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ABSTRACT

We study the problem of capacity modification in the many-to-one
stable matching of workers and firms. Our goal is to systematically
study how the set of stable matchings changes when some seats are
added to or removed from the firms. We make three main contribu-
tions: First, we examine whether firms and workers can improve
or worsen upon changing the capacities under worker-proposing
and firm-proposing deferred acceptance algorithms. Second, we
study the computational problem of adding or removing seats to
either match a fixed worker-firm pair in some stable matching or
make a fixed matching stable with respect to the modified prob-
lem. We develop polynomial-time algorithms for these problems
when only the overall change in the firms’ capacities is restricted,
and show NP-hardness when there are additional constraints for
individual firms. Lastly, we compare capacity modification with the
classical model of preference manipulation by firms and identify
scenarios under which one mode of manipulation outperforms the
other. We find that a threshold on a given firm’s capacity, which
we call its peak, crucially determines the effectiveness of different
manipulation actions.
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1 INTRODUCTION

The stable matching problem is a classical problem at the intersec-
tion of economics, operations research, and computer science [21,
23, 30, 37]. The problem involves two sets of agents, such as work-
ers and firms, each with a preference ordering over the agents on
the other side. The goal is to find a matching that is stable, i.e., one
where no worker-firm pair prefer each other over their current
matches.
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Many real-world matching markets have been influenced by the
stable matching problem, such as school choice [1-3], entry-level
labor markets [33, 36], and refugee resettlement [4, 5]. In these
applications, each agent on one side of the market (e.g., the firms)
has a capacity constraint that limits the maximum number of agents
on the other side (namely, workers) it can be feasibly matched with.
Remarkably, for any given capacities, a stable matching of workers
and firms always exists and can be computed using the celebrated
deferred-acceptance algorithm [15, 33].

While the stable matching problem assumes fixed capacities, it is
common to have flexible capacities in practice. This is particularly
useful in settings with variable demand or popularity such as in
vaccine distribution or course allocation. Flexible capacities also
allow for accommodating other goals, such as Pareto optimality
or social welfare [29]. For example, in 2016, nineteen colleges in
Delhi University in India increased their total capacity by 2000 seats
across various courses [12]. Another example is the ScheduleScout
platform,! formerly known as Course Match [10], used in course
allocation at the Wharton School. This platform allows the addition
or removal of seats in courses that are either undersubscribed or
oversubscribed, respectively.? In more complex matching environ-
ments such as stable matching with couples where a stable solution
is not guaranteed to exist, a small change in the capacities can
provably restore the existence of a stable outcome [31]. We will use
the term capacity modification to refer to change in the capacities
of the firms by a central planner.

The theoretical study of capacity modification was initiated by
Sénmez [39], who showed that under any stable matching algo-
rithm, there exists a scenario where some firm is better off when its
capacity is reduced. The computational aspects of capacity modifi-
cation have also recently gained attention [7, 8, 11]. However, some
natural questions about how the set of stable matchings responds
to changes in capacities have not been answered. Specifically, by
modifying the capacities, can a given worker-firm pair be matched
under some stable matching? Or, can a given matching be realized
as a stable outcome of the modified instance? Furthermore, if we
consider the perspective of a strategic firm, there has been a lack
of a distinct comparison between "manipulation through capac-
ity modification” and the traditional approach of "manipulation
through misreporting preferences”. Our interest in this work is to
address these gaps.

!https://www.getschedulescout.com/
Zhttps://www.youtube.com/watch?v=0SOanbdV3jI&t=1m38s
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Our Contributions

We undertake a systematic analysis of the structural and computa-
tional aspects of the capacity modification problem and make three
main contributions:

Capacity modification trends. In Section 3, we study the effect
of capacity modification on workers and firms. We observe that
increasing a firm’s capacity by 1 can, in some cases, improve, and
in other cases, worsen its outcome under both worker-proposing
and firm-proposing deferred acceptance algorithms. The workers,
on the other hand, can improve but never worsen (see Table 1).

Computational results. In Section 4, we study a natural compu-
tational problem faced by a central planner: Given a many-to-one
instance, how can a fixed number of seats be added to (similarly, re-
moved from) the firms in order to either match a fixed worker-firm
pair in some stable matching or make a given matching stable in the
new instance? We show that these problems admit polynomial-time
algorithms. We also study a generalization where individual firms
have constraints on the seats added to or removed from them, in
addition to an aggregate budget. Here, the problem of matching a
fixed worker-firm pair turns out to NP-hard while ensuring that a
given matching is stable can still be efficiently solved (see Table 2).

Capacity modification v/s preference manipulation. In Section 5,
we examine which mode of manipulation is more powerful for a
strategic firm: underreporting/overreporting capacity or misreport-
ing preferences. Interestingly, it turns out that the effectiveness of
each manipulation action (i.e., adding/deleting capacity or misre-
porting preferences) depends on a threshold on the firm’s capacity
which we call peak (see Figure 1). For a firm to successfully manipu-
late its preferences, its capacity must be strictly below its peak (un-
der the worker-proposing algorithm) or at most its peak (when
firms propose). Thus, the concept of peak appears to have relevance
beyond capacity modification.

All missing proofs and other technical details can be found in
the full version [17].

Related Work

The stable matching problem has inspired a large body of work in
economics, operations research, computer science, and artificial
intelligence [15, 21, 23, 30, 37].

Prior work has demonstrated strategic vulnerabilities of stable
matching algorithms. It is known that any stable matching algo-
rithm is susceptible to manipulation via misreporting of prefer-
ences [13, 32], underreporting of capacities [39], and formation of
pre-arranged matches [40].3 Subsequently, Roth and Peranson [36]
showed via experiments on the data from the National Resident
Matching Program that less than 1% of the programs can benefit
by misreporting preferences or underreporting capacities. Kojima
and Pathak [27] provided theoretical justification for these findings
by showing that incentives for such manipulations vanish in large
markets. Note that, unlike the above results that only apply to spe-
cific datasets [36] or in the asymptotic setting [27], our algorithmic
results provide worst-case guarantees for any given instance.

3In pre-arranged matches, a worker and firm can choose to match outside the algorithm.
The worker does not participate in the algorithm, and in return, is offered a seat at the
firm. The firm then has one less seat available through the algorithm.
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Another line of work has explored restricted preference do-
mains for circumventing the above impossibility results [22, 26,
28]. In particular, Konishi and Unver [28] have shown that under
strongly monotone preferences (formally defined in Section 2), a
firm cannot manipulate by underreporting its capacity under the
worker-proposing algorithm (although other algorithms, like the
firm-proposing algorithm, can still be manipulated).

The computational problem of modifying capacities to serve
a given objective has seen significant attention in recent years.
Bobbio et al. [8] showed that the problem of adding (similarly,
removing) seats from the firms in order to minimize the average
rank of matched partners of the workers is NP-hard to approximate
within O (4/m), where m is the number of workers. Bobbio et al. [7]
developed a mixed integer linear program for this problem.

Chen and Csaji [11] studied the problem of increasing the firms’
capacities to obtain a stable and perfect matching, and similarly, a
matching that is stable and Pareto efficient for the workers. They
considered two objectives for this problem: minimizing the overall
increase in the firms’ capacities and minimizing the maximum
increase in any firm’s capacity. Dur and Van der Linden [14] studied
the problem of adding seats to firms to achieve a matching that
is stable (with respect to the modified capacities) and not Pareto
dominated (as per workers’ preferences only) by any other stable
matching. Some of our computational results draw upon the work
of Boehmer et al. [9], who studied the control problem for stable
matchings in the one-to-one setting. We discuss the connection
with this work in Section 4.

2 PRELIMINARIES

For any positive integer r, let [r] = {1,2,...,r}.

Problem instance. An instance of the many-to-one matching prob-
lem is given by a tuple (F, W, C, >), where F = {fi,..., fu} is the
setof n € N firms, W = {wy,..., wp} is the set of m € N workers,
C ={cq,...,cn}is the set of capacities of the firms (where, for every
i € [n],c;i e NU{0}), and >= (>ﬁ, S S e ..s>w,) is the
preference profile consisting of the ordinal preferences of all firms
and workers. Each worker w € W is associated with a linear order
(i.e., a strict and complete ranking) >,, over the set F U {0}. Each
firm f € F is associated with a linear order > ¢ over the set WU {0}.
Throughout, we will use the term agent to refer to a worker or a
firm, i.e., an element in the set W U F.

For two capacity vectors C,C € (N U {0})", we will write C > C
to denote coordinate-wise greater than or equal to, i.e., for every
i € [n],¢; = cj, where ¢; and ¢; are the ith coordinate of vectors C
and C, respectively. Additionally, we will write |C — C|; to denote
the L! norm of the difference vector, i.e., |C - C|; = Y lei—cil

When all firms have unit capacities (i.e., for each firm f € F, ¢y =
1), we obtain the one-to-one matching problem. In this case, we will
follow the terminology from the literature on the stable marriage
problem [15] and denote a problem instance by (P, Q, >), where P
and Q denote the set of n men and m women, respectively, and >
denotes the corresponding preference profile.

Complete preferences. A worker w is said to be acceptable to a
firm f if w >¢ 0. A set of workers S € W is said to be acceptable
to a firm f, denoted by S >¢ 0, if all workers in it are acceptable
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to f. Likewise, a firm f is acceptable to a worker w if f >,, 0. An
agent’s preferences are said to be complete if all agents on the other
side are acceptable to it.

Responsive preferences. Throughout the paper, we will assume
that firms’ preferences over subsets of workers are responsive [34].
Informally, this means that for any subsets S,S” C W of workers
where S is derived from S’ by replacing a worker w’ € §’ with a
more preferred worker w, it must be that S > i3 S’. More formally,
the extension of firm f’s preferences over subsets of workers is
responsive if for any subset S € W of workers,

o forallw e W\S,SU{w} >¢ Sifand only if w >¢ 0, and
o forallw,w’ € W\ S, SU{w} >r SU{w'} if and only if
w>rw.

We will write S >¢ S to denote that either S > §" or § =
S’. Further, we will always consider the transitive closure of any
responsive extension of > £ which, in turn, induces a partial order
over the set of all subsets of workers.

We will now define two subdomains of responsive preferences
that will be of interest to us: strongly monotone and lexicographic.

Strongly monotone preferences. A firm is said to have strongly
monotone preferences [28] if its preferences are responsive and it
prefers cardinality-wise larger subsets of workers. That is, for any
pair of acceptable subsets of workers S, T such that |S| > |T|, it
holds that 5 >¢ T.

Lexicographic preferences. A firm f is said to have lexicographic
preferences if it prefers any subset of workers containing its favorite
worker over any subset not containing it, subject to which, it prefers
any subset containing its second-favorite worker over any subset
not containing it, and so on. Formally, given a linear order >y
over the set W U {0} and any pair of distinct acceptable subsets of
workers S and T, we have S > f T if and only if the favorite worker
of firm f (as per >f) in the set difference of Sand T (i.e., S\TUT\S)
lies in S. Observe that lexicographic preferences are responsive.

For many-to-one instances with two workers (i.e., |[W| = 2) that
are both acceptable to a firm, lexicographic and strongly monotone
preferences coincide. However, for instances with three or more
workers, strongly monotone preferences are not lexicographic and
lexicographic preferences are not strongly monotone.*

Many-to-one matching. Given an instance 7 = (F,W,C,>), a
many-to-one matching for 7 is specified by a functiony: FUW —
2FYW guch that:

o for every firm f € F, |u(f)| < ¢f and p(f) € W, ie, each
firm f is matched with at most ¢y workers,

e for every worker w € W, |u(w)| < 1and u(w) C F,i.e., each
worker is matched with at most one firm, and

e for every worker-firm pair (w, f) € W X F, u(w) = {f} if
and only if w € p(f).

A firm f with capacity cy is said to be saturated under the match-
ing pif |u(f)| = cr; otherwise, it is said to be unsaturated.

4This can be easily seen by considering a firm with preference over singletons as
wi > wy > wy > - - -. A firm with lexicographic preferences will prefer {w; } over
{w,, w3 }. On the other hand, under strongly monotone preferences, the firm will
prefer { wz, w3} over {wj }. Hence, lexicographic and strongly monotone preferences
do not coincide when there are three or more workers.
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For simplicity, we will use the term matching in place of ‘many-
to-one matching’ whenever it is clear from context. We will ex-
plicitly use the qualifiers ‘one-to-one’ and ‘many-to-one’ when the
distinction between the two notions is relevant to the context.

Stability. A many-to-one matching p is said to be

o blocked by a firm f if there is some worker w € p(f) such
that @ >¢ {w}. That is, firm f prefers to keep a seat vacant
rather than offer it to worker w.

o blocked by a workerw if @ >, u(w). That is, worker w prefers
being unmatched over being matched with firm p(w).

o blocked by a worker-firm pair (w, f) if worker w prefers being
matched with firm f over its current outcome under g, and,
simultaneously, firm f prefers being matched with worker
w along with a subset of the workers in p(f) over being
matched with the set p(f). That is, f >,, u(w) and there
exists a subset S C p(f) such that S U {w} >¢ pu(f) and
ISU{w}| < cf.5

o stable if it is not blocked by any worker, any firm, and any
worker-firm pair.

The set of stable matchings for an instance 7 is denoted by S 7. Note
that the above definition of stability assumes responsive preferences.
A more general definition of stability in terms of choice sets can be
found in [39].

Firm and worker optimal stable matchings. It is known that given
any many-to-one matching instance, there always exists a firm-
optimal (respectively, worker-optimal) stable matching that is weakly
preferred by all firms (respectively, all workers) over any other
stable matching. This result, due to Roth [33], is recalled in Propo-
sition 2.1 below. We will write FOSM and WOSM to denote the
firm-optimal and worker-optimal stable matching, respectively.

PROPOSITION 2.1 (FIRM-OPTIMAL AND WORKER-OPTIMAL STABLE
MATCHINGS [33]). Given any instance I, there exist (not necessarily
distinct) stable matchings pr, pw € Sy such that for every stable

matching p € S1. ur(f) ¢ p(f) = v (f) for every firm f € F
and iy (w) =4 p(w) =4 pr(w) for every workerw € W.

Worker-proposing and firm-proposing algorithms. Two well-known
algorithms for finding stable matchings are the worker-proposing
and firm-proposing deferred acceptance algorithms, denoted by
WPDA and FPDA, respectively. The WPDA algorithm proceeds in
rounds, with each round consisting of a proposal phase followed by
a rejection phase. In the proposal phase, every unmatched worker
proposes to its favorite acceptable firm that hasn’t rejected it yet.
Subsequently, in the rejection phase, each firm f tentatively ac-
cepts its favorite ¢ proposals and rejects the rest. The algorithm
continues until no further proposals can be made.

Under the FPDA algorithm, firms make proposals and workers
do the rejections. Each firm makes (possibly) multiple proposals in
each round according to its ranking over individual workers. Each
worker tentatively accepts its favorite proposal and rejects the rest.
Roth [33] showed that the WPDA and FPDA algorithms return the
worker-optimal and firm-optimal stable matchings, respectively.

5One might ask about blocking coalitions, wherein a set of workers and firms together
block a given matching. It is known that if a coalition of workers and firms blocks a
matching, then so does some worker-firm pair [37, Theorem 3.3].
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Rural hospitals theorem. The rural hospitals theorem is a well-
known result which states that, for any fixed firm f, the number of
workers matched with f is the same in every stable matching [33].
Furthermore, if f is unsaturated in any stable matching, then it is
matched with the same set of workers in every stable matching [35].

PROPOSITION 2.2 (RURAL HOSPITALS THEOREM [33, 35]). Given
any instance I, any firm f, and any pair of stable matchings p, i’ €
S, we have that |u(f)| = |1/ (f)|. Furthermore, if |u(f)| < cy for
some stable matching i € Sy, then u(f) = (/' (f) for every other
stable matching i’ € Sy.

Canonical one-to-one instance. Given a many-to-one instance
I = (F,W,C, >) with responsive preferences, there exists an asso-
ciated one-to-one instance 7’ = (P, Q, >’} obtained by creating ¢ f
men for each firm f and one woman for each worker. Each man’s
preferences for the women mirror the corresponding firm’s prefer-
ences for the corresponding workers. Each woman prefers all men
corresponding to a more preferred firm over all men corresponding
to any less preferred firm (in accordance with the corresponding
worker’s preferences). For any fixed firm, all women prefer the man
corresponding to its first copy over the man representing its second
copy, and so on. Any stable matching in the one-to-one instance
7’ maps to a unique stable matching in the many-to-one instance
7, obtained by “compressing” the former matching in a natural
way (see Example 5 in [17]).

PROPOSITION 2.3 (CANONICAL INSTANCE [16]). Given any many-
to-one instance I = (F, W, C, >), there exists a one-to-one instance
I’ =(P,Q,>") such that there is a bijection between the stable match-
ings of I and I’. Furthermore, the instance I’ can be constructed in
polynomial time.

3 HOW DOES CAPACITY MODIFICATION
AFFECT WORKERS AND FIRMS?

In this section, we study how changing the capacity of a firm can af-
fect the outcomes of the firms and the workers. Specifically, we con-
sider the worker-proposing and firm-proposing algorithms (WPDA
and FPDA) and ask if a firm can improve/worsen when a unit ca-
pacity is added to it. Similarly, we will ask whether all workers can
improve or if some worker can worsen when a firm’s capacity is
increased. Table 1 summarizes these trends.

The trends for capacity decrease by a firm can be readily inferred
from Table 1. In particular, if increasing capacity can improve the
firm’s outcome, then going back from the new to the old instance
implies that decreasing its capacity makes it worse off.

One might intuitively expect that a firm should improve upon
increasing its capacity, as it can now be matched with a strict su-
perset of workers. Similarly, it is natural to think that increase in
a firm’s capacity can also make some workers better off because
an extra seat at a more preferable firm can allow some worker to
switch to that firm, opening up the space for some other interested
worker and so on, thus initiating a chain of improvements. Exam-
ple 3.1 confirms this intuition on an instance where the workers’
preferences are identical, also known as the master list setting.

Example 3.1 (All workers can improve). Consider an instance I
with two firms fi, f and two workers wi, wa. The firm fi initially
has zero capacity, while the firm f; has capacity 1 (i.e, ¢c; = 0
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WPDA FPDA
Can the firm improve? [EzeSs,l] [E:({e; 1]
Can the firm worsen? [Ex 3?23]5, [39] [Ex 33.{26]S, [39]
Can all workers improve? [Eie;.l] [Eze;. ]
Can some worker worsen? 1% 1 con 3],
(16, 37] [16, 37]

Table 1: The effect of one firm increasing its capacity by 1 on
itself and the workers, under the worker-proposing (WPDA)

and firm-proposing (FPDA) algorithms.
and ¢ = 1). Both workers have the preference fi > f; > 0, and

both firms have the preference w; > wy > 0. The unique stable
matching for this instance is p1 = {(w1, f2) }.

Now consider a new instance 7 obtained by adding unit capacity
to firm fi (i.e, ¢c; = 1). The instance 7 has a unique stable matching
p2 = {(wi1, f1), (wa, f2)}. Observe that both workers wy, wy as well
as the firm fi that increased its capacity are better off under the new
matching piz. Furthermore, as there is only one stable matching, the
said trend holds under both FPDA and WPDA algorithms. Also note
that the two sets of stable matchings are disjoint. Thus, no matching

is simultaneously stable for both old and new instances. O
Somewhat surprisingly, it turns out that increasing capacity can

also worsen a firm. This observation follows from the construction
of Sénmez [39], who showed that any stable matching algorithm is
vulnerable to manipulation via underreporting of capacity by some
firm. We recall S6nmez’s construction in Example 3.2 below.

Intuitively, when workers propose under the WPDA algorithm,
a firm can worsen upon capacity increase (equivalently, improve
upon capacity decrease) because of the following reason: By having
fewer seats, and thus by being more selective, the firm can initiate
rejection chains which may prompt more preferable workers to
propose to it. On the other hand, by adding an extra seat, a firm may
be forced to accept a suboptimal set of workers. This is precisely
what drives the manipulation in Example 3.2.

A similar reasoning works when the firms propose under the
FPDA algorithm: Due to extra seats, a firm may be forced to make
additional proposals to less-preferred workers, thus kicking off
rejection chains that prompt other firms to take away its more pre-

ferred workers. Again, this phenomenon is at play in Example 3.2.
Example 3.2 (Increasing capacity can worsen a firm [39]). Consider

an instance 7 with two firms fi, f> and three workers wy, wa, ws.
The workers’ preferences are given by

wi:ifo>fi>0

The firms have lexicographic preferences given by

Wz,W32f1 >f2>0

fi +{wr, w2, w3} > {wq, wa} > {w1, w3} >

{wi} > {wz, w3} > {wz} > {w3} > 0
fo i {w1, wa, w3} > {wz, w3} > {w1, w3} >

{ws} > {w1, wa} > {wz} > {w1} > 0

Initially, each firm has unit capacity, i.e., ¢; = ¢z = 1. In this case,
there is a unique stable matching, namely

= A{(wi, f1), (ws, fo) }.
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Now consider a new instance 7’ derived from the instance I by
increasing the capacity of firm fi by 1 (i.e, ¢] = 2 and ¢} = 1). The
stable matchings for the instance 7’ are

H2 = {({Wlaw2}>fi)’ (W3xf2)} and
n3 = {({wz, w3}, fi), (w1, f2)}.

Here, the firm-optimal stable matching (FOSM) is y; and the worker-
optimal stable matching (WOSM) is ps.

Finally, consider another instance 7’/ derived from 7’ by in-
creasing the capacity of firm f; by 1 (i.e., ¢}’ = 2 and ¢}’ = 2). The
unique stable matching for the instance 7/ is ps.

By virtue of being the unique stable matching, the matching 14
is FOSM and WOSM for the instance 7, and the matching ps3 is
FOSM and WOSM for the instance 7”’. Observe that firm fj prefers
i1 over p3. Thus, under WPDA algorithm, the transition from I to
I’ exemplifies that a firm (namely, fi) can worsen upon increasing
its capacity. Similarly, the firm f; prefers pp over ps. Thus, under
FPDA algorithm, the transition from 7’ to 7"’ exemplifies that a
firm (namely, f>) can worsen upon increasing its capacity. O

Note that Example 3.2 crucially uses the lexicographic preference
structure; indeed, firm fj prefers being matched with the solitary
worker {w1} over being assigned the pair {wy, w3}. One might ask
whether the implication of Example 3.2 holds in the absence of
the lexicographic assumption. Proposition 3.3, due to Konishi and
Unver [28], shows that under strongly monotone preferences and
WPDA algorithm, a firm cannot worsen upon capacity increase.

ProPOSITION 3.3 ([28]). Let u and i’ denote the worker-optimal
stable matching before and after a firm f with strongly monotone
preferences increases its capacity by 1. Then, i/’ (f) > ¢ p(f).

The main idea in the proof of Proposition 3.3 is as follows: Under
WPDA, it can be shown that if the number of workers matched with
a firm f does not change upon capacity increase, then the set of
workers matched with f also remains the same. (Notably, this obser-
vation does not require the preferences to be strongly monotone.)
It can also be shown that the number of workers matched with firm
f cannot decrease upon capacity increase. (Again, this observation
does not require strong monotonicity.). Thus, in order for the firm’s
outcome to change, it must be matched with strictly more workers
in the new matching. Strong monotonicity then implies that the
firm must strictly prefer the new outcome.

In contrast to WPDA, a firm can worsen upon capacity increase
under the FPDA algorithm even under strongly monotone prefer-
ences (Example 3.4).

Example 3.4 (Increasing capacity can worsen a firm under strongly
monotone preferences [39]). Consider the following instance, with
two workers wi, wp and two firms fi, f> with strongly monotone
preferences:

wi:ifa>fi>0

wy:fi>foa>0
Initially, each firm has unit capacity, i.e., ¢; = c2 = 1. In this case,
the firm-optimal stable matching is

1 = {(wi, fi), (wa, f2) }-

fi :{wr, w2} > {w1} > {w2} > 0
fo Awr, wa} > {wa} > {w1} > 0
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Upon increasing the capacity of firm f; to ca = 2 while keeping
c1 = 1, the firm-optimal stable matching of the new instance is

Hz = { (w1, f2), (w2, i)},

which is worse for firm f; compared to the old matching yy. O

Finally, we note that under both FPDA and WPDA algorithms, no
worker can worsen when a firm increases its capacity. The reason
is that increasing the capacity of a firm corresponds to “adding a
man” in the corresponding canonical one-to-one instance. Due to
the increased “competition” among the men, the outcomes of all
women weakly improve (Proposition 3.5).

ProrosITION 3.5 ([16, 37]). Given any one-to-one instance I =
(P,Q,>), let I" = (P U {p},Q,>") be another one-to-one instance
derived from I by adding the man p such that the new preferences >’
agree with the old preferences > on P and Q. Let up and pg be the
men-optimal and women-optimal stable matchings, respectively, for
I, and let i}, and p’Q denote the same for I'. Then, for every woman

q € Q, we have i (q) =g pp(q) and u(q) =g po(q)-

Using Proposition 3.5 on the canonical one-to-one instance, we
obtain that increasing a firm’s capacity can never worsen the out-
come of any worker under either worker-optimal or firm-optimal
stable matching.

COROLLARY 3.6. Let pyy and '”{/V denote the worker-optimal stable
matching before and after a firm increases its capacity by 1, and let
HF and py, be the corresponding firm-optimal matchings. Then, for
all workers w € W, iy, (w) >y piy (w) and p(w) 2 pp(w).

4 COMPUTATIONAL RESULTS

In this section, we will study the algorithmic aspects of capacity
modification. We will take the perspective of a central planner
who can modify the capacities of the firms to achieve a certain
objective. We will focus on two natural (and mutually incomparable)
objectives: (1) Match a pair (f*, w*), where the goal is to determine
if a fixed firm f* and a fixed worker w* can be matched under
some stable matching in the modified instance, and (2) stabilize a
matching p*, where the goal is to check if a given matching p* can
be realized as a stable outcome of the modified instance. These
objectives have previously been studied in the one-to-one stable
matching problem motivated by control problems [9, 19].

We will assume that the central planner can modify the firms’
capacities in one of the following two natural ways: (1) By adding
capacity, wherein the firms can receive some extra seats (the dis-
tribution can be unequal), and (2) by deleting capacity, wherein
some of the existing seats can be removed. Under both addition
and deletion problems, we will assume that there is a global budget
¢ € N that specifies the maximum number of seats that can be
added (or removed) in aggregate across all firms.

The two objectives (match the pair and stabilize) and two actions
(add and delete) together give rise to four computational problems.
One of these problems—adding capacity to match a pair—is formally
defined below. The other problems are defined analogously.
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Stabilize the matching y*

Add Capacity Delete Capacity Add Capacity Delete Capacity
Poly time Poly time Poly time Poly time
Unbudgeted [Theorem 4.1] [Theorem 4 in [17]] [Theorem 7 in [17]] [Theorem 9 in [17]]
NP-hard NP-hard Poly time Poly time
Budgeted . . .
[Theorem 4.2] [Theorem 5 in [17]] [Theorem 6 in [17]] [Theorem 8 in [17]]

Table 2: Summary of our computational results for adding and deleting capacity under two problems: matching a worker-firm
pair (columns 2 and 3) and stabilizing a given matching (columns 4 and 5). The top row contains the results for the unbudgeted
problem (when only the aggregate change in firms’ capacities is constrained) while the bottom row corresponds to the budgeted
problem (with additional constraints on individual firms). The missing theorems and proofs are in the full version [17].

ApD Caracity To MaTcH PAIR

Given: An instance I = (F,W,C,>), a worker-firm pair
(w*, f*), and a global budget £ € NU {0}.
Question: Does there exist a capacity vector C € (N U {0})" such

that C > C,|C—-C|; < ¢, and f* and w* are matched in
some stable matching of the instance 7’ = (F, W, C, >)?

The aforementioned problems can be naturally generalized by
considering individual budgets for the firms. For example, in the
add capacity problem, in addition to the global budget ¢, we can
also have an individual budget ¢; for each firm f specifying the
maximum number of additional seats that can be given to firm
f. We call this generalization the budgeted version, and use the
term unbudgeted to refer to the problem with only global—but
not individual—budget. Formally, the budgeted version of App
CAPACITY TO MATCH PAIR problem is defined as follows:

BUDGETED ADD CaprAcCITY To MATCH PAIR

Given: An instance 7 = (F,W,C,>), a worker-firm pair
(w*, f*), a global budget £ € NU {0}, and an individual
budget £r € N U {0} for each firm f.

Question: Does there exist a capacity vector C € (N U {0})" such

that C > C,|C-C|; < ¢, [¢f - cr| < ¢f for each firm
f,and f* and w* are matched in some stable matching
of the instance 7’ = (F, W, C, >)?

The consideration of individual budgets results in eight compu-
tational problems overall. Table 2 summarizes our results on the
computational complexity of these problems.

A special case of the budgeted/unbudgeted problems is when
the global budget is zero, i.e., £ = 0. In this case, the capacities
of the firms cannot be changed, and the goal is simply to check
whether a worker-firm pair (w*, f*) are matched in some stable
matching for the original instance 7, or whether a given match-
ing p* is stable for 7. The latter problem is straightforward. To
solve the former problem, it is helpful to consider the canonical
one-to-one instance of the given instance 7. For the one-to-one
stable matching problem, a polynomial-time algorithm is known for
listing all man-woman pairs that are matched in one or more stable
matchings [20]. Using the bijection between the stable matchings
of the two instances (Proposition 2.3), we obtain an algorithm to
check if the worker w* is matched with any copy of firm f* in any
stable matching.
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Thus, the zero budget case can be efficiently solved for all of the
aforementioned problems. In the remainder of the section, we will
consider the case of global budgets.

Adding Capacity to Match A Pair: Unbudgeted

Let us start with the problem of adding capacity to match a worker-
firm pair (w*, f*) in the unbudgeted setting, i.e., with global but
without individual budgets.

In order to check whether the worker-firm pair (w*, f*) can
be matched in some stable matching in the given instance 7 by
adding capacity to the firms, our algorithm (see Algorithm 1 in
[17]) considers a modified instance 7 where w* and f™ are already
matched, and checks if it is possible to construct a stable matching
of the remaining agents satisfying some additional conditions.

More concretely, the algorithm considers the set of firms DF
(short for “distracting firms”) that the worker w* prefers more
than the firm f*, and the set of workers DW (short for “distracting
workers”) that the firm f* prefers more than w*. Note that once
the worker w* is matched with the firm f*, the firms in DF are the
only ones that it could potentially form a blocking pair with (due
to responsive preferences). Similarly, the workers in DW are the
only ones that can block with f* due to the forced assignment of
w* to f*.

The algorithm creates the modified instance 7’ by truncating the
preference lists of the firms in DF (respectively, the workers in DW)
by having them declare all workers ranked below w* (respectively,
all firms ranked below f*) as unacceptable. The truncation step is
motivated from the following observation: In the original instance
T, there is a stable matching that matches (w*, f*) after adding
capacities to the firms if and only if there exists a stable matching in
the truncated instance 7’ such that, after the added capacities, all
firms in the set DF are saturated (and thus, matched with workers
they prefer more than w*), and all workers in the set DW are
matched (and thus, matched either with f* or with firms they
prefer more than f*).

The key observation in our proof is that the desired matching
exists in the truncated instance 7’ after adding capacities to the
firms if and only if there exists a stable matching in the instance
I’ when the entire capacity budget is given to the firm f*. This
observation readily gives a polynomial-time algorithm. We defer
the detailed proof of this observation to the full version [17].

THEOREM 4.1. ADD CAPACITY To MATCH PAIR can be solved in
polynomial time.
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Adding Capacity to Match A Pair: Budgeted

Next, we will consider a more general problem where, in addition to
the global budget of ¢ seats, we are also given an individual budget
¢r for each firm f specifying the maximum number of seats that
can be added to the firm f. The goal, as before, is to determine if,
after adding capacities as per the given budgets, it is possible to
match the pair (w*, f*) under some stable matching.

Note that our algorithm for the unbudgeted problem assigns the
entire additional capacity to the firm f*, which may no longer be
feasible in the budgeted problem. It turns out that, unless P = NP,
no polynomial-time algorithm can be developed for this problem.

THEOREM 4.2. BUDGETED ADD CAPACITY To MATCH PAIR is NP-
hard.

To prove Theorem 4.2, we leverage a result of Boehmer et al.
[9] on control problems in the one-to-one stable matching prob-
lem (which, as per our convention, involves a matching between
men and women). Specifically, Boehmer et al. [9] study the problem
of adding a set of at most ¢ agents (men or women) such that in
the resulting instance, a fixed man-woman pair are matched under
some stable matching.

Interestingly, the reduction of Boehmer et al. [9] holds even
when only men (but not women) are required to be added. Due to
this additional feature, we slightly redefine the problem of Boehmer
et al. [9] and call it CONSTRUCTIVE-EX1STS-ADD-MEN. The formal
definition of this problem is as follows:

CONSTRUCTIVE-EX1STS-ADD-MEN

Given: An instance I = (Porig, Q, > ), a set of addable men
P,qq with the preference relation > defined over the
entire set of agents Po,ig U Pagq U Q, a man-woman pair
(p*,q") from the original set of agents, and a budget
t e NU{0}.

Does there exist a set P C P,gq such that |P| < ¢
and (p*, q") is part of at least one stable matching in

(Porig U ﬁ» Q’ >>?

Question:

The result of Boehmer et al. [9] shows that CONSTRUCTIVE-
Ex1sTs-ADD-MEN is NP-hard. We now use their result to show
NP-hardness for BUDGETED ADD CaPAcITY To MATCH PAIR using
the following straightforward construction: For each man in the
set Porig, we create a firm with capacity 1 and individual budget
¢ = 0, while for each man in the addable set Pyqq, we create a
firm with capacity 0 and individual budget £; = 1. Adding a seat to
an individual firm corresponds to adding the associated man. The
equivalence now follows.

5 CAPACITY MODIFICATION V/S
PREFERENCE MANIPULATION

So far, we have discussed qualitative (Section 3) and computational
(Section 4) aspects of capacity modification from the perspective of
a central planner. We will now adopt the perspective of a firm and
compare the different manipulation actions available to it. Specif-
ically, we will consider preference manipulation (abbreviated as
Pref), wherein a firm can misreport its preference list without
changing its capacity, and compare it with the two capacity mod-
ification actions we have already seen, namely Add and Delete
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capacity, wherein the firm can increase or decrease its capacity

without changing its preferences. These actions are formally de-
fined below.

e Pref: Under this action, a firm can report any permutation

of its acceptable workers without changing its capacity.®

That is, if a firm f’s true preference is >z, then >} is a valid
preference manipulation if for any worker w, w >¢ 0 if and
only if w >} 0.

e Add/Delete: Under Add (respectively, Delete), the firm f
strictly increases (respectively, decreases) its capacity ¢ by
an arbitrary amount without changing its preferences.

Our goal is to examine which mode of manipulation—Pref, Add,
or Delete—is always/sometimes more beneficial for the firm com-
pared to the others under the FPDA and WPDA algorithms.

On first glance, each manipulation action may seem to offer a dis-
tinctive ability to the firm: Add allows the firm to either tentatively
accept more proposals (under WPDA) or make more proposals
(under FPDA), thus facilitating larger-sized (and possibly more
preferable) matches. Delete, on the other hand, can allow a firm
to be more selective, which, as we have seen in Section 3, can be
advantageous in certain situations. Finally, Pref can allow a firm
to trigger specific rejection chains, resulting in a potentially better
set of workers. Given the unique advantage of each manipulation
action, a systematic comparison among them is well motivated.

We compare the manipulation actions under two algorithms,
WPDA and FPDA, and focus on a fixed firm f. An action X is said
to outperform action Y (where X, Y € {Pref,Add, Delete}) if there
exists an instance such that the outcome for firm f when it performs
X is strictly more preferable to it than that under Y.

An important insight from our analysis is that the usefulness of
amanipulation action depends on a threshold on the firm’s capacity
which we call its peak. For fixed preferences of all agents and fixed
capacities of the other firms, the peak of firm f is the size of the
largest set of workers matched to f under any stable matching
when f is free to choose its capacity cs € N.

Formally, given an instance 7 = (F,W,C,>), afirm f € F and
any b € N, let 7b = (F,W, (C_f, b), >) denote the instance derived
from I where the capacity of firm f is changed from cf to b (and
no other changes are made); here, C_¢ denotes the capacities of
firms other than f. Recall that the set of stable matchings for an
instance 7 is denoted by S. The peak p for firm f is defined as
the size of the largest set of workers f is matched with under any
stable matching in the instance 7 b for an arbitrary choice of b, i.e.,

pr(I) = beNrglagsjh ().

Observe that when a firm’s capacity is above its peak (i.e., cf >
pf), it must necessarily be unsaturated in any stable matching.
Similarly, by the rural hospitals theorem (Proposition 2.2), it follows
that peak is the maximum number of proposals a firm receives under
WPDA for an arbitrarily chosen capacity.

Figure 1 illustrates the comparison between the various manipu-
lation actions under the FPDA and WPDA algorithms. Observe that
in each of the three regimes in Figure 1—below peak (i.e., ¢y < py),

®Manipulation via permutation has been studied by several works in the stable match-
ing literature [18, 24, 25, 38, 41, 42].
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(a) Below peak (b) At peak (c) Above peak
(d) Below peak (e) At peak (f) Above peak

Figure 1: Manipulation trends for the WPDA (top) and FPDA (bot-
tom) algorithm in the below peak/at peak/above peak regimes. An
arrow from action X to action Y denotes the existence of an instance
where X is strictly more beneficial for the firm than Y. Each missing
arrow from X to Y denotes that there is (provably) no instance where
X is more beneficial than Y.

at peak (i.e., cy = pr), and above peak (i.e., cy > pr)—there exist
scenarios where Delete is strictly more beneficial than Add (and
similarly, more beneficial than Pref). In fact, Delete is the only
manipulation that can be beneficial above peak. The Add operation
is only beneficial to a firm if its capacity is below peak irrespective
of the matching algorithm. By contrast, Pref is beneficial to a firm
at peak under FPDA but is unhelpful under WPDA.

In the rest of this section, we will discuss the comparison be-
tween Delete and Pref under the WPDA algorithm. In the full
version [17], we discuss the other comparisons as well as the ma-
nipulation trends for strongly monotone preferences.

Delete vs Pref

Below Peak. When the capacity of a firm is below its peak (i.e.,
¢f < py), there exists an instance where Pref can outperform
Delete (as well as Add) under WPDA. We defer the example of
Delete outperforming Pref under the WPDA algorithm to [17].

Example 5.1 (Pref outperforms Delete and Add under WPDA).
Consider an instance J with three firms fi, f, 3 and four workers
w1, wo, w3, Wa. The firms have unit capacities (i.e., c; = c2 =c3 = 1)
and have lexicographic preferences given by

wi:foa>fi>fzi>0
w2, w3 :f1 >f2 >f3 >0
we:fs>fi>f>0

Under the WPDA algorithm, firm f; is matched with {w}. If
f1 uses Add by switching to any capacity ¢; > 2, its WPDA match
is the set {wp, w3}. It is easy to verify that the peak for firm fj is
pr(Z) = 2. Thus, under 7, the capacity of firm f; is below peak.

If f uses Pref in the instance 7 by misreporting its preferences
to be wg > wo > w3 > wq, then its WPDA match is {w4}, which is
more preferable for fi (according to its true preferences) than its
match under Add. On the other hand, using Delete in the instance
T (by reducing the capacity to c; = 0) is the worst outcome for f
as it is left unmatched. O

ﬁ:W4>W1>W2>W3
fz:W3>W2>W1>W4

f32W1>W4>W2>W3

At Peak. When the capacity of the firm is equal to the peak (i.e.,
¢ = pr), Pref becomes unhelpful under WPDA. This is because in
this case, the number of proposals received by the firm under the

704

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

WPDA algorithm is equal to its capacity. Thus, regardless of which
permutation of the acceptable workers it reports, the firm does not
reject any worker and is therefore matched with the same set.

Above Peak. When the capacity of the firm is above its peak, Pref
again turns out to be unhelpful under WPDA. To show this, we first
make the following observation: For any above-peak instance, the
set of workers matched with firm f in any stable matching is the
same as its worker-optimal match in the at-peak instance.

LEMMA 5.2. Let I = (F,W,C,>) be an instance with a firm f
such that cg > pp. Let ji* be the worker-optimal stable matching
of the at-peak instance IPf, and u be any stable matching of any
above-peak instance I? (where b > pr)- Then, p(f) = p*(f).

In particular, Lemma 5.2 shows that the set of proposals made to
the firm f under WPDA algorithm stays the same at or above peak.

Aziz et al. [6] have shown that under WPDA algorithm, a nec-
essary condition for beneficial preference manipulation by a firm
is that it must be saturated and receive more proposals than its ca-
pacity. By combining Lemma 5.2 with the observation of Aziz et al.
[6], we get that Pref is ineffective in the at-peak and above-peak
regimes under the WPDA algorithm. In fact, using Lemma 5.2, we
can make a similar inference for any stable matching algorithm.

THEOREM 5.3. Under any stable matching algorithm, a firm cannot
improve via preference manipulation (Pref) if its capacity is strictly
greater than its peak.

The proof of Lemma 5.2 and Theorem 5.3 can be found in the
full version [17].

6 CONCLUDING REMARKS

We studied capacity modification in the many-to-one stable match-
ing problem from qualitative, computational, and strategic perspec-
tives, and provided a comprehensive set of results. Going forward,
it would be interesting to explore algorithms for capacity modifica-
tion when both add and delete operations are allowed. It would also
be relevant to study situations where a firm can simultaneously
misreport its preferences and change its capacity [27]. Finally, ex-
periments on synthetic or real-world data to evaluate the frequency
of availability of various manipulation actions is another natural
direction to explore [36].
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