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ABSTRACT

We study the problem of capacity modi�cation in the many-to-one
stable matching of workers and �rms. Our goal is to systematically
study how the set of stable matchings changes when some seats are
added to or removed from the �rms. We make three main contribu-
tions: First, we examine whether �rms and workers can improve
or worsen upon changing the capacities under worker-proposing
and �rm-proposing deferred acceptance algorithms. Second, we
study the computational problem of adding or removing seats to
either match a �xed worker-�rm pair in some stable matching or
make a �xed matching stable with respect to the modi�ed prob-
lem. We develop polynomial-time algorithms for these problems
when only the overall change in the �rms’ capacities is restricted,
and show NP-hardness when there are additional constraints for
individual �rms. Lastly, we compare capacity modi�cation with the
classical model of preference manipulation by �rms and identify
scenarios under which one mode of manipulation outperforms the
other. We �nd that a threshold on a given �rm’s capacity, which
we call its peak, crucially determines the e�ectiveness of di�erent
manipulation actions.
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1 INTRODUCTION

The stable matching problem is a classical problem at the intersec-
tion of economics, operations research, and computer science [21,
23, 30, 37]. The problem involves two sets of agents, such as work-
ers and �rms, each with a preference ordering over the agents on
the other side. The goal is to �nd a matching that is stable, i.e., one
where no worker-�rm pair prefer each other over their current
matches.
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Many real-world matching markets have been in�uenced by the
stable matching problem, such as school choice [1–3], entry-level
labor markets [33, 36], and refugee resettlement [4, 5]. In these
applications, each agent on one side of the market (e.g., the �rms)
has a capacity constraint that limits the maximum number of agents
on the other side (namely, workers) it can be feasibly matched with.
Remarkably, for any given capacities, a stable matching of workers
and �rms always exists and can be computed using the celebrated
deferred-acceptance algorithm [15, 33].

While the stable matching problem assumes �xed capacities, it is
common to have �exible capacities in practice. This is particularly
useful in settings with variable demand or popularity such as in
vaccine distribution or course allocation. Flexible capacities also
allow for accommodating other goals, such as Pareto optimality
or social welfare [29]. For example, in 2016, nineteen colleges in
Delhi University in India increased their total capacity by 2000 seats
across various courses [12]. Another example is the ScheduleScout
platform,1 formerly known as Course Match [10], used in course
allocation at the Wharton School. This platform allows the addition
or removal of seats in courses that are either undersubscribed or
oversubscribed, respectively.2 In more complex matching environ-
ments such as stable matching with couples where a stable solution
is not guaranteed to exist, a small change in the capacities can
provably restore the existence of a stable outcome [31]. We will use
the term capacity modi�cation to refer to change in the capacities
of the �rms by a central planner.

The theoretical study of capacity modi�cation was initiated by
Sönmez [39], who showed that under any stable matching algo-
rithm, there exists a scenario where some �rm is better o� when its
capacity is reduced. The computational aspects of capacity modi�-
cation have also recently gained attention [7, 8, 11]. However, some
natural questions about how the set of stable matchings responds
to changes in capacities have not been answered. Speci�cally, by
modifying the capacities, can a given worker-�rm pair be matched
under some stable matching? Or, can a given matching be realized
as a stable outcome of the modi�ed instance? Furthermore, if we
consider the perspective of a strategic �rm, there has been a lack
of a distinct comparison between "manipulation through capac-
ity modi�cation" and the traditional approach of "manipulation
through misreporting preferences". Our interest in this work is to
address these gaps.

1https://www.getschedulescout.com/
2https://www.youtube.com/watch?v=OSOanbdV3jI&t=1m38s

 



https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.getschedulescout.com/
https://www.youtube.com/watch?v=OSOanbdV3jI&t=1m38s
http://crossmark.crossref.org/dialog/?doi=10.5555%2F3635637.3662922&domain=pdf&date_stamp=2024-05-06


Our Contributions

We undertake a systematic analysis of the structural and computa-
tional aspects of the capacity modi�cation problem and make three
main contributions:

Capacity modi�cation trends. In Section 3, we study the e�ect
of capacity modi�cation on workers and �rms. We observe that
increasing a �rm’s capacity by 1 can, in some cases, improve, and
in other cases, worsen its outcome under both worker-proposing
and �rm-proposing deferred acceptance algorithms. The workers,
on the other hand, can improve but never worsen (see Table 1).

Computational results. In Section 4, we study a natural compu-
tational problem faced by a central planner: Given a many-to-one
instance, how can a �xed number of seats be added to (similarly, re-
moved from) the �rms in order to either match a �xed worker-�rm
pair in some stable matching or make a given matching stable in the
new instance?We show that these problems admit polynomial-time
algorithms. We also study a generalization where individual �rms
have constraints on the seats added to or removed from them, in
addition to an aggregate budget. Here, the problem of matching a
�xed worker-�rm pair turns out to NP-hard while ensuring that a
given matching is stable can still be e�ciently solved (see Table 2).

Capacity modi�cation v/s preference manipulation. In Section 5,
we examine which mode of manipulation is more powerful for a
strategic �rm: underreporting/overreporting capacity or misreport-
ing preferences. Interestingly, it turns out that the e�ectiveness of
each manipulation action (i.e., adding/deleting capacity or misre-
porting preferences) depends on a threshold on the �rm’s capacity
which we call peak (see Figure 1). For a �rm to successfully manipu-
late its preferences, its capacity must be strictly below its peak (un-
der the worker-proposing algorithm) or at most its peak (when
�rms propose). Thus, the concept of peak appears to have relevance
beyond capacity modi�cation.

All missing proofs and other technical details can be found in
the full version [17].

Related Work

The stable matching problem has inspired a large body of work in
economics, operations research, computer science, and arti�cial
intelligence [15, 21, 23, 30, 37].

Prior work has demonstrated strategic vulnerabilities of stable
matching algorithms. It is known that any stable matching algo-
rithm is susceptible to manipulation via misreporting of prefer-
ences [13, 32], underreporting of capacities [39], and formation of
pre-arranged matches [40].3 Subsequently, Roth and Peranson [36]
showed via experiments on the data from the National Resident
Matching Program that less than 1% of the programs can bene�t
by misreporting preferences or underreporting capacities. Kojima
and Pathak [27] provided theoretical justi�cation for these �ndings
by showing that incentives for such manipulations vanish in large
markets. Note that, unlike the above results that only apply to spe-
ci�c datasets [36] or in the asymptotic setting [27], our algorithmic
results provide worst-case guarantees for any given instance.

3In pre-arrangedmatches, a worker and �rm can choose tomatch outside the algorithm.
The worker does not participate in the algorithm, and in return, is o�ered a seat at the
�rm. The �rm then has one less seat available through the algorithm.

Another line of work has explored restricted preference do-
mains for circumventing the above impossibility results [22, 26,
28]. In particular, Konishi and Ünver [28] have shown that under
strongly monotone preferences (formally de�ned in Section 2), a
�rm cannot manipulate by underreporting its capacity under the
worker-proposing algorithm (although other algorithms, like the
�rm-proposing algorithm, can still be manipulated).

The computational problem of modifying capacities to serve
a given objective has seen signi�cant attention in recent years.
Bobbio et al. [8] showed that the problem of adding (similarly,
removing) seats from the �rms in order to minimize the average
rank of matched partners of the workers is NP-hard to approximate
within O(

√
<), where< is the number of workers. Bobbio et al. [7]

developed a mixed integer linear program for this problem.
Chen and Csáji [11] studied the problem of increasing the �rms’

capacities to obtain a stable and perfect matching, and similarly, a
matching that is stable and Pareto e�cient for the workers. They
considered two objectives for this problem: minimizing the overall
increase in the �rms’ capacities and minimizing the maximum
increase in any �rm’s capacity. Dur and Van der Linden [14] studied
the problem of adding seats to �rms to achieve a matching that
is stable (with respect to the modi�ed capacities) and not Pareto
dominated (as per workers’ preferences only) by any other stable
matching. Some of our computational results draw upon the work
of Boehmer et al. [9], who studied the control problem for stable
matchings in the one-to-one setting. We discuss the connection
with this work in Section 4.

2 PRELIMINARIES

For any positive integer A , let [A ] B {1, 2, . . . , A }.

Problem instance. An instance of themany-to-onematching prob-
lem is given by a tuple ⟨�,, ,�, ≻⟩, where � = {51, . . . , 5=} is the
set of = ∈ N �rms,, = {F1, . . . ,F<} is the set of< ∈ N workers,
� = {21, . . . , 2=} is the set of capacities of the �rms (where, for every
8 ∈ [=], 28 ∈ N ∪ {0}), and ≻= (≻51 , . . . , ≻5= , ≻F1

, . . . , ≻F< ) is the
preference pro�le consisting of the ordinal preferences of all �rms
and workers. Each workerF ∈, is associated with a linear order
(i.e., a strict and complete ranking) ≻F over the set � ∪ {∅}. Each
�rm 5 ∈ � is associated with a linear order ≻5 over the set, ∪{∅}.
Throughout, we will use the term agent to refer to a worker or a
�rm, i.e., an element in the set, ∪ � .

For two capacity vectors�,� ∈ (N∪ {0})= , we will write� ≥ �

to denote coordinate-wise greater than or equal to, i.e., for every

8 ∈ [=], 28 ≥ 28 , where 28 and 28 are the 8
th coordinate of vectors �

and � , respectively. Additionally, we will write |� −� |1 to denote

the !1 norm of the di�erence vector, i.e., |� −� |1 B
∑=
8=1 |28 − 28 |.

When all �rms have unit capacities (i.e., for each �rm 5 ∈ �, 2 5 =

1), we obtain the one-to-one matching problem. In this case, we will
follow the terminology from the literature on the stable marriage
problem [15] and denote a problem instance by ⟨%,&, ≻⟩, where %
and & denote the set of = men and< women, respectively, and ≻
denotes the corresponding preference pro�le.

Complete preferences. A worker F is said to be acceptable to a
�rm 5 ifF ≻5 ∅. A set of workers ( ⊆, is said to be acceptable
to a �rm 5 , denoted by ( ≻5 ∅, if all workers in it are acceptable

 





to 5 . Likewise, a �rm 5 is acceptable to a workerF if 5 ≻F ∅. An
agent’s preferences are said to be complete if all agents on the other
side are acceptable to it.

Responsive preferences. Throughout the paper, we will assume
that �rms’ preferences over subsets of workers are responsive [34].
Informally, this means that for any subsets (, ( ′ ⊆, of workers
where ( is derived from ( ′ by replacing a worker F ′ ∈ ( ′ with a
more preferred workerF , it must be that ( ≻5 ( ′. More formally,
the extension of �rm 5 ’s preferences over subsets of workers is
responsive if for any subset ( ⊆, of workers,

• for allF ∈, \ ( , ( ∪ {F} ≻5 ( if and only ifF ≻5 ∅, and
• for all F,F ′ ∈ , \ ( , ( ∪ {F} ≻5 ( ∪ {F ′} if and only if

F ≻5 F ′.

We will write ( ⪰5 ( ′ to denote that either ( ≻5 ( ′ or ( =

( ′. Further, we will always consider the transitive closure of any
responsive extension of ≻5 , which, in turn, induces a partial order
over the set of all subsets of workers.

We will now de�ne two subdomains of responsive preferences
that will be of interest to us: strongly monotone and lexicographic.

Strongly monotone preferences. A �rm is said to have strongly
monotone preferences [28] if its preferences are responsive and it
prefers cardinality-wise larger subsets of workers. That is, for any
pair of acceptable subsets of workers (,) such that |( | > |) |, it
holds that ( ≻5 ) .

Lexicographic preferences. A �rm 5 is said to have lexicographic
preferences if it prefers any subset of workers containing its favorite
worker over any subset not containing it, subject to which, it prefers
any subset containing its second-favorite worker over any subset
not containing it, and so on. Formally, given a linear order ≻5

over the set, ∪ {∅} and any pair of distinct acceptable subsets of
workers ( and ) , we have ( ≻5 ) if and only if the favorite worker
of �rm 5 (as per ≻5 ) in the set di�erence of ( and) (i.e., ( \) ∪) \()
lies in ( . Observe that lexicographic preferences are responsive.

For many-to-one instances with two workers (i.e., |, | = 2) that
are both acceptable to a �rm, lexicographic and strongly monotone
preferences coincide. However, for instances with three or more
workers, strongly monotone preferences are not lexicographic and
lexicographic preferences are not strongly monotone.4

Many-to-one matching. Given an instance I = ⟨�,, ,�, ≻⟩, a
many-to-one matching for I is speci�ed by a function ` : � ∪, →
2
�∪, such that:

• for every �rm 5 ∈ � , |` (5 ) | ≤ 2 5 and ` (5 ) ⊆ , , i.e., each
�rm 5 is matched with at most 2 5 workers,

• for every workerF ∈, , |` (F) | ≤ 1 and ` (F) ⊆ � , i.e., each
worker is matched with at most one �rm, and

• for every worker-�rm pair (F, 5 ) ∈ , × � , ` (F) = {5 } if
and only ifF ∈ ` (5 ).

A �rm 5 with capacity 2 5 is said to be saturated under the match-
ing ` if |` (5 ) | = 2 5 ; otherwise, it is said to be unsaturated.

4This can be easily seen by considering a �rm with preference over singletons as
F1 ≻ F2 ≻ F3 ≻ · · · . A �rm with lexicographic preferences will prefer {F1 } over
{F2, F3 }. On the other hand, under strongly monotone preferences, the �rm will
prefer {F2, F3 } over {F1 }. Hence, lexicographic and strongly monotone preferences
do not coincide when there are three or more workers.

For simplicity, we will use the term matching in place of ‘many-
to-one matching’ whenever it is clear from context. We will ex-
plicitly use the quali�ers ‘one-to-one’ and ‘many-to-one’ when the
distinction between the two notions is relevant to the context.

Stability. A many-to-one matching ` is said to be

• blocked by a �rm 5 if there is some worker F ∈ ` (5 ) such
that ∅ ≻5 {F}. That is, �rm 5 prefers to keep a seat vacant
rather than o�er it to workerF .

• blocked by aworkerF if ∅ ≻F ` (F). That is, workerF prefers
being unmatched over being matched with �rm ` (F).

• blocked by a worker-�rm pair (F, 5 ) if workerF prefers being
matched with �rm 5 over its current outcome under `, and,
simultaneously, �rm 5 prefers being matched with worker
F along with a subset of the workers in ` (5 ) over being
matched with the set ` (5 ). That is, 5 ≻F ` (F) and there
exists a subset ( ⊆ ` (5 ) such that ( ∪ {F} ≻5 ` (5 ) and
|( ∪ {F}| ≤ 2 5 .

5

• stable if it is not blocked by any worker, any �rm, and any
worker-�rm pair.

The set of stable matchings for an instanceI is denoted bySI . Note
that the above de�nition of stability assumes responsive preferences.
A more general de�nition of stability in terms of choice sets can be
found in [39].

Firm and worker optimal stable matchings. It is known that given
any many-to-one matching instance, there always exists a �rm-

optimal (respectively,worker-optimal) stablematching that is weakly
preferred by all �rms (respectively, all workers) over any other
stable matching. This result, due to Roth [33], is recalled in Propo-
sition 2.1 below. We will write FOSM and WOSM to denote the
�rm-optimal and worker-optimal stable matching, respectively.

Proposition 2.1 (Firm-optimal and worker-optimal stable

matchings [33]). Given any instance I, there exist (not necessarily
distinct) stable matchings `� , `, ∈ SI such that for every stable

matching ` ∈ SI , `� (5 ) ⪰5 ` (5 ) ⪰5 `, (5 ) for every �rm 5 ∈ �

and `, (F) ⪰F ` (F) ⪰F `� (F) for every workerF ∈, .

Worker-proposing and �rm-proposing algorithms. Twowell-known
algorithms for �nding stable matchings are the worker-proposing
and �rm-proposing deferred acceptance algorithms, denoted by
WPDA and FPDA, respectively. The WPDA algorithm proceeds in
rounds, with each round consisting of a proposal phase followed by
a rejection phase. In the proposal phase, every unmatched worker
proposes to its favorite acceptable �rm that hasn’t rejected it yet.
Subsequently, in the rejection phase, each �rm 5 tentatively ac-
cepts its favorite 2 5 proposals and rejects the rest. The algorithm
continues until no further proposals can be made.

Under the FPDA algorithm, �rms make proposals and workers
do the rejections. Each �rm makes (possibly) multiple proposals in
each round according to its ranking over individual workers. Each
worker tentatively accepts its favorite proposal and rejects the rest.
Roth [33] showed that the WPDA and FPDA algorithms return the
worker-optimal and �rm-optimal stable matchings, respectively.

5One might ask about blocking coalitions, wherein a set of workers and �rms together
block a given matching. It is known that if a coalition of workers and �rms blocks a
matching, then so does some worker-�rm pair [37, Theorem 3.3].
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Rural hospitals theorem. The rural hospitals theorem is a well-
known result which states that, for any �xed �rm 5 , the number of
workers matched with 5 is the same in every stable matching [33].
Furthermore, if 5 is unsaturated in any stable matching, then it is
matched with the same set of workers in every stable matching [35].

Proposition 2.2 (Rural hospitals theorem [33, 35]). Given

any instance I, any �rm 5 , and any pair of stable matchings `, `′ ∈
SI , we have that |` (5 ) | = |`′ (5 ) |. Furthermore, if |` (5 ) | < 2 5 for

some stable matching ` ∈ SI , then ` (5 ) = `′ (5 ) for every other

stable matching `′ ∈ SI .

Canonical one-to-one instance. Given a many-to-one instance
I = ⟨�,, ,�, ≻⟩ with responsive preferences, there exists an asso-
ciated one-to-one instance I′

= ⟨%,&, ≻′⟩ obtained by creating 2 5
men for each �rm 5 and one woman for each worker. Each man’s
preferences for the women mirror the corresponding �rm’s prefer-
ences for the corresponding workers. Each woman prefers all men
corresponding to a more preferred �rm over all men corresponding
to any less preferred �rm (in accordance with the corresponding
worker’s preferences). For any �xed �rm, all women prefer the man
corresponding to its �rst copy over the man representing its second
copy, and so on. Any stable matching in the one-to-one instance
I′ maps to a unique stable matching in the many-to-one instance
I, obtained by “compressing” the former matching in a natural
way (see Example 5 in [17]).

Proposition 2.3 (Canonical instance [16]). Given any many-

to-one instance I = ⟨�,, ,�, ≻⟩, there exists a one-to-one instance
I′

= ⟨%,&, ≻′⟩ such that there is a bijection between the stable match-

ings of I and I′. Furthermore, the instance I′ can be constructed in

polynomial time.

3 HOW DOES CAPACITY MODIFICATION
AFFECT WORKERS AND FIRMS?

In this section, we study how changing the capacity of a �rm can af-
fect the outcomes of the �rms and the workers. Speci�cally, we con-
sider the worker-proposing and �rm-proposing algorithms (WPDA

and FPDA) and ask if a �rm can improve/worsen when a unit ca-
pacity is added to it. Similarly, we will ask whether all workers can
improve or if some worker can worsen when a �rm’s capacity is
increased. Table 1 summarizes these trends.

The trends for capacity decrease by a �rm can be readily inferred
from Table 1. In particular, if increasing capacity can improve the
�rm’s outcome, then going back from the new to the old instance
implies that decreasing its capacity makes it worse o�.

One might intuitively expect that a �rm should improve upon
increasing its capacity, as it can now be matched with a strict su-
perset of workers. Similarly, it is natural to think that increase in
a �rm’s capacity can also make some workers better o� because
an extra seat at a more preferable �rm can allow some worker to
switch to that �rm, opening up the space for some other interested
worker and so on, thus initiating a chain of improvements. Exam-
ple 3.1 con�rms this intuition on an instance where the workers’
preferences are identical, also known as the master list setting.

Example 3.1 (All workers can improve). Consider an instance I
with two �rms 51, 52 and two workersF1,F2. The �rm 51 initially
has zero capacity, while the �rm 52 has capacity 1 (i.e., 21 = 0

WPDA FPDA

Yes Yes
Can the �rm improve?

[Ex 3.1] [Ex 3.1]

Can the �rm worsen?
Yes Yes

[Ex 3.2], [39] [Ex 3.2], [39]
Yes Yes

Can all workers improve?
[Ex 3.1] [Ex 3.1]

Can some worker worsen?
No No

[Cor. 3.6], [Cor. 3.6],
[16, 37] [16, 37]

Table 1: The e�ect of one �rm increasing its capacity by 1 on

itself and the workers, under the worker-proposing (WPDA)

and �rm-proposing (FPDA) algorithms.
and 22 = 1). Both workers have the preference 51 ≻ 52 ≻ ∅, and
both �rms have the preference F1 ≻ F2 ≻ ∅. The unique stable
matching for this instance is `1 = {(F1, 52)}.

Now consider a new instanceI′ obtained by adding unit capacity
to �rm 51 (i.e., 2

′
1
= 1). The instance I′ has a unique stable matching

`2 = {(F1, 51), (F2, 52)}. Observe that both workersF1,F2 as well
as the �rm 51 that increased its capacity are better o� under the new
matching `2. Furthermore, as there is only one stable matching, the
said trend holds under both FPDA andWPDA algorithms. Also note
that the two sets of stable matchings are disjoint. Thus, no matching
is simultaneously stable for both old and new instances. □

Somewhat surprisingly, it turns out that increasing capacity can
also worsen a �rm. This observation follows from the construction
of Sönmez [39], who showed that any stable matching algorithm is
vulnerable to manipulation via underreporting of capacity by some
�rm. We recall Sönmez’s construction in Example 3.2 below.

Intuitively, when workers propose under the WPDA algorithm,
a �rm can worsen upon capacity increase (equivalently, improve
upon capacity decrease) because of the following reason: By having
fewer seats, and thus by being more selective, the �rm can initiate
rejection chains which may prompt more preferable workers to
propose to it. On the other hand, by adding an extra seat, a �rmmay
be forced to accept a suboptimal set of workers. This is precisely
what drives the manipulation in Example 3.2.

A similar reasoning works when the �rms propose under the
FPDA algorithm: Due to extra seats, a �rm may be forced to make
additional proposals to less-preferred workers, thus kicking o�
rejection chains that prompt other �rms to take away its more pre-
ferred workers. Again, this phenomenon is at play in Example 3.2.

Example 3.2 (Increasing capacity canworsen a �rm [39]). Consider
an instance I with two �rms 51, 52 and three workers F1,F2,F3.
The workers’ preferences are given by

F1 : 52 ≻ 51 ≻ ∅ F2,F3 : 51 ≻ 52 ≻ ∅

The �rms have lexicographic preferences given by

51 : {F1,F2,F3} ≻ {F1,F2} ≻ {F1,F3} ≻
{F1} ≻ {F2,F3} ≻ {F2} ≻ {F3} ≻ ∅

52 : {F1,F2,F3} ≻ {F2,F3} ≻ {F1,F3} ≻
{F3} ≻ {F1,F2} ≻ {F2} ≻ {F1} ≻ ∅

Initially, each �rm has unit capacity, i.e., 21 = 22 = 1. In this case,
there is a unique stable matching, namely

`1 = {(F1, 51), (F3, 52)}.
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Now consider a new instance I′ derived from the instance I by
increasing the capacity of �rm 51 by 1 (i.e., 2′

1
= 2 and 2′

2
= 1). The

stable matchings for the instance I′ are

`2 = {({F1,F2}, 51), (F3, 52)} and
`3 = {({F2,F3}, 51), (F1, 52)}.

Here, the �rm-optimal stable matching (FOSM) is `2 and the worker-
optimal stable matching (WOSM) is `3.

Finally, consider another instance I′′ derived from I′ by in-
creasing the capacity of �rm 52 by 1 (i.e., 2′′

1
= 2 and 2′′

2
= 2). The

unique stable matching for the instance I′′ is `3.
By virtue of being the unique stable matching, the matching `1

is FOSM and WOSM for the instance I, and the matching `3 is
FOSM and WOSM for the instance I′′. Observe that �rm 51 prefers
`1 over `3. Thus, under WPDA algorithm, the transition from I to
I′ exempli�es that a �rm (namely, 51) can worsen upon increasing
its capacity. Similarly, the �rm 52 prefers `2 over `3. Thus, under
FPDA algorithm, the transition from I′ to I′′ exempli�es that a
�rm (namely, 52) can worsen upon increasing its capacity. □

Note that Example 3.2 crucially uses the lexicographic preference
structure; indeed, �rm 51 prefers being matched with the solitary
worker {F1} over being assigned the pair {F2,F3}. One might ask
whether the implication of Example 3.2 holds in the absence of
the lexicographic assumption. Proposition 3.3, due to Konishi and
Ünver [28], shows that under strongly monotone preferences and
WPDA algorithm, a �rm cannot worsen upon capacity increase.

Proposition 3.3 ([28]). Let ` and `′ denote the worker-optimal

stable matching before and after a �rm 5 with strongly monotone

preferences increases its capacity by 1. Then, `′ (5 ) ⪰5 ` (5 ).

The main idea in the proof of Proposition 3.3 is as follows: Under
WPDA, it can be shown that if the number of workers matched with
a �rm 5 does not change upon capacity increase, then the set of
workers matched with 5 also remains the same. (Notably, this obser-
vation does not require the preferences to be strongly monotone.)
It can also be shown that the number of workers matched with �rm
5 cannot decrease upon capacity increase. (Again, this observation
does not require strong monotonicity.). Thus, in order for the �rm’s
outcome to change, it must be matched with strictly more workers
in the new matching. Strong monotonicity then implies that the
�rm must strictly prefer the new outcome.

In contrast to WPDA, a �rm can worsen upon capacity increase
under the FPDA algorithm even under strongly monotone prefer-
ences (Example 3.4).

Example 3.4 (Increasing capacity can worsen a �rm under strongly

monotone preferences [39]). Consider the following instance, with
two workers F1,F2 and two �rms 51, 52 with strongly monotone
preferences:

F1 : 52 ≻ 51 ≻ ∅ 51 : {F1,F2} ≻ {F1} ≻ {F2} ≻ ∅
F2 : 51 ≻ 52 ≻ ∅ 52 : {F1,F2} ≻ {F2} ≻ {F1} ≻ ∅

Initially, each �rm has unit capacity, i.e., 21 = 22 = 1. In this case,
the �rm-optimal stable matching is

`1 = {(F1, 51), (F2, 52)}.

Upon increasing the capacity of �rm 52 to 22 = 2 while keeping
21 = 1, the �rm-optimal stable matching of the new instance is

`2 = {(F1, 52), (F2, 51)},

which is worse for �rm 52 compared to the old matching `1. □

Finally, we note that under both FPDA andWPDA algorithms, no
worker can worsen when a �rm increases its capacity. The reason
is that increasing the capacity of a �rm corresponds to “adding a
man” in the corresponding canonical one-to-one instance. Due to
the increased “competition” among the men, the outcomes of all
women weakly improve (Proposition 3.5).

Proposition 3.5 ([16, 37]). Given any one-to-one instance I =

⟨%,&, ≻⟩, let I′
= ⟨% ∪ {?}, &, ≻′⟩ be another one-to-one instance

derived from I by adding the man ? such that the new preferences ≻′

agree with the old preferences ≻ on % and & . Let `% and `& be the

men-optimal and women-optimal stable matchings, respectively, for

I, and let `′
%
and `′

&
denote the same for I′. Then, for every woman

@ ∈ & , we have `′
%
(@) ⪰′

@ `% (@) and `′
&
(@) ⪰′

@ `& (@).

Using Proposition 3.5 on the canonical one-to-one instance, we
obtain that increasing a �rm’s capacity can never worsen the out-
come of any worker under either worker-optimal or �rm-optimal
stable matching.

Corollary 3.6. Let `, and `′
,

denote the worker-optimal stable

matching before and after a �rm increases its capacity by 1, and let

`� and `′
�
be the corresponding �rm-optimal matchings. Then, for

all workersF ∈, , `′
,

(F) ⪰F `, (F) and `′
�
(F) ⪰F `� (F).

4 COMPUTATIONAL RESULTS

In this section, we will study the algorithmic aspects of capacity
modi�cation. We will take the perspective of a central planner
who can modify the capacities of the �rms to achieve a certain
objective.Wewill focus on two natural (andmutually incomparable)
objectives: (1)Match a pair (5 ∗,F∗), where the goal is to determine
if a �xed �rm 5 ∗ and a �xed worker F∗ can be matched under
some stable matching in the modi�ed instance, and (2) stabilize a
matching `∗, where the goal is to check if a given matching `∗ can
be realized as a stable outcome of the modi�ed instance. These
objectives have previously been studied in the one-to-one stable
matching problem motivated by control problems [9, 19].

We will assume that the central planner can modify the �rms’
capacities in one of the following two natural ways: (1) By adding

capacity, wherein the �rms can receive some extra seats (the dis-
tribution can be unequal), and (2) by deleting capacity, wherein
some of the existing seats can be removed. Under both addition
and deletion problems, we will assume that there is a global budget
ℓ ∈ N that speci�es the maximum number of seats that can be
added (or removed) in aggregate across all �rms.

The two objectives (match the pair and stabilize) and two actions
(add and delete) together give rise to four computational problems.
One of these problems—adding capacity to match a pair—is formally
de�ned below. The other problems are de�ned analogously.
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Match the pair (5 ∗,F∗) Stabilize the matching `∗

Add Capacity Delete Capacity Add Capacity Delete Capacity

Unbudgeted
Poly time Poly time Poly time Poly time

[Theorem 4.1] [Theorem 4 in [17]] [Theorem 7 in [17]] [Theorem 9 in [17]]

Budgeted
NP-hard NP-hard Poly time Poly time

[Theorem 4.2] [Theorem 5 in [17]] [Theorem 6 in [17]] [Theorem 8 in [17]]

Table 2: Summary of our computational results for adding and deleting capacity under two problems: matching a worker-�rm

pair (columns 2 and 3) and stabilizing a given matching (columns 4 and 5). The top row contains the results for the unbudgeted

problem (when only the aggregate change in �rms’ capacities is constrained) while the bottom row corresponds to the budgeted

problem (with additional constraints on individual �rms). The missing theorems and proofs are in the full version [17].

Add Capacity To Match Pair

Given: An instance I = ⟨�,, ,�, ≻⟩, a worker-�rm pair

(F∗, 5 ∗ ) , and a global budget ℓ ∈ N ∪ {0}.
Question: Does there exist a capacity vector� ∈ (N ∪ {0})= such

that� ≥ � , |� −� |1 ≤ ℓ , and 5 ∗ and F∗ are matched in

some stable matching of the instance I′
= ⟨�,, ,�, ≻⟩?

The aforementioned problems can be naturally generalized by
considering individual budgets for the �rms. For example, in the
add capacity problem, in addition to the global budget ℓ , we can
also have an individual budget ℓ5 for each �rm 5 specifying the
maximum number of additional seats that can be given to �rm
5 . We call this generalization the budgeted version, and use the
term unbudgeted to refer to the problem with only global—but
not individual—budget. Formally, the budgeted version of Add
Capacity to Match Pair problem is de�ned as follows:

Budgeted Add Capacity To Match Pair

Given: An instance I = ⟨�,, ,�, ≻⟩, a worker-�rm pair

(F∗, 5 ∗ ) , a global budget ℓ ∈ N∪ {0}, and an individual

budget ℓ5 ∈ N ∪ {0} for each �rm 5 .

Question: Does there exist a capacity vector� ∈ (N ∪ {0})= such

that� ≥ � , |� − � |1 ≤ ℓ , |2 5 − 2 5 | ≤ ℓ5 for each �rm

5 , and 5 ∗ and F∗ are matched in some stable matching

of the instance I′
= ⟨�,, ,�, ≻⟩?

The consideration of individual budgets results in eight compu-
tational problems overall. Table 2 summarizes our results on the
computational complexity of these problems.

A special case of the budgeted/unbudgeted problems is when
the global budget is zero, i.e., ℓ = 0. In this case, the capacities
of the �rms cannot be changed, and the goal is simply to check
whether a worker-�rm pair (F∗, 5 ∗) are matched in some stable
matching for the original instance I, or whether a given match-
ing `∗ is stable for I. The latter problem is straightforward. To
solve the former problem, it is helpful to consider the canonical
one-to-one instance of the given instance I. For the one-to-one
stable matching problem, a polynomial-time algorithm is known for
listing all man-woman pairs that are matched in one or more stable
matchings [20]. Using the bijection between the stable matchings
of the two instances (Proposition 2.3), we obtain an algorithm to
check if the workerF∗ is matched with any copy of �rm 5 ∗ in any
stable matching.

Thus, the zero budget case can be e�ciently solved for all of the
aforementioned problems. In the remainder of the section, we will
consider the case of global budgets.

Adding Capacity to Match A Pair: Unbudgeted

Let us start with the problem of adding capacity to match a worker-
�rm pair (F∗, 5 ∗) in the unbudgeted setting, i.e., with global but
without individual budgets.

In order to check whether the worker-�rm pair (F∗, 5 ∗) can
be matched in some stable matching in the given instance I by
adding capacity to the �rms, our algorithm (see Algorithm 1 in
[17]) considers a modi�ed instance I′ whereF∗ and 5 ∗ are already
matched, and checks if it is possible to construct a stable matching
of the remaining agents satisfying some additional conditions.

More concretely, the algorithm considers the set of �rms ��
(short for “distracting �rms”) that the worker F∗ prefers more
than the �rm 5 ∗, and the set of workers �, (short for “distracting
workers”) that the �rm 5 ∗ prefers more than F∗. Note that once
the workerF∗ is matched with the �rm 5 ∗, the �rms in �� are the
only ones that it could potentially form a blocking pair with (due
to responsive preferences). Similarly, the workers in �, are the
only ones that can block with 5 ∗ due to the forced assignment of
F∗ to 5 ∗.

The algorithm creates the modi�ed instance I′ by truncating the
preference lists of the �rms in�� (respectively, the workers in�, )
by having them declare all workers ranked belowF∗ (respectively,
all �rms ranked below 5 ∗) as unacceptable. The truncation step is
motivated from the following observation: In the original instance
I, there is a stable matching that matches (F∗, 5 ∗) after adding
capacities to the �rms if and only if there exists a stable matching in
the truncated instance I′ such that, after the added capacities, all
�rms in the set �� are saturated (and thus, matched with workers
they prefer more than F∗), and all workers in the set �, are
matched (and thus, matched either with 5 ∗ or with �rms they
prefer more than 5 ∗).

The key observation in our proof is that the desired matching
exists in the truncated instance I′ after adding capacities to the
�rms if and only if there exists a stable matching in the instance
I′ when the entire capacity budget is given to the �rm 5 ∗. This
observation readily gives a polynomial-time algorithm. We defer
the detailed proof of this observation to the full version [17].

Theorem 4.1. Add Capacity To Match Pair can be solved in

polynomial time.
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Adding Capacity to Match A Pair: Budgeted

Next, we will consider a more general problem where, in addition to
the global budget of ℓ seats, we are also given an individual budget
ℓ5 for each �rm 5 specifying the maximum number of seats that
can be added to the �rm 5 . The goal, as before, is to determine if,
after adding capacities as per the given budgets, it is possible to
match the pair (F∗, 5 ∗) under some stable matching.

Note that our algorithm for the unbudgeted problem assigns the
entire additional capacity to the �rm 5 ∗, which may no longer be
feasible in the budgeted problem. It turns out that, unless % = #% ,
no polynomial-time algorithm can be developed for this problem.

Theorem 4.2. Budgeted Add Capacity To Match Pair is NP-
hard.

To prove Theorem 4.2, we leverage a result of Boehmer et al.
[9] on control problems in the one-to-one stable matching prob-
lem (which, as per our convention, involves a matching between
men and women). Speci�cally, Boehmer et al. [9] study the problem
of adding a set of at most ℓ agents (men or women) such that in
the resulting instance, a �xed man-woman pair are matched under
some stable matching.

Interestingly, the reduction of Boehmer et al. [9] holds even
when only men (but not women) are required to be added. Due to
this additional feature, we slightly rede�ne the problem of Boehmer
et al. [9] and call it Constructive-Exists-Add-Men. The formal
de�nition of this problem is as follows:

Constructive-Exists-Add-Men

Given: An instance I = ⟨%>A86,&, ≻⟩, a set of addable men

%033 with the preference relation ≻ de�ned over the

entire set of agents %>A86 ∪%033 ∪& , a man-woman pair

(?∗, @∗ ) from the original set of agents, and a budget

ℓ ∈ N ∪ {0}.
Question: Does there exist a set % ⊆ %033 such that |% | ≤ ℓ

and (?∗, @∗ ) is part of at least one stable matching in

⟨%>A86 ∪ %,&, ≻⟩?

The result of Boehmer et al. [9] shows that Constructive-
Exists-Add-Men is NP-hard. We now use their result to show
NP-hardness for Budgeted Add Capacity To Match Pair using
the following straightforward construction: For each man in the
set %>A86 , we create a �rm with capacity 1 and individual budget
ℓ5 = 0, while for each man in the addable set %033 , we create a
�rm with capacity 0 and individual budget ℓ5 = 1. Adding a seat to
an individual �rm corresponds to adding the associated man. The
equivalence now follows.

5 CAPACITY MODIFICATION V/S
PREFERENCE MANIPULATION

So far, we have discussed qualitative (Section 3) and computational
(Section 4) aspects of capacity modi�cation from the perspective of
a central planner. We will now adopt the perspective of a �rm and
compare the di�erent manipulation actions available to it. Specif-
ically, we will consider preference manipulation (abbreviated as
Pref), wherein a �rm can misreport its preference list without
changing its capacity, and compare it with the two capacity mod-
i�cation actions we have already seen, namely Add and Delete

capacity, wherein the �rm can increase or decrease its capacity
without changing its preferences. These actions are formally de-
�ned below.

• Pref: Under this action, a �rm can report any permutation

of its acceptable workers without changing its capacity.6

That is, if a �rm 5 ’s true preference is ≻5 , then ≻′
5
is a valid

preference manipulation if for any workerF ,F ≻5 ∅ if and

only ifF ≻′
5
∅.

• Add/Delete: Under Add (respectively, Delete), the �rm 5

strictly increases (respectively, decreases) its capacity 2 5 by
an arbitrary amount without changing its preferences.

Our goal is to examine which mode of manipulation—Pref, Add,
or Delete—is always/sometimes more bene�cial for the �rm com-
pared to the others under the FPDA and WPDA algorithms.

On �rst glance, each manipulation action may seem to o�er a dis-
tinctive ability to the �rm: Add allows the �rm to either tentatively
accept more proposals (under WPDA) or make more proposals
(under FPDA), thus facilitating larger-sized (and possibly more
preferable) matches. Delete, on the other hand, can allow a �rm
to be more selective, which, as we have seen in Section 3, can be
advantageous in certain situations. Finally, Pref can allow a �rm
to trigger speci�c rejection chains, resulting in a potentially better
set of workers. Given the unique advantage of each manipulation
action, a systematic comparison among them is well motivated.

We compare the manipulation actions under two algorithms,
WPDA and FPDA, and focus on a �xed �rm 5 . An action - is said
to outperform action . (where -,. ∈ {Pref, Add, Delete}) if there
exists an instance such that the outcome for �rm 5 when it performs
- is strictly more preferable to it than that under . .

An important insight from our analysis is that the usefulness of
a manipulation action depends on a threshold on the �rm’s capacity
which we call its peak. For �xed preferences of all agents and �xed
capacities of the other �rms, the peak of �rm 5 is the size of the
largest set of workers matched to 5 under any stable matching
when 5 is free to choose its capacity 2 5 ∈ N.

Formally, given an instance I = ⟨�,, ,�, ≻⟩, a �rm 5 ∈ � and

any 1 ∈ N, let I1
= ⟨�,, , (�−5 , 1), ≻⟩ denote the instance derived

from I where the capacity of �rm 5 is changed from 2 5 to 1 (and
no other changes are made); here, �−5 denotes the capacities of
�rms other than 5 . Recall that the set of stable matchings for an
instance I is denoted by SI . The peak ? 5 for �rm 5 is de�ned as
the size of the largest set of workers 5 is matched with under any

stable matching in the instance I1 for an arbitrary choice of 1, i.e.,

? 5 (I) B max
1∈N, `∈SI1

|` (5 ) |.

Observe that when a �rm’s capacity is above its peak (i.e., 2 5 >

? 5 ), it must necessarily be unsaturated in any stable matching.
Similarly, by the rural hospitals theorem (Proposition 2.2), it follows
that peak is themaximumnumber of proposals a �rm receives under
WPDA for an arbitrarily chosen capacity.

Figure 1 illustrates the comparison between the various manipu-
lation actions under the FPDA andWPDA algorithms. Observe that
in each of the three regimes in Figure 1—below peak (i.e., 2 5 < ? 5 ),

6Manipulation via permutation has been studied by several works in the stable match-
ing literature [18, 24, 25, 38, 41, 42].
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WPDA:

Pref

DelAdd

(a) Below peak

Pref

DelAdd

(b) At peak

Pref

DelAdd

(c) Above peak

FPDA:

Pref

DelAdd

(d) Below peak

Pref

DelAdd

(e) At peak

Pref

DelAdd

(f) Above peak

Figure 1: Manipulation trends for theWPDA (top) and FPDA (bot-

tom) algorithm in the below peak/at peak/above peak regimes. An

arrow from action- to action . denotes the existence of an instance

where - is strictly more bene�cial for the �rm than . . Each missing

arrow from- to. denotes that there is (provably) no instance where

- is more bene�cial than . .

at peak (i.e., 2 5 = ? 5 ), and above peak (i.e., 2 5 > ? 5 )—there exist
scenarios where Delete is strictly more bene�cial than Add (and
similarly, more bene�cial than Pref). In fact, Delete is the only
manipulation that can be bene�cial above peak. The Add operation
is only bene�cial to a �rm if its capacity is below peak irrespective
of the matching algorithm. By contrast, Pref is bene�cial to a �rm
at peak under FPDA but is unhelpful under WPDA.

In the rest of this section, we will discuss the comparison be-
tween Delete and Pref under the WPDA algorithm. In the full
version [17], we discuss the other comparisons as well as the ma-
nipulation trends for strongly monotone preferences.

Delete vs Pref

Below Peak. When the capacity of a �rm is below its peak (i.e.,
2 5 < ? 5 ), there exists an instance where Pref can outperform
Delete (as well as Add) under WPDA. We defer the example of
Delete outperforming Pref under the WPDA algorithm to [17].

Example 5.1 (Pref outperforms Delete and Add underWPDA).

Consider an instance I with three �rms 51, 52, 53 and four workers
F1,F2,F3,F4. The �rms have unit capacities (i.e., 21 = 22 = 23 = 1)
and have lexicographic preferences given by

F1 : 52 ≻ 51 ≻ 53 ≻ ∅ 51 : F4 ≻ F1 ≻ F2 ≻ F3

F2 ,F3 : 51 ≻ 52 ≻ 53 ≻ ∅ 52 : F3 ≻ F2 ≻ F1 ≻ F4

F4 : 53 ≻ 51 ≻ 52 ≻ ∅ 53 : F1 ≻ F4 ≻ F2 ≻ F3

Under the WPDA algorithm, �rm 51 is matched with {F1}. If
51 uses Add by switching to any capacity 21 ≥ 2, itsWPDA match
is the set {F2,F3}. It is easy to verify that the peak for �rm 51 is
? 5 (I) = 2. Thus, under I, the capacity of �rm 51 is below peak.

If 51 uses Pref in the instance I by misreporting its preferences
to beF4 ≻ F2 ≻ F3 ≻ F1, then its WPDA match is {F4}, which is
more preferable for 51 (according to its true preferences) than its
match under Add. On the other hand, using Delete in the instance
I (by reducing the capacity to 21 = 0) is the worst outcome for 51
as it is left unmatched. □

At Peak. When the capacity of the �rm is equal to the peak (i.e.,
2 5 = ? 5 ), Pref becomes unhelpful underWPDA. This is because in
this case, the number of proposals received by the �rm under the

WPDA algorithm is equal to its capacity. Thus, regardless of which
permutation of the acceptable workers it reports, the �rm does not
reject any worker and is therefore matched with the same set.

Above Peak. When the capacity of the �rm is above its peak, Pref
again turns out to be unhelpful underWPDA. To show this, we �rst
make the following observation: For any above-peak instance, the
set of workers matched with �rm 5 in any stable matching is the
same as its worker-optimal match in the at-peak instance.

Lemma 5.2. Let I = ⟨�,, ,�, ≻⟩ be an instance with a �rm 5

such that 2 5 > ? 5 . Let `
∗ be the worker-optimal stable matching

of the at-peak instance I?5 , and ` be any stable matching of any

above-peak instance I1 (where 1 > ? 5 ). Then, ` (5 ) = `∗ (5 ).

In particular, Lemma 5.2 shows that the set of proposals made to
the �rm 5 under WPDA algorithm stays the same at or above peak.

Aziz et al. [6] have shown that underWPDA algorithm, a nec-
essary condition for bene�cial preference manipulation by a �rm
is that it must be saturated and receive more proposals than its ca-
pacity. By combining Lemma 5.2 with the observation of Aziz et al.
[6], we get that Pref is ine�ective in the at-peak and above-peak
regimes under the WPDA algorithm. In fact, using Lemma 5.2, we
can make a similar inference for any stable matching algorithm.

Theorem 5.3. Under any stable matching algorithm, a �rm cannot

improve via preference manipulation (Pref) if its capacity is strictly

greater than its peak.

The proof of Lemma 5.2 and Theorem 5.3 can be found in the
full version [17].

6 CONCLUDING REMARKS

We studied capacity modi�cation in the many-to-one stable match-
ing problem from qualitative, computational, and strategic perspec-
tives, and provided a comprehensive set of results. Going forward,
it would be interesting to explore algorithms for capacity modi�ca-
tion when both add and delete operations are allowed. It would also
be relevant to study situations where a �rm can simultaneously
misreport its preferences and change its capacity [27]. Finally, ex-
periments on synthetic or real-world data to evaluate the frequency
of availability of various manipulation actions is another natural
direction to explore [36].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. We
are also grateful to Manshu Khanna for pointing out the relevant
work of Dur and Van der Linden [14]. RV acknowledges support
from DST INSPIRE grant no. DST/INSPIRE/04/2020/000107 and
SERB grant no. CRG/2022/002621. Part of this work was done as
the SURA (Summer Undergraduate Research Award) project of SG
and SS during May-July 2023.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DMS-1928930 and by the Alfred
P. Sloan Foundation under grant G-2021-16778, while SN was in
residence at the Simons Laufer Mathematical Sciences Institute (for-
merly MSRI) in Berkeley, California, during the Fall 2023 semester.

 





REFERENCES
[1] Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. 2005. The New York

City High School Match. American Economic Review 95, 2 (2005), 364–367.
[2] Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. 2005.

The Boston Public School Match. American Economic Review 95, 2 (2005), 368–
371.

[3] Atila Abdulkadiroğlu and Tayfun Sönmez. 2003. School Choice: A Mechanism
Design Approach. American Economic Review 93, 3 (2003), 729–747.

[4] Narges Ahani, Tommy Andersson, Alessandro Martinello, Alexander Teytelboym,
and Andrew C Trapp. 2021. Placement Optimization in Refugee Resettlement.
Operations Research 69, 5 (2021), 1468–1486.

[5] Haris Aziz, Jiayin Chen, Serge Gaspers, and Zhaohong Sun. 2018. Stability and
Pareto Optimality in Refugee Allocation Matchings. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems. 964–972.

[6] Haris Aziz, Hans Georg Seedig, and Jana Karina von Wedel. 2015. On the Sus-
ceptibility of the Deferred Acceptance Algorithm. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems. 939–947.

[7] Federico Bobbio, Margarida Carvalho, Andrea Lodi, Ignacio Rios, and Alfredo
Torrico. 2023. Capacity Planning in Stable Matching: An Application to School
Choice. In Proceedings of the 24th ACM Conference on Economics and Computation.
295.

[8] Federico Bobbio, Margarida Carvalho, Andrea Lodi, and Alfredo Torrico. 2022.
Capacity Variation in the Many-to-one Stable Matching. arXiv preprint
arXiv:2205.01302 (2022).

[9] Niclas Boehmer, Robert Bredereck, Klaus Heeger, and Rolf Niedermeier. 2021.
Bribery and Control in Stable Marriage. Journal of Arti�cial Intelligence Research
71 (2021), 993–1048.

[10] Eric Budish, Gérard P Cachon, Judd BKessler, andAbrahamOthman. 2017. Course
Match: A Large-Scale Implementation of Approximate Competitive Equilibrium
from Equal Incomes for Combinatorial Allocation. Operations Research 65, 2
(2017), 314–336.

[11] Jiehua Chen and Gergely Csáji. 2023. Optimal Capacity Modi�cation for Many-
To-One Matching Problems. In Proceedings of the 2023 International Conference
on Autonomous Agents and Multiagent Systems. 2880–2882.

[12] Shradha Chettri. [n.d.]. New courses in 19 colleges will increase 2,000 seats
in DU. The Hindustan Times ([n. d.]). https://www.hindustantimes.com/
delhi/new-courses-in-19-colleges-will-increase-2-000-seats-in-du/story-
aKie2NTKKAB3qyJnciyNAK.html

[13] Lester E Dubins and David A Freedman. 1981. Machiavelli and the Gale-Shapley
Algorithm. The American Mathematical Monthly 88, 7 (1981), 485–494.

[14] Umut Dur and Martin Van der Linden. 2021. Capacity Design in School Choice.
Available at SSRN 3898719 (2021).

[15] David Gale and Lloyd S Shapley. 1962. College Admissions and the Stability of
Marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[16] David Gale and Marilda Sotomayor. 1985. Some Remarks on the Stable Matching
Problem. Discrete Applied Mathematics 11, 3 (1985), 223–232.

[17] Salil Gokhale, Shivika Narang, Samarth Singla, and Rohit Vaish. 2024. Capacity
Modi�cation in the Stable Matching Problem. arXiv preprint arXiv:2402.04645
(2024).

[18] Sushmita Gupta, Kazuo Iwama, and Shuichi Miyazaki. 2016. Total Stability in
Stable Matching Games. In Proceedings of the 15th Scandinavian Symposium
and Workshops on Algorithm Theory. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 23:1–23:12.

[19] Sushmita Gupta and Pallavi Jain. 2023. Manipulation With (Out) Money in
Matching Market. Available at SSRN 4289699 (2023).

[20] Dan Gus�eld. 1987. Three Fast Algorithms for Four Problems in Stable Marriage.
SIAM J. Comput. 16, 1 (1987), 111–128.

[21] Dan Gus�eld and Robert W Irving. 1989. The Stable Marriage Problem: Structure
and Algorithms. MIT press.

[22] Onur Kesten. 2012. On Two Kinds of Manipulation for School Choice Problems.
Economic Theory 51 (2012), 677–693.

[23] Donald Ervin Knuth. 1997. Stable Marriage and its Relation to Other Combinatorial
Problems: An Introduction to the Mathematical Analysis of Algorithms. Vol. 10.
American Mathematical Soc.

[24] Hirotatsu Kobayashi and Tomomi Matsui. 2009. Successful Manipulation in
Stable Marriage Model with Complete Preference Lists. IEICE Transactions on
Information and Systems 92, 2 (2009), 116–119.

[25] Hirotatsu Kobayashi and Tomomi Matsui. 2010. Cheating Strategies for the
Gale-Shapley Algorithm with Complete Preference Lists. Algorithmica 58, 1
(2010), 151–169.

[26] Fuhito Kojima. 2007. When Can Manipulations be Avoided in Two-Sided Match-
ing Markets?–Maximal Domain Results. The BE Journal of Theoretical Economics
7, 1 (2007).

[27] Fuhito Kojima and Parag A Pathak. 2009. Incentives and Stability in Large
Two-Sided Matching Markets. American Economic Review 99, 3 (2009), 608–627.

[28] Hideo Konishi and M Utku Ünver. 2006. Games of Capacity Manipulation in
Hospital-Intern Markets. Social Choice and Welfare 27, 1 (2006), 3–24.

[29] Taro Kumano and Morimitsu Kurino. 2022. Quota Adjustment Process. (2022).
https://ies.keio.ac.jp/en/publications/22210/

[30] David Manlove. 2013. Algorithmics of Matching under Preferences. Vol. 2. World
Scienti�c.

[31] Thanh Nguyen and Rakesh Vohra. 2018. Near-Feasible Stable Matchings with
Couples. American Economic Review 108, 11 (2018), 3154–3169.

[32] Alvin E Roth. 1982. The Economics of Matching: Stability and Incentives. Mathe-
matics of Operations Research 7, 4 (1982), 617–628.

[33] Alvin E Roth. 1984. The Evolution of the Labor Market for Medical Interns and
Residents: A Case Study in Game Theory. Journal of Political Economy 92, 6
(1984), 991–1016.

[34] Alvin E Roth. 1985. The College Admissions Problem is Not Equivalent to the
Marriage Problem. Journal of Economic Theory 36, 2 (1985), 277–288.

[35] Alvin E Roth. 1986. On the Allocation of Residents to Rural Hospitals: A General
Property of Two-Sided Matching Markets. Econometrica (1986), 425–427.

[36] Alvin E Roth and Elliott Peranson. 1999. The Redesign of the Matching Market for
American Physicians: Some Engineering Aspects of Economic Design. American
Economic Review 89, 4 (1999), 748–780.

[37] Alvin E Roth and Marilda A Oliveira Sotomayor. 1990. Two-Sided Matching: A
Study in Game-Theoretic Modeling and Analysis. Cambridge University Press.

[38] Weiran Shen, Yuan Deng, and Pingzhong Tang. 2021. Coalitional Permutation
Manipulations in the Gale-Shapley Algorithm. Arti�cial Intelligence 301 (2021),
103577.

[39] Tayfun Sönmez. 1997. Manipulation via Capacities in Two-Sided Matching
Markets. Journal of Economic Theory 77, 1 (1997), 197–204.

[40] Tayfun Sönmez. 1999. Can Pre-Arranged Matches be Avoided in Two-Sided
Matching markets? Journal of Economic Theory 86, 1 (1999), 148–156.

[41] Chung-Piaw Teo, Jay Sethuraman, and Wee-Peng Tan. 2001. Gale-Shapley Stable
Marriage Problem Revisited: Strategic Issues and Applications. Management
Science 47, 9 (2001), 1252–1267.

[42] Rohit Vaish and Dinesh Garg. 2017. Manipulating Gale-Shapley Algorithm:
Preserving Stability and Remaining Inconspicuous. In Proceedings of the 26th
International Joint Conference on Arti�cial Intelligence. 437–443.

 



https://www.hindustantimes.com/delhi/new-courses-in-19-colleges-will-increase-2-000-seats-in-du/story-aKie2NTKKAB3qyJnciyNAK.html
https://www.hindustantimes.com/delhi/new-courses-in-19-colleges-will-increase-2-000-seats-in-du/story-aKie2NTKKAB3qyJnciyNAK.html
https://www.hindustantimes.com/delhi/new-courses-in-19-colleges-will-increase-2-000-seats-in-du/story-aKie2NTKKAB3qyJnciyNAK.html
https://ies.keio.ac.jp/en/publications/22210/

	Abstract
	1 Introduction
	2 Preliminaries
	3 How Does Capacity Modification Affect Workers and Firms?
	4 Computational Results
	5 Capacity Modification v/s Preference Manipulation
	6 Concluding Remarks
	Acknowledgments
	References

