creation processes are triggered. The296

possibility of the resulting change in the particle number is297

already fully contained in ρ(e+, z, t;α = 0,V0) at any time298

t. In essence, this means that ρ(e+, z, t;α = 0,V0) describes299

a combination of the real physical particles present at that300

interaction time t together with those particles that would be301

created or annihilated solely as a result of a sudden turn-off302

process of the field to zero. A comprehensive understanding303

of these latter particles is crucial for the core of this study.304

Consequently, we term these particles, which arise as a con-305

sequence of the sudden turn-off process, as “abruptons” and306

denote their associated spatial density with ρabr. It is essential307

to emphasize that the concept of abruptons emerges from a308

particular projection approach (i.e., when α is not equal to309

V0), and their existence is purely mathematical at this stage.310

Only after an infinitesimal time period following the abrupt311

change in the potential strength do they manifest as physical312

particles with observable properties.313

In a more general scenario, when the (scaled) potential314

strength is equal to α (or is suddenly changed to α), a dif-315

ferent projection process is required for meaningful densities.316

We must now project onto the positronic energy eigenstates317

associated with the potential of strength α. As a result, the318

quasidensity ρ(e+, z, t; α, V0) for α � 0 gains a clear and319

unambiguous interpretation. It represents the true physical320

density if the amplitude of the potential V0 becomes time321

dependent and is abruptly changed from any value V0 to α322

at time t. In that sense, ρ(e+, z, t; α, V0) carries too much323

information. It encompasses both real particles and those addi-324

tional particles that are created under a possible abrupt change325

of the potential from V0 to the value α. This further empha-326

sizes the importance of considering both types of particles in327

our analysis when examining the physical density at a given328

time t under such conditions.329

III. THE MAIN STRATEGY: ESTIMATE THE SPATIAL330

DISTRIBUTION ρcorr(e+, z; α, V0)331

In this work, we focus on the asymptotic long-time sit-332

uation, where the supercritical electric field region acts as333

a constant source of created particles. Here, we try to ex-334

amine the steady-state distributions of the positrons inside335

the interaction region. The computationally obtained steady336

state density ρsteady(e+, z; α, V0) can be decomposed into a337

density ρphys that describes the true physical positrons, and a338

correction term ρcorr that we will try to associate below with339

abruptons:340

ρsteady(e
+, z; α, V0)

= ρphys(e
+, z; V0) + ρcorr (e

+, z; α, V0) (3.1)

We note that this general expression is exact and not just an341

assumption. Depending on the specific type of particle popu-342

lation inside the interaction, an abrupt change of the external343

field from V0 to α can create but possibly also annihilate344

positrons [19]. This means that the mathematical (correction)345

term ρcorr(e+, z; α, V0) does not even have to be strictly 346

positive in all situations. 347

In addition to an unambiguous interpretation of ρabr(e+, z; 348

α, V0) (accomplished in Sec. II D), the second central goal 349

of this work is to obtain a quantitative understanding of this 350

particular correction term. While ρphys(e+, z; V0) obviously 351

cannot depend on α, the correction term ρcorr(e+, z; α, V0) 352

does depend on α. In other words, if we were able to con- 353

struct the functional properties of ρcorr(e+, z; α, V0), we could 354

simply subtract it from the computationally available solution 355

ρsteady(e+, z; α, V0). In this way, we would be able to use 356

these computational data to determine the ultimate goal, i.e., 357

ρphys(e+, z; V0). 358

To have concrete numerical examples in this work, we 359

have examined two electric field shapes, both of which of 360

total extension d and vanish for |z| > d/2. The first one 361

is constant with amplitude E0 ≡ V0mc2/(ed) for −d/2 < 362

z < d/2 and E0 = 0 for |z| > d/2. Here, the corresponding 363

(scaled) potential decreases linearly, i.e., Vs(z) = 1 for z < 364

−d/2, Vs(z) = 1 − (z/d + 1/2) for −d/2 < z < d/2, and 365

Vs(z) = 0 for d/2 < z. In order to study an electric field 366

configuration with a more interesting spatial substructure, 367

we have also chosen a three-peaked electric field, given by 368

E(z) = E0 cos4[3πz/d] for −d/2 < z < d/2 and E(z) = 0 369

for |z| > d. In this case, the corresponding (scaled) potential 370

is Vs(z) = 1 for z < −d/2, Vs(z) = 1 − [18π (1 + 2z/d) + 371

8 sin(6πz/d) + sin(12πz/d)]/(6π ) for −d/2 < z < d/2 and 372

Vs(z) = 0 for d/2 < z. 373

A. Approximations for the spatial distribution ρcorr(e+, z; α, V0) 374

The best way to visualize abruptons is to consider the 375

dynamics associated with a subcritical potential, which cannot 376

generate any permanent flux of created particles; therefore, 377

any particles that occur must have been generated exclusively 378

by temporally triggered transitions during those moments in 379

time when the potential was turned on or turned off. This sit- 380

uation is precisely what was examined in 2006 by Gerry et al. 381

[19]. Here, the number of created particles during an abrupt 382

turn on was compared to the number of created particles dur- 383

ing the turn off. Here, a remarkable symmetry was observed. 384

It was shown that if the timespan between the turn on and turn 385

off was sufficiently long such that those particles that were 386

created during the turn on had sufficient time to escape from 387

the interaction region, then the number of created particles 388

during the turn-off interval was identical to the number of 389

created particles during the turn on. In fact, even the spatial 390

densities of the created positrons during the abrupt turn on 391

and turn off were identical. This is an important observation 392

with regard to this present work. 393

The main theme of our present work is to explore and 394

test the implications of the following hypothesis: We will 395

approximate the density ρcorr(e+, z; α, V0) required for the 396

supercritical situation in Eq. (3.1) with the density of created 397

particles during the sudden turn off from potential V0 to α, 398

which we have denoted above with ρabr(e+, z; α, V0). In the 399

same vein, we will also examine the dependence of number of 400

created particles, defined as Nabr(α,V0) ≡ ∫ dz ρabr(e+, z; α, 401

V0) as a function of α and V0. 402
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FIG. 1. The temporal growth of the number of positrons N(α =
0,V0 = 2, t) [according to the definition in Eq. (2.6)] for different
dynamics, characterized by five turn-on durations Ton to ramp up the
linear potential V(z) to the subcritical value V0 = 2 via the turn-on
shape f(t) = sin2(πt/(2Ton )). The numerical parameters are the box
size L = 219.3 λ (= 1.6 a.u.), Nz = 2048 spatial grid points, Nt =
300 temporal grid points, and the spatial extension of the constant
electric field is d = 10 λ.

B. Scaling features of the spatial distribution403

ρabr(e+, z;α,V0) and of Nabr(α,V0)404

Before we can develop a theoretical handle on the purely405

projection-based contributions to ρ and to N, we have to406

eliminate the true physical positrons that are created during407

time dependence of the subcritical potential during its turn408

on. As a first step, in Fig. 1 we have computed the time-409

dependent number of positrons defined here as N(α,V0,t) �410

� dz ρ(e+, z, t;α = 0,V0), based on the (force-free) basis for411

α = 0 for five temporal turn-on durations Ton, ranging from412

an abrupt turn on (Ton = 0) to a very slow adiabatic turn on413

(Ton = 20 T).414

We start our discussion of Fig. 1 with the data for suffi-415

ciently large turn-on durations (Ton > 5T). Here, the number416

of created particles (according to the density obtained by417

the projection based on α = 0) approaches the value N =418

0.0045, which is independent of the duration of the turn on.419

Furthermore, here the density ρ(e+, z, t;α = 0,V0) becomes420

independent of time and vanishes outside the interaction zone.421

This mathematical density describes exactly the true physical422

positrons that would be created if the strength of the subcriti-423

cal potential V0 was turned off abruptly to V0 = 0. This means424

that if we repeat our simulations but calculate the long-time425

density ρ(e+, z, t;α = 0,V0) for α = 0, we can obtain the426

desired density ρabr (e+, z; V0, α = 0). A similar technique427

allows us to determine ρabr(e+, z; α, V0) for α�0 but less428

than 2.429

For completeness, a short comment about the dynamics430

for shorter turn-ons (Ton < 2 T) is in order. Here, we should431

mention that the additional number of positrons associated432

with the case of a faster turn on in Fig. 1 corresponds to433

those real particles that were created during the turn on. These434

real positrons were named “errants” in Ref. [35], as they435

escape the interaction symmetrically, i.e., independent of the436

direction of the electric force. Evidently, these errants are also437

created during a sudden turn off. However, for the case of 438

an adiabatic turn on or turn off they are not generated, as 439

the frequency spectrum of the turn-on or off shape does not 440

contain sufficiently large frequencies to trigger any upwards 441

transition into the positive-energy continuum. 442

Therefore, we have established two fully equivalent com- 443

putational techniques to generate ρabr(e+, z; V0 → α) and 444

also Nabr(α,V0) ≡ ∫ dz ρabr(e+, z; α, V0). We can either use 445

an abruptly turned-on external field, wait until all errants have 446

escaped the interaction zone, and then use the remaining prob- 447

ability density inside this zone as ρabr(e+, z; α, V0) or Nabr(V0, 448

α), or to avoid any errants entirely we can adiabatically ramp 449

up the field to V0. 450

In Fig. 2 we have graphed the resulting Nabr(α,V0) obtained 451

as the final “population” inside the interaction zone for a sub- 452

critical (and abruptly turned-on) potential of strength V0 = 2 453

for 11 dressing parameters α. 454

As expected, after a time of about 25 T, Nabr(α,V0) ap- 455

proaches a constant value. It is interesting that the usual initial 456

violent oscillations for very short times are completely absent 457

for α = V0 = 2. Fully consistent with our expectation, we 458

also observe here that for α = V0 = 2 the final value for 459

Nabr(α,V0) vanishes as V0 was subcritical. 460

In order to explore how Nabr(α,V0) scales with V0 and α, 461

we have graphed it in Fig. 2(b) as a function of the dressing 462

parameter α for five different values of V0. The perfectly 463

parabolic data suggest a remarkable symmetry of Nabr(α,V0). 464

In the entire region for 0 < V0 < 2 and 0 < α < 2, we find 465

that Nabr(z; V0 → α) does not depend in a complicated way 466

on V0 and α independently, but it is solely a function of the 467

difference (V0–α)2 and graphically nearly indistinguishable 468

from the function 469

Nabr(α,V0) = 0.0011 (V0–α)
2. (3.2)

Furthermore, more generally, it turns out that this expres- 470

sion is fully valid for −2 < V0 < 2 and −2 < α < 2, i.e., 471

it does not even matter in which direction the electric field 472

points. This extended scaling property is extremely helpful 473

for our analysis of the supercritical case (V0 = 5 and α < 2), 474

where |V0–α| = 3. Here, the density ρabr(e+, z; α, V0) [to be 475

subtracted from ρsteady(e+, z; α, V0)] could be calculated from 476

the easier subcritical case where V0 = 1 and α = −2 or the 477

case V0 = 2 and α = −1. 478

C. Perturbative confirmation of the scaling properties 479

of ρabr(e+, z; α, V0) and of Nabr(α,V0) 480

The observation that the density ρabr(e+, z; α, V0) as well 481

as the number Nabr(α,V0) associated with V0 can be generated 482

by turning the potential on very slowly, i.e. adiabatically, 483

suggests a possible approximation scheme to provide some 484

analytical support to confirm its observed scaling proper- 485

ties with regard to difference (V0–α)2. Under the condition 486

of an adiabatic change of the potential from strength α to 487

V0, any initial energy eigenstate of H(α) evolves in time 488

in such a way that it remains an instantaneous eigenstate 489

of the corresponding Hamiltonian. In other words, the true 490

final state |Pα (t)〉 associated with the initial state |Pα〉 can 491

be approximated by |PV0〉. As a second assumption, we use 492

the usual Raleigh-Schrödinger perturbation theory, to express 493
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FIG. 2. (a) The time evolution of the number of positrons Nabr(α,V0,t) [according to the definition in Eq. (2.6)] for 11 values of the dressing
parameter α used in the projection operator and V0 = 2. The linear potential V(z) of subcritical strength V0 = 2 and extension d = 10λ was
turned on abruptly. (b) The final number of positrons N(α,V0,t) at time t = 112.7 T (=0.006 a.u.) as a function of the dressing strength α for
five different subcritical dynamics with strength V0. All other parameters as in Fig. 1.

the eigenstate |PV0〉 for V0 in terms of the set of “unper-494

turbed” states |Pα〉 and |Nα〉 associated with H(α). We can495

write H(V0) = H (α) + (V0–α)mc2Vs(z), i.e., and therefore 496

we consider (V0–α)mc2 Vs(z) as the perturbation. We obtain 497

|PV0〉 = |Pα〉 + (V0–α) mc2 �Pα′ 〈Pα′ |Vs(z)|Pα′ 〉/(EPα–EPα′ ) |Pα′ 〉
+ (V0–α)mc2 �Nα′ 〈Nα′ |Vs(z)|Pα〉/(EPα–ENα′ )|Nα′ 〉 (3.3)

If we insert this first-order solution in O(V0–α) for |PV0〉498

into the expression of Eq. (2.6), we obtain499

Nabr(α,V0)

= (V0–α)
2m2c4�Nα�Pα|〈Nα|Vs(z)|Pα〉/(EPα–ENα )|2

(3.4)

In order to check the numerically suggested sim-500

ple scaling Nabr (α,V0) ∼ (V0–α)2, we have to confirm501

that the expression for the double summation �� ≡502

�Nα �Pα|〈Nα|Vs(z)|Pα〉/(EPα–ENα )|2 does not depend very503

sensitively on α or V0. The independence on V0 is trivial;504

however, to examine the dependence on α requires the nu-505

merical evaluation of the double sum ��. In Table I we506

have summarized the numerical value of this double sum507

TABLE I. The double sum �� defined in Eq. (3.4) for linear
potentials Vs(z) with three different extensions d.

α �� for d = 10 λ �� for d = 15 λ �� for d = 20 λ

−2.0 0.001204 0.0007728 0.0005781
−1.5 0.001143 0.0007629 0.0005742
−1.0 0.001121 0.0007563 0.0005712
−0.5 0.001108 0.0007524 0.0005696
0.0 0.001104 0.0007512 0.0005691
0.5 0.001108 0.0007524 0.0005696
1.0 0.001121 0.0007563 0.0005712
1.5 0.001143 0.0007629 0.0005741
2.0 0.001204 0.0007728 0.0005781

of the linear potential given by Vs(z) with three different 508

extensions d. 509

The data in the table confirm that the double sum �� 510

depends only very weakly on α. In other words, the first- 511

order perturbation theory (together with the assumption of 512

adiabaticity) confirms the overall observed scaling behavior 513

Nabr(α,V0) ∼ (V0–α)2. 514

Very similarly, the same methodology can also be applied 515

to approximate perturbatively the positronic density, which we 516

obtain as 517

ρabr (e
+, z; α, V0)

= (V0–α)
2 m2c4�Nα

|�Pα〈Pα|Vs(z)|Nα〉/(ENα–EPα )φP(u, z, α)|2 (3.5)

In order to examine if the density is solely a function of 518

(V0–α)2, we have computed numerically the second factor 519

��(z) ≡ �Nα|�Pα〈Pα|Vs(z)|Nα〉/(ENα − EPα )φP(u, z, α)|2. 520

In Fig. 3 we display the scale-independent densities for α = 521

0 for the constant as well as the three-peaked electric field. 522

Here, the exact densities for (α = 0, V0 = 2) and (α = 2, 523

V0 = 0) are graphically indistinguishable from each other. 524

Also, the agreement with the perturbative predictions accord- 525

ing to Eq. (3.5) is excellent. 526

We should conclude this section by proposing an approxi- 527

mate quasiphenomenological expression to relate the shape of 528

the electric field Es(z) (= –dVs(z)/dz) directly to ρ(e+, z, t; α, 529

V0). This convolution integral-type expression assumes some 530

kind of linearity and that a very sharp delta-functionlike elec- 531

tric field leads at turn off to a spatially exponentially decaying 532
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FIG. 3. Comparison of the (scaled) abrupton density ρabr(e+, z, α,V0) obtained exactly numerically, with the predictions of perturbation
theory [Eq. (3.5)] and of the phenomenological convolution integral ∼ ∫ dx E2(x) exp[–2.2 |z–x|/λ] for d = 10λ, V0 = 2, and α = 0. For
comparison, we also sketch the spatial shape of the electric field. All other parameters as in Fig. 1, (a) for the constant electric field, (b) for the
three-peaked electric field.

density on a scale of λ. This point-spread function integral533

[25,35–38] reads, for d = 10 λ and E2
s (z) = θ (d/2–|z|),534

ρabr (e
+, z, α, V0)

= (V0–α)
20.01632(e2m–2c–4)

×
∫

dx (1.1/λ) exp[–2.2|z–x|/λ]E2
s (x) (3.6)

In Fig. 3 we have superimposed this prediction by the535

crosses and find a qualitative agreement with the exact data for536

the constant as well as the three-peaked electric field. While537

this expression approximates the computed density, it also538

raises an interesting conceptual question about locality and539

the nontrivial choice for the relativistic position operator in540

quantum field theory [39–44]. We note that the finite width of541

the integration kernel ∼ λ predicts the density ρabr(e+, z, α,542

V0) to be nonzero, even in those spatial regions (z > |d/2|),543

where the electric field vanishes.544

IV. THE PHYSICAL POSITRON SPATIAL DENSITY545

As we have now obtained a good understanding of the546

scaling properties of the density ρcorr(e+, z; α, V0) and even547

quasianalytical approximations, we can now subtract it from548

the computed density ρsteady(e+, z; α, V0) for a supercritical549

potential with V0 = 5. In Sec. IVB we will provide some550

consistency tests based on the total charge density that give551

us some estimate of the accuracy of this subtraction scheme.552

A. The positron spatial density in the steady state553

for several supercritical fields554

We can now analyze the features of the difference555

ρsteady(e+, z;α,V0)−ρabr (e+, z;α,V0) as a potential candi-556

date for the desired density ρphys(e+, z, V0).557

In Fig. 4(a) we present the original density ρsteady(e+, z;558

α, V0) for V0 = 5 for five different values of the dressing559

parameters, α = 0, 0.5, 1.0, 1.5, and 2.0. The rather strong560

dependence of ρsteady on α inside the interaction region of the561

constant electric field is obvious. As expected, outside this562

region, ρsteady(e+, z; α, V0) is constant and independent of α.563

As the electric field was positive (i.e., pointing to the right) the 564

positrons are ejected exclusively to z → �. We remark that 565

the constant value of ρsteady(e+, z; α, V0) for z > d/2 can also 566

be obtained from time-independent methods, such as Hund’s 567

rule [37,38]. 568

In order to examine the quality of our proposed 569

subtraction scheme, we have also graphed the difference 570

ρsteady(e+, z;α,V0)−ρabr (e+, z;α,V0) for the three 571

values of α = 1.0, 1.5, and 2.0. These were obtained 572

from subcritical simulations with (α = −2,V0 = 2) for 573

ρsteady(e+, z;α = 1,V0), with (α = −1.5,V0 = 2) for 574

ρsteady(e+, z;α = 1.5,V0) and finally with (α = −1,V0 = 2) 575

for ρsteady(e+, z;α = 2,V0), respectively. The three 576

“corrected” densities suggest that after the subtraction with 577

ρabr, the undesirable dependence on α is significantly reduced. 578

This gives us some evidence that even in the supercritical 579

case a major contribution to ρsteady(e+, z; α, V0) is indeed 580

provided by ρabr(e+, z; α, V0). 581

To convince us of the quality of the reduction of the α 582

independence also for more general spatially inhomogeneous 583

electric fields, we have repeated in Fig. 4(b) the corresponding 584

data for the three-peaked electric field. Quite interestingly, we 585

see a clear shift of the three peak locations in the direction 586

of the electric field. While the near independence of α in 587

ρsteady − ρabr is encouraging, there is unfortunately still a very 588

small α dependence even after the subtraction. Therefore, 589

we can associate ρsteady(e+, z;α,V0)−ρabr (e+, z;α,V0) with 590

ρphys(e+, z; V0) only approximately. 591

In order to examine the remaining α dependence for sev- 592

eral supercritical values of V0, we illuminate it from the 593

perspective of the number of positrons inside the interac- 594

tion zone Ninside(e+, α; V0) computed as Ninside(e+, α; V0)≡ 595

∫ dz ρsteady(e+, z; V0, α), where the spatial integration extends 596

only from z = −d/2 to z = d/2 covering only the region 597

where the electric field is nonzero. 598

In Fig. 5 we display the numerically obtained (uncorrected) 599

Ninside(e+, α; V0) as a function of α for six supercritical 600

potential strengths. Consistent with our expectation, we find 601

that Ninside(e+, α; V0) decreases with increasing α, as we 602

have here α < V0 and the magnitudes of the abruptons shrink. 603
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FIG. 4. The steady state of the positrons’ spatial number density ρsteady(e+, z, α,V0) [according to the definition in Eq. (2.7)] for five values
of the dressing parameter α used in the projection operator and V0 = 5. The bottom three curves are the difference ρsteady(e+, z, α,V0) −
ρabr (e+, z, α,V0) for α = 1, 1.5, and 2. The final time t = 112.7 T. All other parameters as in Fig. 1, (a) for the constant electric field, (b) for
the three-peaked electric field.

In fact, if we were to extrapolate these six curves to α →604

V0, there should be almost no abruptons and Ninside(e+, α;605

V0) should become the true number of created positrons in-606

side the steady state for each value of V0. For the special607

case of a simple quadratic polynomial match, i.e., Ninside(e+,608

α; V0) ≈ a(V0) + b(V0) (α–V0) + c(V0) (α–V0)2, we found609

that the expansion factor c(V0) was nearly independent of610

V0, as it changed from 0.0011 (for V0 = 2.5) to 0.0010 (for611

V0 = 5) only rather insignificantly. To reiterate the findings612

from Sec. III B above, for −2 < α < 2 and −2 < V0 < 2613

we found Ninside(e+, α; V0)= 0.0011 (α–V0)2, where any614

population inside the interaction zone can be exclusively as-615

sociated with abruptons. This finding is another independent616

FIG. 5. The (uncorrected) number of positrons inside the inter-
action region according to Ninside(e+, α; V0)≡ ∫ dz ρsteady(e+, z; V0,
α), where the spatial integration extends only from z = −d/2 to
z = d/2. The two open circles (for V0 = 5 and 4.5) are the predic-
tions from the extrapolated polynomials up to second order in (α–V0)
and extrapolated to α = V0. The nearly horizonal straight lines [red
( V0 = 5), green (V0 = 4.5), and blue (V0 = 4.0) ] are the corrected
densities Ninside(e+, α; V0)–0.0011 (V0–α)2 as a function of α.

qualitative confirmation that the final positron populations 617

inside the supercritical interaction zone differ mainly by 618

abrupton-like contributions. 619

In Fig. 5 we have also graphed the corrected number 620

of positrons, obtained by subtracting the abrupton-like con- 621

tributions from the calculated quasipositron number, i.e., 622

Ninside(e+, α; V0) − 0.0011(α–V0)2. The resulting nearly hor- 623

izontal lines show again that the α dependence is again 624

drastically reduced, suggesting that we can approximately 625

associate this difference with the true number of physical 626

positrons inside the supercritical interaction region. 627

B. Comparison with the unambiguous electric current density 628

In our present understanding, the only physically ob- 629

servable quantity inside the supercritical interaction zone 630

that can be calculated unambiguously without any projec- 631

tion is the total charge density Qexact(z, t), as it is defined 632

from the full electron-positron field operator as Qexact (z, t) ≡ 633

e 〈�†(z, t)�(z, t)–�(z, t)�†(z, t)〉/2. We can therefore esti- 634

mate the accuracy of our positronic density ρphys(e+, z, t) 635

defined in Eq. (3.1) by synthesizing the corresponding total 636

charge density as Qphys(z, t) ≡ ρphys(e+, z, t)−ρphys(e–, z, t), 637

where the electronic density could be obtained from a similar 638

abrupton-subtraction approach. We note that a similar accu- 639

racy gauge was already presented in Refs. [24,25], where the 640

accuracy of a machine learning-based algorithm to construct 641

ρphys(e+, z, t) and ρphys(e–, z, t) was evaluated. 642

In Fig. 6 we present our results for the steady state for 643

the constant and also three-peaked electric field case. The 644

exact curve Qexact(z) that serves as an unambiguous yard- 645

stick is presented by the blue open circles. We see that it 646

increases rather monotonically from the left-hand side of the 647

electric field (associated with ejected negatively charged elec- 648

trons) to its right-hand side. The red curve was computed 649

via ρsteady(e+, z, α)−ρsteady(e–, z, α) for α = 0 and V0 = 5, 650

as the contributions to the abruptons is identical here for 651

the electrons and positrons, and prior subtraction of these 652

terms from ρsteady would be irrelevant for the constructed 653
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FIG. 6. Comparison of the steady-state total charge density Qexact(z) defined in Sec. IVB and a constructed one based on the difference
between the calculated positronic and electronic densities ρphys(e+, z, α,V0) − ρphys(e–, z, α,V0) for α = 0 and α = 2 for V0 = 5. The red
curve is the density ρphys(e+) − ρphys(e–) for α = 5, based on the extrapolated curves using α = 1.0, 1.2, 1.4, 1,6, 1.8, and 2.0. For comparison,
the blue circles are the exact total charge density Qexact (z) ≡ e 〈�†�–��†〉/2. (a) For the constant electric field, and (b) for the three-peaked
electric field.

total density. The red curve is the same difference, how-654

ever, evaluated for α = 2 and V0 = 5. The red curve in655

the graph is based on extrapolating the six sets of densities656

ρsteady(e+, z, α)−ρsteady(e–, z, α) for α = 1, 1.2, 1.4, 1.6, 1.8,657

and 2.0 to α = 5. The agreement with the exact curve (open658

circles) is excellent and gives credence to the validity of this659

approach.660

In order to perform this quantitative accuracy test also for661

more complicated electric field, we have repeated the same662

simulations for the three-peaked electric field defined at the663

top of Sec. III above. The corresponding data are shown664

in Fig. 6(b) and confirm the validity of our approach for a665

spatially inhomogeneous electric field.666

V. DISCUSSION AND FUTURE RESEARCH DIRECTIONS667

In this study, we have explored an approach to derive668

accurate spatial densities of positrons created within the su-669

percritical interaction zone. Our method involves subtracting670

projection-dependent corrections, aiming to uncover the true671

physical distribution of positrons. For scenarios involving sub-672

critical external fields, these corrections can be unequivocally673

attributed to positrons termed abruptons, generated due to the674

abrupt changes in the potential’s time dependence. We em-675

ployed various numerical techniques, including long-time dy-676

namics analysis, perturbation theory, and convolution-based677

integral expressions, to consistently evaluate these correc-678

tions. Subsequently, we applied these methods to the super-679

critical case, resulting in significant reductions in projection-680

dependent contributions. This subtraction-based approach681

serves as a theoretical means to investigate the actual spatial682

profile of physical positrons within the interaction region.683

At this early stage of our research, numerous avenues684

for future investigation emerge. First and foremost, although685

we have primarily focused on one-dimensional dynamics686

for computational simplicity, there is no inherent obstacle687

to extending our methodology to three-dimensional sys-688

tems. Additionally, even after the subtraction of the abrupton689

density, we observed a slight dependence on the chosen sub- 690

space for projection. Further exploration of techniques to 691

minimize the remaining α-dependent corrections is warranted. 692

Currently, we lack a comprehensive interpretation of these 693

remaining correction terms. Notably, the presence of existing 694

physical positrons within the interaction zone appears to in- 695

fluence the spatial distribution of abruptons generated during 696

abrupt potential turn offs. Here, the Pauli exclusion principle 697

may play a pivotal role. 698

We have yet to conduct a comprehensive analysis of the 699

accuracy of our approximate subtraction term across a broader 700

range of V0 or d values. Our primary emphasis has been on 701

systematically varying the spatial profiles of the electric field 702

while keeping V0 and d constant. Our investigation associated 703

with transitions from constant to triply peaked field shapes 704

indicates that the magnitude of the spatial gradient of the field 705

does not necessarily compromise the quality of our subtrac- 706

tion term. As per definition, the subtraction term is exact for 707

V0 < 2mc2, we anticipate a degradation in the quality of the 708

subtraction term with increasing V0, a hypothesis consistent 709

with our findings discussed in Sec. V. In that section, we 710

observed that the presence of preexisting physical positrons 711

within the interaction zone seems to impact the spatial dis- 712

tribution of abruptons generated during abrupt potential turn 713

offs. In the same vein, we anticipate an improvement in accu- 714

racy for an increase in the extension parameter d (with a fixed 715

V0) as the existing physical particles decrease. 716

Furthermore, our study has concentrated on the long- 717

time steady-state distribution. However, it is conceivable to 718

generalize our approach to address the short-time formation 719

process. Once the potential stabilizes at a constant value, the 720

abrupton-density’s specific form should become independent 721

of time, allowing for its subtraction from the time-dependent 722

density. 723

An intriguing challenge also arises in defining a time- 724

dependent particle number when interacting with a rapidly 725

oscillating external field. In addressing this issue, the locally 726

constant field approximation (LCFA) [39,40] emerges as a 727
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valuable tool. This method proves particularly beneficial in728

rendering complex space-time profiles of laser pulses accessi-729

ble to theoretical approaches, such as the worldline instanton730

approach [41] or the quantum Vlasov equation [22,23,42].731

Remarkably, the LCFA demonstrates great efficacy, especially732

when the wavelength of the laser surpasses the particles’733

formation length, and classical trajectories are localized near734

the field’s maximum. This observation hints at the intriguing735

possibility that classical trajectory considerations could offer736

additional insights into the phenomenon.737

Last, it is essential to acknowledge that our work relies738

on the framework of relativistic quantum field theory, which739

associates the field’s coordinates with the actual particle po-740

sitions. However, on a more fundamental level, unresolved741

conceptual questions persist regarding the relativistic localiza-742

tion problem and the correct choice for the position operator743

[36,43–48]. This issue is also partly linked to the fact that the744

continuum of upper energy states is incomplete, leading to the745

impossibility of perfect spatial localization for any superpo- 746

sition within this subspace. This delocalization phenomenon 747

was also considered in the convolution integral outlined in 748

Eq. (3.6). 749

In summary, our study represents a further step towards 750

understanding the true spatial distribution of positrons within 751

supercritical interaction zones. However, numerous intriguing 752

questions and promising research directions await exploration 753

in the future. 754
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